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ABSTRACT

Interaction between moving individuals is a critical factor in shap-
ing social dynamics and human networks. Recent advancements in
trajectory analytics have resulted in promising methods to identify
and extract spatio-temporal patterns of interaction using movement
tracking data. However, methodologies to quantify the duration of
interaction remain limited. In the present work, we advance the
existing time-geographic based approach that mainly relies on po-
tential path area computation and polygon intersection to quantify
the duration of potential concurrent interactions (i.e. synchronous
interaction in space and time) between mobile individuals. Two case
studies using real human GPS tracking data in California reveal
that in general, the proposed time-geographic based approach out-
performs the proximity-based approach which is commonly used in
digital contact tracing technologies. Our method is more effective
in the identification of potential continuous interactions, especially
when individuals do not move together. In addition, the results
show that the proposed method can estimate the duration of con-
tacts more accurately and can identify more complete interactions
over a continuous time period, while the proximity-based approach
underestimates contacts which may result in more intermittent
interactions with shorter durations.
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1 INTRODUCTION

Interaction between moving individuals in space and time is an
important contributing factor to urban dynamics and shaping hu-
man social networks [9, 16, 22, 26]. Identifying and quantifying
dynamic interactions between moving individuals attracts scholars
from geographic information science (GIScience), computer science,
movement ecology, epidemiology, and related disciplines [16, 27].
While existing approaches have advanced our ability to identify
and trace patterns of interaction in movement tracking data, they
fall short in estimating the duration of interaction. Quantifying du-
ration of interaction or the amount of time over which interacting
individuals stay in close contacts with one another can contribute
to our understanding of social dynamics and human exposure to
potential risks. For example, in the context of contact tracing for in-
fectious diseases such as COVID-19, the probability of a contagion
event between a susceptible and an infected individual highly relies
on the degree of proximity and the duration of contact [30, 32]. Es-
timating the duration of interaction between individuals can assist
identifying critical risky contacts to inform non-pharmaceutical
interventions (NPIs) and related policies [7].

Recent advancements in trajectory analytics have resulted in
promising methods to identify and extract spatio-temporal patterns
of interaction using movement tracking data. Existing methods
quantifying interactions mostly rely on the spatial proximity be-
tween two individuals and many of them require user-defined spa-
tial and temporal thresholds [16, 21, 27]. However, these proximity-
based approaches may be limited when individuals are not recorded
at simultaneous points in time. Simultaneous tracking of multiple
individuals usually is hard to achieve due to limited battery life
and capacity concerns [23]. To address this issue, several studies
leverage the time geography framework [14] modeling a Poten-
tial Path Area (PPA) [5, 19, 25] to measure the accessible locations
between two consecutive tracking points. The PPAs of different
individuals are then intersected to determine whether a potential in-
teraction is possible [9, 15, 22]. These time-geographic or PPA-based
approaches incorporate the uncertainty of positioning and gaps in
movement data. They are shown to be more effective to identify
potential interactions when individuals do not move together. Also,
they can be used to quantify delayed interactions when individuals
visit the same locations asynchronously with a time lag [9, 15].

The main contribution of this article is to introduce a new tech-
nique to estimate the duration of interaction using movement tra-
jectories of interacting individuals. Specifically, our work advances
the time-geographic based interaction analysis approaches to trace
and compute the duration of concurrent contacts (i.e. synchro-
nous interaction in space and time) between mobile individuals.
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The proposed approach is implemented by first identifying poten-
tial concurrent interactions between moving individuals using the
method introduced in [9], followed by extracting subsequences
of continuous interaction segments to estimate the duration of
contacts. The proposed technique is evaluated on two use cases
using real human GPS tracking data in California. In addition, we
evaluate the efficacy of our method against the commonly-used
proximity-based approach and show that the proposed method can
estimate the duration of contacts more accurately and can identify
more complete interactions over a continuous time period, while
the proximity-based approach underestimates contacts which may
result in more intermittent interactions with shorter durations.
While we evaluate the method in the context of human mobility,
the proposed approach can apply to identify duration of interaction
in interspecific and intraspecific interactions of animals.

