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Abstract Kerfing is a subtractive manufacturing method to create flexible surfaces from stiff planar materials.8

While the kerf structures are ubiquitous in indoor and outdoor architectures due to their pleasing aesthetics, they9

have potential applications for tuning the indoor acoustics and altering the dynamic response of the building10

from winds, traffics, etc., by varying their geometrical parameters (kerf pattern, cut density, cut thickness, etc.)11

and locally deforming the kerf cells. However, the dynamics responses of the kerf structures have never been12

explored before. This research presents an investigation on the dynamic response, in terms of mode shapes,13

natural frequencies, and stress wave propagations, of the flexible kerf cells. The influence of material behav-14

iors, i.e., elastic and viscoelastic, on the dynamic response of the kerf cells is also investigated. Mathematical15

models are used to understand the interplay between material behavior, geometrical kerf pattern, and dynamic16

responses. Experimental tests using scanning laser vibrometry are performed to study the mode shapes and17

frequencies on two kerf cells with stainless steel and medium density fiber materials. Responses from the18

mathematical models are compared to experimental results in order to validate the modeling approach. Under-19

standing the dynamics responses of kerf cells in association with their geometrical and material characteristics20

can lead to a systematic design of kerf structures exposed to various dynamics loadings. 121

1 Introduction22

In modern architecture, curved and complex surfaces have been a subject of interest for several decades. In23

contrast to simple and flat geometries, the complex and curved surfaces are aesthetically pleasing, and they have24

potential applications in both indoor and outdoor architectures [1]. For example, complex freeform structures25

can be used to design the facades whose shapes can be reconfigured to minimize the adverse effects of strong26

winds on the structural integrity of a building [2]. Comparably, these reconfigurable structures deployed in27

indoor architectures have the potential to tune the acoustics of a space. However, current construction materials28

such as wood, metal, and concrete, which are used for complex freeform structures, are relatively stiff which29

leads to difficulties in creating curved surfaces out of them.30

Kerfing or relief cutting is a subtractive manufacturing approach to create various degrees of flexibility31

in surfaces from stiff planar materials like metals, wood, and processed wood (medium density fiberboard32

(MDF), plywood, etc.). Figure 1 shows examples of shape reconfigurations of the kerf surfaces. There have33

been several studies on different kerf patterns that allow bending of the kerf surfaces in single, double, or34

multiple axes, e.g., [3–6]. With complex tessellated patterns cut onto a stiff material, it is possible to bend35

the kerf surfaces into a wide variety of complex shapes. Hoffer et al. physically implemented kerf structures36
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Fig. 1 Different patterns and reconfigurations of architectural kerf structures [9, 10]

Fig. 2 Comparison between lattice structures [13, 15, 16] (top) and kerf structures (bottom)

at a larger scale by fabricating a kerf pavilion by bending the plywood [7]. These previous studies mainly37

explored the influence of kerf patterns on the bending and flexibility of kerf structures. Chen et al. studied the38

deformations of kerf surfaces with two different kerf patterns [8]. They demonstrated the design and analysis39

of three-dimensional (3D) shapes out of kerf surfaces and showed that altering the topological kerf patterns40

enables achieving desired 3D shapes while minimizing the stresses. Understanding the dynamic response41

(natural frequencies, mode shapes, and stress wave propagations) of kerf surfaces is crucial if the kerf surfaces42

are to be used for facades and/or indoor acoustic panels, which is currently lacking.43

At a glance, the kerf patterns can be seen as typical architected materials, lattice materials [11–13], and44

hierarchical lattices [14]. However, there is a significant difference between the kerf patterns and traditional45

2D architected, lattice materials, and hierarchical lattices (see Fig. 2). Each kerf cell comprises a continuous46

flow of a slender element through folding like patterns inside the cell. This pattern allows flexibility and47

multiple shape changes within the cell. As can be seen later, inside each kerf cell it is possible to have multiple48

deformed shapes (from combinations of bending, twisting, and elongation/contraction). Typical architected49

and lattice materials are formed by arrangements of closed single cells, whereas in the hierarchical lattices50

closed finer cells are arranged in successive smaller scales. The closed single cell in these lattices (traditional51

and hierarchical) has a limited flexibility within the cell. The 2D architected materials like in Fig. 2 (top) are52

mostly utilized for their in-plane deformations, while the kerf panels are often dominated by their out-of-plane53

deformations with some limited in-plane deformations. Kerf panels allow not only for macroscopic (surface)54

shape changes, but also microscopic (within a single cell) shape changes.55

There have been experimental and analytical studies on understanding the dynamic response (natural56

frequencies, mode shapes, and stress wave propagations) of lattice structures, while to our knowledge the57
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studies on the dynamic responses of kerf structures are still lacking. In lattice structures, experimental tests58

using base excitation and laser vibrometry have been used to determine their modal response, as discussed by59

Popescu [17] and Bilal et al. [18], which will be considered for the experimental test in our study. In case of60

modeling, beam elements are widely used to determine the modal behavior of lattice structures because they61

are computationally less expensive. For example, Jennet et al. used beam elements to determine bending and62

torsional modes of the morphing wing lattice structure to assess its suitability for intended actuation [19]. They63

also investigated the modal response of modular reconfigurable systems such as bridges, boats, and shelter64

structures using beam elements [20]. Zelhofer et al. also used linear elastic beam theory to study the modal65

behavior to determine in-plane and out-of-plane mode shapes followed by investigating wave motion in a66

variety of 2-D lattice structures [21]. The important geometrical parameters such as thickness and width of the67

beam, which significantly influence the modal response of the structure, can be incorporated directly to the68

beam element when modeling lattice structures [22, 23]. Beside the geometrical aspects, material behaviors69

have crucial effects on the dynamic responses of the structures. Langley et al. discussed the material viscoelastic70

behaviors and damping properties in analyzing the modal response of a 2-D beam grillage system [24].71

The present study investigates the dynamic response with a focus on modal analysis and stress wave72

propagation in the standalone kerf unit cells. The kerf cells are modeled as an assembly of beam elements73

with bending, torsional, and extensional motions. Two different materials, i.e., stainless steel (SS) and medium74

density fiber (MDF), are considered for the kerf cells. The SS kerf surface is modeled as a linear elastic75

material, while the MDF kerf surface is modeled as a linear viscoelastic material. The responses from the76

beam element models are compared to the responses determined from shell and continuum finite elements.77

To validate the beam element model, modal experiments are conducted using scanning laser vibrometry. This78

research also discusses the steady-state response of the kerf unit cells followed by an understanding of stress79

wave propagation in these kerf cells. The outline of the paper is described as follows. Section 2 discusses the80

studied kerf pattern, followed by the beam element model formulation in Sect. 3. Section 4 presents the modal81

analyses of the MDF and SS kerf cells using the beam element model, and the comparisons with shell and82

3D continuum FE analyses and experimental tests. Section 5 discusses steady-state response and stress wave83

propagations in the kerf cells. Finally, concluding remarks are given in Sect. 6.84

