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A B S T R A C T   

Detailed vegetation maps are one of the primary inputs for forest and wildfire management. Hyperspectral 
remote sensing is a proven technique for detailed and accurate vegetation mapping. However, the availability of 
recent hyperspectral imagery in Alaska is limited because of the logistics and high cost involved in its acquisition. 
In this study, we simulated AVIRIS-NG (Airborne Visible InfraRed Imaging Spectrometer - Next Generation) 
hyperspectral data from widely available Sentinel-2 multispectral data using the Universal Pattern Decomposi
tion Method (UPDM). The UPDM is a spectral unmixing technique that uses detailed ground spectra of vegetation 
classes and the Spectral Response Functions of AVIRIS-NG and Sentinel-2 sensors to simulate imagery with the 
same number of bands and spectral resolution as an AVIRIS-NG image. We simulated three images (each covering 
an area of 100 km × 100 km) from two ecoregions to test portability of the approach. We collected ground 
spectra of vegetation and bare ground during summers (2019–2021) using a PSR+ 3500 hand-held spectror
adiometer and created a spectral library for this study. The Iterative Endmember Selection (IES) algorithm was 
used to optimize the spectral library and to select the most representative endmembers for simulation: birch, 
spruce, and gravel. We validated the simulated hyperspectral imagery by comparing it with available AVIRIS-NG 
images. The simulated image was visually and spectrally similar to the AVIRIS-NG image (RMSE of 0.03 and 0.02 
for birch and spruce spectra, respectively). We applied the Random Forest image classification model to derive 
detailed vegetation maps from the simulated images. Our vegetation map showed an improvement of 33% in the 
map accuracy compared to the LANDFIRE EVT map. This study demonstrated an efficient and cost-effective 
approach to derive detailed vegetation maps at the Sentinel scene scale by simulating hyperspectral images in 
Google’s cloud environment. It offers a novel pathway to generate detailed vegetation and fuel maps for the 
whole boreal region of Alaska to aid effective forest and fire management.   

1. Introduction 

Alaska has an area of approximately 78 million hectares covered 
with boreal forests (Nowacki et al., 2003; U.S. Geological Survey, 2001). 
These forests extend from the Coast Range in the south to the Brooks 
Range in the north. Wildland fire is a ubiquitous feature of the boreal 

forest and in the past two decades (2001–2020) wildfires burned 12.7 
million hectares of forest in Alaska (International Arctic Research Cen
ter, 2021). Alaska’s boreal forest is highly flammable because of the 
dominance of black spruce, which is highly combustible, and its low- 
lying canopy structure, which serves as ladder fuel and promotes 
crown fires and rapid fire spread. In boreal forests, the ground surface is 
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covered with feather moss, lichen, and fine fuels that ignite easily in dry 
conditions (National Park Service, 2021). Fire managers and the 
research community aim to improve fire management by generating and 
using improved fire spread models, climate and fuel inputs. Vegetation/ 
fuel maps are one of the key inputs for fire risk assessment and fire 
spread modeling. Fire managers need accurate vegetation maps to 
constrain fire spread by locating the potential areas of risk, appropri
ately allocating suppression resources, and applying fuel treatments. 

Remote sensing of vegetation and forest is a proven approach to 
mapping vegetation type and wildfire fuel distribution ( Dudley et al., 
2015; Wagner et al., 2018; Xie et al., 2008; Badola et al., 2019; Badola 
et al., 2021a; Smith et al., 2021). Specifically, multispectral sensors 
onboard Landsat, Sentinel 2A and 2B, and Terra/Aqua satellites image 
the entire globe, and their image data are heavily used for vegetation 
mapping (Dobrinić et al., 2021; Grabska et al., 2019; Mudele and 
Gamba, 2019). In the USA, Landscape Fire and Resource Management 
Planning Tools (LANDFIRE) is a shared program between the U.S. 
Department of Agriculture and the U.S. Department of the Interior 
(https://landfire.gov/about.php). It provides geospatial products, 
including vegetation and fuel maps, to state and federal fire manage
ment agencies for wildfire mitigation (Reeves et al., 2009). In Alaska, 
the LANDFIRE Existing Vegetation Type (EVT) map product derived 
from Landsat image data (9 bands) at 30 m spatial resolution is tradi
tionally used for fire management, fire spread modeling, and risk 
assessment. The accuracy of the LANDFIRE EVT 2014 map product 
ranges between 20% and 45% as per accuracy assessment at three sites 
(Develice, 2012; Smith et al., 2021). The Alaska Center for Conservation 
Science (ACCS) offers the Alaska Vegetation and Wetland Composite 
(AVWC) map product, also generated from 30 m Landsat image data, 
which includes land cover, wetlands, and deep-water maps for Alaska to 
promote wetlands and deep-water habitat management (Alaska Vege
tation and Wetland Composite, 2019). 

Imaging spectroscopy or hyperspectral remote sensing provides an 
opportunity to generate improved vegetation and fuel maps. A hyper
spectral remote sensing sensor images the landscapes in hundreds of 
narrow contiguous bands, making it more effective for vegetation 
mapping than a multispectral sensor. However, the high dimensionality 
of the hyperspectral data may reduce the map accuracy due to the 
Hughes phenomenon (Hsu, 2007). Despite the constraint posed by high 
data dimensionality, recent studies (Govender et al., 2019; Badola et al., 
2021a; Smith et al., 2021) have shown that hyperspectral data provides 
more accurate and detailed vegetation/species maps than multispectral 
data for the boreal region of Alaska. The application of hyperspectral 
data in vegetation mapping is highly effective, but hyperspectral data 
are not readily available. NASA JPL provides airborne hyperspectral 
data collected using the state of the art Airborne Visible/Infrared Im
aging Spectrometer-Next Generation (AVIRIS-NG) sensor. These data 
are highly sought for vegetation/tree species mapping (Ahmad et al., 
2021; Badola et al., 2021a; Clark et al., 2005; Hati et al., 2020; Salas 
et al., 2020; Singh et al., 2020; Smith et al., 2021; Zhang, 2014) due to 
their narrow bandwidth of 5 nm including a wavelength range of 
400–2500 nm, meter-scale spatial resolution, and high signal-to-noise 
ratio. NASA’s JPL team recently acquired AVIRIS-NG data over select 
sites in Alaska as part of the Arctic-Boreal Vulnerability Experiment 
(ABoVE) airborne campaign, but these acquisitions cover a fraction of 
Alaska’s boreal forest, so the available hyperspectral data is insufficient 
for any regional scale vegetation/fuel mapping. In order to have 
hyperspectral image data for the whole boreal forest of Alaska, we 
conceived the idea of simulating AVIRIS-NG hyperspectral image data 
from widely available Sentinel-2 image data at Sentinel scene scale (100 
km × 100 km) by modifying the approach developed by Badola et al. 
(2021b) and implementing it in Google’s cloud environment for efficient 
processing. 

