

pubs.acs.org/JACS Article

Catalyst-Controlled Regiodivergence in Rearrangements of Indole-Based Onium Ylides

Vaishnavi N. Nair, Volga Kojasoy, Croix J. Laconsay, Wang Yeuk Kong, Dean J. Tantillo,* and Uttam K. Tambar*

Cite This: J. Am. Chem. Soc. 2021, 143, 9016-9025

ACCESS I

III Metrics & More

Article Recommendations

SI Supporting Information

ABSTRACT: We have developed catalyst-controlled regiodivergent rearrangements of onium-ylides derived from indole substrates. Oxonium ylides formed *in situ* from substituted indoles selectively undergo [2,3]- and [1,2]-rearrangements in the presence of a rhodium and a copper catalyst, respectively. The combined experimental and density functional theory (DFT) computational studies indicate divergent mechanistic pathways involving a metal-free ylide in the rhodium catalyzed reaction favoring [2,3]-rearrangement, and a metal-coordinated ion-pair in the copper catalyzed [1,2]-rearrangement that recombines in the solvent-cage. The application of our methodology was demonstrated in the first total synthesis of the indole alkaloid (±)-sorazolon B, which enabled the stereochemical reassignment

OMe [1,2] (1,2) (1

of the natural product. Further functional group transformations of the rearrangement products to generate valuable synthetic intermediates were also demonstrated.

■ INTRODUCTION

Molecular rearrangements are arguably some of the most effective reactions for the generation of new carbon-carbon bonds in the synthesis of complex molecules. In recent years, advances in catalytic onium ylide rearrangements have paved the way for catalyst control of rearrangements that are traditionally unselective.^{2,3} In this context, catalytic generation of onium ylides from diazocarbonyl compounds has served as a versatile platform for selective rearrangements (Scheme 1A). Despite many reports of catalytic onium ylide rearrangements of aliphatic systems, 4,5 only a few examples of analogous aromatic rearrangements are known which are limited to sulfonium (X = SR) and ammonium (X = NR₂) ylides. The challenge of developing this class of rearrangements is partially due to the energetic penalty associated with disruption of aromaticity in the sigmatropic [2,3]-rearrangement (Scheme 1A). A pioneering study on catalytic thia-Sommelet-Hauser rearrangement was reported by Wang and co-workers in 2008.6c In recent years, examples of controlled [1,2]- and [2,3]-rearrangements of ylides in aromatic systems have appeared in the literature.8 Pan and co-workers reported rearrangements of sulfonium ylides where the selectivity for [1,2]- vs [2,3]-rearrangement is controlled by the solvent and substrate.8a Another report from Koenigs and co-workers shows a solvent controlled approach in rearrangements of sulfonium ylides formed from donor/acceptor carbenes.8b Alternatively, catalytic ylide-formation and aromatic [2,3]-

rearrangements of oxonium systems (X = OR) are not known, presumably because of side reactions through nonylide pathways such as C–H insertion and cyclopropanation that compete with facile ylide formation. Also, the examples for the [1,2]-rearrangement of oxonium ylides in the literature are generally limited to cyclic ylides. Catalytic methods for the selective formation of either [1,2]- or [2,3]-rearrangement products of aromatic systems from the same starting materials would provide a valuable new strategy for the synthesis of complex molecules.

Herein, we report the first catalyst-controlled regiodivergent aromatic rearrangements of indole-based oxonium ylides (Scheme 1B). With the proper choice of catalyst system, we can selectively generate the [1,2]- or [2,3]-rearrangement product. As our initial target for the rearrangements, we chose the indole-scaffold because of its prevalence in many natural products and medicinally valuable compounds. ¹⁰ In addition to exploring the scope of this reaction, we also performed DFT calculations to examine mechanisms and the origins of catalyst-controlled regiodivergence. Finally, to showcase the utility of

Received: January 9, 2021 Published: June 14, 2021

Scheme 1. Catalyst Control of Regioselectivity in Onium Ylide Rearrangements

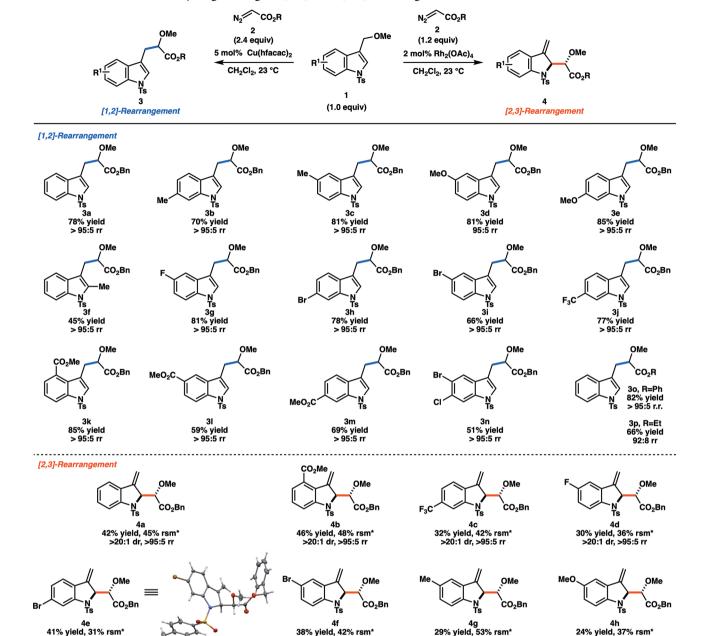
A. Catalytic Generation of Onium Ylides from Diazocarbonyl Compounds ÇO₂R RO₂C Aliphatic Systems (X = SR, NR₂, OR) Many Examples $\triangleright_{\mathsf{N}_2}$ RO₂C No Examples of Aromatic Systems (X = SR, NR₂) xonium Yli (X = OR) CO₂R CO₂R Θ ⊕, [1,2] Ar : B. Catalyst-Controlled Regiodivergent Aromatic Rearrangements of Indole-Based Oxonium Ylides (This Research) CO₂R [1,2] CO₂F

our method, we demonstrated the conversion of rearrangement products into the indole alkaloid sorazolon B and several valuable building blocks for drug discovery.