2 Kerf patterns85

The kerf patterns considered in this study are cut on a SS shim stock and an MDF board with a thickness86

of 0.031 in. and 0.125 in., respectively. The basic mechanical properties of the stainless steel shim stock and87

MDF board are shown in Table 1. Although there are several cut patterns in the literature [5, 6], we consider88

only one pattern in this study, i.e., a hexagon domain with a triangular spiral pattern, see Fig. 3. The hexagonal89

domain has six identical connection points which are referred as handles in this study. To understand the modal90

responses of this complex pattern, hexagon unit cells of side length 1 in. are laser cut from SS shim stock91

and MDF board, respectively. During laser cutting, the gap width of the SS specimen is kept to 0.006 in. and92

the gap width of the MDF specimen is 0.025 in. The MDF is a viscoelastic material and an experimental test93

was conducted to determine the viscoelastic properties of the MDF, as discussed in Appendix 3 [25]. Table 294

Table 1 Elastic properties of SS and MDF

SS properties

Elastic properties Elastic modulus 29,588 ksi (204 GPa)
Poisson ratio 0.29

Density 7.37×10–4 lbfs
2/in4 (7880 kg/m3)

Tensile strength 130 ksi (896 MPa)
Yield strength 40 ksi (276 MPa)

Shear modulus 1.147×104 ksi (79 GPa)
MDF properties

Elastic properties Elastic modulus 580 ksi (4 GPa)
Poisson ratio 0.25

Density 7.37×10–5 lbfs
2/in4 (788 kg/m3)

Tensile strength 2.6 ksi (18 MPa)
Shear modulus 232 ksi (1.6 GPa)
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Fig. 3 HD kerf unit cell. MDF (left); SS (right). Top shows the actual materials, bottom shows the models

Table 2 Prony series parameters for the viscoelastic MDF

i τi (s) Ei (ksi) Ei (GPa)

1 100 249 1.72
2 1000 176 1.21
3 5000 69.4 0.48

Table 3 Geometric properties of SS and MDF beam cross sections in unit cells

Unit cell Area (in2) Second moment of area I22

(×10–5 in4)
Second moment of area I33

(×10–5 in4)
Torsional constant J (×10–5

in4)

SS 0.031×0.0565 0.047 0.014 0.037
MDF 0.125×0.0450 0.095 0.732 0.29

presents the material parameters for the viscoelastic MDF with a constitutive material model discussed in95

Appendix 1.96

3 Beam element model for analyzing dynamics responses of kerf cells97

To study the modal response of the kerf unit cells, we consider representing the segments in the kerf unit cell98

as continuous three-dimensional beams with a rectangular cross section (see Fig. 4). In the three-dimensional99

beam considered in this study, x1-axis is in the axial direction, whereas x2- and x3-axes are in the lateral100

directions. In the case of the MDF unit cell, the beam has a thickness of 0.125 in. and the width of the101

beam is 0.0450 in. Contrarily, for the SS, the beam thickness is 0.031 in., and the beam width is 0.0565 in102

Table 3 presents the geometrical properties of the beam cross sections for both unit cells. The mode shapes and103

resonance frequencies extracted from the modal analysis depends on the geometric properties and constitutive104

material properties of the beam. For example, a beam made up of MDF has a thicker cross section resulting105

in combinations of in-plane bending (x1 – x2 plane), out-of-plane bending (x1 – x2 plane), axial stretching,106

and twisting. Contrastingly, the SS beam is relatively slender, i.e., the length is significantly larger than its107

thickness, so the out-of-plane bending is dominant and the in-plane bending and axial stretching mode shapes108

are rarely observed.109
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Fig. 4 Modeling kerf unit cell: a Kinematic representation of continuous three-dimensional beam; b Folded beam; c Kerf triangle
unit cell; d Kerf hexagon domain

3.1 Beam element model formulation110

We consider a straight continuous beam element which can undergo various deformations such as in-plane111

bending, out-of-plane bending, axial stretching, transverse shearing, and twisting. As MDF and SS are relatively112

stiff materials, the underlying assumption of strains being small is not voided and the large deformations are113

mostly from large rotations.114

The beam considered in this study is a three-dimensional beam which is dominated by large curvatures115

with relatively small stretch in the longitudinal axis. The axial and shear strains in the beam about normal and116

lateral directions are defined as (see Fig. 4 for the axes):117

∈11�
du1

dx1
(x1, t) + x3

∂ϕ2

∂x1
(x1, t) − x2

∂ϕ3

∂x1
(x1, t) + ω(x2, x3)

d2β

dx2
1

γ12 � −ϕ3 +
∂u2

∂x1
+

(

∂ω

∂x2
− x3

)

∂β

∂x1

γ13 � ϕ2 +
∂u3

∂x1
+

(

∂ω

∂x3
+ x2

)

∂β

∂x1

(1)118119

where ∈11 and u1 are the strain and displacement in the axial direction, respectively, γ12 and γ13 are the120

transverse shear strains, u2 and u3 are the lateral displacements along x2- and x3-axes, respectively, ϕ2 and ϕ3121

are the rotations due to bending about x2− and x3-axes, respectively, ω is the warping function, and β is the122

angle of twist. When a linear elastic and isotropic material is considered, the stresses in the beam are:123

σ11 � E ∈11 τ12 � Gγ12 τ13 � Gγ13 (2)124125

where E is the linear elastic modulus, G is the shear modulus, σ11 is axial stress, τ12 and τ13 are the shear126

stresses. The forces and moments acting on the beam are summarized below:127

N �
∫

Ao
σ11 A; V2 �

∫

Ao
τ12dA; V3 �

∫

Ao
τ13dA

M2 �
∫

Ao
x3σ11dA; M3 � −

∫

Ao
x2σ11dA; T �

∫

Ao
(−x3τ12 + x2τ13)dA;

(3)128129

where N is the axial force, V2 and V3 are the shear forces along x2- and x3-axes, respectively, noted that M2130

and M3 are the bending moments about x2- and x3-axes and T is the twisting moment about x1-axis. The131

equations of motion for the beam element are given as:132
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E A
d2u1

dx2
1

� ρ Aü1;

kG A

(

−
∂ϕ3

∂x1
+

∂2u2

∂x2
1

)

� ρ Aü2;

kG A

(

∂ϕ2

∂x1
+

∂2u3

∂x2
1

)

� ρ Aü3;

−E I22

(

∂2ϕ2

∂x2
1

)

− kG A

(

ϕ2 +
∂u3

∂x1

)

� ρ I22ϕ̈2;

E I33

(

∂2ϕ3

∂x2
1

)

− kG A

(

−ϕ2 +
∂u2

∂x1

)

� ρ I33ϕ̈3;

G J
∂2β

∂x2
1

� ρ Ipβ̈;

(4)133134

where ρ is the mass density of the material, A is the cross-sectional area, I22 and I33 are the second moments of135

an area about x2− and x3-axes, respectively, Ip is the polar moment of an area, and J is the torsional constant.136

The correction factor, k is used to enforce uniform shear stress and shear strain distributions.137