Simulation of hyperspectral image data is an emerging research area 
in the field of remote sensing. A few studies have attempted to simulate 
hyperspectral data from multispectral data and ground spectra of 

vegetation and soil using a spectral reconstruction approach. Liu et al. 
(2009) simulated Hyperion data from ALI multispectral data using the 
Universal Pattern Decomposition Method (UPDM), a sensor- 
independent spectral unmixing technique (Zhang et al., 2007). The 
UPDM calculates the proportion of each class in a pixel and uses the 
spectral response function of the sensors. This approach was further 
tested by Tiwari et al. (2016) to simulate Hyperion data from ALI data 
for Land-Use and Land-Cover (LULC) mapping. They successfully 
simulated 70 Hyperion bands for a test site in Uttarakhand, India. Using 
UPDM, Badola et al. (2021b) successfully simulated AVIRIS-NG data 
(332 bands) from Sentinel-2 data for a boreal forest test site near Fair
banks, Alaska. They obtained higher classification accuracy from 
simulated data (89%) than Sentinel 2 data (78%). In this study, our goal 
was to simulate the AVIRIS-NG data from the Sentinel-2 image data at 
Sentinel-2 scene scale for regional scale vegetation mapping and to test 
the simulation reproducibility across space and time. We had four 
research objectives: 

A. Implement the Iterative Endmember Selection (IES) algorithm to 
derive the most representative endmember ground spectra for the boreal 
region of Alaska. 

B. Improve upon the Badola et al. (2021b) simulation algorithm to 
generate AVIRIS-NG hyperspectral image at Sentinel-2 scene scale (100 
km X 100 km). 

C. Derive detailed vegetation maps from the simulated hyperspectral 
data using a machine learning classifier and assess model accuracy and 
portability across space. 

D. Implement the hyperspectral image simulation and vegetation 
classification algorithms in the Google cloud platform for efficient pro
cessing and ease of sharing with the research community. 

2. Materials and methods 

The methodology is divided into three major phases: A) endmember 
selection, B) simulation, C) classification and prediction (Fig. 1). We 
obtained endmembers as the output from the first phase. These were 
used as input for the simulation phase to simulate the AVIRIS-NG 
hyperspectral data. We applied a Normalized Differenced Vegetation 
Index (NDVI) mask and added a Digital Elevation Model (DEM) layer to 
the simulated data and trained a Random Forest (RF) model using 
training data collected from the field. Finally, we applied RF on simu
lated AVIRIS-NG to map vegetation class maps. 

2.1. Field data collection 

This research required extensive fieldwork to collect ground spectra 
of vegetation for hyperspectral data simulation as well as vegetation 
survey for classification of the simulated image. We collected field data 
(vegetation survey and leaf spectra of all major tree and tall shrub 
species) over three summers (2019 – 2021). We collected a total of 432 
leaf spectra (15 – 20 spectra for each major tree/ tall shrub species) at 
three sites using a Spectral Evolution® PSR+ 3500 hand-held spec
troradiometer (Spectral Evolution Inc., Lawrence, MA, USA). The PSR+

3500 spectroradiometer provides reflectance data in the range of 
350–2500 nm at 1 nm interval, comprising a total of 2151 channels. We 
collected leaf spectra by holding the optic at about 10 cm distance from 
the target between 11:00 to 16:00 (local time; local solar noon at 13:56) 
in sunny, clear-sky weather. We collected branch scale and leaf scale 
spectra for trees and canopy scale spectra for shrubs (Fig. 2). We also 
collected NPV spectra using a contact probe for tree bark. We targeted 
12 public trails around the Fairbanks city and surveyed vegetation sites 
using a Garmin handheld GPS device that provides 3 m positional ac
curacy. At each site, we also recorded the information about canopy 
cover, vegetation composition, and understory vegetation that helped us 
in assigning vegetation class to a site. In Fig. 3, the yellow triangles 
denote the locations of the collected ground data. Table 2 represents all 
the field data used in this study. 
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The AVIRIS-NG scenes were acquired in 2018. Since we used these 
scenes to assess the spectral quality of simulated hyperspectral data, we 
used Sentinel scenes closer in date to the AVIRIS-NG scene acquisition 
dates (Table 1). In the Interior Alaska boreal forest, vegetation change 
can occur either due to natural succession, insect attack, wildfires, or 
anthropogenic disturbance such as timber harvesting. During fieldwork, 
we ensured that there was no evidence of insect outbreak or any major 
vegetation change at the study sites since 2018. 

