International Journal of Applied Earth Observations and Geoinformation 112 (2022) 102891

Contents lists available at ScienceDirect

International Journal of Applied Earth
Observations and Geoinformation

ELSEVIER journal homepage: www.elsevier.com/locate/jag

A novel method to simulate AVIRIS-NG hyperspectral image from
Sentinel-2 image for improved vegetation/wildfire fuel mapping,
boreal Alaska

Anushree Badola™, Santosh K. Panda ®”, Dar A. Roberts ¢, Christine F. Waigl °, Randi R. Jandt °,
Uma S. Bhatt?

@ Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775, USA

b Department of Natural Resources and Environment and Institute of Agriculture, Natural Resources and Extension, University of Alaska Fairbanks, Fairbanks, AK
99775, USA

¢ Department of Geography, University of California, Santa Barbara, CA 93106, USA

9 International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, USA

¢ Alaska Fire Science Consortium, International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, USA

ARTICLE INFO ABSTRACT

Keywords: Detailed vegetation maps are one of the primary inputs for forest and wildfire management. Hyperspectral
Hyperspectral data remote sensing is a proven technique for detailed and accurate vegetation mapping. However, the availability of
Simulation

recent hyperspectral imagery in Alaska is limited because of the logistics and high cost involved in its acquisition.
In this study, we simulated AVIRIS-NG (Airborne Visible InfraRed Imaging Spectrometer - Next Generation)
hyperspectral data from widely available Sentinel-2 multispectral data using the Universal Pattern Decomposi-
tion Method (UPDM). The UPDM is a spectral unmixing technique that uses detailed ground spectra of vegetation
classes and the Spectral Response Functions of AVIRIS-NG and Sentinel-2 sensors to simulate imagery with the
same number of bands and spectral resolution as an AVIRIS-NG image. We simulated three images (each covering
an area of 100 km x 100 km) from two ecoregions to test portability of the approach. We collected ground
spectra of vegetation and bare ground during summers (2019-2021) using a PSR+ 3500 hand-held spectror-
adiometer and created a spectral library for this study. The Iterative Endmember Selection (IES) algorithm was
used to optimize the spectral library and to select the most representative endmembers for simulation: birch,
spruce, and gravel. We validated the simulated hyperspectral imagery by comparing it with available AVIRIS-NG
images. The simulated image was visually and spectrally similar to the AVIRIS-NG image (RMSE of 0.03 and 0.02
for birch and spruce spectra, respectively). We applied the Random Forest image classification model to derive
detailed vegetation maps from the simulated images. Our vegetation map showed an improvement of 33% in the
map accuracy compared to the LANDFIRE EVT map. This study demonstrated an efficient and cost-effective
approach to derive detailed vegetation maps at the Sentinel scene scale by simulating hyperspectral images in
Google’s cloud environment. It offers a novel pathway to generate detailed vegetation and fuel maps for the
whole boreal region of Alaska to aid effective forest and fire management.

Spectral library
UPDM

Boreal forest
Endmembers

1. Introduction forest and in the past two decades (2001-2020) wildfires burned 12.7
million hectares of forest in Alaska (International Arctic Research Cen-

Alaska has an area of approximately 78 million hectares covered ter, 2021). Alaska’s boreal forest is highly flammable because of the
with boreal forests (Nowacki et al., 2003; U.S. Geological Survey, 2001). dominance of black spruce, which is highly combustible, and its low-
These forests extend from the Coast Range in the south to the Brooks lying canopy structure, which serves as ladder fuel and promotes
Range in the north. Wildland fire is a ubiquitous feature of the boreal crown fires and rapid fire spread. In boreal forests, the ground surface is
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covered with feather moss, lichen, and fine fuels that ignite easily in dry
conditions (National Park Service, 2021). Fire managers and the
research community aim to improve fire management by generating and
using improved fire spread models, climate and fuel inputs. Vegetation/
fuel maps are one of the key inputs for fire risk assessment and fire
spread modeling. Fire managers need accurate vegetation maps to
constrain fire spread by locating the potential areas of risk, appropri-
ately allocating suppression resources, and applying fuel treatments.

Remote sensing of vegetation and forest is a proven approach to
mapping vegetation type and wildfire fuel distribution ( Dudley et al.,
2015; Wagner et al., 2018; Xie et al., 2008; Badola et al., 2019; Badola
et al., 2021a; Smith et al., 2021). Specifically, multispectral sensors
onboard Landsat, Sentinel 2A and 2B, and Terra/Aqua satellites image
the entire globe, and their image data are heavily used for vegetation
mapping (Dobrinic et al., 2021; Grabska et al., 2019; Mudele and
Gamba, 2019). In the USA, Landscape Fire and Resource Management
Planning Tools (LANDFIRE) is a shared program between the U.S.
Department of Agriculture and the U.S. Department of the Interior
(https://landfire.gov/about.php). It provides geospatial products,
including vegetation and fuel maps, to state and federal fire manage-
ment agencies for wildfire mitigation (Reeves et al., 2009). In Alaska,
the LANDFIRE Existing Vegetation Type (EVT) map product derived
from Landsat image data (9 bands) at 30 m spatial resolution is tradi-
tionally used for fire management, fire spread modeling, and risk
assessment. The accuracy of the LANDFIRE EVT 2014 map product
ranges between 20% and 45% as per accuracy assessment at three sites
(Develice, 2012; Smith et al., 2021). The Alaska Center for Conservation
Science (ACCS) offers the Alaska Vegetation and Wetland Composite
(AVWC) map product, also generated from 30 m Landsat image data,
which includes land cover, wetlands, and deep-water maps for Alaska to
promote wetlands and deep-water habitat management (Alaska Vege-
tation and Wetland Composite, 2019).