RESULTS AND DISCUSSION

Development of Regiodivergent Rearrangements. Our initial investigations began with the screening of various catalysts that are generally applied in carbene chemistry, using 3-(methoxymethyl)-1-tosyl-1H-indole (1a) and benzyl diazoester (2a) as substrates (Table 1). While we did not observe any reactivity in the presence of palladium, silver, or gold catalysts (entries 1-3), CuOTf-benzene (5 mol %) afforded a mixture of [1,2]- and [2,3]-rearrangement products 3a and 4a (82:18 rr), respectively, in low yield (entry 4). Moreover, we were pleased to note that indoline 4a bearing an exomethylene moiety (presumably from the [2,3]-rearrangement) was formed with excellent diastereoselectivity (>20:1 dr). Moving forward with this initial result that gave 3a as the major product, we began optimizing the [1,2]-rearrangement of the oxonium ylides by screening additional copper sources. Other copper catalysts such as CuCl, CuCl₂, and CuOAc/ NaBAr_F gave similar or slightly improved yields, but relatively lower regioselectivities (entry 5-7). We were delighted to see an improved yield (38%) as well as regioselectivity (86:14 rr) with [Cu(MeCN)₄]PF₆ as catalyst (entry 8). The use of Cu(hfacac)₂ to perform the rearrangement further enhanced the yield (52%) and regioselectivity (92:8 rr) (entry 9). An examination of the conversion of the starting materials under these conditions revealed that the yield was limited by the incomplete consumption of indole 1a, whereas the diazoester 2a was completely consumed to give the desired products along with minor amounts of dibenzyl fumarate and dibenzyl

Table 1. Optimization of [1,2]- and [2,3]-Rearrangements^a


Conversion Yield' Entry Catalyst Solvent 3a:4a (%) (%) PdCI2 1 CH₂CI₂ <5 <5 2 AgOTf CH,CI, <5 <5 Ph₃PAuCI 3 CH2CI2 <5 <5 Cu(OTf) CH₂CI₂ 5 5 82:18 benzene 5 5 CuCI CH₂CI₂ 5 71:29 CuCI₂ 7 6 CH,CI, 8 75:25 7 CuOAc/NaBAr_B CH₂CI₂ 26 18 76:24 8 [Cu(MeCN)₄] CH2CI2 42 38^d 86:14 PF₆ 9 Cu(hfacac)₂ CH₂CI₂ 67 52^d 92:8 10 Cu(hfacac), CH,CI, >95 78^d >95:5 42^d 11 Rh2(OAc)4 CH₂CI₂ 55 <5:95 12 $Rh_2(cap)_4$ CH₂CI₂ <5 <5 Rh₂(TFA)₄ 13 CH₂CI₂ 30 <5 Rh₂(TPA)₄ 23 14 CH₂CI₂ 56 32:68 15 Rh2(oct)4 33 CH,CI, 44 10:90 Rh₂(OAc)₄ 26 16 CH2CI2 92 <5:95 17 Rh₂(OAc)₄ DCE 41 36 <5:95 Rh₂(OAc)₄ 18 CHCI₃ 51 33 <5:95 Rh₂(OAc)₄ 19 toluene <5:95

^aReaction conditions: indole **1a** (0.16 mmol), benzyl diazoester **2a** (1.2 equiv, added using syringe pump as 0.2 M solution in solvent at a rate of 2 mL/h), copper catalyst (5 mol %) or rhodium catalyst (2 mol %). ^bConversion of **1a**. ^cNMR yield using 1,3,5-trimethoxybenzene as internal standard. ^dIsolated yield. ^e2.4 equiv of **2a** was used.

maleate as the side products resulting from homodimerization. Increasing the amount of benzyl diazoester **2a** to 2.4 equiv resulted in >95% conversion of **1a** to provide the [1,2]-rearrangement product **3a** in 78% yield and >95:5 rr (entry 10).

Alternatively, when Rh₂(OAc)₄ (2 mol %) was used as the catalyst, we observed a switch in the regioselectivity that gave the [2,3]-rearrangement product 4a as the major product (>95:5 rr) in 42% yield and >20:1 dr (entry 11). The screening of several other dirhodium carboxylate catalysts commonly used in metal-carbene transformations, such as $Rh_2(cap)_4$, $Rh_2(TFA)_4$, $Rh_2(TPA)_4$, and $Rh_2(oct)_4$, failed to improve the yield for the reaction (entries 12-15). Similar to the copper-catalyzed [1,2]-rearrangement, an incomplete consumption of indole 1a (55%) was identified as the reason for the moderate yields. However, increasing the amount of diazoester 2a to 2.4 equiv diminished the yield of the [2,3]rearrangement product 4a to 26% (entry 16). We speculate that the reason for the lower yield with excess diazoester might be the propensity of the exomethylene group in 4a to undergo cyclopropanation with excess highly reactive rhodium-carbene (see SI for details). We also examined other indole substrates besides methyl ether 1a for optimization studies. While ethyl ether underwent the [2,3]-rearrangement, other alkyl and

Table 2. Products Generated by Regiodivergent [1,2]- and [2,3]-Rearrangements

* rsm = recovered starting material 1

^arsm = recovered starting material 1.

41% yield, 31% rsm² >20:1 dr, >95:5 rr

arylethers such as isopropyl and phenyl ethers did not give any conversion under the [2,3]-rearrangement conditions (see SI for details). Other N-protecting groups such as Me, Boc, and Ac were also screened during optimization for [2,3]-rearrangement, but most of these substrates did not show significant product formation (see SI for details). Further screening of different solvents also did not provide improvement in the yield (entries 17-19). As a result, the conditions with Rh₂(OAc)₄ (2 mol %) in CH₂Cl₂ at 23 °C were identified as optimal for the catalytic ylide-formation/aromatic [2,3]rearrangement (entry 11).

Substrate Scope of Regiodivergent Rearrangements. With the optimized reaction conditions for both the coppercatalyzed ylide-formation/[1,2]-rearrangement and rhodiumcatalyzed ylide-formation/[2,3]-rearrangement in hand (entries 10 and 11, Table 1), we next explored reaction scope (Table 2).

Indole substrates with a broad range of substituents at various positions on the heteroaromatic ring (3a-3p) worked efficiently under the [1,2]-rearrangement conditions. Electronrich 5-and 6-substituted indole substrates provided high yields and excellent regioselectivities (3b-3e). Substitution at the 2position generated the desired [1,2]-rearrangement product 3f, albeit in slightly lower yield, but nonetheless gave excellent regioselectivity (>95:5 rr). Several electron-withdrawing substituents on the indole ring, including fluoro, bromo, trifluoromethyl, and ester groups (3g-3m), provided good yields and high regioselectivities. The reaction also progressed

38% yield, 42% rsm

>20:1 dr, >95:5 rr

yield, 37% rsm*

>20:1 dr. >95:5 rr

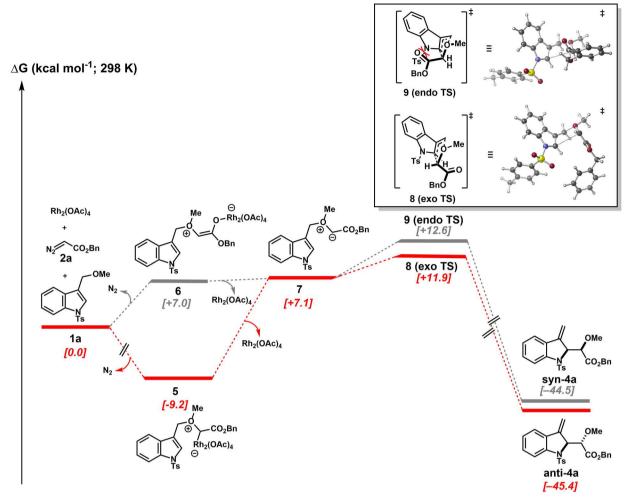
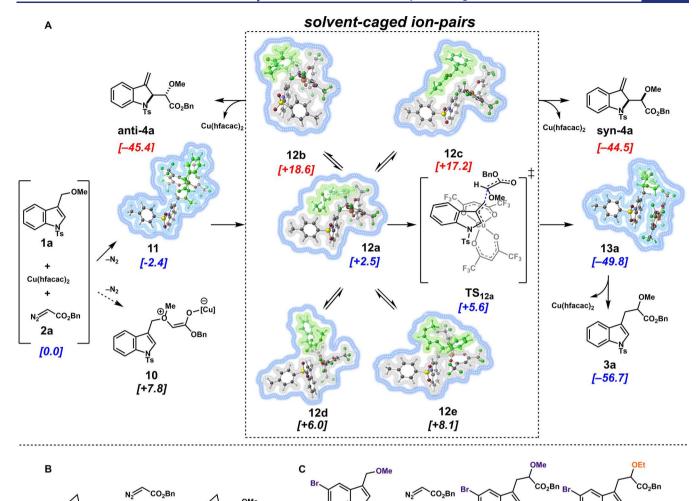