The SS beam is slender as mentioned earlier in this section so transverse shear strains γ12 and γ13 can be138

ignored. The motion of the beam is dominated by bending about x3-axis, with minimal motion in x2-axis and139

possible twisting about the x1-axis. Therefore, the equations of motion reduce to:140

E A d2u1

dx2
1

� ρ Aü1; −E I22

(

∂2ϕ2

∂x2
1

)

� ρ I22ϕ̈2;

E I33

(

∂2ϕ3

∂x2
1

)

� ρ I33ϕ̈3; G J
∂2β

∂x2
1

� ρ Ipβ̈;

(5)141142

The MDF shows a viscoelastic response, which dissipates energy. We modeled the MDF beam as an143

isotropic viscoelastic material. The MDF unit cell is a thick beam as compared to the SS beam so transverse144

shear effects might not be negligible. The equations of motion for the MDF beam are summarized below:145

AE ∗ d

(

d2u1

dx2
1

)

� ρ Aü1

k AG ∗ d

(

−
dϕ3

dx1
+

d2u2

dx2
1

)

� ρ Aü2

k AG ∗ d

(

dϕ2

dx1
+

d2u3

dx2
1

)

� ρ Aü3

−I22 E ∗ d

(

d2ϕ2

dx2
1

)

− k AG ∗ d

(

ϕ2 +
du3

dx1

)

� ρ I22ϕ̈2

I33 E ∗ d

(

d2ϕ3

dx2
1

)

− k AG ∗ d

(

−ϕ3 +
du2

dx1

)

� ρ I33ϕ̈3

J G ∗ d

(

d2β

dx2
1

)

� ρ Ipβ̈

(6)146147

where the convolution operator in Eq. (6) means F ∗ dG � F(t)G(0) +
∫ t

0 F(t − s)
dG(s)

ds
ds. The relaxation148

modulus is modeled as E(t) � E(∞)+
E(t). Due to limited data, Poisson’s ratio is assumed time-independent149

v, and the shear relaxation modulus is given as G(t) �
E(t)

2(1+ν)
.150
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At the steady state, the material properties are defined as:151

E∗(ω) � E ′(ω) + i E ′′(ω)

G∗(ω) � G ′(ω) + iG ′′(ω)
(7)152153

where E′ and G′ are the storage extensional and shear moduli, E′′ and G′′ are the loss extensional and shear154

moduli of the material. The storage and the loss extensional moduli are expressed in terms of the relaxation155

modulus as:156

E ′(ω) � E(0) +

∞
∫

o

d(
E(s))

ds
cos(ωs)ds

E ′′(ω) � −

∞
∫

o

d(
E(s))

ds
sin(ωs)ds

(8)157158

We assume that the corresponding Poisson’s ratio v is constant and the storage and loss shear moduli are159

expressed as G ′(ω) �
E ′(ω)

2(1+ν)
; G ′′(ω) �

E ′′(ω)
2(1+ν)

.160

The system of equations given earlier is separable in time and space, and the vibration is harmonic with161

respect to time, so the deformation solutions q � [u1, u2, u3, ϕ2, ϕ3, β]T have the following forms:162

qi (x1, t) � φi (x1)yi (t) � φi (x1)eri t (9)163164

The equations formed after substituting Eqs. (9) to (5) or Eq. (6), and imposing boundary and initial165

conditions leads to the characteristic equations, which are solved numerically to determine the resonance166

frequencies and corresponding mode shapes. The influence of viscoelastic materials on the resonant frequency167

of the system is discussed in Appendix 1. 2168

3.2 Parametric studies of kerf cells with different materials and geometrical parameters169

To examine the modal response of SS and MDF folded beams, we chose a range of values of angle, θ (Fig. 4b).170

The minimum angle between the two beams depends on the kerf width, speed, and power of the laser cutter.171

With laser cutting, the minimum angle to avoid burning of the corner is around 10◦. Figure 5 shows the modal172

response of SS and MDF single folded beams with free-free boundary conditions. For all values of θ , the first173

modes of the SS and MDF beams show the same shapes, which are attributed to the in-plane bending of the174

beams. Even though SS folded beam is slender and has lower second moment of area, I33 compared to I22, the175

first mode shape is showing in-plane bending. The first mode shape depends on both, subtended angle, θ and176

ratio of second moment of areas, I22/I33. It can be noticed from Fig. 6 that as the angle (θ ) increases, the first177

mode shows out-of-plane motion dominantly because the folded beam is approaching the geometrical shape178

of a straight beam which shows out-of-plane mode shape for the first mode. Similarly, increasing the ratio of179

I22/I33 makes the first mode shape out-of-plane because higher second moment of area I22 inhibits in-plane180

motion.181

In the folded beam system (Fig. 5), increasing the values of θ increases the stiffness of the systems, as182

indicated by an increase in the natural frequencies. The SS systems have higher frequencies due to the higher183

elastic modulus (see Table 1). The second and third mode shapes show different responses for the SS and184

MDF folded beams. In the SS beams, we observe out-of-plane bending modes, and at the junction between185

the two beams twisting occurs. These responses are attributed to the low second moments of an area about the186

two bending axes (Table 3). In the MDF beams, both second and third modes are governed by the in-plane187

bending. The out-of-plane bending in the lower modes of MDF is absent due to the high value of the second188

moment of an area I33 and torsional constant J. By selecting the cut patterns, density, and materials, we can189

control the mode shapes and frequencies of the kerf cells.190

Several folded beams with any arbitrary subtended angle, θ can be formed continuously to achieve a191

customized kerfing pattern. For example, θ � 90◦ is chosen to achieve the Archimedean square pattern as192

shown in Fig. 2. In this study, we choose θ � 60◦ to create a triangular unit cell as shown in Fig. 4c. These193

triangular unit cells with three handles clamped show modal responses governed by the modal responses of the194

folded beams discussed in Fig. 6. The earlier mode shapes are dominated by out-of-plane bending for the SS195
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Fig. 5 Mode shapes of foldable beams

unit cell while in-plane bending shapes are seen for the MDF triangular unit cell (see Fig. 7). The high second196

moment of area about the out-of-plane axis (x2) in MDF triangular unit cell inhibits its out-of-plane motion.197

More details about derivation of equations of motion for several folded beams are discussed in Appendix 2.198

4 Simulation of the modal response of hexagon kerf domains199

4.1 Responses of MDF and SS hexagon kerf domains200

Upon understanding the modal response of triangular unit cells, we study the hexagonal domain made up of201

six triangular unit cells (see Fig. 4d). We first compare the responses analyzed using the beam element to202

the 3D continuum element, C3D8, and shell element, S3 in ABAQUS. The 3D continuum element allows203

generating the unit cell with a precise kerfing pattern which enables to capture more detailed mode shapes204

and their corresponding frequencies. We ran mesh convergence studies to determine sufficient numbers of205

elements for both 3D and shell elements suitable to capture all the required mode shapes. However, the 3D206

continuum elements are computationally expensive, when performing modal analysis on large kerf surfaces207

made of numerous unit cells. The beam elements can take in-plane and out-of-plane bending, transverse208

shearing, twisting, and axial stretching into consideration. We use the SS hexagonal domain to compare the209

modal response, from beam elements with 3D continuum and shell elements. As beams in the SS unit cell have210

a high slenderness ratio, shell elements can be used to mesh the unit cell. They reduce a computational cost211

relative to using 3D elements. Within ABAQUS/Standard, the Lanczos method is used to solve the eigenvalue212
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Fig. 6 Variation of first modal frequency in SS folded beam