2 MOVEMENT INTERACTION ANALYSIS

Interaction analysis has been a major interest in biology and ecol-
ogy to study dyadic interaction in animal movement [16, 27]. In
computational geography and GIScience, scholars have focused
more on modeling and mapping spatial interaction in collective
movement of humans and movement flows [26, 34]. However, with
the increasing availability of fine-grained human movement data
and following the demand for digital contact tracing technologies,
new computational approaches to analyze human interaction at
more granular levels are needed. While the study subjects remain
different, the methods of interaction analytics in both movement
ecology and human mobility domains are often interchangeable
and can support each other to facilitate a more holistic approach to
understand movement [26]. Interaction can be classified as static
or dynamic [11]. Static interaction occurs when individuals’ activ-
ity spaces intersect in space but not necessarily in time. Dynamic
interaction happens when individuals move in close proximity at
the same time. In human movement, the latter type of interaction
attracts more attention due to its crucial role in understanding
a wide range of phenomena such as human social behavior, risk
exposure, and social network dynamics [9, 26, 33]. Considering
the occurrence of interaction in time, dynamic interaction can be
classified as concurrent (or direct/synchronous) interaction or delayed
(or indirect/asynchronous) interaction [9]. According to [9], “Con-
current interaction occurs between individuals when they move
synchronously in spatial proximity of each other in a shared space
and at the same time; delayed interaction happens when individuals
visit the same locations in space however asynchronously with a
time lag”.

Various measures have been used to quantify dynamic interac-
tions. Examples of these measures include: the proximity index
[3, 11], the coefficient of association [8], the coefficient of sociality
[17], the correlation indices [18], the half-weight association index
(HAI) [4], the coefficient of interaction [28], the cross sampled en-
tropy (CSE) [1, 12, 31], and the dynamic interaction index [20]. Most
of these measures rely on the spatial proximity between two indi-
viduals with pre-defined spatial and temporal thresholds [16, 21, 27].
In addition, many of these methods require moving entities to be
tracked simultaneously in time, which is hard to achieve in real ap-
plications when individuals do not always move together or due to
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imperfect tracking and signal loss [23]. Hence, the proximity-based
approach may be less effective when individuals are not recorded
at simultaneous points in time or when the interactions are delayed
(e.g., two individuals visit the same location at different times). In
order to address this issue, more recent approaches incorporate the
time geography framework [14] to consider the accessible locations
to the moving individuals between a pair of consecutive tracking
points. This area is called the Potential Path Area (PPA) which
delimits the areas that a moving entity can potentially reach given
a time budget and the maximum speed [25]. The time-geography
framework has been widely used to study joint accessibility and
potential interactions between moving entities [9, 13, 15, 22]. By
intersecting the PPAs of different moving entities along their tra-
jectories, potential areas for interaction can be identified as shown
in [9, 15, 22].

The time-geographic methods for interaction analysis share a
common assumption that potential concurrent interactions between
two individuals can occur when their PPAs intersect or overlap
spatially and temporally. Specifically, the joint potential path area
(jPPA) approach proposed by [22] generates and intersects PPAs
for two moving entities at a predefined § increment by slicing
the time between their consecutive GPS points to delineate the
common areas between the two entities where potential concur-
rent interaction is possible. The temporally asynchronous-joint
potential path area (ta-jPPA) proposed by [15] extends the jPPA ap-
proach to identify potential areas of delayed interaction by allowing
a user-defined temporal lag parameter. The object-oriented time-
geographic analytical approach (ORTEGA) developed by [9] shares
a similar approach but does not require several time slicing and time
lag thresholds compared to previous two time-geographic based ap-
proaches. ORTEGA optimizes the search for potential interactions
through an object-oriented scheme and space-time indexing. It also
can be applied to identify interaction among a group of individuals
(two or more moving entities). Overall, these time-geographic ap-
proaches are shown to be a more robust framework to identify both
concurrent and delayed interactions between mobile individuals
compared to common proximity-based approaches [9, 15, 22]. One
advantage is that PPA can incorporate the positioning uncertainty
and gaps in movement data collected using location-aware tech-
nologies (LATs) by considering the accessible locations to a moving
entity between consecutive tracking points. In this way, PPA can
relax the strict requirement of simultaneously tracking of moving
entities when determining if a potential interaction is possible.