Imaging spectroscopy or hyperspectral remote sensing provides an
opportunity to generate improved vegetation and fuel maps. A hyper-
spectral remote sensing sensor images the landscapes in hundreds of
narrow contiguous bands, making it more effective for vegetation
mapping than a multispectral sensor. However, the high dimensionality
of the hyperspectral data may reduce the map accuracy due to the
Hughes phenomenon (Hsu, 2007). Despite the constraint posed by high
data dimensionality, recent studies (Govender et al., 2019; Badola et al.,
2021a; Smith et al., 2021) have shown that hyperspectral data provides
more accurate and detailed vegetation/species maps than multispectral
data for the boreal region of Alaska. The application of hyperspectral
data in vegetation mapping is highly effective, but hyperspectral data
are not readily available. NASA JPL provides airborne hyperspectral
data collected using the state of the art Airborne Visible/Infrared Im-
aging Spectrometer-Next Generation (AVIRIS-NG) sensor. These data
are highly sought for vegetation/tree species mapping (Ahmad et al.,
2021; Badola et al., 2021a; Clark et al., 2005; Hati et al., 2020; Salas
et al., 2020; Singh et al., 2020; Smith et al., 2021; Zhang, 2014) due to
their narrow bandwidth of 5 nm including a wavelength range of
400-2500 nm, meter-scale spatial resolution, and high signal-to-noise
ratio. NASA’s JPL team recently acquired AVIRIS-NG data over select
sites in Alaska as part of the Arctic-Boreal Vulnerability Experiment
(ABOVE) airborne campaign, but these acquisitions cover a fraction of
Alaska’s boreal forest, so the available hyperspectral data is insufficient
for any regional scale vegetation/fuel mapping. In order to have
hyperspectral image data for the whole boreal forest of Alaska, we
conceived the idea of simulating AVIRIS-NG hyperspectral image data
from widely available Sentinel-2 image data at Sentinel scene scale (100
km x 100 km) by modifying the approach developed by Badola et al.
(2021b) and implementing it in Google’s cloud environment for efficient
processing.

Simulation of hyperspectral image data is an emerging research area
in the field of remote sensing. A few studies have attempted to simulate
hyperspectral data from multispectral data and ground spectra of
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vegetation and soil using a spectral reconstruction approach. Liu et al.
(2009) simulated Hyperion data from ALI multispectral data using the
Universal Pattern Decomposition Method (UPDM), a sensor-
independent spectral unmixing technique (Zhang et al., 2007). The
UPDM calculates the proportion of each class in a pixel and uses the
spectral response function of the sensors. This approach was further
tested by Tiwari et al. (2016) to simulate Hyperion data from ALI data
for Land-Use and Land-Cover (LULC) mapping. They successfully
simulated 70 Hyperion bands for a test site in Uttarakhand, India. Using
UPDM, Badola et al. (2021b) successfully simulated AVIRIS-NG data
(332 bands) from Sentinel-2 data for a boreal forest test site near Fair-
banks, Alaska. They obtained higher classification accuracy from
simulated data (89%) than Sentinel 2 data (78%). In this study, our goal
was to simulate the AVIRIS-NG data from the Sentinel-2 image data at
Sentinel-2 scene scale for regional scale vegetation mapping and to test
the simulation reproducibility across space and time. We had four
research objectives:

A. Implement the Iterative Endmember Selection (IES) algorithm to
derive the most representative endmember ground spectra for the boreal
region of Alaska.

B. Improve upon the Badola et al. (2021b) simulation algorithm to
generate AVIRIS-NG hyperspectral image at Sentinel-2 scene scale (100
km X 100 km).

C. Derive detailed vegetation maps from the simulated hyperspectral
data using a machine learning classifier and assess model accuracy and
portability across space.

D. Implement the hyperspectral image simulation and vegetation
classification algorithms in the Google cloud platform for efficient pro-
cessing and ease of sharing with the research community.

2. Materials and methods

The methodology is divided into three major phases: A) endmember
selection, B) simulation, C) classification and prediction (Fig. 1). We
obtained endmembers as the output from the first phase. These were
used as input for the simulation phase to simulate the AVIRIS-NG
hyperspectral data. We applied a Normalized Differenced Vegetation
Index (NDVI) mask and added a Digital Elevation Model (DEM) layer to
the simulated data and trained a Random Forest (RF) model using
training data collected from the field. Finally, we applied RF on simu-
lated AVIRIS-NG to map vegetation class maps.

2.1. Field data collection

This research required extensive fieldwork to collect ground spectra
of vegetation for hyperspectral data simulation as well as vegetation
survey for classification of the simulated image. We collected field data
(vegetation survey and leaf spectra of all major tree and tall shrub
species) over three summers (2019 - 2021). We collected a total of 432
leaf spectra (15 — 20 spectra for each major tree/ tall shrub species) at
three sites using a Spectral Evolution® PSR+ 3500 hand-held spec-
troradiometer (Spectral Evolution Inc., Lawrence, MA, USA). The PSR+
3500 spectroradiometer provides reflectance data in the range of
350-2500 nm at 1 nm interval, comprising a total of 2151 channels. We
collected leaf spectra by holding the optic at about 10 cm distance from
the target between 11:00 to 16:00 (local time; local solar noon at 13:56)
in sunny, clear-sky weather. We collected branch scale and leaf scale
spectra for trees and canopy scale spectra for shrubs (Fig. 2). We also
collected NPV spectra using a contact probe for tree bark. We targeted
12 public trails around the Fairbanks city and surveyed vegetation sites
using a Garmin handheld GPS device that provides 3 m positional ac-
curacy. At each site, we also recorded the information about canopy
cover, vegetation composition, and understory vegetation that helped us
in assigning vegetation class to a site. In Fig. 3, the yellow triangles
denote the locations of the collected ground data. Table 2 represents all
the field data used in this study.
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IES: Iterative Endmember Selection

VIPER: Visualization and Image Processing for Environmental Research

SRF: Spectral Response Function

NDVI: Normalized Difference Vegetation Index

DEM: Digital Elevation Model

AVIRIS-NG: Airborne Visible InfraRed Imaging Spectrometer - Next Generation.