Fig. 7 Mode shapes showing normalized displacements for triangular unit cells (first, second, and third modes)
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Fig. 8 Comparison of beam elements with shell elements and 3D continuum elements in SS hexagonal surface (top); comparison
of beam elements with 3D continuum elements in MDF hexagonal surface (bottom)

problem [26]. The elastic properties of SS are shown in Table 1. The six handles of the SS hexagon unit cell are213

constrained using clamped boundary conditions such as there are no displacements and rotations at the handles.214

These boundary conditions are chosen to mimic the experimental setup in determining the mode shapes and215

frequencies (Appendix 3). Overall, the modal response of the SS hexagonal domain generated using the 3D216

continuum element and shell element matches well with the modal response from beam elements (see Fig. 8).217

Similarly, the modal analyses are performed on the MDF kerf domain. The boundary conditions are218

similar to the clamp boundary conditions applied to the SS domain. In this analysis, we use the viscoelastic219

properties of MDF. To obtain time-dependent mechanical properties of MDF, we conducted creep experiments220

on multiple MDF dog-bone-shaped specimens. More details about creep experiments are given in Appendix 3.221

The relaxation modulus is given as E(t) � E(∞) +
∑N

i�1 Ei e
−t/τi and the material parameters are determined222

from the creep data (see Table 2). The initial modulus from Table 1 is E(0) � 580 ksi (4 GPa), and thus, the223

relaxed modulus is E(∞) � 85.6 ksi (0.59 GPa). The comparison of the MDF kerf surface meshed with 3D224

continuum elements and beam elements is shown in Fig. 8. Since the MDF unit cell is thick it is not suitable225

to mesh it using the shell elements. The mode shapes are similar, but there is a slight discrepancy between the226

modal frequencies. The difference between modal frequencies is higher in the modes (2, 3, 4, 5, 8, 9) which227

have in-plane bending. However, the modal frequencies are almost similar for modes (1, 6, 7) with out-of-plane228

bending. The higher discrepancies between the beam and 3D continuum models in the in-plane modes can229

be attributed to the possible contacts between segments in the kerf cells under the in-plane deformations. The230

out-of-plane modes do not exhibit contacts between segments.231

The results in Fig. 9 show contour plots of displacements for the first seven modes and their respective232

frequencies. In this analysis, as both hexagonal domains have symmetric kerf patterns, uniform boundary233

conditions, isotropic, and homogeneous materials we see periodicity in the mode shapes. Also, paired modes234

are observed in both SS and MDF surfaces. For example, second and third modes, fourth, and fifth modes are235

paired modes in both SS and MDF surfaces. In the SS surface, all lower mode shapes are out-of-plane because236

of the high second moment of area in the in-plane axis as compared to the out-of-plane axis. Also, the thin kerf237

width in the SS specimen inhibits any in-plane motion. Contrarily, the MDF specimen shows both in-plane238
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Kerf structure 
Modes 

1 2 3 4 5 6 7 

SS (3D continuum) 

488.45 Hz 875.03 Hz 875.06 Hz 1240.90 Hz 1240.90 Hz 1350.80 Hz 1376.60 Hz 

SS (Beam element) 

465.71 Hz 814.09 Hz 814.09 Hz 1172.00 Hz 1172.00 Hz 1296.00 Hz 1312.20 Hz 

MDF (3D 

continuum) 

338.76 Hz 469.89 Hz 469.94 Hz 497.34 Hz 497.43 Hz 548.14 Hz 548.29 Hz 

MDF (Beam 

element) 

331.25 Hz 491.21 Hz 491.21 Hz 521.55 Hz 521.55 Hz 549.54 Hz 549.54 Hz 

 1.0                0.5             0.0      

Fig. 9 Mode shapes showing normalized displacement and resonance frequencies of SS and MDF hexagon domain

and out-of-plane modes as their second moments of area are comparable. SS has a higher material stiffness239

relative to MDF which leads to higher resonance frequencies for the SS surface.240

4.2 Comparison between model and experiment results241

The experiments are conducted on the hexagon domain of SS and MDF specimens to validate the mode242

shapes and corresponding modal frequencies determined from the beam model. All experimental details are243

discussed in Appendix 3. The comparison of mode shapes and resonance frequencies is shown in Figs. 10,244

11, 12, and 13. The mode shapes below mode eight obtained from scanning laser vibrometry are similar to245

mode shapes obtained from the model. Also, the resonance frequencies match well in both SS and MDF246

hexagon domains, except some mismatches seen for the MDF surface. The junctions between the segments247

in the both SS and MDF kerf unit cells are non-slender and bulky. To simplify the model, the assumption of248

using same cross-sectional dimensions at the junctions between the beams in the beam element model can lead249

to discrepancy between model and experimental results. A similar issue about the effect of non-slender strut250

junctions on the effective stiffness of three-dimensional lattice architectures has been discussed by Portela251

et al. [27]. At higher frequencies (> 1700 Hz in SS and > 800 Hz in MDF), there is a mismatch between the252

results from the beam model and the vibrometry for both hexagon domains. Due to the complexity of the253

kerf pattern, different segments of the kerf unit cell start vibrating in-phase and out-of-phase vigorously at254

higher frequencies. The definite number of measurement points taken on the specimen captures the dynamic255

behavior at lower frequencies (< 1000 Hz in SS and < 600 Hz in MDF) but is not able to capture the motion256

of several local vibrating segments at higher frequencies (> 1000 Hz). Second, the noise becomes dominant at257

higher frequencies (> 2000 Hz) as observed in the measurement data which makes it difficult to extract clean258

higher-order modes (> 20) from the experimental data. Moreover, during the measurement, several higher-259

order modes (> 10) are superposed which makes it difficult to compare with the model as the model produces260

uncoupled modes.261

Figure 13 shows that the model results with the viscoelastic properties of MDF match well with the262

experiments as compared to the model with elastic properties of MDF. The stress relaxation in the MDF263

lowers the resonant frequencies compared to the undamped (elastic) responses, as discussed in Appendix 1. In264

the case of the SS kerf hexagonal domain, all the mode shapes extracted from the experiment agree well with265
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Modes 

1 2 3 4 5 

Experim

ent

Model 

(Beam

element) 

1.0                0.5             0.0    

Fig. 10 Comparison of modal response showing normalized displacements for SS hexagon domain
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Fig. 11 Comparison of resonance frequencies for SS hexagon domain

Modes 

1 2 3 4 

Experiment 

Model 

(Beam

Element)