2.2. Data preprocessing 

We used radiometrically and geometrically corrected Sentinel-2A 
level 1C (Top-of-atmosphere reflectance) data available from Euro
pean Space Agency (ESA) Copernicus Open Access Hub (European Space 
Agency, 2014). Table 1 lists the datasets that were used in this study, 
including the sub-ecoregion where they belong (Nowacki et al., 2003). 
We used the Sen2cor processor (Louis et al., 2016) available in ESA’s 
Sentinel Application Platform (SNAP) for atmospheric, terrain, and 
cirrus correction to obtain level 2A surface reflectance data. The size of 
each scene was 100 km × 100 km. Sentinel-2A data has 13 bands, from 
which we removed band 1 (coastal aerosol), band 9 (water vapor), and 
band 10 (SWIR-Cirrus). The visible bands (bands 2, 3, and 4) and NIR 
band (band 8) have 10 m resolution while the SWIR (bands 11 and 12) 
and vegetation red edge bands (bands 5, 6, 7, and 8A) have 20 m spatial 
resolution. We resampled all 20 m bands to 10 m to preserve the best 
possible spatial resolution and better match the 5 m resolution of 
AVIRIS-NG. We used atmospherically corrected level 2 AVIRIS-NG data 

(NASA JPL, 2018) with 425 bands and 5 m spatial resolution to validate 
the simulated data. We removed bands that contained excessive noise 
due to atmospheric scattering or are dominated by methane and water 
vapor absorption. We used the ASTER Global Digital Elevation Model 
(GDEM) Version 3 (EarthData, 2021) as an additional feature for image 
classification. It is available at a spatial resolution of 1 arc second 
(approximately 30 m) (Abrams et al., 2020). 

2.3. Building a spectral library of boreal vegetation and endmember 
selection 

We collected a total of 432 spectra (15–20 spectra for each species) of 
trees/shrubs from the boreal region of interior Alaska. We created a 
spectral library of all the collected ground spectra using ENVI classic 
software (Exelis Visual Information Solutions version 5.3, 2010). The 
PSR+ 3500 hand-held spectroradiometer also records the latitude, 
longitude, and elevation, along with each target spectrum. We extracted 
this information from all of the individual spectral files and created a 
separate metadata file for the spectral library. Furthermore, we did all 
spectral processing in the Visualization and Image Processing for Envi
ronmental Research (VIPER) Tools 2 (beta) software (Roberts et al., 
2018). 

Library pruning is an important step for creating a spectral library, as 
it reduces the size of a spectral library and provides the ideal spectra for 
each endmember. There are different library pruning techniques such as 
Endmember Average RMSE (EAR), Minimum Average Spectral Angle 
(MASA), Count-based Endmember Selection (CoB) and Iterative End

Fig. 1. Processing Workflow (A: Endmember Selection; B: Simulation; C: Classification and Prediction).  
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member Selection (IES). These techniques rely on the square array 
(Roberts et al., 1997) that stores the information about how an end
member performs when used to unmix other spectra in the same library. 
The square array is an n × n grid of pixels where n is the total number of 
spectra and n along the row denotes the spectrum used for unmixing 
from other spectra. We can gather information about RMSE, shade 
fraction, and spectral angle from the square array. For more details on 
the square array refer to Roberts et al. (1997). In this study we used the 
IES (Roth et al., 2012; Schaaf et al., 2011) method for library pruning. It 
calculates the kappa coefficient (McHugh, 2012) to create a subset of 
spectra which provides the best class separability. IES classifies the 
entire spectral library using a subset from the original library. End
members are iteratively added and removed from the subset until kappa 
no longer improves. IES has been used for different applications. Rob
erts, et al. (2015) used IES to discriminate urban surface materials. IES 
was implemented to map vegetation species (Dudley et al., 2015; Rob
erts et al., 2015) and for improved burn severity mapping (Fernandez- 

Manso et al., 2016). The IES algorithm was implemented in the VIPER 
Tools 2 (beta) software. We ran IES in fully constrained mode (RMSE and 
fraction constrained) with default parameter settings, i.e., RMSE 
threshold of 0.025. 

After pruning, we got 105 spectra out of 432 for 15 endmember 
classes (Table 3). We used the average of the spectra as the endmember 
for simulation. Hence, we ended up with 15 endmembers, including one 
for gravel. We initiated 15 endmembers as input for the simulation and 
compared our simulated product with AVIRIS-NG scene by collecting 
spectra from the known pixel (identified during field work) from both 
simulated and AVIRIS NG data. We reduced the number of endmembers 
in each iteration, tried different endmembers combinations (Table S1) 
for simulation, and simultaneously verified our results until we obtained 
similar spectra with low RMSE values. For the second iteration, we 
plotted all 15 endmembers (Figure S1), and removed similar endmem
ber spectra. We ran the simulation model with 9 spectra. In the third 
iteration, we removed five more endmembers (alder, blueberry, larch, 
white spruce and asphalt). We kept one spectrum from each deciduous 
and coniferous class, gravel, and Non-Photosynthetic Vegetation (NPV) 
spectra (downed trunk). In the fourth iteration, we replaced downed 
trunk with asphalt and ran the simulation. In the fifth iteration, we used 
NPV spectra from the ECOSTRESS spectral library (Meerdink et al., 
2019). We found a drastic discrepancy between spectra generated from 
simulated and AVIRIS-NG data in all the iterations. Finally, we used 
birch, black spruce and gravel for simulation and found similar spectra Fig. 2. Vegetation spectra collection in the field; (a) branch scale spectra for 

birch using a bare fiber optic (b) branch scale spectra for black spruce using a 
bare fiber optic (c) leaf scale spectra for birch using a bare fiber optic (d) NPV 
spectra for birch bark using a contact probe. 

Fig. 3. Study area: Showing the Sentinel-2 scenes used in this study (R: B8, G: B4, B: B3); yellow triangles mark the vegetation survey locations. The star shows the 
location of Fairbanks, Alaska and the rectangle shows the Bonanza Creek Experimental Forest site (BCEF). 

Table 1 
List of image datasets used in this study.  