Fig. 1. Processing Workflow (A: Endmember Selection; B: Simulation; C: Classification and Prediction).

The AVIRIS-NG scenes were acquired in 2018. Since we used these
scenes to assess the spectral quality of simulated hyperspectral data, we
used Sentinel scenes closer in date to the AVIRIS-NG scene acquisition
dates (Table 1). In the Interior Alaska boreal forest, vegetation change
can occur either due to natural succession, insect attack, wildfires, or
anthropogenic disturbance such as timber harvesting. During fieldwork,
we ensured that there was no evidence of insect outbreak or any major
vegetation change at the study sites since 2018.

2.2. Data preprocessing

We used radiometrically and geometrically corrected Sentinel-2A
level 1C (Top-of-atmosphere reflectance) data available from Euro-
pean Space Agency (ESA) Copernicus Open Access Hub (European Space
Agency, 2014). Table 1 lists the datasets that were used in this study,
including the sub-ecoregion where they belong (Nowacki et al., 2003).
We used the Sen2cor processor (Louis et al., 2016) available in ESA’s
Sentinel Application Platform (SNAP) for atmospheric, terrain, and
cirrus correction to obtain level 2A surface reflectance data. The size of
each scene was 100 km x 100 km. Sentinel-2A data has 13 bands, from
which we removed band 1 (coastal aerosol), band 9 (water vapor), and
band 10 (SWIR-Cirrus). The visible bands (bands 2, 3, and 4) and NIR
band (band 8) have 10 m resolution while the SWIR (bands 11 and 12)
and vegetation red edge bands (bands 5, 6, 7, and 8A) have 20 m spatial
resolution. We resampled all 20 m bands to 10 m to preserve the best
possible spatial resolution and better match the 5 m resolution of
AVIRIS-NG. We used atmospherically corrected level 2 AVIRIS-NG data

(NASA JPL, 2018) with 425 bands and 5 m spatial resolution to validate
the simulated data. We removed bands that contained excessive noise
due to atmospheric scattering or are dominated by methane and water
vapor absorption. We used the ASTER Global Digital Elevation Model
(GDEM) Version 3 (EarthData, 2021) as an additional feature for image
classification. It is available at a spatial resolution of 1 arc second
(approximately 30 m) (Abrams et al., 2020).

2.3. Building a spectral library of boreal vegetation and endmember
selection

We collected a total of 432 spectra (15-20 spectra for each species) of
trees/shrubs from the boreal region of interior Alaska. We created a
spectral library of all the collected ground spectra using ENVI classic
software (Exelis Visual Information Solutions version 5.3, 2010). The
PSR+ 3500 hand-held spectroradiometer also records the latitude,
longitude, and elevation, along with each target spectrum. We extracted
this information from all of the individual spectral files and created a
separate metadata file for the spectral library. Furthermore, we did all
spectral processing in the Visualization and Image Processing for Envi-
ronmental Research (VIPER) Tools 2 (beta) software (Roberts et al.,
2018).

Library pruning is an important step for creating a spectral library, as
it reduces the size of a spectral library and provides the ideal spectra for
each endmember. There are different library pruning techniques such as
Endmember Average RMSE (EAR), Minimum Average Spectral Angle
(MASA), Count-based Endmember Selection (CoB) and Iterative End-
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Fig. 2. Vegetation spectra collection in the field; (a) branch scale spectra for
birch using a bare fiber optic (b) branch scale spectra for black spruce using a
bare fiber optic (c) leaf scale spectra for birch using a bare fiber optic (d) NPV
spectra for birch bark using a contact probe.

member Selection (IES). These techniques rely on the square array
(Roberts et al., 1997) that stores the information about how an end-
member performs when used to unmix other spectra in the same library.
The square array is an n x n grid of pixels where n is the total number of
spectra and n along the row denotes the spectrum used for unmixing
from other spectra. We can gather information about RMSE, shade
fraction, and spectral angle from the square array. For more details on
the square array refer to Roberts et al. (1997). In this study we used the
IES (Roth et al., 2012; Schaaf et al., 2011) method for library pruning. It
calculates the kappa coefficient (McHugh, 2012) to create a subset of
spectra which provides the best class separability. IES classifies the
entire spectral library using a subset from the original library. End-
members are iteratively added and removed from the subset until kappa
no longer improves. IES has been used for different applications. Rob-
erts, et al. (2015) used IES to discriminate urban surface materials. IES
was implemented to map vegetation species (Dudley et al., 2015; Rob-
erts et al., 2015) and for improved burn severity mapping (Fernandez-
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Manso et al., 2016). The IES algorithm was implemented in the VIPER
Tools 2 (beta) software. We ran IES in fully constrained mode (RMSE and
fraction constrained) with default parameter settings, i.e., RMSE
threshold of 0.025.