 1.0                0.5           0.0    

Fig. 12 Comparison of modal response showing normalized displacements for MDF hexagon domain

the model except the fourth mode shape, which is asymmetric. A cut imperfection due to excess material is266

observed in the SS kerf domain as shown in Fig. 14. This excess material causes the asymmetry in the fourth267

experimental mode shape of the specimen as shown in Fig. 10. The effect of this area is also observed in the268

higher modes (> 8).269

The responses from the MDF kerf cells are more complicated compared to the SS responses since the MDF270

is made up of wood fiber networks and epoxy causing heterogeneity and non-uniformities in the properties271

of the kerf structures, which can affect the modal frequencies and shapes. The analyses in this study ignore272

the heterogeneity and possible non-uniformity of the MDF kerf cells. Another possibility of the mismatches273
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Fig. 13 Comparison of resonance frequencies for MDF hexagon domain

Fig. 14 Area of excess material during laser kerfing of the SS specimen

between the experiment and model is due to the boundary conditions. In the analyses, perfectly clamped274

boundary conditions at six handles of the hexagon domain are imposed. However, especially in the case of275

experimental tests on MDF, it is difficult to achieve perfectly clamped boundary conditions at six handles276

even after using epoxy and bolts. The clamped handles tend to slide with minimal displacements possible277

when the specimen is perturbed during experimentation. Overall, both kerf geometry and material behavior278

affect the modes shapes and frequencies. The kerf geometries have a strong influence on the mode shapes and279

frequencies, while the mechanical behavior of the materials affect the modal frequencies and amplitude of280

deformation.281

In this study up till now, all modeling and experiments are done on a hexagonal domain unit cell with282

clamped boundary conditions on the six handles. The purpose is to compare the modal responses from the283

beam model and experiment and to understand the interplay of material and geometrical features on the modal284

responses. In order to predict the modal behavior of a large panel made up of hexagonal domain unit cells,285

periodic boundary conditions implemented on a representative single unit cell may be suitable. We discuss the286

modal behaviors of the hexagon domain with periodic boundary conditions in Appendix 4 for demonstrating287

responses of kerf systems with different boundary conditions. We can also physically model larger panels with288

multiple connected cells, so we do not need to use and model a representative unit cell to represent the larger289

panel. However, investigating the dynamics responses of large kerf panels is beyond the scope of this paper290

and will be considered in the next study.291

5 Dynamic behavior of SS and MDF hexagon domains292

5.1 Steady state responses293

With an understanding of the modal behavior of both SS and MDF hexagon domains, we now examine the294

steady-state responses of kerf systems when exposed to dynamic loadings. We applied a sinusoidal force at295

one edge of the hexagonal domain and obtained the steady-state displacement results at the center of the296

domain. Figure 15 shows the displacement variation in the center of the SS and MDF hexagonal domain,297
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Fig. 15 Steady-state dynamic analyses of hexagon domains (beam element). SS (top); MDF (bottom)

respectively. Since the mode shapes for the MDF hexagon domain combine both in-plane and out-of-plane298

modes as discussed in Sect. 4, at a resonant frequency the MDF hexagon domain shows both in-plane (u1 and299

u3) and out-of-plane (u2) deflections due to the dynamic loading (Fig. 15). Contrarily, the SS hexagon domain300

shows only deflection in the out-of-plane axis (u2) at its resonance frequencies, which is correlated with its301

mode shapes. Hence, the kerf geometry particularly affects both modal frequencies and mode shapes. Since302

SS is stiffer compared to MDF, the SS hexagonal domain shows lower displacement amplitude at resonance.303

It can be concluded that material behavior of these kerf unit cells not only influences the modal frequencies,304

but it affects the amplitude of deformation also.305

5.2 Stress wave propagation306

The dynamic loading of kerf structures leads to generation of stress waves in these flexible structures. We307

want to examine how the stress wave propagates and the magnitude of stresses in the kerf unit cell. The kerf308

cell consists of slender beams with reduced load-bearing ability compared to the solid structures, and thus,309

examining the stress magnitude and propagation is important to study the feasibility of using kerf structures310

under dynamics loading. To study the propagation of stress waves through these kerf structures, we simulated311

two cases. In the first case, the kerf hexagon domain is subject to a sinusoidal loading of 331 Hz at its center,312

whereas in the second case, it is actuated with the same loading from the right corner of the hexagon domain.313

As it is important to study the stress wave propagation behavior at resonance, the input loading is applied at314

first modal frequency of the MDF kerf hexagon domain. The comparison between the maximum principal315

stress in the MDF solid structure and the MDF kerf structure at two step times is shown in Figs. 16 and316

17. The stress wave propagates faster in the solid domain compared to the kerf structure. The kerf structure317

delays the propagation of the stress wave. Most of the region of the kerf structure undergoes smaller stress318

compared to the solid structure due to the flexibility of the kerf structure. Instead of resisting forces, the kerf319

structures reduce the stress by deforming their flexible members (microstructures). This aspect of the kerf320

structures can be useful for their applications in indoor and outdoor architectures where propagation of stress321

is detrimental and need to be suppressed. We considered both beam and 3D solid element models to study the322

stress wave propagation behavior. The stress wave propagation in kerf structures made up of beam elements and323

3D continuum elements is similar. Therefore, beam elements being computationally less expensive compared324

to 3D continuum elements would be suitable to study wave propagation in large-scale kerf structures [28].325
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Time step

Solid

Kerf (3D continuum)

Kerf (beam element)

0.07 Pa       0 Pa -0.25 Pa

Fig. 16 Propagation of stress wave (Maximum principal stress) when loading at the center

5.3 Altering dynamic responses326

The continuous flow of slender members in a kerf structure enhances their flexibility which makes them easily327

undergo both microscopic and macroscopic shape changes. The capability of the kerf structures to easily deform328

can be used to alter their dynamic responses. For example, the shape of the kerf structure can be changed to329

evade resonant frequencies as shown in this example. We demonstrated the microscopic shape change of the330

MDF and SS hexagon domain by actuating one of the triangular unit cell out-of-plane (along x2-axis) by 1 mm331

and 3 mm in SS and MDF unit cells, respectively, as shown in Fig. 18. Subsequently, we applied a sinusoidal332

force of 5 N at the top edge of the deformed hexagon domain varying with the first resonance frequency333

(determined in Sect. 4.1) of the flat hexagon domain.334

We first performed analyses on understanding the influence of prestresses from reconfiguring the kerf335

unit cell. We compared the modal response of a deformed SS unit cell with and without taking stresses due336

to pre-deformation into consideration. It can be noticed from the results in Fig. 19 that the modal behavior337

(mode shapes and modal frequencies) of the deformed unit cell is similar with and without considering338

pre-deformation stresses. Moreover, the root mean square error (RMSE) between resonance frequencies for339

the deformed unit cell with and without pre-deformation stresses is 1.09 Hz, which is low compared to the340

magnitude of frequencies. It is noted that slightly deforming the unit cell induces stresses mostly around341

the actuated region, while the rest of the unit cell has zero stresses (see Appendix 5 for further discussion).342