Figure 1. Computed (PWPB95-D3(BJ)/def2-QZVPP//IEFPCM(CH_2Cl_2)-B3LYP/6-31G(d), SDD) relative free energies (kcal/mol, italics) for minima and TSSs involved in the Rh-promoted reaction of 1a and 2a.

smoothly to generate dihalogenated product **3n** in 51% yield and >95:5 rr. In addition, other alkyl and aryl diazoesters were shown to be competent in generating [1,2]-rearrangement products in moderate to good yields (**3o** and **3p**).


Next, we explored the scope of the rhodium-catalyzed ylideformation/[2,3]-rearrangement to provide various substituted indolines (4) that would be difficult to access in high selectivity by conventional methods. 13 Several electron-deficient indole rings with different substitution patterns underwent selective aromatic [2,3]-rearrangement to generate indolines (4b-4f) in moderate yields and with excellent regioselectivities. Electrondonating substituents on the indole ring led to comparatively lower isolated yields of the products (4g and 4h); however, the [2,3]-rearrangement proceeded with excellent regioselectivity. 14 The rearrangement products were generally stable to rearomatization, presumably because of the electron-withdrawing tosyl protecting group similar to other known indolines. 13b,c Notably, the [2,3]-rearrangement of all the substrates exhibited high diastereoselectivity (>20:1 dr). The relative stereochemistry of the major anti-diastereomer of product 4e was confirmed by X-ray crystallography, and the relative stereochemistry of the major diastereomer of all other 2-substituted indolines was assigned by analogy.

Mechanistic Studies. To gain insight into the divergent mechanisms of the catalyst controlled ylide-formation/rearrangement reactions, a series of computational studies

were performed using density functional theory at the PWPB95-D3(BJ)/def2-QZVPP//IEFPCM(CH₂Cl₂)-B3LYP/6-31G(d), SDD level (see SI for details). The robustness of our chosen level of theory was evaluated through a series of tests with other functionals and basis sets (see SI for details); while there is some variation in predicted relative energies, these variations do not affect our mechanistic conclusions. 3-(Methoxymethyl)-1-tosyl-1*H*-indole 1a was selected as the model substrate.

For the rhodium-catalyzed ylide-formation/[2,3]-rearrangement, we first examined the structure of the metal-bound oxonium ylide (Figure 1). Formation of the carbon-bound ylide 5 is predicted to be exergonic by 9.2 kcal/mol, whereas formation of the oxygen-bound ylide 6 is endergonic by 7.0 kcal/mol.

Our proposed pathway for a concerted [2,3]-rearrangement process is summarized in Figure 1. Dissociation of Rh₂(OAc)₄ prior to rearrangement generates free oxonium ylide 7. Early dissociation of rhodium(II) complexes from ylides has been reported for other diazocarbonyl-mediated reactions. The most probable pathway to the product involves a metal-free [2,3]-rearrangement of oxonium ylide 7, which leads to the observed product 4a with the experimentally observed relative stereochemistry. As expected, we were not able to find a transition state structure for the symmetry-forbidden metal-free [1,2]-rearrangement of oxonium ylide 7. The relative

3a (not observed) Figure 2. (A) Computed (PWPB95-D3(BJ)/def2-QZVPP//IEFPCM(CH₂Cl₂)-B3LYP/6-31G(d),SDD) relative free energies (kcal/mol, italics) for minima and TSSs involved in the Cu-promoted reaction of 1a and 2a. A selection of ion-pairs 12a-12e were generated by scanning the bonds that form en route to the products. The energies for ion-pairs 12a-12e are based on optimized complexes. Geometries of ion-pairs 12a-12e, their preceding zwitterion 11, and the recombination product 13a shown in ball-and-stick images are included to facilitate comparison of overall shapes. For clarity in visual comparison, the enolate part of the ion-pair is highlighted in green and the indolyl part (highlighted in gray) is positioned the same way for each structure above. The solvent cage (not modeled explicitly) is depicted in blue with dotted lines. (B) Reaction conditions for radical probe experiment: indole 1q (0.16 mmol), benzyl diazoester 2a (1.2 equiv, added using syringe pump as 0.2 M solution in CH₂Cl₂ at a rate of 2 mL/h), Cu(hfacac)₂ (5 mol %), CH₂Cl₂, 23 °C. (C) Reaction conditions for crossover experiment: indole 1i (0.08 mmol, 0.5 equiv), indole 1r (0.08 mmol, 0.5 equiv) benzyl diazoester 2a (1.2 equiv, added using syringe pump as 0.2 M solution in CH₂Cl₂ at a rate of 2 mL/h), Cu(hfacac)₂

2a 5 mol%

Cu(hfacac)₂

CH₂Cl₂, 23 °C

OMe

3q >95:5 rr, dr = 1:1.3

CO₂Bn

stereochemistry of the major diastereomer of products arising from the [2,3]-rearrangement of indole-based onium ylides such as 7 is consistent with a preference for an exo transition state structure (8).4d Relative free energies calculated for the exo and endo transition states predicted a lower energy barrier for exo transition state 8 leading to the observed diastereomer

5 mol%

Cu(hfacac) CH₂Cl₂, 23 °C

44% yield

1q

(5 mol %), CH₂Cl₂, 23 °C.