After pruning, we got 105 spectra out of 432 for 15 endmember
classes (Table 3). We used the average of the spectra as the endmember
for simulation. Hence, we ended up with 15 endmembers, including one
for gravel. We initiated 15 endmembers as input for the simulation and
compared our simulated product with AVIRIS-NG scene by collecting
spectra from the known pixel (identified during field work) from both
simulated and AVIRIS NG data. We reduced the number of endmembers
in each iteration, tried different endmembers combinations (Table S1)
for simulation, and simultaneously verified our results until we obtained
similar spectra with low RMSE values. For the second iteration, we
plotted all 15 endmembers (Figure S1), and removed similar endmem-
ber spectra. We ran the simulation model with 9 spectra. In the third
iteration, we removed five more endmembers (alder, blueberry, larch,
white spruce and asphalt). We kept one spectrum from each deciduous
and coniferous class, gravel, and Non-Photosynthetic Vegetation (NPV)
spectra (downed trunk). In the fourth iteration, we replaced downed
trunk with asphalt and ran the simulation. In the fifth iteration, we used
NPV spectra from the ECOSTRESS spectral library (Meerdink et al.,
2019). We found a drastic discrepancy between spectra generated from
simulated and AVIRIS-NG data in all the iterations. Finally, we used
birch, black spruce and gravel for simulation and found similar spectra

Table 1
List of image datasets used in this study.

Data Scene Identifier Acquisition Main area Sub-
Date covered ecoregion
Sentinel-  S2ATO6WVS July 22, Fairbanks Tanana-
2A 2018 Kuskokwim
Lowlands
Sentinel- ~ S2BTO6WWS July 24, East of Yukon-
2B 2018 Fairbanks Tanana
Uplands
Sentinel-  S2BTO6WWU July 01, Yukon Yukon-Old
2B 2021 flats Crow Basin
AVIRIS- ang20180723t200207  July 23, Fairbanks Tanana-
NG 2018 Kuskokwim
Lowlands
AVIRIS- ang20170718t202618  July 18, South East Yukon-
NG 2017 of Tanana
Fairbanks Uplands
AVIRIS- ang20190705t192514 July 05, Yukon Yukon-Old
NG 2019 flats Crow Basin

Study Area: Interior Alaska

65°0N

60°0'N

550N

160°0'W 150°0'W o ow

Fig. 3. Study area: Showing the Sentinel-2 scenes used in this study (R: B8, G: B4, B: B3); yellow triangles mark the vegetation survey locations. The star shows the
location of Fairbanks, Alaska and the rectangle shows the Bonanza Creek Experimental Forest site (BCEF).
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Table 2
List of field data used in this study.
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Data Instrument Location

Time of Data Data collected

collection

In-situ vegetation Hand held Garmin GPS

12 public trails explored around

Summer, 2021 Vegetation composition, canopy cover, diameter and

survey Fairbanks height
University of Alaska, Fairbanks Summer, 2019
campus
BCEF Summer, 2020
Vegetation PSR+ 3500 University of Alaska, Fairbanks Summer, 2021 Spectra, sample location, vegetation type
spectroscopy Spectroradiometer campus
GPS CPCRW Summer, 2019 and
2021
BCEF Summer, 2021
Table 3 values from Sentinel 2 multispectral data and Py is a matrix that con-
able

List of 15 endmembers obtained through Iterative Endmember Selection library
pruning technique.

Endmembers

Alder Blueberry Balsam poplar
Downed trunk Black spruce Carex

Dwarf birch Green grass Larch
Labrador tea Birch Gravel
Asphalt Wild rose White spruce

with low RMSE values for spectra generated from simulated and AVIRIS-
NG data.

2.4. Simulation of hyperspectral data

The process of hyperspectral data simulation is divided into three
steps: ground spectra normalization, weighted fraction coefficients, and
hyperspectral data simulation.

2.4.1. Ground spectra normalization

We normalized three endmembers (black spruce, birch and gravel)
by convolving them with the Spectral Response Function (SRF) (Euro-
pean Space Agency, 2017) of both Sentinel and AVIRIS-NG sensors. We
obtained the SRF for Sentinel-2 data from the Sentinel 2 document li-
brary. We calculated the AVIRIS-NG SRF from Full Width at Half
Maximum (FWHM) using Gaussian functions (Badola et al., 2021b; Liu
et al., 2009).

2.4.2. Weighted fractional coefficient

We used the Universal Pattern Decomposition Method (UPDM) to
estimate the proportion of each endmember in every pixel of the image
(Badola et al., 2021b; Liu et al., 2009; Tiwari et al., 2016). UPDM is a
linear unmixing method that is structured for satellite data analysis
(Zhang et al., 2006). It assumes that reflectance at each pixel of an image
is a linear mixture of normalized endmembers. The equation expressed
in matrix form represents the linear unmixing of three endmembers (b:
birch, s: spruce, g: gravel) (Equation (1)).

R, Py Py Py
R, Py, Py Py G
-7 7 T e M
: : : C,
Rn Pnb Pns Png

Where R is the total pixel reflectance, C is the proportion of class, P is
the normalized ground reflectance, and n is the band number.
For a multispectral sensor, we can represent Equation (1) as.