Despite the extensive existing work on computational methods
for movement interaction analysis as described in this section, there
remains a research gap to quantify the duration of interaction
between moving individuals or the amount of time that individuals
stay in close contact. The present research fills this gap by advancing
the time-geographic based approach to estimate the duration of
potential concurrent interactions between mobile individuals.

3 METHODOLOGY

This section presents our proposed method to quantify the duration
of interaction using human movement trajectory data. The method
involves two processes: (1) to apply a time-geographic technique
to identify potential concurrent interactions between two moving
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individuals, and (2) to trace continuous segments of interactions
and quantify their durations.

3.1 Identifying concurrent interactions

In time geography, the activity space of a moving entity can be
measured by a space-time prism which is shaped by a pair of origin
and destination locations, a time budget, and the maximum speed
capacity for the travel mode [14, 24]. As presented in Figure 1, the
projection of a space-time prism onto a two-dimensional Euclidean
space is called the potential path area (PPA), which delineates the
accessible locations to the moving entity over a given time bud-
get (for further details about the definition and formalization, the
readers are referred to [24, 25]). According to recent studies, the
potential interactions between moving entities can be identified
by intersecting their PPA ellipses and/or space-time prisms along
their trajectories over small time increments [15, 22] or between
two consecutive tracking points [9]. In this paper, we adopt and ex-
tend ORTEGA, an object-oriented time-geographic based approach
introduced in [9], to identify continuous segments of potential con-
current interactions between moving individuals and quantify their
duration.
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Figure 1: Illustration of the potential path area in a two-
dimensional Euclidean space (modified from [25])

Figure 2 presents the overall workflow of the object-oriented
time-geographic based approach to identify concurrent interactions
between moving individuals. This workflow uses the same Class and
Object definitions from ORTEGA: A moving entity is considered as
a MovingOb ject (MO) with a set of properties and methods. The
properties of the MovingOb ject class include a Trajectory object
which itself holds a series of PPA objects along the trajectory. The
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PPA object can be intersected with the PPAs of other entities to
create PPAjnsersect regions marking areas of potential interaction.
The readers are referred to [9] for more detail on the description
of the object-oriented scheme used in ORTEGA. The advantage of
using an object-oriented scheme is that we can store information
about the PPA intersections (i.e. location and time) as the properties
of the Trajectory objects and hence facilitate tracing of continuous
segments of potential interactions in the history of the data.

GPS tracking data

Construct Trajectory
objects of subject
moving entities

Trajectory
preprocessing
(remove errors &
outliers, etc)

Construct MovingObject
objects and compute PPA for
every pair of consecutive fixes

Select a reference
| MovingObject (MO")

Build a ckd-tree of PPA
centroids

%

Retrieve PPA™; ;. that are in close

No—»{ proximity spatially and temporally

of PPA'; j44 of MO’ based on ckd-tree
v

Intersect PPA"; 44 of the MO" to
the PPA™;;,4 of other entities MO™

7.t #7410t 1] OF
Tty INIT1 e 1#74]

Is PPA"; 1,y NPPA™, ./
not null?

Yes
A4

Potential concurrent ‘Store intersecting
interaction is identified PPAs in 7%

Figure 2: Workflow of identifying concurrent interactions
in human movement

The first step of the workflow is to construct the MovingOb ject
and Trajectory objects based on the original tracking data. A
Trajectory object of length n can be expressed as a series of T =
{(x0. Yo, 0), (x1,y1, 1), s (X, Yis 1i), ., (X, Yn, tn) }, Where x; and
y; denote the geographical location and t; denotes the time. This is
followed by excluding outliers and erroneous data through trajec-
tory preprocessing. Next, we calculate PPAs along the trajectory
of each MO. Formally, for each pair of consecutive tracking points
(xi, yi, ti) and (xi+1, Yit+1, ti+1) of the MovingObject e (denoted by
MO?¢), the PPA between the two points can be denoted by PPA7; ;.
It is necessary to note that, very large PPAs that are generated
as the result of gaps in the data (i.e. larger than three times the
standard deviation of the sampling intervals), occurring due to long
stops or signal loss are eliminated from the data [10].