For the copper-catalyzed ylide-formation/[1,2]-rearrangement, we propose a mechanism that involves a stepwise process (Figure 2A).4e,19 The preferential formation of the [1,2]-rearrangement product 3a over the [2,3]-rearrangement product 4a is an argument against pathways involving the early dissociation of copper from the initially generated metalcoordinated ylide 11, since metal-free [1,2] rearrangement is predicted to have an extremely high barrier compared to that of the [2,3]-rearrangement (see SI). On the basis of our computational results, we favor an ion-pair fragmentation/ recombination pathway for the copper-catalyzed reactions.²⁰ Other possible pathways were explored but were not consistent with our experimental results (see SI for details). For example, formation of simple radical-pairs cannot be ruled out on the basis of our computational results, but our experimental data

3s (not observed)

argues against it. Specifically, cyclopropane containing substrate 1q reacted with diazoester 2a to yield the [1,2]-rearrangement product 3q with the radical probe intact (Figure 2B). 21,22

To gain insight into the key carbon—carbon bond formation event in the copper-catalyzed reaction, we considered ion-pair complexes (12a, 12b, 12c, 12d, and 12e) that could lead to the [1,2]-rearrangement product 3a or the [2,3]-rearrangement product diastereomers *syn-4a* and *anti-4a* with minimal reorganization (Figure 2A).²³ In principle, these ion-pairs would be in equilibrium with each other and could recombine to form copper-bound recombination products (e.g., 13a, Figure 2A).²⁴ However, recombination in a solvent cage is expected to be faster than equilibration between ion-pairs. Although a solvent cage was not explicitly modeled in our calculations, the formation of ion-pairs in a solvent cage is consistent with experimentally determined results. When substrates 1i and 1r were simultaneously subjected to the [1,2]-rearrangement conditions, we did not detect crossover products 3s and 3a (Figure 2C).

We were able to find a transition state structure (TS_{12a}) converting the ion-pair 12a to 13a, the $Cu(hfacac)_2$ -bound experimentally observed product, with a 3.1 kcal/mol barrier. Subsequent dissociation of Cu catalyst yields 3a. If 12a was formed preferentially on the dissociation of the coppercoordinated oxonium ylide 11, we propose that this ion-pair could rapidly recombine to the experimentally observed product $(12a \rightarrow 3a)$ before equilibration with other ion-pairs. Comparisons of the various ion-pairs and metal-ylide intermediate 11 do indeed reveal greater conformational similarity between 11 and 12a than either 12b, 12c, 12d, or 12e (Figure 2A; see SI for details). We also investigated the proposed stepwise ion-pair mechanism with other copper catalysts $(Cu(acac)_2, CuCl_2, Cu(hfacac)^+$, and $Cu(acac)^+$), and all qualitatively lead to similar results (see SI for details).

In summary, on the basis of our combined experimental and computational data, we favor a mechanism for the rhodium-promoted reaction where early catalyst dissociation occurs at the ylide stage, and products are formed via a metal-free [2,3]-sigmatropic rearrangement. For the copper-promoted reaction, we favor a mechanism where a copper-coordinated ion-pair is formed and rapidly recombines in a solvent cage to form the observed [1,2]-rearrangement product.

Synthetic Applications of Regiodivergent Rearrangements. The products generated through the [2,3]-rearrangement proved to be versatile substrates to access building blocks that are potentially useful for the synthesis of complex molecules (Scheme 2). For example, rearrangement product 4a can undergo ozonolysis to yield indoxyl product 14. In the presence of acid, the rearrangement product 4a is rearomatized to furnish 2,3-disubstituted indole 15. In the presence of an electrophilic source of bromine, it is selectively converted to 3-bromomethyl indole 16.

To demonstrate the synthetic utility of the [1,2]-rearrangement products, we incorporated this transformation into the first total synthesis of the indole alkaloid sorazolon B, which enabled a stereochemical reassignment of the natural product's structure that was reported in the original isolation paper (Scheme 3).²⁶ To commence the total synthesis, 3-(methoxymethyl)-1-tosyl-1*H*-indole (1a) was coupled with diazoester 2a under the [1,2]-rearrangement conditions to furnish benzylester 3a in 82% yield and >95:5 rr. The efficiency of the reaction was maintained on a gram scale. A two-step

Scheme 2. Synthetic Derivatization of [2,3]-Rearrangement Product

procedure converted benzylester 3a to the Weinreb amide 17. Subsequent removal of the N-tosyl group provided N-H indole 18 in 93% yield. To access the relative configuration for the proposed structure of sorazolon B (21), we treated the Weinreb amide 18 first with ethynylmagnesium bromide followed by methylmagnesium bromide, which generated tertiary alcohol 19 in 19:1 dr and 57% yield over the two steps. The relative configuration of the major diastereomer, which was confirmed by X-ray crystallography, was consistent with a Cram chelation controlled addition of methylmagnesium bromide.²⁷ Alcohol 19 was then converted to diol 20, which was subjected to gold catalyzed 6-endo cyclization.² Although the resulting tricyclic skeleton of 21 was consistent with the proposed structure of sorazolon B, the NMR data of our synthetic sample did not match the corresponding data for the natural product.

We hypothesized that the relative configuration of the two stereogenic centers in sorazolon B may have been misassigned. To test this hypothesis, we switched the order of addition of Grignard reagents to the Weinreb amide 18. An initial addition of methylmagnesium bromide followed by a Cram chelation controlled addition of ethynylmagnesium bromide yielded the tertiary alcohol 22 in 9:1 dr. The relative configuration of the major diastereomer was confirmed by X-ray crystallography. The treatment of methyl ether 22 with bromodimethylborane and 2-methyl-2-butene resulted in the formation of diol 23. In the presence of $\text{Au}(\text{MeCN})\text{SbF}_6$ and JohnPhos, diol 23 was converted to tricycle 24, which had spectroscopic data that were identical with the data reported for sorazolon B in the original isolation paper. ²⁶

CONCLUSION

We developed catalyst-controlled regiodivergent rearrangements of onium-ylides derived from indole methyl ethers and diazoesters. While a copper catalyst promotes a regioselective [1,2]-rearrangement, a rhodium catalyst facilitates a regioselective and diastereoselective [2,3]-rearrangement. We present experimental and computational studies that support divergent mechanistic pathways for the two rearrangement processes. We also describe the synthetic utility of the two rearrangements by

Scheme 3. Synthesis and Stereochemical Reassignment of (±)-Sorazolon B from [1,2]-Rearrangement Product

demonstrating the functional group tolerance and scope of the reactions as well as the transformation of the rearrangement products to several indole-containing products. Finally, we applied the copper-catalyzed [1,2]-rearrangement in the first total synthesis of the indole alkaloid sorazolon B, which enabled the stereochemical reassignment of the natural product.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.1c00283.

Experimental details, characterization data, spectral data, and computational results (PDF)

Accession Codes

CCDC 2057316—2057318 and 2068211 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

■ AUTHOR INFORMATION

Corresponding Authors

Uttam K. Tambar — Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038, United States; oorcid.org/0000-0001-5659-5355; Email: uttam.tambar@utsouthwestern.edu

Dean J. Tantillo — Department of Chemistry, University of California, Davis, Davis, California 95616, United States; orcid.org/0000-0002-2992-8844; Email: djtantillo@ucdavis.edu

Authors

Vaishnavi N. Nair – Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038, United States

Volga Kojasoy — Department of Chemistry, University of California, Davis, Davis, California 95616, United States
Croix J. Laconsay — Department of Chemistry, University of California, Davis, Davis, California 95616, United States;
orcid.org/0000-0002-9244-1318

Wang Yeuk Kong – Department of Chemistry, University of California, Davis, Davis, California 95616, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.1c00283

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support was provided to U.K.T by W. W. Caruth, Jr. Endowed Scholarship, Welch Foundation (I-1748), National Institutes of Health (R01GM102604), American Chemical

Society Petroleum Research Fund (59177-ND1), Teva Pharmaceuticals Marc A. Goshko Memorial Grant (60011-TEV), and Sloan Research Fellowship. Financial support was provided to V.N.N by Sarah and Frank McKnight Fund Graduate Fellowship. Support from the National Science Foundation (CHE-1856416 and XSEDE via CHE-030089) to D.J.T. is gratefully acknowledged. We acknowledge Dr. Vincent Lynch (Manager of the X-ray Diffraction Lab at UT Austin) for the X-ray structural analysis and Dr. Hamid Baniasadi (Director of the UT Southwestern Metabolomics Core Facility) for the high resolution mass spectrometry. We also thank our diverse group of lab members for creating an environment that supports our scientific endeavors.