Data Scene Identifier Acquisition 
Date 

Main area 
covered 

Sub- 
ecoregion 

Sentinel- 
2A 

S2AT06WVS July 22, 
2018 

Fairbanks Tanana- 
Kuskokwim 
Lowlands 

Sentinel- 
2B 

S2BT06WWS July 24, 
2018 

East of 
Fairbanks 

Yukon- 
Tanana 
Uplands 

Sentinel- 
2B 

S2BT06WWU July 01, 
2021 

Yukon 
flats 

Yukon-Old 
Crow Basin 

AVIRIS- 
NG 

ang20180723t200207 July 23, 
2018 

Fairbanks Tanana- 
Kuskokwim 
Lowlands 

AVIRIS- 
NG 

ang20170718t202618 July 18, 
2017 

South East 
of 
Fairbanks 

Yukon- 
Tanana 
Uplands 

AVIRIS- 
NG 

ang20190705t192514 July 05, 
2019 

Yukon 
flats 

Yukon-Old 
Crow Basin  
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with low RMSE values for spectra generated from simulated and AVIRIS- 
NG data. 

2.4. Simulation of hyperspectral data 

The process of hyperspectral data simulation is divided into three 
steps: ground spectra normalization, weighted fraction coefficients, and 
hyperspectral data simulation. 

2.4.1. Ground spectra normalization 
We normalized three endmembers (black spruce, birch and gravel) 

by convolving them with the Spectral Response Function (SRF) (Euro
pean Space Agency, 2017) of both Sentinel and AVIRIS-NG sensors. We 
obtained the SRF for Sentinel-2 data from the Sentinel 2 document li
brary. We calculated the AVIRIS-NG SRF from Full Width at Half 
Maximum (FWHM) using Gaussian functions (Badola et al., 2021b; Liu 
et al., 2009). 

2.4.2. Weighted fractional coefficient 
We used the Universal Pattern Decomposition Method (UPDM) to 

estimate the proportion of each endmember in every pixel of the image 
(Badola et al., 2021b; Liu et al., 2009; Tiwari et al., 2016). UPDM is a 
linear unmixing method that is structured for satellite data analysis 
(Zhang et al., 2006). It assumes that reflectance at each pixel of an image 
is a linear mixture of normalized endmembers. The equation expressed 
in matrix form represents the linear unmixing of three endmembers (b: 
birch, s: spruce, g: gravel) (Equation (1)). 

⎛

⎜
⎝

R1

R2

⋮

Rn

⎞

⎟
⎠ =

⎛

⎜
⎜
⎝

P1b P1s P1g

P2b P2s P2g

⋮

Pnb

⋮

Pns

⋮

Png

⎞

⎟
⎟
⎠.

⎛

⎝
Cb
Cs
Cg

⎞

⎠ (1) 

Where R is the total pixel reflectance, C is the proportion of class, P is 
the normalized ground reflectance, and n is the band number. 

For a multispectral sensor, we can represent Equation (1) as. 

RM = PMCM (2) 

CM is the fraction of coefficients of each endmember in a pixel in the 
form of a matrix for the whole image. RM is the matrix with reflectance 

values from Sentinel 2 multispectral data and PM is a matrix that con
tains the reflectance values from the normalized endmembers. 

CM can be calculated from Equation (2) using reflectance from 
Sentinel 2 data by applying least square method: 

CM = (PT
M .PM)

−1
.PT

M .RM (3)  

2.4.3. Hyperspectral data simulation 
The spatial resolution of the simulated hyperspectral image will be 

same as in the Sentinel-2 image, therefore the fraction of coefficients 
(CM) will remain the same. We normalized ground spectra (endmem
bers) using the SRF of the AVIRIS-NG sensor. Hence, we can calculate 
reflectance values using Equation (1) and Equation (3). The simulation 
method is discussed in more detail in Badola et al. (2021b). This simu
lated hyperspectral image has the same number of bands as AVIRIS-NG. 
Here, in Equation (4), RH is the reconstructed reflectance values for the 
simulated hyperspectral image. We write out the simulated hyper
spectral image file in GeoTiff file format. 

RH = PH .(PT
M .PM)

−1
.PT

M .RM (4) 

We implemented the hyperspectral image simulation in the Google 
cloud environment using Python 3 (Python Core Team, 2015) and a 
Jupyter notebook. We used the following libraries and packages: Pandas 
to handle the image data in a data frame; Numpy (Harris et al., 2020) to 
perform the matrix calculations; Rasterio (Gillies et al., 2013) to work 
with images, especially to read and write the image data. We imple
mented the algorithm by dividing a Sentinel scene covering an area of 
100 km × 100 km into 36 square tiles of 2048 X 2048 pixels. 

2.5. Simulated hyperspectral data validation 

We validated the simulated data using spectral comparison, statis
tical analysis and visual interpretation. For spectral and statistical 
comparison, we extracted pixel spectra for birch and black spruce from 
AVIRIS-NG image data and the simulated hyperspectral image. These 
spectra were extracted from the pixels identified in the field. We 
compared the reflectance values and absorption peaks and visually 
analyzed the pattern of the spectra. We also calculated the Root Mean 
Square Error (RMSE) to evaluate the accuracy of the simulated birch and 
spruce pixel spectra. 

We performed visual analysis by generating Colored Infrared (CIR) 
image using bands with wavelengths 843 nm, 662 nm, and 557 nm as 
RGB for the AVIRIS-NG and simulated hyperspectral image, and bands 
with wavelengths 842 nm, 665 nm and 560 nm as RGB for the Sentinel-2 
image. We inspected and analyzed different areas of interest based on 
their visual appearance. 

2.6. Image classification 

We labeled each survey site to a vegetation class as per Viereck’s 
Alaska Vegetation Classification (Viereck et al., 1992). For vegetation 

Table 2 
List of field data used in this study.  