Ry = PyCy 2

Cy is the fraction of coefficients of each endmember in a pixel in the
form of a matrix for the whole image. Ry is the matrix with reflectance

tains the reflectance values from the normalized endmembers.
Cym can be calculated from Equation (2) using reflectance from
Sentinel 2 data by applying least square method:

Cy = (PL,.Py) ' PL.Ry 3)

2.4.3. Hyperspectral data simulation

The spatial resolution of the simulated hyperspectral image will be
same as in the Sentinel-2 image, therefore the fraction of coefficients
(Cm) will remain the same. We normalized ground spectra (endmem-
bers) using the SRF of the AVIRIS-NG sensor. Hence, we can calculate
reflectance values using Equation (1) and Equation (3). The simulation
method is discussed in more detail in Badola et al. (2021b). This simu-
lated hyperspectral image has the same number of bands as AVIRIS-NG.
Here, in Equation (4), Ry is the reconstructed reflectance values for the
simulated hyperspectral image. We write out the simulated hyper-
spectral image file in GeoTiff file format.

Ry = Py.(PT,.Py)" Pl Ry 4)

We implemented the hyperspectral image simulation in the Google
cloud environment using Python 3 (Python Core Team, 2015) and a
Jupyter notebook. We used the following libraries and packages: Pandas
to handle the image data in a data frame; Numpy (Harris et al., 2020) to
perform the matrix calculations; Rasterio (Gillies et al., 2013) to work
with images, especially to read and write the image data. We imple-
mented the algorithm by dividing a Sentinel scene covering an area of
100 km x 100 km into 36 square tiles of 2048 X 2048 pixels.

2.5. Simulated hyperspectral data validation

We validated the simulated data using spectral comparison, statis-
tical analysis and visual interpretation. For spectral and statistical
comparison, we extracted pixel spectra for birch and black spruce from
AVIRIS-NG image data and the simulated hyperspectral image. These
spectra were extracted from the pixels identified in the field. We
compared the reflectance values and absorption peaks and visually
analyzed the pattern of the spectra. We also calculated the Root Mean
Square Error (RMSE) to evaluate the accuracy of the simulated birch and
spruce pixel spectra.

We performed visual analysis by generating Colored Infrared (CIR)
image using bands with wavelengths 843 nm, 662 nm, and 557 nm as
RGB for the AVIRIS-NG and simulated hyperspectral image, and bands
with wavelengths 842 nm, 665 nm and 560 nm as RGB for the Sentinel-2
image. We inspected and analyzed different areas of interest based on
their visual appearance.

2.6. Image classification

We labeled each survey site to a vegetation class as per Viereck’s
Alaska Vegetation Classification (Viereck et al., 1992). For vegetation
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classes with similar spectra, we merged the classes (e.g., open birch
forest and closed birch forest, Figure S2). Using an NDVI threshold of
0.3, we masked out the non-vegetated pixels. We identified 16 vegeta-
tion classes, including one ‘Other’ class that represents non-forested
open vegetated areas such as grasslands.

We performed image classification using the ‘Random-
ForestClassifier’ function of the scikit-learn () in Python 3 with 500
decision trees and \/ (425) =~ 20 number of features per subset (Brei-
man, 2001; Pedregosa et al., 2011). We divided the survey data into two
sets, a training set and testing set, and trained the classifier on a simu-
lated hyperspectral scene (S2ATO6WVS) that had the 16 vegetation
classes representative of interior Alaska. The trained model was then
used to classify two other simulated hyperspectral scenes to assess the
model’s portability to other sites.

2.7. Accuracy assessment

We performed the accuracy assessment using F1 scores and Inter-
section over Union (IoU). Each class has a different number of samples.
The imbalance in classes can skew the results in favor of a more abun-
dant class or classes with a greater number of samples and result in
biased classification accuracy. In the event of imbalanced classes, clas-
sification accuracy is not enough to assess the classifier model perfor-
mance. We used F1 score and IoU measures to evaluate the model
performance. The F1 score is the harmonic mean of the precision and
recall of the model, with value ranging from O to 1. IoU (also known as
the Jaccard index) measures the amount of overlap between the pre-
dicted and the actual label. A value of 0 means there is no overlap, while
1 denotes complete overlap. An IoU score greater than 0.5 is considered
to be a good prediction.

We also compared our classified output with two available vegeta-
tion map products: LANDFIRE EVT (LANDFIRE, 2016) and the Alaska
Vegetation and Wetland Composite (AKVWC) (Alaska Vegetation and
Wetland Composite, 2019). We also compared the percentage cover of
each species with the USDA Tanana Valley State Forest Pilot Inventory
(Pattison et al., 2018).

3. Results

In this section, we present the spectral, statistical, and visual com-
parison of simulated hyperspectral image with AVIRIS-NG and Sentinel
2 image, image classification results, and comparison of our classified
vegetation map with two other existing products.

3.1. Spectral and statistical comparison

Simulated spectra accurately captured the key absorption features
that were available in AVIRIS-NG data. For spectral and statistical
analysis, we removed the 93 bands with noise due to atmospheric
scattering and poor radiometric correction, and bands dominated by
water vapor and methane absorption (Badola et al., 2021b). Fig. 4 shows
the comparison of simulated and AVIRIS-NG spectra for birch and spruce
vegetation. In spectra extracted from simulated data, the absorption
features were similar to AVIRIS-NG spectra. These absorption features
are caused by chlorophyll absorption in the red band (around 690 nm),
water absorption in the NIR region, and lignin and cellulose absorption
in the SWIR region. Around 1400 nm wavelength, a dip due to water
absorption is present in both the spectra generated from simulated and
AVIRIS-NG data. In both spectra, the difference in the reflectance values
over the infrared region (700 nm — 1400 nm) is relatively small, and
their pattern is similar. We achieved an RMSE of 0.03 and 0.02 for birch
and spruce, respectively.