This explains the insignificant effect of preexisting stresses on the dynamics responses. However, by slightly343

reconfiguring the microscopic shape, we can shift the modal frequencies associated with the mode shapes that344

involve in the motion of the actuated unit cell. Therefore, the stresses due to microscopic shape change are345

neglected in further dynamic analyses.346
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Time step
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Kerf (3D continuum)

Kerf (beam element)

0.15 Pa       0 Pa           -1.20 Pa 

Fig. 17 Propagation of stress wave (Maximum principal stress) when loading from the right corner

Fig. 18 Reconfigured microscopic shape of kerf hexagon domains. SS (left); MDF (right)
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Fig. 19 Comparison of modal frequencies of deformed SS hexagon domain with and without pre-deformation stresses
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Fig. 20 Transient dynamic analysis of reconfigured hexagon domains (beam element). SS (top); MDF (bottom)

We demonstrated that the dynamics responses due to loading with a frequency of the first resonance347

frequency is altered as resonance behavior is not observed in both unit cells (see Fig. 20). In addition to altered348

dynamics response, the MDF kerf unit cell shows attenuation in the vibration response due to its viscoelastic349

nature (see Fig. 20).350

We compared the modal response from the flat and deformed unit cells. It can be noticed in Fig. 21 that351

by marginally varying the microscopic shape of the kerf structure, there is a considerable frequency shift from352

flat kerf hexagon domain for the modes, which specifically involve in the motion of the actuated triangular353

unit cell (circled in Fig. 18). For example, the SS unit cell (mode 1 and mode 3) and MDF unit cell (mode 1354

and mode 7) of flat unit cells involve out-of-plane mode shapes as shown in Sect. 4.1. The actuated section355

of the triangular portion of the deform cells coincides with the out-of-plane mode shapes mentioned above,356

which cause frequency shifts for these particular modes. In the case of SS hexagon domain, the first resonant357

frequency for the deformed hexagon domain is 120 Hz higher than the flat structure. Similarly, for the MDF358

hexagon domain, the first resonant frequency for the deformed hexagon domain is 70 Hz higher than the flat359

structure. However, the modes, which do not involve the motion in actuated triangular unit cell, do not undergo360

any frequency change.361

The actuation of the kerf structures can be easily done using active materials, such as shape memory poly-362

mers, as demonstrated in the previous study [9, 10, 29, 30]. This attribute augments their potential application363

in façades of the building where resonance behavior can be avoided which will be systematically studied in364

a separate paper on large kerf panels. Due to the viscoelastic nature of the MDF deformed kerf structure, an365

attenuation of the vibration response is expected.366

6 Conclusion367

This research investigates the dynamics responses (mode shapes, modal frequencies, and stress wave propa-368

gation) of kerf cells to potentially use kerf structures beyond their aesthetical function for tuning the dynamics369

responses in building constructions. Kerfing (relief cutting) induces flexibility in the panels but also reduces370

the load-carrying ability of the panels. Through formulating a 3D beam element model and conducting exper-371

iments we have explored the mode shapes and frequencies of two kerf cells of hexagon domains out of elastic372

stainless steel (SS) and viscoelastic medium density fiber (MDF) panels. The kerf geometries have a strong373

influence on the mode shapes and frequencies, while the mechanical properties of the materials only affect374

the modal frequencies and amplitude of deformations. The kerf cells can undergo in-plane and out-of-plane375
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Fig. 21 Comparison of modal frequencies of flat and deformed hexagon domains (beam element). SS (top); MDF (bottom)

mode shapes, which are governed by the two second moments of an area of the beam segments in the kerf376

cells and the subtended angle between two beam segments that form kerf patterns. The out-of-plane mode377

shapes involve bending and/or twisting of the segments in the kerf cells, while the pure in-plane mode shapes378

are mainly governed by bending of the segments. We have demonstrated that the beam elements are capable379

of capturing the modal responses of the kerf cells when compared to models generated using 3D continuum380

and shell finite elements. The advantage of using the beam element model is that it reduces the computational381

costs when exploring kerf cells and kerf structures with multiple cells and can be easily exploited in parametric382

studies to investigate the effect of varying geometries and material properties on the dynamic responses of the383

kerf structures. The beam element model becomes less accurate when the segments in the kerf cell are stocky,384

i.e., in the case of low-cut density. However, in that situation, the panel becomes less flexible, approaching the385

characteristics of a solid panel.386

We have simulated a stress wave propagation in a hexagon kerf domain exposed to dynamics loading387

to examine its load-bearing characteristics. The kerf structure delays the propagation of the stress wave and388

undergoes smaller stress amplitude compared to the solid structure. Due to its flexibility, instead of resisting389

forces, the kerf structures reduce the stress by deforming their flexible members (microstructures). When using390

dissipative materials, e.g., viscoelastic material, in kerf structures, an additional attenuation in the deformation391

amplitude can further dissipate the mechanical energy. The flexibility of kerf structures makes it easy to392

deform the local members (microstructures) and alter the global shapes, which can be potentially used to tune393

the dynamics response of the structures.394

In the future, the developed mathematical model can be used to study the effect of different kerf densities395

and kerf patterns on the modal response of large-scale kerf structures and understanding the local and global396

shape changes in tuning the dynamics response characteristics in large kerf panels. With understanding the397

dynamic response of large kerf panels, they can be better implemented in indoor and outdoor architectures398

for various purposes such as controlling the indoor acoustics and altering the wind response of the buildings,399

respectively.400
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Appendix 1405

This section discusses the influence of viscoelastic materials on the resonant frequency of a system. The partial406

differential equations for the beam in Eqs. (4) or (6) with the displacement vector in Eq. (9) can be written in407

general as:408

M(q̈) + L(q) � F(x, t) (A.1)409410

To present an analytical solution, we ignore the transverse shear and bending coupling, so we can reduce411

Eq. (A.1) to:412

M(q̈i ) + L(qi ) � Fi (x, t) (A.2)413414

where M() and L() are linear differential operator,1 qi � φi (x)yi (t) and Fi � φi (x) fi (t), and thus Eq. (A.2)415

with a viscoelastic material is rewritten as:416

ÿi + Ci ∗ dyi � fi (t) (A.3)417418

where Ci �
L(φi )
M(φi )

. Since Eq. (A.3) is written for each scalar component of the displacement, to reduce419

complexity we further eliminate the subscript i in the rest of the formulation. Consider an input f (t) � fo sin ωt ,420

at the steady state the displacement takes the following form:421

y(t) � y1 sin ωt + y2 sin ωt �

√

y2
1 + y2

2 sin(ωt + δ(ω)) (A.4)422423

Substituting Eq. (A.4) into Eq. (A.3) and with the complex property C ∗ (ω) � C ′(ω) + iC ′′(ω), we have:424

y1 � fo

C ′ − ω2

(

C ′ − ω2
)2

+ C ′′2
; y2 � fo

C ′′

(

C ′ − ω2
)2

+ C ′′2
(A.5)425426

The displacement amplitude is427

y �
fo

√

(

C ′ − ω2
)2

+ C ′′2

�
f0/C(0)