Data Instrument Location Time of Data 
collection 

Data collected 

In-situ vegetation 
survey 

Hand held Garmin GPS 12 public trails explored around 
Fairbanks 

Summer, 2021 Vegetation composition, canopy cover, diameter and 
height 

University of Alaska, Fairbanks 
campus 

Summer, 2019 

BCEF Summer, 2020 
Vegetation 

spectroscopy 
PSR+ 3500 
Spectroradiometer 
GPS 

University of Alaska, Fairbanks 
campus 

Summer, 2021 Spectra, sample location, vegetation type 

CPCRW Summer, 2019 and 
2021 

BCEF Summer, 2021  

Table 3 
List of 15 endmembers obtained through Iterative Endmember Selection library 
pruning technique.  

Endmembers 

Alder Blueberry Balsam poplar 

Downed trunk Black spruce Carex 
Dwarf birch Green grass Larch 
Labrador tea Birch Gravel 
Asphalt Wild rose White spruce  
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classes with similar spectra, we merged the classes (e.g., open birch 
forest and closed birch forest, Figure S2). Using an NDVI threshold of 
0.3, we masked out the non-vegetated pixels. We identified 16 vegeta
tion classes, including one ‘Other’ class that represents non-forested 
open vegetated areas such as grasslands. 

We performed image classification using the ‘Random
ForestClassifier’ function of the scikit-learn () in Python 3 with 500 
decision trees and √ (425) ≈ 20 number of features per subset (Brei
man, 2001; Pedregosa et al., 2011). We divided the survey data into two 
sets, a training set and testing set, and trained the classifier on a simu
lated hyperspectral scene (S2AT06WVS) that had the 16 vegetation 
classes representative of interior Alaska. The trained model was then 
used to classify two other simulated hyperspectral scenes to assess the 
model’s portability to other sites. 

2.7. Accuracy assessment 

We performed the accuracy assessment using F1 scores and Inter
section over Union (IoU). Each class has a different number of samples. 
The imbalance in classes can skew the results in favor of a more abun
dant class or classes with a greater number of samples and result in 
biased classification accuracy. In the event of imbalanced classes, clas
sification accuracy is not enough to assess the classifier model perfor
mance. We used F1 score and IoU measures to evaluate the model 
performance. The F1 score is the harmonic mean of the precision and 
recall of the model, with value ranging from 0 to 1. IoU (also known as 
the Jaccard index) measures the amount of overlap between the pre
dicted and the actual label. A value of 0 means there is no overlap, while 
1 denotes complete overlap. An IoU score greater than 0.5 is considered 
to be a good prediction. 

We also compared our classified output with two available vegeta
tion map products: LANDFIRE EVT (LANDFIRE, 2016) and the Alaska 
Vegetation and Wetland Composite (AKVWC) (Alaska Vegetation and 
Wetland Composite, 2019). We also compared the percentage cover of 
each species with the USDA Tanana Valley State Forest Pilot Inventory 
(Pattison et al., 2018). 

3. Results 

In this section, we present the spectral, statistical, and visual com
parison of simulated hyperspectral image with AVIRIS-NG and Sentinel 
2 image, image classification results, and comparison of our classified 
vegetation map with two other existing products. 

3.1. Spectral and statistical comparison 

Simulated spectra accurately captured the key absorption features 
that were available in AVIRIS-NG data. For spectral and statistical 
analysis, we removed the 93 bands with noise due to atmospheric 
scattering and poor radiometric correction, and bands dominated by 
water vapor and methane absorption (Badola et al., 2021b). Fig. 4 shows 
the comparison of simulated and AVIRIS-NG spectra for birch and spruce 
vegetation. In spectra extracted from simulated data, the absorption 
features were similar to AVIRIS-NG spectra. These absorption features 
are caused by chlorophyll absorption in the red band (around 690 nm), 
water absorption in the NIR region, and lignin and cellulose absorption 
in the SWIR region. Around 1400 nm wavelength, a dip due to water 
absorption is present in both the spectra generated from simulated and 
AVIRIS-NG data. In both spectra, the difference in the reflectance values 
over the infrared region (700 nm − 1400 nm) is relatively small, and 
their pattern is similar. We achieved an RMSE of 0.03 and 0.02 for birch 
and spruce, respectively. 

Fig. 5 shows the band-to-band correlation between AVIRIS-NG and 
simulated hyperspectral images. A majority of the bands show high 
correlation, especially in the NIR and SWIR region. We also calculated 
the Coefficient of Variation (CoV = standard deviation/ mean) for the 

pixel difference between AVIRIS-NG and simulated hyperspectral im
ages for 332 bands (Fig. 6). The CoV is another metric to quantify and 
visualize the similarity between the two image data. A lower CoV value 
suggests higher similarity between the two image data, while a higher 
CoV value suggests less similarity. In our case, the CoV value ranges 
from 0.2 to 1.3, with higher CoV values along trails and shaded areas 
where we expect lower simulation accuracy, as we did not include shade 
fraction as one of the end members. Both band-to-band correlation and 
the CoV of pixel differences between AVIRIS-NG and simulated hyper
spectral images illustrate the quality of simulated hyperspectral image. 
The band-to-band correlation is higher than 0.6 for 252 bands, and 98% 
of the total pixels have a CoV less than 1 suggesting that the simulated 
image satisfactorily captures the spectral details at pixel scale. 

3.2. Visual analysis 

The simulated image captures the minute details visible in the 
AVIRIS-NG image (Fig. 7). AVIRIS-NG data were not available for the 
bottom left side of the area in Fig. 7 (a) and (b), therefore the region is 
black. Fig. 7 (a) is an image from Creamer’s Field - Migratory Waterfowl 
Refuge area in Fairbanks. The region shown in a yellow circle is an open 
field that has trees planted on the boundary. Simulated data captured 
the trees on the edges quite well. In Fig. 7 (b), the small patches inside 
the yellow circle are water bodies. These water bodies are accurately 
captured in the simulated image. In Fig. 7 (c), we overlaid ground sur
veyed points for birch and spruce on the three images. We can see a clear 
difference in the image tone and color saturation between the coniferous 
vegetation (spruce) and deciduous vegetation (birch) in all three images. 
The area dominated by birch has brighter pixels, while the area with 
spruce has darker pixels. The simulated image correctly captured this 
tonal and color differences between birch and spruce forests. 