To trace concurrent interactions between a group of moving en-
tities, every MovingOb ject entity is selected in turn to be reference
entity MO”. To accelerate the computational speed for large data
sets of tracking data of multiple individuals, a spatial and temporal
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indexing method named Compressed KD-tree or CKD-tree [2, 6]
is implemented on the centroid of each PPA for every MO. Apply-
ing CKD-tree substantially reduces the computation by retrieving
only the PPAs that are in the spatial and temporal proximity of the
PPA of the selected reference moving entity MO". Next, the PPA
of the selected reference MO" denoted by PPAZi 41 1s intersected
spatially and temporally with the other retrieved PPAs of the mth
moving entity in the data set, denoted by PPAZ‘}. +1- For any pair of
PPA;,I.Jrl and PPA;."’J.H, if [ti, tiv1] N [tj, tj+1] # ¢, a synchronous
intersection between the two PPAs is determined. However, if this
condition is relaxed by allowing a reasonable time lag 71, namely, if
[ti =71, tis + 1] N [t tjea] # Por [t tisa | N [t — 71, tjr1 +71] # &,
the two PPAs are still considered to be overlapping temporally
within the allowable time lag 7;. The time lag parameter 7; can be
defined by the user depending on the application scenarios (e.g., for
human interaction analysis using tracking data of 1 min sampling
rate, a time lag of 5 min may be reasonable to identify potential
concurrent interactions [9]). If PPA{ i N PPAZ’J. + * ¢, the two
PPAs are overlapping spatially. That is, the accessible areas to the
two MOs overlap, and they could potentially interact with each
other at the same time. The output of this algorithm will be a list
of PPA intersections (a list of PPA;jntersects) denoted by U which
includes the unique IDs of the two MOs and the start time and
end time of the two intersecting PPAs (an example of this list is
provided in Table 1).

The present workflow is different from ORTEGA in two aspects.
First, the objective of ORTEGA is to identify both concurrent and
delayed interactions between moving entities, while in this study
we only consider concurrent interactions within a reasonable time
lag. Here, the goal is to quantify the duration of concurrent in-
teractions or contacts between individuals, and ‘duration’ is not
meaningful if the interaction is delayed (i.e. the individuals were not
in the same location synchronously). Delayed interactions occur in
a synchronous space but at asynchronous times. Second, the two
steps of determining if two PPAs overlap spatially and temporally
are swapped because judging if two ellipses intersect (i.e. O(n +m)
for intersection of two ellipses where n and m are the number of
vertices for each ellipse) can take longer than judging if two time
intervals overlap (i.e. O(1) for computing time distance).

3.2 Quantifying the duration of interactions

The algorithm in the previous section can identify a set of spatially
and temporally intersecting PPAs for every two moving individ-
uals if they come into close contacts synchronously. However, it
does not consider the temporal order of the intersecting PPAs and
lacks the ability to identify continuous segments of interaction,
which is important for quantifying the frequency and the dura-
tion of interactions between moving individuals. In this section,
we present a new algorithm as an extension to ORTEGA that can
extract subsequences of continuously intersecting PPAs of two mov-
ing individuals derived from the output from the previous stage (i.e.
U) and then measures the duration of potential contacts.
Table 1 presents an illustration of the identified set of PPA;jpntersects

between the reference individual MO" and a selected individual
MO in the output data U from the previous stage. The MO" and
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Table 1: A list of PPA intersections and their times identi-
fied between two moving individuals in the database. The
columns of t] and t] are the start time and end time of
the intersecting PPA of the reference individual MO" with
a unique identifier id", and the columns of t¢ and ¢ are the
start time and end time of the intersecting PPA of a selected
moving individual MO with a unique identifier id?. N is the
total number of identified PPA intersections between the
two individuals.

PPAintersect# MO" MO? t] t] td td
1 id" id®  tf(1) (1) (1) td(1)
2 id" id*  t1(2)  th(2) t3(2) t2(2)
i id" id®  tf()  th(i)  tG)  t2(iD)
N id" id®  tI(N) tL(N) t&(N) t¢(N)

MO columns are the unique identifiers of the two moving indi-
viduals who have potential contacts determined by the algorithm
described in the previous section. Let [t (i), ¢/ (i)] and [¢2 (i), t&(i)]
denote the time intervals of the PPAs of the ith intersection be-
tween MO" and MO*“. The notation i here only denotes the row
number in the list of PPA;ptersects, but not the sequential order in
the original PPA sequence. Note that one PPA of MO" can over-
lap with multiple PPAs of MO“ as we consider two PPAs tempo-
rally overlap as long as the intersection between the two time
intervals of the two MOs is not null given an allowable time lag
71, as described in the previous section. For example, in Table 1,
if the two PPAs of MO" in the first two rows are the same (i.e.
[t7(1),t2(1)] == [t{(2),t;(2)]), the corresponding two PPAs of
MO? must be different (i.e. [t&(1),t2(1)] # [t2(2),t2(2)]).