REFERENCES

(1) (a) Brückner, R. 2,3-Sigmatropic Rearrangements. In Comprehensive Organic Synthesis; Fleming, I., Ed.; Pergamon: Oxford, 1991; pp 873–908. (b) Ilardi, E. A.; Stivala, C. E.; Zakarian, A. [3,3]-Sigmatropic rearrangements: recent applications in the total synthesis of natural products. Chem. Soc. Rev. 2009, 38, 3133–3148. (c) Seashore-Ludlow, B.; Somfai, P. Sigmatropic Rearrangements in Stereoselective Synthesis; John Wiley & Sons: New York, 2013; pp 475–499. (d) Jones, A. C.; May, J. A.; Sarpong, R.; Stoltz, B. M. Toward a Symphony of Reactivity: Cascades Involving Catalysis and Sigmatropic Rearrangements. Angew. Chem., Int. Ed. 2014, 53, 2556–2591. (e) Molecular Rearrangements in Organic Synthesis; Rojas, C. M., Ed.; John Wiley & Sons: New York, 2016.

(2) Reviews on catalytic onium ylide rearrangements: (a) Murphy, G. K.; Stewart, C.; West, F. G. Intramolecular generation and rearrangement of oxonium ylides: methodology studies and their application in synthesis. *Tetrahedron* 2013, 69, 2667–2686. (b) Hodgson, D. M.; Pierard, F. Y. T. M.; Stupple, P. A. Catalytic enantioselective rearrangements and cycloadditions involving ylides from diazo compounds. *Chem. Soc. Rev.* 2001, 30, 50–61. (c) West, T. H.; Spoehrle, S. S. M.; Kasten, K.; Taylor, J. E.; Smith, A. D. Catalytic Stereoselective [2,3]-Rearrangement Reactions. *ACS Catal.* 2015, 5, 7446–7479. (d) Murphy, G. K.; West, F. G. In *Molecular Rearrangements in Organic Synthesis*; Rojas, C., Ed.; John Wiley Sons: Hoboken, NJ, 2015; pp 497–538. (e) Sheng, Z.; Zhang, Z. K.; Chu, C.; Zhang, Y.; Wang, J. Transition metal-catalyzed [2,3]-sigmatropic rearrangements of ylides: An update of the most recent advances. *Tetrahedron* 2017, 73, 4011–4022.

(3) (a) Books and reviews on classical non-catalytic onium ylide rearrangements:Pine, S. H. In *Organic Reactions*; Dauben, W. G., Ed.; Wiley: New York, 1970; Vol. 18 pp 403–464. (b) Nakai, T.; Mikami, K. [2,3]-Wittig sigmatropic rearrangements in organic synthesis. *Chem. Rev.* 1986, 86, 885–902. (c) Sweeney, J. B. Sigmatropic rearrangements of 'onium' ylids. *Chem. Soc. Rev.* 2009, 38, 1027–1038.

(4) Examples of catalytic oxonium ylide rearrangements of aliphatic systems: (a) Doyle, M. P.; Tamblyn, W. H.; Bagheri, V. Highly Effective Catalytic Methods for Ylide Generation from Diazo Compounds. Mechanism of the Rhodium- and Copper-Catalyzed Reactions with Allylic Compounds. J. Org. Chem. 1981, 46, 5094-5102. (b) Roskamp, E. J.; Johnson, C. R. Generation and Rearrangements of Oxonium Ylides. J. Am. Chem. Soc. 1986, 108, 6062-6063. (c) Pirrung, M. C.; Werner, J. A. Intramolecular Generation and [2,3]-Sigmatropic Rearrangement of Oxonium Ylides. J. Am. Chem. Soc. 1986, 108, 6060-6062. (d) Doyle, M. P.; Bagheri, V.; Harn, N. K. Facile catalytic methods for intermolecular generation of allylic oxonium ylides and their stereoselective [2,3]-sigmatropic rearrangement. Tetrahedron Lett. 1988, 29, 5119-5122. (e) Eberlein, T. H.; West, F. G.; Tester, R. W. The Stevens [1,2]-Shift of Oxonium Ylides: A Route to Substituted Tetrahydrofuranones. J. Org. Chem. 1992, 57, 3479-3482. (f) Clark, J. S. Diastereoselective Synthesis of 2,5-Dialkyl Tetrahydrofuran-3-ones by a Copper-Catalysed Tandem Carbenoid Insertion and Ylide Rearrangement Reaction. Tetrahedron

Lett. 1992, 33, 6193-6196. (g) Clark, J. S.; Krowiak, S. A.; Street, L. J. Synthesis of Cyclic Ethers from Copper Carbenoids by Formation and Rearrangement of Oxonium Ylides. Tetrahedron Lett. 1993, 34, 4385-4388. (h) West, F. G.; Eberlein, T. H.; Tester, R. W. O-Bridged Medium Sized Rings via Bicyclic Oxonium Ylides. J. Chem. Soc., Perkin Trans. 1 1993, 2857-2859. (i) West, F. G.; Naidu, B. N.; Tester, R. W. Profound Catalyst Effects in the Generation and Reactivity of Carbenoid-Derived Cyclic Ylides. J. Org. Chem. 1994, 59, 6892-6894. (j) Doyle, M. P.; Ene, D. G.; Forbes, D. C.; Tedrow, J. S. Highly Enantioselective Oxonium Ylide Formation and Stevens Rearrangement Catalyzed by Chiral Dirhodium (II) Carboxamidates. Tetrahedron Lett. 1997, 38, 4367-4370. (k) Li, Z.; Davies, H. M. L. Enantioselective C-C Bond Formation by Rhodium-Catalyzed Tandem Ylide Formation/[2,3]-Sigmatropic Rearrangement between Donor/Acceptor Carbenoids and Allylic Alcohols. J. Am. Chem. Soc. 2010, 132, 396-401. (1) Li, Z.; Parr, B. T.; Davies, H. M. L. Highly Stereoselective C-C Bond Formation by Rhodium-Catalyzed Tandem Ylide Formation/[2,3]-Sigmatropic Rearrangement between Donor/ Acceptor Carbenoids and Chiral Allylic Alcohols. J. Am. Chem. Soc. 2012, 134, 10942-10946. (m) Doyle, M. P.; Forbes, D. C.; Vasbinder, M. M.; Peterson, C. S. Enantiocontrol in the Generation and Diastereoselective Reactions of Catalytically Generated Oxonium and Iodonium Ylides. Metal-Stabilized Ylides as Reaction Intermediates. J. Am. Chem. Soc. 1998, 120, 7653-7654. (n) Li, Z.; Boyarskikh, V.; Hansen, J. H.; Autschbach, J.; Musaev, D. G.; Davies, H. M. L. Scope and Mechanistic Analysis of the Enantioselective Synthesis of Allenes by Rhodium-Catalyzed Tandem Ylide Formation/[2,3]-Sigmatropic Rearrangement between Donor/Acceptor Carbenoids and Propargylic Alcohols. J. Am. Chem. Soc. 2012, 134,