3.3. Image classification 

We performed vegetation classification on the simulated data ac
cording to the Alaska vegetation classification given by Viereck et al. 

Fig. 4. Spectral Signature of (a) Birch and (b) Spruce.  
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(1992). Fig. 8 highlights the results of vegetation mapping using the RF 
classifier. We used NDVI to mask out non-vegetation pixels. There is a 
separate class for the masked pixels in the legend. Mountains dominate 
the southern part of the scene; some parts of the mountain and high 
elevation areas are covered with alpine vegetation. We did not have any 
training data for alpine vegetation class. Therefore, we included a 
“Other” class to capture the alpine vegetation and other vegetation 
(mostly grasses) pixels that are not included in the training. The center 
of the scene is a lowland area. Most of the pixels are classified into 
vegetation classes dominated by black spruce. 

We had unbalanced test samples; different classes have different 
numbers of pixels. To overcome class imbalance, we calculated the F1 
score and IoU shown in Fig. 9 and Fig. 10 respectively. A high F1 score 
means the class has performed well. “Open black spruce forest” and 
“Open balsam poplar forest” had the lowest F1 score, while most classes 
performed well. Additionally, if the IoU value is 0.5, the class has per
formed well. In our case, seven classes had an IoU value greater than 0.5, 
3 classes had an IoU value very close to 0.5, and the remaining classes 
had a value between 0.3 and 0.4. 

For a test site in BCEF, we generated a vegetation map from Sentinel- 
2 data and assessed its accuracy using field validation plots. We did not 
use these plots for training. Out of 31 plots (Fig. 11), 13 plots were 
correctly mapped with 42% accuracy in the case of Sentinel-2 data, 
while 20 plots were correctly mapped in the case of simulated classified 
output, resulting in an accuracy of 65%. 

3.4. Process validation 

To test the simulation method across space, i.e. for different 
geographic subregions, we simulated two more scenes (S2BT06WWS, 
S2BT06WWU) using the same ground spectra and classifier model 
(trained in scene 1) to predict pixel vegetation class. Scene 2 
(S2BT06WWS) covers the area east of scene 1, and scene 3 
(S2BT06WWU) covers a part of the Yukon flats region that lies to the 
north of Fairbanks. Locations of all three scenes are shown in Fig. 3. 
Scene 2 (S2BT06WWS) falls under the Yukon-Tanana Uplands sub- 
ecoregion, and scene 3 (S2BT06WWU) covers the Yukon-Old Crow 
Basin sub-ecoregion. We had a smaller set of ground data for scene 2 that 

Fig. 5. Band-to-band correlation between AVIRIS-NG and simulated hyperspectral images.  

Fig. 6. A map of the Coefficient of Variation (CoV) for the pixel difference between AVIRIS-NG and simulated hyperspectral data.  
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we used for validating our classified vegetation map output. We did not 
have any ground data for scene 3, so we only performed visual, statis
tical, and spectral comparison of the simulated image generated from 
scene 3. 

We compared spectra collected from simulated image data and 
AVIRIS-NG image for scene 2 and scene 3. Figure S3 shows the com
parison of the spectra collected from the same pixels in both images. We 
picked two different sites that represent deciduous and coniferous spe
cies. The spectra showed a similar pattern and the same absorption 
features. The RMSE for deciduous vegetation (Figure S3 (a)) was 0.02, 
and 0.01 for coniferous vegetation (Figure S3 (b)). We visually 
compared the simulated data and AVIRIS-NG data. Simulated data has 
captured the trails and built-up area similar to AVIRIS-NG data (see the 
yellow circle, Figure S4 (a)). Coniferous and deciduous vegetation are 
easily distinguishable in simulated data (see the yellow circle, Figure S4 
(b)). 

Here we have discussed the classified vegetation map accuracy at 
select points for an area around Twin Bear Chena River to Ridge and 
Compeau trail east of Fairbanks. We overlaid the ground points over the 
classified map and visually assessed the classified map product accuracy 
(Fig. 12). In Fig. 12, points 1, 2, and 5 (from spruce and birch vegetation) 
are over the blue pixels; the blue pixels in the classified map represent 

open spruce-paper birch class. Point 4 has paper birch in the ground; the 
classifier mapped it as the open paper birch forest. Point 6 has white 
spruce, and the pixels around this point are mapped as the closed white 
spruce forest. Point 3 has black spruce and moss, and the classified map 
identified the pixels at and around this point as open black spruce forest 
and black spruce woodland. The dark gray pixels are wetlands and 
include all the vegetation growing on marshy areas with seasonal 
standing water. The gray pixels are mostly around the water bodies 
(shown as black pixels). Wetlands and vegetation classes present at all 
six points are correctly mapped in the classified vegetation map. 

Using our algorithms, one can simulate hyperspectral data and 
classify it to generate a vegetation map in 10 h (system configuration: 
Intel(R) Xeon(R) Gold 5222 CPU @ 3.80 GHz, 3801 MHz, 4 cores with 
192 GB RAM). Each simulated hyperspectral image requires a minimum 
of 190 GB disk space (scene size: 100 X 100 km; pixel size: 10 m; 425 
bands). To overcome the dependency on powerful computer systems 
with large storage, we implemented the entire processing in the Google 
Cloud Platform (GCP system configuration: 16 CPUs and 60 GB RAM). 