Algorithm 1 presents the computation process of extracting con-
tinuous subsequences of intersecting PPAs of two moving individ-
uals and estimating the duration of continuous interaction. The
main steps of this algorithm are as follows:

(1) Take the PPA;ntersect list (e.g. Table 1) between the reference
individual MO” and a selected MO% obtained from U.

(2) Sort the PPAintersect list based on the start times of the PPAs
of the two individuals (i.e. t] and t2).

(3) Trace continuous subsequences of intersecting PPAs using
a for loop: identify consecutive records that share the same
start time (i.e. t} (i) == ] (i + 1)) or the end time is the same
as the start time of the next record (i.e. t} (i) == t{ (i + 1)).
Otherwise, the end of a continuous interaction segment is
determined.

(4) Append all start times and end times of MO" and MO* (i.e.
the records in the four columns of 7, 7, tZ, tZ) over the iden-
tified time interval of the continuous interaction segment to
a candidate set @4,

(5) Determine the start time and end time of the continuous
interaction segment using the minimum and maximum time
of the derived @"¢.

(6) Compute the duration of the continuous interaction segment
as duration = max{0©"?} — min{©@™4}.
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(7) Continue the search for continuous subsequences until the
end of the PPA;ptersect list is reached.

Algorithm 1: Quantifying the duration of interactions

Input: a list of PPAjptersects between the reference
individual MO" and a selected MO? obtained from U

Output: a list of the start time, end time, and duration of
the continuous interactions between MO" and MO%

Let ©™¢ and L be new arrays

N « length of the PPA;nsersect list

for i = 0 to N-1do

if ¢ (i) == tI (i + 1) then

O 4 insert[t] (i), t; (i), t5 (i + 1), t2(i), t&(i), 12 (i +
1, 12( +1)]

nd

Ise if ¢t} (i) ==t{ (i + 1) then

O % insert[t] (i), ty (i), t; (i + 1), t2(Q), t2 (i), tE(i +
1), t2(i+1)]

o o

nd
else
if |©"%| == 0 then
| ©"%insert[t] (i), ] (i), t2(i), t2(i)]
end
starttime «— min{@"%}
endtime «— max{©"%}
duration «— max{®"%} — min{@"4}
L.insert([starttime, endtime, duration])
Q"% « empty list
end

o

end

if |©"¢|! = 0 then

starttime «— min{@"™%}

endtime «— max{©"%}

duration «— max{©"%} — min{@"4}
L.insert([starttime, endtime, duration])
end

return L

4 EXPERIMENTS
4.1 Data description

This study uses several trajectories from the 2012-13 California
Household Travel Survey (CHTS)[29]. The data set contains a single-
day travel diary and three days of GPS tracking including the same
single-day during which a travel diary was collected. The single-day
travel diary records every survey respondent’s household mem-
bership information (i.e. in the same or different household), trip
start time and end time, transport mode, origin and destination
coordinates (in longitude and latitude format) and corresponding
location types (e.g., home, work, school, other). The GPS tracking
data contains a unique ID of each participant, location in longitude
and latitude, and local time and date when the person was tracked.
It is noteworthy that due to the battery and storage capacity, the
device will automatically deactivate when the movement speed
is lower than one mile per hour, which means that only people’s
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movements are tracked and the data do not include stops. Several
tracks of 1 min sampling rate from the 2012-13 CHTS data are used
to illustrate the proposed approach to identify and measure the
duration of potential concurrent interactions.