Fig. 5 shows the band-to-band correlation between AVIRIS-NG and
simulated hyperspectral images. A majority of the bands show high
correlation, especially in the NIR and SWIR region. We also calculated
the Coefficient of Variation (CoV = standard deviation/ mean) for the
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pixel difference between AVIRIS-NG and simulated hyperspectral im-
ages for 332 bands (Fig. 6). The CoV is another metric to quantify and
visualize the similarity between the two image data. A lower CoV value
suggests higher similarity between the two image data, while a higher
CoV value suggests less similarity. In our case, the CoV value ranges
from 0.2 to 1.3, with higher CoV values along trails and shaded areas
where we expect lower simulation accuracy, as we did not include shade
fraction as one of the end members. Both band-to-band correlation and
the CoV of pixel differences between AVIRIS-NG and simulated hyper-
spectral images illustrate the quality of simulated hyperspectral image.
The band-to-band correlation is higher than 0.6 for 252 bands, and 98%
of the total pixels have a CoV less than 1 suggesting that the simulated
image satisfactorily captures the spectral details at pixel scale.

3.2. Visual analysis

The simulated image captures the minute details visible in the
AVIRIS-NG image (Fig. 7). AVIRIS-NG data were not available for the
bottom left side of the area in Fig. 7 (a) and (b), therefore the region is
black. Fig. 7 (a) is an image from Creamer’s Field - Migratory Waterfowl
Refuge area in Fairbanks. The region shown in a yellow circle is an open
field that has trees planted on the boundary. Simulated data captured
the trees on the edges quite well. In Fig. 7 (b), the small patches inside
the yellow circle are water bodies. These water bodies are accurately
captured in the simulated image. In Fig. 7 (c), we overlaid ground sur-
veyed points for birch and spruce on the three images. We can see a clear
difference in the image tone and color saturation between the coniferous
vegetation (spruce) and deciduous vegetation (birch) in all three images.
The area dominated by birch has brighter pixels, while the area with
spruce has darker pixels. The simulated image correctly captured this
tonal and color differences between birch and spruce forests.

3.3. Image classification

We performed vegetation classification on the simulated data ac-
cording to the Alaska vegetation classification given by Viereck et al.
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Fig. 6. A map of the Coefficient of Variation (CoV) for the pixel difference between AVIRIS-NG and simulated hyperspectral data.

(1992). Fig. 8 highlights the results of vegetation mapping using the RF
classifier. We used NDVI to mask out non-vegetation pixels. There is a
separate class for the masked pixels in the legend. Mountains dominate
the southern part of the scene; some parts of the mountain and high
elevation areas are covered with alpine vegetation. We did not have any
training data for alpine vegetation class. Therefore, we included a
“Other” class to capture the alpine vegetation and other vegetation
(mostly grasses) pixels that are not included in the training. The center
of the scene is a lowland area. Most of the pixels are classified into
vegetation classes dominated by black spruce.

We had unbalanced test samples; different classes have different
numbers of pixels. To overcome class imbalance, we calculated the F1
score and IoU shown in Fig. 9 and Fig. 10 respectively. A high F1 score
means the class has performed well. “Open black spruce forest” and
“Open balsam poplar forest” had the lowest F1 score, while most classes
performed well. Additionally, if the IoU value is 0.5, the class has per-
formed well. In our case, seven classes had an IoU value greater than 0.5,
3 classes had an IoU value very close to 0.5, and the remaining classes
had a value between 0.3 and 0.4.

For a test site in BCEF, we generated a vegetation map from Sentinel-
2 data and assessed its accuracy using field validation plots. We did not
use these plots for training. Out of 31 plots (Fig. 11), 13 plots were
correctly mapped with 42% accuracy in the case of Sentinel-2 data,
while 20 plots were correctly mapped in the case of simulated classified
output, resulting in an accuracy of 65%.

3.4. Process validation

To test the simulation method across space, i.e. for different
geographic subregions, we simulated two more scenes (S2BTO6WWS,
S2BTO6WWU) using the same ground spectra and classifier model
(trained in scene 1) to predict pixel vegetation class. Scene 2
(S2BTO6WWS) covers the area east of scene 1, and scene 3
(S2BT06WWU) covers a part of the Yukon flats region that lies to the
north of Fairbanks. Locations of all three scenes are shown in Fig. 3.
Scene 2 (S2BTO6WWS) falls under the Yukon-Tanana Uplands sub-
ecoregion, and scene 3 (S2BTO6WWU) covers the Yukon-Old Crow
Basin sub-ecoregion. We had a smaller set of ground data for scene 2 that
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and paper birch.

we used for validating our classified vegetation map output. We did not
have any ground data for scene 3, so we only performed visual, statis-
tical, and spectral comparison of the simulated image generated from
scene 3.

We compared spectra collected from simulated image data and
AVIRIS-NG image for scene 2 and scene 3. Figure S3 shows the com-
parison of the spectra collected from the same pixels in both images. We
picked two different sites that represent deciduous and coniferous spe-
cies. The spectra showed a similar pattern and the same absorption
features. The RMSE for deciduous vegetation (Figure S3 (a)) was 0.02,
and 0.01 for coniferous vegetation (Figure S3 (b)). We visually
compared the simulated data and AVIRIS-NG data. Simulated data has
captured the trails and built-up area similar to AVIRIS-NG data (see the
yellow circle, Figure S4 (a)). Coniferous and deciduous vegetation are
easily distinguishable in simulated data (see the yellow circle, Figure S4
(b)).