4. Discussion 

We developed a novel approach to efficiently simulate an AVIRIS-NG 

Fig. 7. Visual comparison of the simulated Color Infra-Red image with AVIRIS-NG and Sentinel 2 for different areas: (a) open field (b) water bodies (c) Black spruce 
and paper birch. 
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hyperspectral image cube from a Sentinel-2 image and subsequently 
derive a detailed vegetation map covering an area of 100 km × 100 km 
for the boreal region of Alaska. The simulated images accurately capture 
the minute landscape features present in the original AVIRIS-NG image. 
The spectral profile from the simulated image matches the original 
AVIRIS-NG image in the pattern but differs in reflectance magnitude in 
the SWIR region. Zhang et al. (2006) and Badola et al. (2021b) also 
reported a similar difference in reflectance over the SWIR region. 
Several factors contribute to the spectral differences: a) the difference in 
the spatial resolution of the two datasets, i.e. Sentinel-2 bands have a 
spatial resolution of 10 m and 20 m compared to 5 m for AVIRIS-NG, b) 
the difference in the sensor’s altitude and sun and sensor geometry, and 
c) difference in date and time of acquisition. Also, the missing end
member, Non-Photosynthetic Vegetation (NPV), is contributing to the 

reflectance difference. NPV has higher SWIR reflectance (Asner, 1998), 
and depending on the NPV, a vegetation pixel can have lower reflec
tance in the visible region than in the SWIR region. However, when we 
added NPV to the model, it reduced model performance significantly. 
Hence, one of the major limitations of this model is that it cannot handle 
NPV as one of the endmembers without generating significant errors. 
However, by excluding NPV, we ended up with lower reflectance in the 
SWIR region. In reality, a pixel can have a significant NPV fraction, but 
this model can only handle distinct endmembers. Also, this model is 
built for the peak of the growing season and might not do well for images 
acquired during shoulder season; for example, when leaves start to 
senescence at the beginning of the fall season. Despite the above limi
tation, our simulation model can accurately capture the key absorption 
features and spectral details essential for detailed vegetation and 

Fig. 8. Vegetation map generated from simulated hyperspectral image (covering an area of 100 km × 100 km) using Random Forest classifier. The masked pixels 
shown in black include urban areas, water bodies, clouds and cloud shadows. 

Fig. 9. F1-score for each class. 
Open black spruce forest: OBSF; Black spruce woodland: BSW; Closed black spruce forest: CBSF; Wetlands: WET; Open paper birch forest: OPBF; Open spruce - paper 
birch forest: OSPBF; Closed spruce - paper birch- quaking aspen forest: CSPBQA; Closed white spruce forest: CWSF; Open quaking aspen forest: OQAF; Other: OTH; 
White spruce woodland: WSW; Closed paper birch-quaking aspen forest: CPBQAF; Closed tall alder: CTA; Open balsam poplar forest: OBPF; Open spruce - balsam 
poplar forest: OSBPF; Open paper birch - quaking aspen forest: OPBQAF. 

A. Badola et al.                                                                                                                                                                                                                                 



International Journal of Applied Earth Observation and Geoinformation 112 (2022) 102891

10

landcover mapping, paving the path for on-demand hyperspectral data 
availability for boreal Alaska. 

4.1. Comparison with other map products 

We used 31 field surveyed plots in the Bonanza Creek Experimental 
Forest site, a Long-Term Ecological Research (BCEF LTER) site in Inte
rior Alaska, to assess the accuracy of LANDFIRE EVT and our vegetation 
map (Fig. 13). Out of 31 plots, 10 plots were mapped correctly in the 
LANDFIRE EVT 2016 product, giving a product accuracy of 32%, 
whereas 20 plots were mapped correctly in our vegetation map product, 
giving a product accuracy of 65%. Table S2 shows the vegetation class 

present on the 11 plots that were misclassified. The majority of these 
misclassified plots have similar vegetation. Two plots of closed spruce- 
paper birch-quaking aspen were incorrectly mapped as open spruce- 
paper birch, while two other plots were mapped as open quaking 
aspen. One wetland plot was incorrectly mapped as Black spruce 
woodland, possibly due to the presence of isolated black spruce and 
understory vegetation found in black spruce woodland. We believe by 
merging similar classes and retraining the classifier, the map accuracy 
can be further improved. 

Fig. 14 demonstrates the comparison between our vegetation map 
and the available LANDFIRE EVT and Alaska Vegetation and Wetland 
Composite (AKVWC) maps. The rectangle, square, and circle in Fig. 14 

Fig. 10. IoU score for each class.  

Fig. 11. A vegetation map derived from the Sentinel-2 image for a test site within the Bonanza Creek Experimental Forest (BCEF); yellow triangles mark the field 
surveyed plot locations used as validation. 
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highlights the locations where we clearly see that the map generated 
using simulated data is more detailed and accurate in comparison to the 
other two maps. The region highlighted under the rectangle is domi
nated by single birch and aspen class in both AKVWC and LANDFIRE 
EVT maps, while four different birch and aspen vegetation classes are 
mapped in the simulated classified map: open paper birch forest, open 
quaking aspen forest, open and closed paper birch, and quaking aspen 
forest. Similarly, the region inside the circle is dominated by black 
spruce and white spruce classes in all three cases, but in the case of a 
simulated classified map, the classes are more detailed. The pixels inside 
the square are mapped as wetlands in the case of AKVWC and simulated 
classified maps, while in the LANDFIRE EVT map, most of these pixels 
are mapped as black spruce-tamarack fen. 

The U.S. Department of Agriculture completed a Pilot Inventory for 

Tanana Valley State Forest, which is covered by the Sentinel scene used 
in this study. The survey for the Pilot Inventory began in 2014 and was 
fully implemented between 2016 and 2018. They surveyed 800 plots 
(around a 7.3 m radius) to get forest type acreage, extrapolating the 
observations to the entire Tanana Valley State Forest to get total acreage 
for forest types (Pattison et al., 2018; U.S. Forest Service, 2016). Fig. 15 
shows the comparison of forest type acreage estimated from the simu
lated classified map with estimates from the Pilot Inventory program for 
five major tree species. For all five tree species, the acreage estimates 
from our vegetation map are comparable with the estimates from the 
Pilot Inventory program, and they follow the same pattern as well: i.e. 
black spruce is the most dominant tree species, followed by birch, with 
aspen and poplar being the least dominant tree species. Therefore, the 
forest type acreage we obtained from our map is comparable to the 

Fig. 12. A vegetation map derived from simulated hyperspectral image for an area around Twin Bear Chena River ridge and Compeau trail; ground data points are 
presented as yellow pentagon. Tree cover present at the ground point is listed in the table (bottom right). 