4.2 Case studies

Using the information of household composition and several GPS
trajectories from 2012-13 CHTS, we conduct two case studies to
demonstrate the effectiveness of the proposed approach in identify-
ing and quantifying the duration of continuous concurrent inter-
action events between mobile individuals of the same or different
households. Guided by [9], in these two case studies, we define
the concurrent interactions between mobile individuals as poten-
tial contacts within 5 min (i.e., 77 = 5 min). In addition, we also
evaluate the efficacy of our proposed approach in comparison with
the commonly-used proximity-based approach in this section. It is
worth noting that the identified continuous interaction events by
both approaches can only be considered as ‘potential interactions
[9]. In other words, individuals may or may not have socially or
physically interacted when they come into close contact spatially
and temporally.

4.2.1 Interaction within household. The first case study focuses
on the interactions occurring between mobile individuals from the
same household or between individuals who most probably traveled
and were tracked together. The premise is that people who live in
the same household are more likely to move together during the
day. For example, parents escort their children to school, couples
may go grocery shopping or for a walk/ride together, a family goes
out for dinner and so forth. Many of the joint activities within the
same household tend to associate with joint travels.

Figure 3 illustrates the complete one-day GPS tracking of two
persons from the same household (“‘H1P1" and “H1P2" herein) in
the main map. The traces of H1P1 are presented in red dash-dotted
line and H1P2 is in blue dash-dotted line. As presented in Table 2,
100% of their GPS fixes identified using PPA intersections, which
indicates potential joint trips by the two individuals throughout
the diary day. To give a sense of the identified interactions using
our PPA-based approach, a portion of the interactions (i.e., PPAs
of the two individuals overlap or intersect) are highlighted using
yellow ellipses as shown in the inset map in Figure 3. Table 3
summarizes the identified continuous concurrent interaction events
between two moving individuals. The results reveal six potential
concurrent interaction events between person H1P1 and person
H1P2 on November 20th in 2012.

We next verify the results by assessing the travel diary collected
on the same day for the tracked individuals. Since the travel diary
of H1P1 and H1P2 are exactly the same, Table 4 only presents the
travel diary of H1P1. During the assigned survey day, these two
persons from the same household traveled together and made in to-
tal six trips. The six continuous interaction events identified by the
proposed approach match the travel diary almost perfectly (Tables
3 and 4). The total absolute difference between the diary and the
identified results is 1,203 seconds (20.05 min). For each individual
trip, the average absolute difference is 3.34 min. The slight time
differences are reasonable since a conventional travel diary is com-
pleted at the end of the day and is purely based on people’s memory
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Table 2: Summary of the total # of fixes in the tracking data
and the total # of fixes identified using PPA intersection. The
percentage of overlap is quantified as the ratio between the
two numbers.
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Table 3: The identified continuous interaction events be-
tween individuals from the same or different households us-
ing the proposed PPA-based approach.

Date Person # of total fixes # of overlapped fixes(%)
Nov.20,2012  HIP1 98 98(100%)
H1P2 99 99(100%)
Oct.11,2012  H2P1 60 13(21.67%)
H3P1 79 14(17.72%)
Py
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Figure 3: Complete single-day tracks of H1P1 (red dash-
dotted line) and H1P2 (blue dash-dotted line) who are from
the same household. The inset map shows a subset of inter-
secting PPAs between the two persons using yellow ellipses.
The basemap is hidden in the inset map to protect partici-
pants’ privacy.

of their schedules. In general, our proposed method is capable of
accurately identifying the concurrent interaction events between
individuals of the same household.

4.2.2  Interaction outside household. The second case study uses
GPS tracking data of two persons who live in different households
to illustrate the efficacy of the proposed approach in identifying
continuous interaction events outside households when people
not necessarily move together. The two persons are denoted by
H2P1 and H3P1. Figure 4 depicts the complete trajectories of the
two selected persons (in blue/red dash-dotted lines) during the
same assigned survey day, and the intersected PPAs are highlighted
in yellow in the inset map. Overall, as shown in Table 2, only

Persons Event# Start time Endtime Duration (min)
H1P1&H1P2 1 14:16:29 14:52:57 36.5
2 15:00:58 15:04:46 3.8
3 15:47:49 16:29:39 41.8
4 18:16:25 18:23:07 6.7
5 18:34:11 18:37:16 3.1
6 18:44:53 18:50:05 5.2
H2P1&H3P1 7 18:34:47 18:50:28 15.7

21.67% (H2P1) and 17.72% (H3P1) of their respective total number of
fixes were identified using PPA intersection, indicating a few short
segments for potential concurrent interactions. This is reasonable,
as people from different households are most likely strangers and
the potential contacts between them are usually more occasional
and random, unless they are related or work together. Table 3
summarizes in detail the identified continuous interaction event
(i-e. interaction event #7) between H2P1 and H3P1 which begins
at 18:34:47 and ends at 18:50:28. Based on the visualization of their
tracks presented in Figure 4, this interaction event #7 occurred
when the two individuals stayed in two different vehicles moving
along the same direction and came into close contact on the same
road segment.