(5) Examples of catalytic ammonium, sulfonium, and iodonium ylide rearrangements of aliphatic systems: (I) Ammonium (X = N) ylides: (a) West, F. G.; Glaeske, K. W.; Naidu, B. N. One-Step Synthesis of Tertiary α -Amino Ketones And α -Amino Esters from Amines and Diazocarbonyl Compounds. Synthesis 1993, 1993, 977-980. (b) West, F. G.; Naidu, B. N. New Route to Substituted Piperidines via the Stevens [1,2]-Shift of Ammonium Ylides. J. Am. Chem. Soc. 1993, 115, 1177-1178. (c) Clark, J. S.; Hodgson, P. B. Intramolecular Generation and Rearrangement of Ammonium Ylides from Copper Carbenoids: A General Method for the Synthesis of Cyclic Amines. J. Chem. Soc., Chem. Commun. 1994, 2701-2702. (d) West, F. G.; Naidu, B. N. Piperidines via Ammonium Ylide [1,2]-Shifts: A Concise, Enantioselective Route to (-)-Epilupinine From Proline Ester. J. Am. Chem. Soc. 1994, 116, 8420-8421. (e) Clark, J. S.; Hodgson, P. B.; Goldsmith, M. D.; Street, L. J. Rearrangement of ammonium ylides produced by intramolecular reaction of catalytically generated metal carbenoids. Part 1. Synthesis of cyclic amines. J. Chem. Soc., Perkin Trans. 1 2001, 3312-3324. (f) Clark, J. S.; Hodgson, P. B.; Goldsmith, M. D.; Blake, A. J.; Cooke, P. A.; Street, L. J. Rearrangement of ammonium ylides produced by intramolecular reaction of catalytically generated metal carbenoids. Part 2. Stereoselective synthesis of bicyclic amines. J. Chem. Soc., Perkin Trans. 1 2001, 3325-3337. (g) Clark, J. S.; Middleton, M. D. Synthesis of Novel α -Substituted and α , α -Disubstituted Amino Acids by Rearrangement of Ammonium Ylides Generated from Metal Carbenoids. Org. Lett. 2002, 4, 765-768. (h) Heath, P.; Roberts, E.; Sweeney, J. B.; Wessel, H. P.; Workman, J. A. Copper(II)-Catalyzed [2,3]-Sigmatropic Rearrangement of N-Methyltetrahydropyridinium Ylids. J. Org. Chem. 2003, 68, 4083-4086. (i) Sançon, J.; Sweeney, J. B. Probing the Effect of Allylic Substitution on Cyclic Ammonium Ylid Rearrangements. Synlett 2010, 2010, 664-666 Sulfonium (X = S) ylides. (j) Doyle, M. P.; Griffin, J. H.; Chinn, M. S.; van Leusen, D. Rearrangements of Ylides Generated from Reactions of Diazo Compounds with Allyl Acetals and Thioketals by Catalytic Methods. Heteroatom Acceleration of the [2,3]-Sigmatropic Rearrangement. J. Org. Chem. 1984, 49, 1917-1925. (k) Aggarwal, V. K.; Ferrara, M.; Hainz, R.; Spey, S. E. [2,3]-Sigmatropic rearrangement of allylic sulfur ylides derived from trimethylsilyldiazomethane (TMSD). Tetrahedron Lett. 1999, 40,

8923–8927. (1) Carter, D. S.; Van Vranken, D. L. Metal-Catalyzed Ylide Formation and [2,3] Sigmatropic Rearrangement of Allyl Sulfides with Trimethylsilyldiazomethane. *Tetrahedron Lett.* **1999**, *40*, 1617–1620. (m) Hock, K. J.; Mertens, L.; Hommelsheim, R.; Spitzner, R.; Koenigs, R. M. Enabling iron catalyzed Doyle-Kirmse rearrangement reactions with *in situ* generated diazo compounds. *Chem. Commun.* **2017**, *53*, 6577–6580 (III) Iodonium (X = I) ylides:. (n) Xu, B.; Tambar, U. K. Ligand-Controlled Regiodivergence in the Copper-Catalyzed [2,3]- and [1,2]-Rearrangements of Iodonium Ylides. *J. Am. Chem. Soc.* **2016**, *138*, 12073–12076. (o) Xu, B.; Gartman, J. A.; Tambar, U. K. Copper-catalyzed [1,2]-rearrangements of allylic iodides and aryl α -diazoacetates. *Tetrahedron* **2017**, *73*, 4150–4159. (p) Xu, B.; Tambar, U. K. Copper-Catalyzed Enantio-Diastereo-, and Regioselective [2,3]-Rearrangements of Iodonium Ylides. *Angew. Chem., Int. Ed.* **2017**, *56*, 9868–9871.

(6) Catalytic aromatic rearrangements with sulfonium (X = S) ylides: (a) Kennedy, A. R.; Taday, M. H.; Rainier, J. D. The Use of Sulfur Ylides in the Synthesis of Substituted Indoles. Org. Lett. 2001, 3, 2407-2409. (b) Novikov, A. V.; Kennedy, A. R.; Rainier, J. D. Sulfur Ylide-Initiated Thio-Claisen Rearrangements. The Synthesis of Highly Substituted Indolines. J. Org. Chem. 2003, 68, 993-996. (c) Liao, M.; Peng, L.; Wang, J. Rh(II)-Catalyzed Sommelet-Hauser Rearrangement. Org. Lett. 2008, 10, 693-696. (d) Boyarskikh, V.; Nyong, A.; Rainier, J. D. Highly Diastereoselective Sulfonium Ylide Rearrangements to Quaternary Substituted Indolines. Angew. Chem., Int. Ed. 2008, 47, 5374-5377. (e) Li, Y.; Shi, Y.; Huang, Z.; Wu, X.; Xu, P.; Wang, J.; Zhang, Y. Catalytic Thia-Sommelet-Hauser Rearrangement: Application to the Synthesis of Oxindoles. Org. Lett. 2011, 13, 1210-1213. (f) Li, S.-S.; Wang, J. Cu(I)/Chiral Bisoxazoline-Catalyzed Enantioselective Sommelet-Hauser Rearrangement of Sulfonium Ylides. J. Org. Chem. 2020, 85, 12343-12358 Catalytic aromatic rearrangements with ammonium (X = N) ylides:. (g) Pan, C.; Guo, W.; Gu, Z. Unusual biaryl torsional strain promotes reactivity in Cucatalyzed Sommelet-Hauser rearrangement. Chem. Sci. 2018, 9, 5850-5854.