Fig. 13. LANDFIRE EVT Product for the Bonanza Creek Experimental Forest (BCEF) site; yellow triangles mark the field surveyed plot locations.  
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USDA pilot inventory forest acreage. 
We used a smaller set of ground data over scene 2 (covering the area 

east of scene 1) to assess the quality and accuracy of our vegetation map. 
These points were not used for training the classifier. Fig. 16 compares 

the simulated classified map with LANDFIRE EVT and Alaska Vegetation 
and Wetland Composite (AKVWC) maps. In the LANDFIRE EVT map, the 
black spruce point is sitting on a pixel mapped as Western North 
American Boreal Mesic White Spruce-Hardwood Forest (bright green 

Fig. 14. Comparison of simulated classified map with Alaska Vegetation and Wetland Composite (AKVWC) and LANDFIRE EVT Product.  

Fig. 15. Comparison of area covered by different forest type reported by the USDA Tanana valley Pilot Inventory program and estimated from our classified 
map product. 
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pixel); in the AKVWC product, the black spruce point is sitting on White 
Spruce or Black Spruce (Open) (purple pixels). In the simulated classi
fied map, the black spruce point is correctly mapped as open black 
spruce forest (dark green pixel). For the wetland point, the LANDFIRE 
EVT product mapped the pixel as Western North American Boreal Black 
Spruce Bog and Dwarf-Tree Peatland (brown pixel) and AKVWC product 
mapped the pixel in the same way it mapped for black spruce, i.e. White 
Spruce or Black Spruce (Open) (purple pixel), while the simulated 
classified product mapped the area as wetlands (grey pixels). These 
observations suggest that the simulated classified map correctly identi
fied the open black spruce forest and wetlands pixels with better accu
racy than the two existing maps. 

We simulated a third scene (scene 3: S2BT06WWU) from a different 
ecoregion that covers a part of the Yukon Flats region. Figure S5 shows 
the spectral comparison between simulated data and AVIRIS-NG data. 
The simulated data accurately captured the absorption features and has 
a similar reflectance as AVIRIS-NG data: RMSE = 0.02 for deciduous 
vegetation (Figure S5 (a)) and RMSE = 0.01 for coniferous species 
(Figure S5 (b)). 

The hyperspectral simulation of three different Sentinel 2 scenes and 
their evaluation demonstrated that we developed an efficient approach 
for obtaining on-demand hyperspectral data for vegetation/fuel map
ping. Our vegetation maps are more detailed and their accuracies are on 
par with or better than the existing vegetation maps. To effectively 
implement this approach, it is important to collect field spectra on a 
clear, sunny day. The field spectra collected on hazy days or cloudy days 
can degrade hyperspectral simulation results. We also learned that to 
process the entire Sentinel scene, one needs an expensive system with 
higher processing power and hardware, so a cloud computing platform 
like Google Cloud Platform (GCP) (Google, 2022) is a better alternative 
for efficient and cost-effective processing. GCP reduces the dependency 
on an expensive local system and the installation of libraries. The only 
requirements are a browser, a good internet connection, and a Google 
account to run the codes. More importantly, GCP makes it easy to share 
the codes with the research community. A simulated hyperspectral 

image cube covering an area of 100 km × 100 km requires 190 GB of 
disk space. GCP provides a considerable amount of storing capacity at a 
low cost to store such huge files and their efficient access for further 
processing. The hyperspectral nature of this data (5 nm bandwidth) 
makes it appropriate for generating a detailed vegetation map with 
improved accuracy for a variety of applications, including fire and forest 
management. Better vegetation/fuel maps are critical for effective fuel 
treatment, i.e. identifying areas for creating fire breaks or fire lines to 
check the spread of wildfires. The simulated hyperspectral image can 
potentially be used to extract other biophysical attributes of vegetation 
like chlorophyll, moisture, and nitrogen, expanding its applications to 
other areas of vegetation research. 

5. Conclusions 

In this study we developed and implemented a sophisticated work
flow to generate simulated AVIRIS-NG hyperspectral image data from 
Sentinel-2 image at Sentinel scene scale (100 X100 km) in Google’s 
cloud environment and tested simulation reproducibility across space 
and time. We employed a well-established endmember selection tech
nique to make our method more consistent and reproducible across 
different geographies. By improving the simulation algorithm, we were 
able to turn a 4.5 GB Sentinel 2 data set into a full hyperspectral image 
cube of 190 GB in about 2 hrs. We developed a Random Forest image 
classification model using training signatures from one scene and tested 
the Random Forest model portability on two other scenes from different 
sub-ecoregions. The Random Forest vegetation classification model 
performed satisfactorily on these two scenes, suggesting that our model 
can be reliably used for improved vegetation mapping in boreal Alaska. 
The vegetation maps generated from simulated data were more detailed 
and accurate based on the available field data points than the two 
existing vegetation maps, LANDFIRE EVT and Alaska Vegetation and 
Wetland Composite (AKVWC). We assessed the mapping accuracy of the 
latest LANDFIRE EVT (32%) and our map product (65%) using ground 
survey data and observed an improvement of 33% in accuracy. This 

Fig. 16. Comparison of classified map products; ground data points are presented in magenta color. Tree cover present at the ground point is shown on the image in 
yellow text (a) LANDFIRE EVT Product (b) Alaska Vegetation and Wetland Composite (AKVWC) (c) Simulated classified output. 
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study developed a novel approach and algorithms to produce hyper
spectral image from widely available multispectral images and showed 
its applicability in mapping vegetation and fuel in the boreal forest of 
Alaska with improved accuracy, which will contribute to effective forest 
and fire management in Alaska. 
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