√

(

C ′

C(0)
− ω2

ω2
n

)2
+

(

C ′′

C(0)

)2
(A.6)428429

It is noted that ω2
n � C(0). The variable C(t) is a function of the modulus of the material and inertial430

property. For example, for the first component of the displacement vector in Eq. (9), C1(t) � E(t)/ρ, the431

second component neglecting the rotational coupling C2(t) � kG(t)/ρ, etc. Consider a viscoelastic material432

whose relaxation modulus is described by E(t) � E(∞) + E1e−t/τR , where E(∞) is the long-term (relaxed)433

modulus and τR is the characteristics of relaxation time that indicates how quickly the stress relaxes. The434

instantaneous (initial) modulus is given as E(0) � E(∞) + E1, which corresponds to a modulus of elastic435

materials. The ratio E∞/E(0) measures the extent of stress relaxation. The corresponding complex moduli436

are:437

E ′ �
E(∞) + E(0)(ωτR)2

1 + (ωτR)2
; E ′′ �

ωτR(E(0) − E(∞))

1 + (ωτR)2
(A.7)438439

It is seen that C ′/C(0) � E ′/E(0); C ′′/C(0) � E ′′/E(0). We define a parameter ξ � τRωn , where ωn is440

the natural frequency of an undamped system and thus ξ is interpreted as the ratio of the material relaxation441

1 L(u) � a0 + a1
du
dx

+ a2
d2u
dx2 + ...
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Fig. 22 Resonant frequency responses of a system with a viscoelastic material

time to the natural period of the system. A low value ξ indicates the material relaxes faster than the natural442

period. Thus, Eq. (A.7) is rewritten as:443

C ′

C(0)
�

E(∞)/E(0) +
(

ω
ωn

ξ
)2

1 +
(

ω
ωn

ξ
)2

;
C ′′

C(0)
�

ω
ωn

ξ (1 − E(∞)/E(0))

1 +
(

ω
ωn

ξ
)2

(A.8)444445

To illustrate the implication of the viscoelastic material on the resonant frequency of the system, we446

constructed the plots of the normalized displacement amplitude against the normalized excitation frequency447

by substituting Eq. (A.8) into Eq. (A.6). Figure 22 shows the resonant frequency responses of a system with a448

viscoelastic (dissipative) material for different ξ and E∞/E(0). The use of viscoelastic materials can lower the449

resonant frequency of the systems in addition to attenuate the responses. With a proper choice of a viscoelastic450

characteristic of the material compared to the natural frequency of the system, it is possible to tune the resonance451

in the system, which would be beneficial for flexible facades under dynamic loads.452

Appendix 2453

With the understanding of the modal response of the straight continuous beam, we consider continuous folded454

beams with a constant angle, θ (see Fig. 4). The folded beams are a combination of identical straight beams455

where i � 1, 2, . . . .N + 1, with N folds connect the beams at an arbitrary angle. The displacements for each456

beam segment (i) are:457

u
(i)
1

(

x
(i)
1 , t

)

, u
(i)
3

(

x
(i)
1 , t

)

0 ≤ x
(i)
1 ≤ l(i) (B.1)458459

To derive the equations of motion for the folded beams, continuity conditions at x
(i)
1 � l and x

(i+1)
1 � 0460

are used. The continuity conditions imply that the resultants of internal moments and forces are equal and the461

displacements are continuous at x
(i)
1 � l and x

(i+1)
1 � 0. The continuity conditions are:462
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{

u
(i)
1

(

l(i), t
)

u
(i)
3

(

l(i), t
)

}

�

[

− cos θ − sin θ

sin θ − cos θ

]

{

u
(i+1)
1 (0, t)

u
(i+1)
3 (0, t)

}

∂u
(i)
2

∂x
(i)
1

(

l(i), t
)

�
∂u

(i+1)
2

∂x
(i+1)
1

(0, t) ≡ ϕ
(i+1)
3 (0, t) + γ

(i+1)
12 (0, t);

∂u
(i)
3

∂x
(i)
1

(

l(i), t
)

�
∂u

(i+1)
3

∂x
(i+1)
1

(0, t) ≡ −ϕ
(i+1)
2 (0, t) + γ

(i+1)
13 (0, t);

E (i) I
(i)
22

(

∂ϕ
(i)
2

(

l(i), t
)

∂x
(i)
1

)

� E (i+1) I
(i+1)
22

(

∂ϕ
(i+1)
2 (0, t)

∂x
(i+1)
1

)

;

E (i) I
(i)
33

(

∂ϕ
(i)
3

(

l(i), t
)

∂x
(i)
1

)

� E (i+1) I
(i+1)
33

(

∂ϕ
(i+1)
3 (0, t)

∂x
(i+1)
1

)

;

kG(i) A(i)

(

−ϕ
(i)
3

(

l(i), t
)

+
∂u

(i)
2

(

l(i), t
)

∂x
(i)
1

)

� kG(i+1) A(i+1)

(

−ϕ
(i+1)
3 (0, t) +

∂u
(i+1)
2 (0, t)

∂x
(i+1)
1

)

kG(i) A(i)

(

ϕ
(i)
2

(

l(i), t
)

+
∂u

(i)
3

(

l(i), t
)

∂x
(i)
1

)

� E (i+1) A(i+1) du
(i+1)
1 (0, t)

dx
(i+1)
1

sin θ

−kG(i+1) A(i+1)

(

ϕ
(i+1)
2 (0, t) +

∂u
(i+1)
3 (0, t)

∂x
(i+1)
1

)

cos θ ;

E (i) A(i)
du

(i)
1

(

l(i), t
)

dx
(i)
1

� E (i+1) A(i+1) du
(i+1)
1 (0, t)

dx
(i+1)
1

cos θ

+kG(i+1) A(i+1)

(

ϕ
(i+1)
2 (0, t) +

∂u
(i+1)
3 (0, t)

∂x
(i+1)
1

)

sin θ ;

G(i) J (i) ∂
2β(i)

∂x
(i)2
1

� G(i+1) J (i+1) ∂
2β(i+1)

∂x
(i+1)2
1

(B.2)463464

For the folded SS beam, these continuity conditions are substituted in Eq. (5) to determine the equations of465

motion. Similarly, for folded MDF beams, these conditions are substituted in Eq. (6) to determine the equations466

of motion.467

Appendix 3468

Modal experiments469

The six handles of the hexagon specimens (see Figs. 3 and 23) are clamped in customized-built fixtures. For470

the SS specimen, the six handles of the specimen are clamped in the aluminum fixture with grooves to restrict471

the in-plane vibration and the cap is bolted from top to inhibit out-of-plane motion during actuation as shown472

in Fig. 23. Similarly, the MDF specimen is clamped in the 3-D printed fixture made from polylactic acid (PLA)473

plastic (Gizmodorks, Temple City, CA). Also, the handles of the MDF specimen are epoxied in the grooves474

designed in the fixture using a 50,133 plastic bonder (J-B Weld, Atlanta, GA) to avoid any slippage at the475

handles.476

To experimentally determine the mode shapes and frequencies on these complex specimens, scanning laser477

vibrometry is chosen as it is a non-contact measurement technique [17, 22, 31]. The fixture assembly with the478

specimen is bolted on the x/y stage of the scanning laser vibrometer (MSA-100-3D, Polytec, Irvine, CA) as479

shown in Fig. 23. To actuate the specimen, piezo actuator (P-885.91, Physik Instrumente GmbH & Co.KG,480