(7) (a) Hansen, H. J.; Schmid, H. Aromatic Sigmatropic Rearrangements. Chem. Br. 1969, 5, 111–116. (b) Murray, A. W. Molecular rearrangements. Org. React. Mech. 2002, 487–615. (c) Snape, T. J. In Aromatic Rearrangements in Which the Migrating Group Migrates to the Aromatic Nucleus: An Overview; John Wiley & Sons, Inc.: 2015; pp 485–510.

(8) (a) Xu, X.; Li, C.; Xiong, M.; Tao, Z.; Pan, Y. Hemin-catalyzed sulfonium ylide formation and subsequently reactant-controlled chemoselective rearrangements. *Chem. Commun.* **2017**, *53*, 6219–6222. (b) Yang, Z.; Guo, Y.; Koenigs, R. M. Solvent-dependent, rhodium catalysed rearrangement reactions of sulfur ylides. *Chem. Commun.* **2019**, *55*, 8410–8413.

(9) Wang, J. In *Comprehensive Organometallic Chemistry III*; Crabtree, R. H.; Mingos, D. M. P., Eds.; Elsevier: Oxford, U.K., 2007; Vol. 11, pp 151–178.

(10) (a) Kochanowska-Karamyan, A. J.; Hamann, M. T. Marine Indole Alkaloids: Potential New Drug Leads for the Control of Depression and Anxiety. *Chem. Rev.* **2010**, *110*, 4489–4497. (b) Kaushik, N.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C.; Verma, A.; Choi, E. Biomedical Importance of Indoles. *Molecules* **2013**, *18*, 6620–6662. (c) Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles Among U. S. FDA Approved Pharmaceuticals. *J. Med. Chem.* **2014**, *57*, 10257–10274.

(11) (a) Doyle, M. P. Catalytic Methods for Metal Carbene Transformations. *Chem. Rev.* **1986**, *86*, 919–939. (b) Liu, L.; Zhang, J. Gold-catalyzed transformations of α -diazocarbonyl compounds: selectivity and diversity. *Chem. Soc. Rev.* **2016**, *45*, 506–516. (c) DeAngelis, A.; Panish, R.; Fox, J. M. Rh-Catalyzed Intermolecular Reactions of α -Alkyl- α -Diazo Carbonyl Compounds with Selectivity Over β -Hydride Migration. *Acc. Chem. Res.* **2016**, *49*, 115–127. (d) Zhao, X.; Zhang, Y.; Wang, J. Recent developments in coppercatalyzed reactions of diazo compounds. *Chem. Commun.* **2012**, *48*, 10162–10173.

(12) (a) Doyle, M. P. Metal Carbene Reactions from Dirhodium(II) Catalysts. *Top. Organomet. Chem.* **2004**, *13*, 203–222. (b) Davies, H. M. L.; Parr, B. T. Rhodium Carbenes. *Wiley Ser. React. Intermed. Chem. Biol.* **2013**, *7*, 363–403.

(13) Select examples for the synthesis of 3-methyleneindolines: (a) Burns, B.; Grigg, R.; Sridharan, V.; Worakun, T. Palladium catalysed tandem cyclisation-anion capture processes. Hydride ion capture by vinylpalladium species. Tetrahedron Lett. 1988, 29, 4325-4328. (b) Zenner, J. M.; Larock, R. C. Palladium-Catalyzed, Asymmetric Hetero- and Carboannulation of Allenes Using Functionally-Substituted Aryl and Vinylic Iodides. J. Org. Chem. 1999, 64, 7312-7322. (c) Font, M.; Cendón, B.; Seoane, A.; Mascareñas, J. L.; Gulías, M. Rhodium(III)-Catalyzed Annulation of 2-Alkenyl Anilides with Alkynes Through C-H Activation: Direct Access to 2-Substituted Indolines. Angew. Chem., Int. Ed. 2018, 57, 8255-8259. (d) Kondoh, A.; Terada, M. Brønsted Base-Catalyzed Umpolung Intramolecular Cyclization of Alkynyl Imines. Chem. - Eur. J. 2018, 24, 3998-4001. (e) Li, X.; Zhou, B.; Yang, R.-Z.; Yang, F.-M.; Liang, R.-X.; Liu, R.-R.; Jia, Y.-X. Palladium-Catalyzed Enantioselective Intramolecular Dearomative Heck Reaction. J. Am. Chem. Soc. 2018, 140, 13945-13951. (14) When subjected to the [2,3]-rearrangement conditions, indole 3f proceeded to give a mixture of [2,3]:[1,2] rearrangement products. We presume that the 2-methyl substituent hinders the [2,3]rearrangement that forms the fully substituted carbon center and increases the propensity for the ylide to dissociate and generate the competitive [1,2]-rearrangement product (see SI for details).

(15) (a) Becke, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648-5652. (b) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785-789. (c) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456-1465. (d) Hariharan, P. C.; Pople, J. A. The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies. Theor. Chim. Acta 1973, 28, 213-222. (e) Igel-Mann, G.; Stoll, H.; Preuss, H. Pseudopotentials for Main Group Elements (IIIa through VIIa). Mol. Phys. 1988, 65, 1321-1328. (f) Hay, P. J.; Wadt, W. R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for the Transition Metal Atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270-283. (g) Goerigk, L.; Grimme, S. Efficient and Accurate Double-Hybrid-Meta-GGA Density Functionals-Evaluation with the Extended GMTKN30 Database for General Main Group Thermochemistry, Kinetics, and Noncovalent Interactions. J. Chem. Theory Comput. 2011, 7, 291–309. (h) Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305. (i) Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057-1065. (j) Hellweg, A.; Hättig, C.; Höfener, S.; Klopper, W. Optimized Accurate Auxiliary Basis Sets for RI-MP2 and RI-CC2 Calculations for the Atoms Rb to Rn. Theor. Chem. Acc. 2007, 117, 587-597. (k) Chmela, J.; Harding, M. E. Optimized Auxiliary Basis Sets for Density Fitted Post-Hartree-Fock Calculations of Lanthanide Containing Molecules. Mol. Phys. 2018, 116, 1523-1538.