37.40

37.38

37.36

Latitude

37.34

37.32

Longitude

Figure 4: The identified continuous interactions #7 (yellow
ellipses) between H2P1 (red) and H3P1 (blue) from different
households. The basemap is hidden in the inset map to pro-
tect participants’ privacy.

Next, the travel diary and the trajectories of the two individuals
are used to interpret the identified potential continuous interaction
event on the assigned survey day. The one-day travel diary of
H2P1 and H3P1 on October 11th, 2012 shows that during the time
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Table 4: Travel diary of H1P1

Trip # Date Start time End time Duration (min) Origin Destination
1 Nov.20, 2012 14:17:00 14:52:00 35 Home Liquor store
2 Nov.20, 2012 15:02:00  15:04:00 2 Liquor store ~ Parent’s home
3 Nov.20, 2012 15:48:00 16:29:00 41 Parent’s home Home
4 Nov.20, 2012 18:16:00 18:23:00 7 Home Restaurant A
5 Nov.20, 2012 18:34:00 18:35:00 1 Restaurant A Restaurant B
6 Nov.20, 2012 18:37:00 18:45:00 8 Restaurant B Home

when the two persons came into close contacts, H2P1 was on a
car leaving from the workplace to a supermarket while H3P1 was
driving home after work. Therefore, it is reasonable to state that
the two individuals of different households actually came into close
contact for 15.7 min when they stayed in different vehicles during
the same survey day. For the purpose of contact tracing in disease
transmission, this identified interaction event between H2P1 and
H3P1 should not be considered as a risky contact because the two
individuals did not necessarily travel together and only happen to
pass each other when potentially in different vehicles.

4.3 Comparison to the proximity-based
approach

Figure 5 illustrates the implementation of the proximity-based ap-
proach to identify potential concurrent interaction events between
two moving individuals. A potential interaction can be identified
by intersecting spatial buffers centered on synchronous GPS track-
ing points of two individuals. In this experiment, a buffer size of
100 m is used. Increasing the buffer size allows a higher chance
of intersection between the tracks, especially when synchronous
or high resolution tracking data are not available [9]. In the hy-
pothetical example shown in Figure 5, the spatial buffer at time
t3 for moving object #1 and the buffer at t for moving object #2
intersect spatially. Although they are at different times (i.e. t3 > t2),
if |t3 — t2| < 7 where 7 is a parameter of the allowable time dif-
ference, the two moving objects can be considered as having a
potential concurrent contact between the time interval [, t3] [9].
To make the two approaches comparable, the same 5-min threshold
(following Section 4.2) is applied for the proximity-based approach
to identify concurrent interaction events (i.e. 7 = 77 = 5min). The
same tracking data sets from the above two case studies are used to
discuss the difference between the two approaches in identifying
and measuring the duration of continuous interaction events.

The number of intersecting GPS fixes (i.e. buffers) identified by
the proximity-based approach are summarized in Table 5. Only
38.78% and 31.31% of their respective total number of GPS fixes of
H1P1 and H1P2 (from the same household) are identified as poten-
tial interactions. Presumably, even though the two individuals come
from the same household are very likely to move together, their
locations were not tracked completely synchronously, since each
used an individual tracker. Therefore, compared to our approach
which considers the potential path area between GPS fixes, the
proximity-based approach resulted in many missing concurrent
interactions along their movement paths. This underestimation
problem is even more pronounced for individuals from different

%y

. 1
/ “---~ @ Moving object #1
R ® Moving object #2

Figure 5: Illustration of the proximity-based approach to
identify potential interactions between two moving individ-
uals. The solid points and lines between them represent the
tracking points and moving trajectories of the two individu-
als. The dashed circle around the tracking point represents
the spatial buffer with a user-defined size.