Here we have discussed the classified vegetation map accuracy at
select points for an area around Twin Bear Chena River to Ridge and
Compeau trail east of Fairbanks. We overlaid the ground points over the
classified map and visually assessed the classified map product accuracy
(Fig. 12). InFig. 12, points 1, 2, and 5 (from spruce and birch vegetation)
are over the blue pixels; the blue pixels in the classified map represent

open spruce-paper birch class. Point 4 has paper birch in the ground; the
classifier mapped it as the open paper birch forest. Point 6 has white
spruce, and the pixels around this point are mapped as the closed white
spruce forest. Point 3 has black spruce and moss, and the classified map
identified the pixels at and around this point as open black spruce forest
and black spruce woodland. The dark gray pixels are wetlands and
include all the vegetation growing on marshy areas with seasonal
standing water. The gray pixels are mostly around the water bodies
(shown as black pixels). Wetlands and vegetation classes present at all
six points are correctly mapped in the classified vegetation map.

Using our algorithms, one can simulate hyperspectral data and
classify it to generate a vegetation map in 10 h (system configuration:
Intel(R) Xeon(R) Gold 5222 CPU @ 3.80 GHz, 3801 MHz, 4 cores with
192 GB RAM). Each simulated hyperspectral image requires a minimum
of 190 GB disk space (scene size: 100 X 100 km; pixel size: 10 m; 425
bands). To overcome the dependency on powerful computer systems
with large storage, we implemented the entire processing in the Google
Cloud Platform (GCP system configuration: 16 CPUs and 60 GB RAM).

4. Discussion

We developed a novel approach to efficiently simulate an AVIRIS-NG
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hyperspectral image cube from a Sentinel-2 image and subsequently
derive a detailed vegetation map covering an area of 100 km x 100 km
for the boreal region of Alaska. The simulated images accurately capture
the minute landscape features present in the original AVIRIS-NG image.
The spectral profile from the simulated image matches the original
AVIRIS-NG image in the pattern but differs in reflectance magnitude in
the SWIR region. Zhang et al. (2006) and Badola et al. (2021b) also
reported a similar difference in reflectance over the SWIR region.
Several factors contribute to the spectral differences: a) the difference in
the spatial resolution of the two datasets, i.e. Sentinel-2 bands have a
spatial resolution of 10 m and 20 m compared to 5 m for AVIRIS-NG, b)
the difference in the sensor’s altitude and sun and sensor geometry, and
c) difference in date and time of acquisition. Also, the missing end-
member, Non-Photosynthetic Vegetation (NPV), is contributing to the

reflectance difference. NPV has higher SWIR reflectance (Asner, 1998),
and depending on the NPV, a vegetation pixel can have lower reflec-
tance in the visible region than in the SWIR region. However, when we
added NPV to the model, it reduced model performance significantly.
Hence, one of the major limitations of this model is that it cannot handle
NPV as one of the endmembers without generating significant errors.
However, by excluding NPV, we ended up with lower reflectance in the
SWIR region. In reality, a pixel can have a significant NPV fraction, but
this model can only handle distinct endmembers. Also, this model is
built for the peak of the growing season and might not do well for images
acquired during shoulder season; for example, when leaves start to
senescence at the beginning of the fall season. Despite the above limi-
tation, our simulation model can accurately capture the key absorption
features and spectral details essential for detailed vegetation and
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surveyed plot locations used as validation.

landcover mapping, paving the path for on-demand hyperspectral data
availability for boreal Alaska.

4.1. Comparison with other map products

We used 31 field surveyed plots in the Bonanza Creek Experimental
Forest site, a Long-Term Ecological Research (BCEF LTER) site in Inte-
rior Alaska, to assess the accuracy of LANDFIRE EVT and our vegetation
map (Fig. 13). Out of 31 plots, 10 plots were mapped correctly in the
LANDFIRE EVT 2016 product, giving a product accuracy of 32%,
whereas 20 plots were mapped correctly in our vegetation map product,
giving a product accuracy of 65%. Table S2 shows the vegetation class
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present on the 11 plots that were misclassified. The majority of these
misclassified plots have similar vegetation. Two plots of closed spruce-
paper birch-quaking aspen were incorrectly mapped as open spruce-
paper birch, while two other plots were mapped as open quaking
aspen. One wetland plot was incorrectly mapped as Black spruce
woodland, possibly due to the presence of isolated black spruce and
understory vegetation found in black spruce woodland. We believe by
merging similar classes and retraining the classifier, the map accuracy
can be further improved.

Fig. 14 demonstrates the comparison between our vegetation map
and the available LANDFIRE EVT and Alaska Vegetation and Wetland
Composite (AKVWC) maps. The rectangle, square, and circle in Fig. 14
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highlights the locations where we clearly see that the map generated
using simulated data is more detailed and accurate in comparison to the
other two maps. The region highlighted under the rectangle is domi-
nated by single birch and aspen class in both AKVWC and LANDFIRE
EVT maps, while four different birch and aspen vegetation classes are
mapped in the simulated classified map: open paper birch forest, open
quaking aspen forest, open and closed paper birch, and quaking aspen
forest. Similarly, the region inside the circle is dominated by black
spruce and white spruce classes in all three cases, but in the case of a
simulated classified map, the classes are more detailed. The pixels inside
the square are mapped as wetlands in the case of AKVWC and simulated
classified maps, while in the LANDFIRE EVT map, most of these pixels
are mapped as black spruce-tamarack fen.