Germany) is used which is glued to the fixture instead of the specimen to avoid adding mass to the specimen481

which will alter the dynamics of the kerf structure. The scanning laser vibrometer is used to perform a modal482

analysis with the input of 8 V chirp excitation from the piezo actuator.483

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

“707_2021_3108_ArticleOA” — 2021/11/23 — 10:08 — page 22 — #22

Fig. 23 Experimental test setup for testing hexagon specimens. a Scanning laser vibrometer (MSA-100-3D, Polytec, Irvine, CA)
b HD SS specimen clamped in the fixture c HD MDF specimen clamped in the fixture

As the surface of the SS specimen is shiny so the specimen is sprayed with an occlusion spray to avoid484

the mirror effect, which will lead to good quality measurement. In the case of the SS specimen, the velocity485

output range for scanning laser vibrometer is kept 10 mm/s with a sampling rate of 15.65 kHz. A Fast Fourier486

Transform (FFT) is performed within a selected bandwidth between 1 and 6250 Hz. For the SS specimen, 744487

points on the surface of the SS are used as measurement locations, each scanning point and FFT averaged 12488

times. For the MDF specimen, the velocity output range for the vibrometer is 20 mm/s with a sampling rate489

of 12.5 kHz. The bandwidth is 1–5000 Hz and the number of points on the MDF specimen is kept similar to490

the SS specimen. As compared to the test on the SS specimen, each point is averaged 8 times during the test.491

The frequency response function (FRF) for each data point, average FRF is obtained and stored in a file that is492

post-processed in the PSV software (Polytec, Irvine, CA) to extract mode shapes and resonance frequencies.493

Creep experiments494

Uniaxial creep tests are performed on MDF dog-bone specimens to characterize the viscoelastic properties.495

The creep tests are performed at constant room temperature (25 °C) and 50% of the ultimate tensile strength496

of MDF. A constant uniaxial load is applied to the dog-bone specimens for 2 h at room temperature. A linear497

viscoelastic model is used to capture the creep behavior (Fig. 24) using the Prony parameters on the time-498

dependent compliance D(t) � D(0) +
∑N

i�1 Di

(

1 − e−t/τci
)

. The instantaneous compliance D(0) � 1/E0,499

where E0 is the elastic modulus of the MDF given in Table 1. The time-dependent parameters are then calibrated500

Fig. 24 Uniaxial creep responses of MDF samples
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by fitting the data in Fig. 24. The time parameters τci in the Prony function with three terms are determined501

as 100, 1000, and 5000 s, respectively, and the calibrated values for Di are 10–3, 2×10–3, 7×10–3 ksi−1,502

respectively. The beam element model discussed above is expressed in terms of a relaxation modulus, it is503

then necessary to obtain the relaxation modulus of the MDF material from the creep responses. The time-504

dependent relaxation modulus of the following form E(t) � E(∞) +
∑N

i�1 Ei e
−t/τi is considered and the505

material parameters are determined by using a Laplace transform method, Ê(s)D̂(s) � 1/s2, where s is the506

transform variable, Ê(s) and D̂(s) are the Laplace transforms of E(t) and D(t), respectively. The time-dependent507

relaxation moduli are given in Table 2.508

Appendix 4509

Responses of hexagon kerf domain with periodic boundary conditions510

By using Floquet–Bloch theorem for wave propagation [22, 32, 33], the complex displacements on the hexag-511

onal domain unit cell are following:512

qr t � qlbe
i
(

k1

(

1+sin θ
2

)

+k3 sin θ
)

a
qt � qbei(2k3 sin θ)a (D.1)513514

where the subscripts r, l, b, and t represent displacements corresponding to right, left, bottom, and top, respec-515

tively. The double subscripts represent displacements of the handles: for example, r t denotes the right top516

handle as shown in Fig. 25. The side length of the unit cell is denoted as a and θ is the angle subtended517

between the beams in the unit cell as mentioned earlier. k1 and k3 are components of the wave vector of the518

plane wave. The above-mentioned Floquet conditions are prescribed on the MDF hexagonal domain unit cell.519

The nonzero modes at (k1 � 0, k3 � 0) and corresponding frequencies are determined (see Fig. 25). From520

the results, it can be noticed that the unit cell with periodic boundary conditions shows both in-plane and521

out-of-plane mode shapes. However, as expected, the mode shapes and modal frequencies change as compared522

to the unit cell with clamped boundary conditions. The resonance frequencies decrease compared to the unit523

cell with clamped boundary conditions which shows us that the structure is becoming more compliant. Also,524

Kerf

structure 

Modes 

1 2 3 4 5 6 7 8 

MDF (Beam 

element) 

323.13 

Hz

323.13

Hz

366.33

Hz

366.36

Hz 
404.83 Hz 404.84 Hz 

419.96 

Hz
424.31 Hz 

1.0 0.5 0.0

Fig. 25 Unit cell showing nomenclature used in Floquet conditions (top); mode shapes showing normalized displacement and
natural frequencies of MDF hexagonal domain with periodic boundary conditions (bottom)

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

“707_2021_3108_ArticleOA” — 2021/11/23 — 10:08 — page 24 — #24

more out-of-plane mode shapes are observed in the initial modes. These responses are expected since adding525

more cells to form larger kerf panels leads to more compliant panels and out-of-plane deformations are easier526

to achieve in the larger panels.527

Appendix 5528

Influences of pre-deformed stresses529

We performed an additional analysis to examine the extension of pre-deformations on the dynamics responses530

of the kerf unit cell. One triangular unit cell of SS hexagon domain is actuated by prescribing 1 mm and 0.5 mm531

out-of-plane displacements and modal analysis was performed. The modal behaviors (mode shapes and modal532

frequencies) remain the same when the unit cell is deformed by 0.5 mm and 1 mm, as shown in Fig. 26. The533

SS hexagon domain actuated by 1 mm undergoes higher maximum principal stress compared to SS hexagon534

domain actuated by 0.5 mm as shown in Fig. 27. The stresses are kept below the yield stress of the stainless535

steel material (Table 1). It can be also be noticed that due to marginal pre-deformation, most of the hexagon536

domain does not undergo any stress except a certain region of the actuated triangle unit cell. Therefore, the537

stresses due to pre-deformation do not have significant effect on the modal analyses.538
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Fig. 26 Comparisons of modal frequencies with different actuation levels

Fig. 27 Principal stresses in deformed unit cells
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