(16) (a) Hock, K. J.; Koenigs, R. M. Enantioselective [2,3]-Sigmatropic Rearrangements: Metal-Bound or Free Ylides as Reaction Intermediates? *Angew. Chem., Int. Ed.* **2017**, *56*, 13566–13568. (b) Zhang, Z.; Sheng, Z.; Yu, W.; Wu, G.; Zhang, R.; Chu, W.-D.; Zhang, Y.; Wang, J. Catalytic asymmetric trifluoromethylation via enantioselective [2,3]-sigmatropic rearrangement of sulfonium ylides. *Nat. Chem.* **2017**, *9*, 970–976. (c) Harrison, J. G.; Gutierrez, O.; Jana, N.; Driver, T. G.; Tantillo, D. J. Mechanism of Rh₂(II)-Catalyzed Indole Formation: The Catalyst Does Not Control Product Selectivity. *J. Am. Chem. Soc.* **2016**, *138*, 487–490. (d) Nickerson, L. A.; Bergstrom, B. D.; Gao, M.; Shiue, Y.-S.; Laconsay, C. J.; Culberson, M. R.; Knauss, W. A.; Fettinger, J. C.; Shaw, J. T.; Tantillo, D. J. Enantioselective synthesis of isochromans and tetrahydroisoqui-

- nolines by C-H insertion of donor/donor carbenes. *Chem. Sci.* **2020**, *11*, 494–498. (e) Laconsay, C. J.; Tantillo, D. J. Metal Bound or Free Ylides as Reaction Intermediates in Metal-Catalyzed [2,3]-Sigmatropic Rearrangements? It Depends. *ACS Catal.* **2021**, *11*, 829–839. (f) Li, F.; Pei, C.; Koenigs, R. M. Rhodium-catalyzed cascade reactions of triazoles with organoselenium compounds a combined experimental and mechanistic study. *Chem. Sci.* **2021**, *12*, 6362–6369.
- (17) In addition, when two distinct substrates were simultaneously subjected to the [2,3]-rearrangement conditions, no crossover products were detected (see SI for details). These observations are consistent with a metal-free symmetry-allowed, concerted, and unimolecular process.
- (18) Other stepwise mechanisms were considered and cannot be definitively ruled out, including a fragmentation/recombination pathway (see SI).
- (19) (a) Ollis, W. D.; Rey, M.; Sutherland, I. O.; Closs, G. L. The Mechanism of Stevens Rearrangement. *J. Chem. Soc., Chem. Commun.* 1975, 543–545. (b) Chantrapromma, K.; Ollis, W. D.; Sutherland, I. O. Radical-coupling Products Derived from Ammonium Ylides. Competing [1,2], [1,3], and [1,4] Anionic Rearrangements. *J. Chem. Soc., Chem. Commun.* 1978, 670–671. (c) Heard, G. L.; Frankcombe, K. E.; Yates, B. F. A. Theoretical Study of the Stevens Rearrangement of Methylammonium Methylide and Methylammonium Formylmethylide. *Aust. J. Chem.* 1993, 46, 1375–1388. (d) Liu, Z.; Jin, X.; Dang, Y. Mechanistic Studies of Copper(I)-Catalyzed Stereoselective [2,3]- Sigmatropic Rearrangements of Diazoesters with Allylic Iodides/ Sulfides. *ACS Catal.* 2021, 11, 691–702.
- (20) (a) Hogen-Esch, T. E.; Smid, J. Studies of Contact and Solvent-Separated Ion Pairs of Carbanions. I. Effect of Temperature, and Solvent. J. Am. Chem. Soc. 1966, 88, 307-318. (b) Roy, S.; Baer, M. D.; Mundy, C. J.; Schenter, G. K. Marcus Theory of Ion-Pairing. J. Chem. Theory Comput. 2017, 13, 3470-3477. (c) Macchioni, A. Ion Pairing in Transition-Metal Organometallic Chemistry. Chem. Rev. 2005, 105, 2039-2073. (d) Brak, K.; Jacobsen, E. N. Asymmetric Ion-Pairing Catalysis. Angew. Chem., Int. Ed. 2013, 52, 534-561. (e) Chen, Y.; Liu, Y.; Li, Z.; Dong, S.; Liu, X.; Feng, X. Tandem Insertion-[1,3]-Rearrangement: Highly Enantioselective Construction of α-Aminoketones. Angew. Chem. 2020, 132, 8129–8133. (f) Yao, L.; Ishihara, K. Enantioselective [1,3] O-to-C Rearrangement: Dearomatization of Alkyl 2-Allyloxy/Benzyloxy-1/3-Naphthoates Catalyzed by a Chiral π -Cu(II) Complex. Chem. Sci. 2019, 10, 2259–2263. (g) Tsuji, Y.; Richard, J. P. Reactions of Ion-Pair Intermediates of Solvolysis. Chem. Rec. 2005, 5, 94-106.
- (21) Bowry, V. W.; Lusztyk, J.; Ingold, K. U. Calibration of a New Horologery of Fast Radical "Clocks". Ring-Opening Rates for Ringand α -Alkyl-Substituted Cyclopropylcarbinyl Radicals and for the Bicyclo[2.1.0]pent-2-yl Radical. *J. Am. Chem. Soc.* **1991**, *113*, 5687–5698.
- (22) We do note, however, that some ion-pairs appear to have diradical character (see SI).
- (23) Computed relative free energies of ion-pairs 12a-12e with respect to the reactants were calculated using PWPB95-D3(BJ)/def2-QZVPP//IEFPCM(CH2Cl2)-B3LYP/6-31G(d),SDD, which is used to more accurately capture dispersion effects, but the accuracy of the computed energies is limited because explicit solvent was not included.
- (24) de Azambuja, F.; Yang, M. H.; Feoktistova, T.; Selvaraju, M.; Brueckner, A. C.; Grove, M. A.; Koley, S.; Cheong, P. H. Y.; Altman, R. A. Connecting remote C-H bond functionalization and decarboxylative coupling using simple amines. *Nat. Chem.* **2020**, *12*, 489–496.
- (25) (a) Fang, Y.; Powell, J. A.; Li, E.; Wang, Q.; Perry, Z.; Kirchon, A.; Yang, X.; Xiao, Z.; Zhu, C.; Zhang, L.; Huang, F.; Zhou, H.-C. Catalytic Reactions within the Cavity of Coordination Cages. *Chem. Soc. Rev.* **2019**, *48*, 4707–4730. (b) Stelson, A. C.; Hong, C. M.; Groenenboom, M. C.; Little, C. A. E.; Booth, J. C.; Orloff, N. D.; Bergman, R. G.; Raymond, K. N.; Schwarz, K. A.; Toste, F. D.; Long, C. J. Measuring ion-pairing and hydration in variable charge

- supramolecular cages with microwave microfluidics. Commun. Chem. 2019, 2, 54.
- (26) Karwehl, S.; Jansen, R.; Huch, V.; Stadler, M. Sorazolons, Carbazole Alkaloids from *Sorangium cellulosum* Strain Soce375. *J. Nat. Prod.* **2016**, *79*, 369–375.
- (27) (a) Cram, D. J.; Elhafez, F. A. A. Studies in Stereochemistry. X. The Rule of 'Steric Control of Asymmetric Induction" in the Syntheses of Acyclic Systems. *J. Am. Chem. Soc.* **1952**, *74*, 5828–5835. (b) Reetz, M. T. Chelation or Non-Chelation Control in Addition Reactions of Chiral α and β Alkoxy Carbonyl Compounds [New Synthetic Methods (44)]. *Angew. Chem., Int. Ed. Engl.* **1984**, 23, 556–569. (c) Mengel, A.; Reiser, O. Around and beyond Cram's Rule. *Chem. Rev.* **1999**, 99, 1191–1223.
- (28) Ferrer, C.; Echavarren, A. M. Gold-Catalyzed Intramolecular Reaction of Indoles with Alkynes: Facile Formation of Eight-Membered Rings and an Unexpected Allenylation. *Angew. Chem., Int. Ed.* **2006**, *45*, 1105–1109.