The U.S. Department of Agriculture completed a Pilot Inventory for
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Tanana Valley State Forest, which is covered by the Sentinel scene used
in this study. The survey for the Pilot Inventory began in 2014 and was
fully implemented between 2016 and 2018. They surveyed 800 plots
(around a 7.3 m radius) to get forest type acreage, extrapolating the
observations to the entire Tanana Valley State Forest to get total acreage
for forest types (Pattison et al., 2018; U.S. Forest Service, 2016). Fig. 15
shows the comparison of forest type acreage estimated from the simu-
lated classified map with estimates from the Pilot Inventory program for
five major tree species. For all five tree species, the acreage estimates
from our vegetation map are comparable with the estimates from the
Pilot Inventory program, and they follow the same pattern as well: i.e.
black spruce is the most dominant tree species, followed by birch, with
aspen and poplar being the least dominant tree species. Therefore, the
forest type acreage we obtained from our map is comparable to the
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We used a smaller set of ground data over scene 2 (covering the area
east of scene 1) to assess the quality and accuracy of our vegetation map.
These points were not used for training the classifier. Fig. 16 compares

the simulated classified map with LANDFIRE EVT and Alaska Vegetation
and Wetland Composite (AKVWC) maps. In the LANDFIRE EVT mabp, the
black spruce point is sitting on a pixel mapped as Western North
American Boreal Mesic White Spruce-Hardwood Forest (bright green
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pixel); in the AKVWC product, the black spruce point is sitting on White
Spruce or Black Spruce (Open) (purple pixels). In the simulated classi-
fied map, the black spruce point is correctly mapped as open black
spruce forest (dark green pixel). For the wetland point, the LANDFIRE
EVT product mapped the pixel as Western North American Boreal Black
Spruce Bog and Dwarf-Tree Peatland (brown pixel) and AKVWC product
mapped the pixel in the same way it mapped for black spruce, i.e. White
Spruce or Black Spruce (Open) (purple pixel), while the simulated
classified product mapped the area as wetlands (grey pixels). These
observations suggest that the simulated classified map correctly identi-
fied the open black spruce forest and wetlands pixels with better accu-
racy than the two existing maps.

We simulated a third scene (scene 3: S2BT06WWU) from a different
ecoregion that covers a part of the Yukon Flats region. Figure S5 shows
the spectral comparison between simulated data and AVIRIS-NG data.
The simulated data accurately captured the absorption features and has
a similar reflectance as AVIRIS-NG data: RMSE = 0.02 for deciduous
vegetation (Figure S5 (a)) and RMSE = 0.01 for coniferous species
(Figure S5 (b)).

The hyperspectral simulation of three different Sentinel 2 scenes and
their evaluation demonstrated that we developed an efficient approach
for obtaining on-demand hyperspectral data for vegetation/fuel map-
ping. Our vegetation maps are more detailed and their accuracies are on
par with or better than the existing vegetation maps. To effectively
implement this approach, it is important to collect field spectra on a
clear, sunny day. The field spectra collected on hazy days or cloudy days
can degrade hyperspectral simulation results. We also learned that to
process the entire Sentinel scene, one needs an expensive system with
higher processing power and hardware, so a cloud computing platform
like Google Cloud Platform (GCP) (Google, 2022) is a better alternative
for efficient and cost-effective processing. GCP reduces the dependency
on an expensive local system and the installation of libraries. The only
requirements are a browser, a good internet connection, and a Google
account to run the codes. More importantly, GCP makes it easy to share
the codes with the research community. A simulated hyperspectral
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image cube covering an area of 100 km x 100 km requires 190 GB of
disk space. GCP provides a considerable amount of storing capacity at a
low cost to store such huge files and their efficient access for further
processing. The hyperspectral nature of this data (5 nm bandwidth)
makes it appropriate for generating a detailed vegetation map with
improved accuracy for a variety of applications, including fire and forest
management. Better vegetation/fuel maps are critical for effective fuel
treatment, i.e. identifying areas for creating fire breaks or fire lines to
check the spread of wildfires. The simulated hyperspectral image can
potentially be used to extract other biophysical attributes of vegetation
like chlorophyll, moisture, and nitrogen, expanding its applications to
other areas of vegetation research.

5. Conclusions

In this study we developed and implemented a sophisticated work-
flow to generate simulated AVIRIS-NG hyperspectral image data from
Sentinel-2 image at Sentinel scene scale (100 X100 km) in Google’s
cloud environment and tested simulation reproducibility across space
and time. We employed a well-established endmember selection tech-
nique to make our method more consistent and reproducible across
different geographies. By improving the simulation algorithm, we were
able to turn a 4.5 GB Sentinel 2 data set into a full hyperspectral image
cube of 190 GB in about 2 hrs. We developed a Random Forest image
classification model using training signatures from one scene and tested
the Random Forest model portability on two other scenes from different
sub-ecoregions. The Random Forest vegetation classification model
performed satisfactorily on these two scenes, suggesting that our model
can be reliably used for improved vegetation mapping in boreal Alaska.
The vegetation maps generated from simulated data were more detailed
and accurate based on the available field data points than the two
existing vegetation maps, LANDFIRE EVT and Alaska Vegetation and
Wetland Composite (AKVWC). We assessed the mapping accuracy of the
latest LANDFIRE EVT (32%) and our map product (65%) using ground
survey data and observed an improvement of 33% in accuracy. This
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study developed a novel approach and algorithms to produce hyper-
spectral image from widely available multispectral images and showed
its applicability in mapping vegetation and fuel in the boreal forest of
Alaska with improved accuracy, which will contribute to effective forest
and fire management in Alaska.
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