households when individuals are not necessarily tracked together.
Table 5 shows that only 5% and 2.53% buffers of the total number of
GPS fixes of H2P1 and H3P1 intersected. This observation suggests
that the proximity-based approach is less effective to identify close
contacts when people are not traveling together or when short
contacts occur. Table 6 summarizes the timeline and duration of
the identified continuous interactions between people of the same
or different households by applying the proximity-based approach.
As compared to our PPA-based approach, for the pair of individu-
als of the same household (H1P1 and H1P2), the proximity-based
approach results in more intermittent interactions with shorter
durations of contacts, which doesn’t align with the actual obser-
vations based on the diary logs as shown in Table 4. In the case of
outside household interaction (H2P1 and H3P1), the results show
that the proximity-based approach can only identify a portion of a
potential continuous interaction event compared to the proposed
time-geographic based approach.

5 CONCLUSIONS AND FUTURE WORK

This paper introduced a technique to trace and estimate the du-
ration of continuous interactions between moving individuals. In
doing so, it advanced the existing time-geographic approaches to
movement interaction analysis. The proposed method relies on
the spatial and temporal intersection of potential path areas to
determine possible concurrent interactions between moving indi-
viduals in space and time. By taking into account the temporal
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Table 5: Summary of the total # of fixes in the tracking data
and the total # of fixes identified using buffer intersection.
The percentage of overlap is quantified as the ratio between
the two numbers.

Date Person # of total fixes # of overlapped fixes(%)
Nov.20, 2012 H1P1 98 38(38.78%)
H1P2 99 31(31.31%)
Oct.11,2012  H2P1 60 3(5%)
H3P1 79 2(2.53%)

Table 6: The identified continuous interaction events using
the proximity-based approach

Persons Event# Starttime Endtime Duration
H1P1&H1P2 1 14:16:29 14:20:42 4.2 min
2 14:49:36 14:51:33 1.95 min
3 15:00:58 15:04:46 3.8 min
4 15:48:09 15:51:42 3.6 min
5 16:07:33 16:07:42 9s
6 16:19:53 16:20:00 7s
7 16:22:03 16:25:57 3.9 min
8 18:16:25 18:23:05 6.7 min
9 18:34:11 18:34:16 5s
10 18:35:36 18:37:14 1.6 min
11 18:44:53 18:50:02 5.2 min
H2P1&H3P1 12 18:37:30 18:41:58 4.5 min

order of the identified intersecting PPAs, the proposed technique is
capable of extracting subsequences of continuous potential interac-
tion segments to estimate the duration of potential contacts. Two
case studies were conducted to examine the proposed approach
in identifying and quantifying interactions between individuals
of the same or different households. The results showed that the
proposed approach can identify almost perfectly the interactions
and the duration of the interactions between individuals who move
together. In addition, the proposed approach can also identify poten-
tial concurrent interactions between individuals who do not move
together. The results are also evaluated against the commonly-used
proximity-based approach (i.e. based on point-to-point distance)
which is often used in contact-tracing applications. The comparison
indicates that using the proximity-based approach to quantify the
duration of interactions may yield very erroneous results, while the
proposed time-geographic based approach can identify the duration
of contact more accurately. In addition, unlike the proximity-based
approach, our proposed approach does not rely on arbitrary buffer
size. Although the time-geographic based approach is computa-
tionally more intensive than the proximity-based approach, the
proposed method can estimate the duration of contacts more accu-
rately and identify more complete interactions over a continuous
time period, which outperforms substantially the proximity-based

Su, Dodge, Goulias

approach. The proposed approach can also apply to trace the dura-
tion of interaction in interspecific and intraspecific interactions of
animals.

There are several directions for future research. The identified
continuous interactions can be enriched by incorporating contex-
tual information such as surrounding geographic environment,
travel behavior and people’s socio-demographic characteristics.
This can help better understand and interpret the identified interac-
tion patterns. For example, by incorporating contextual information,
it may be feasible to distinguish close contacts between individ-
uals in indoor and outdoor settings which might pose different
risk levels in the transmission of diseases such as COVID-19. In
addition, by taking into account travel mode, contacts that occurred
on the road where individuals stayed in different vehicles can be
differentiated from more risky contacts when individuals passed
by each other in the street.
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