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In this work, we derive analytic formulae that determine the effect of error mechanisms on one-
and two-qubit gates in trapped ions and electrons. First, we analyze, and derive expressions for,
the effect of driving field inhomogeneities on one-qubit gate fidelities. Second, we derive expressions
for two-qubit gate errors, including static motional frequency shifts, trap anharmonicities, field
inhomogeneities, heating, and motional dephasing. We show that, for small errors, each of our
expressions for infidelity converges to its respective numerical simulation; this shows our formulae
are sufficient for determining error budgets for high-fidelity gates, obviating numerical simulations
in future projects. All of the derivations are general to any internal qubit state, and any mixed state
of the ion crystal’s motion that is diagonal in the Fock state basis. Our treatment of static motional
frequency shifts, trap anharmonicities, heating, and motional dephasing apply to both laser-based
and laser-free gates, while our treatment of field imhomogenieties applies to laser-free systems.

I. INTRODUCTION

The highest-fidelity quantum computing gates are, at
present, performed with trapped ions [1–3]. This, in com-
bination with long coherence times, inherent uniformity,
and all-to-all connectivity, is why trapped ions are one
of the most promising quantum computing platforms to
date [4–10]. The most common method for performing
high-fidelity gates is to couple the internal states of the
ions using lasers. While laser-based gates have many ad-
vantages, strong spin-motion coupling for example, they
suffer from photon scattering and phase-noise. Further,
the lasers necessary for high-fidelity gates are expensive
and difficult to calibrate. Laser-free gates, however, offer
a promising alternative to this paradigm, where laser-
fields are replaced with microwaves that directly couple
internal states of the ions [1, 10–17]. First, the use of
microwave fields eliminates photon scattering. Secondly,
the phase and amplitude of microwave fields are easier
to control, thereby reducing decoherence due to noisy
driving fields, which is often a limiting factor in laser-
based gates. However, the relatively slow gate times of
microwave gates (compared with laser-based gates) exag-
gerate the effects of motional decoherence. Trapped elec-
trons, albeit significantly less explored than ions, are an-
other promising qubit platform, and will likely have gate
operations similar to those in laser-free trapped ion se-
tups [18–20]. Due to their light mass, we expect trapped
electrons will operate on much faster time-scales relative
to laser-free trapped ion experiments. Unfortunately, be-
cause sideband cooling is not possible, trapped electrons
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will have to operate at much higher temperatures than
trapped ions, and, therefore, are likely to be sensitive to
motional decoherence as well.

High-fidelity gates are critical for fault tolerant quan-
tum computation, which requires infidelities ranging
from 10−2 to 10−4 [21], making it important to quan-
tify sources of infidelity. While many error sources are
general to trapped ion (and would-be trapped electron)
experiments, their effect on gate fidelity is typically calcu-
lated numerically; this leads to duplicate computational
effort between research groups. Further, it is difficult to
determine how gate fidelities scale with various experi-
mental parameters (such as temperature) when working
only with numerical simulations. In this work, we aim
to ameliorate these issues by deriving analytic formu-
lae for likely sources of motional decoherence in trapped
ions and electrons. The formulae we derive make no as-
sumptions about the initial qubit state of the ion, and
assume only that the motion is in an incoherent mixed
state, diagonal in the Fock state basis. We also assume
that the qubit frequency is very different from the mo-
tional frequency of all relevant motional modes. We then
compare every formula to its respective numerical sim-
ulation, showing that the two calculations converge in
the high-fidelity limit for each source of infidelity. In
short, this work aims to expedite the formulation of error
budgets in future experiments, providing analytic formu-
lae where numerical simulations were needed. Moreover,
the derivations provide insight into each error mecha-
nism, and show how they scale with relevant experimen-
tal parameters. In this work, we focus on static motional
frequency shifts, heating, trap anharmonicities, and mo-
tional dephasing, which are major sources of infidelity in
all trapped ion two-qubit gates. We also explore the ef-
fects of field inhomogeneities on one- and two-qubit gate
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fidelities, which are specific to laser-free systems.

The paper is organized as follows. We first describe the
theoretical techniques that we use to derive our analytic
expressions for infidelity. We then derive errors in single-
qubit gates from field inhomogeneities. We then derive
errors for two-qubit gates, including static shifts, trap an-
harmonicities, field inhomogeneitites, motional dephas-
ing, and motional heating.

II. THEORY

For the calculations we present in this work, we focus
on one- or two-qubit gates in trapped ions and trapped
electrons, studying systems with one or two qubits cou-
pled to one or two phonon modes. We represent the
qubit subspace as |ψ(t)〉, and the motion of the crystal
as phonon Fock states |n〉. The density matrix of the ini-
tial state is assumed to be ρ̂(0) = |ψ(0)〉 〈ψ(0)| ⊗ ρ̂n(0),
where ρ̂n(0) is the density matrix of the phonon subspace:

ρ̂n(0) ≡
∑

n

Pn |n〉 〈n| , (1)

diagonal in the Fock state basis. Here, Pn is the probabil-
ity that the phonon subspace begins in the |n〉 state. For
every calculation below, we determine the fidelity by ap-
plying the system’s time-propagator to a pure state wave
function initialized to |ψ(0)〉 |n〉, which gives Fn, which
can then be averaged over Pn to obtain F ; this is mathe-
matically equivalent to solving the master equation for an
incoherent mixed state, diagonal in the Fock state basis,
and tracing over the motional degree-of-freedom to de-
termine the fidelity F . For each calculation, we leave our
final answer in terms of the infidelity for a state with an
initial phonon number In, which allows one to straight-
forwardly determine the ensemble averaged infidelity I,
as discussed below.

For each of the calculations, we consider a gate Hamil-
tonian Ĥg; when Ĥg acts on a system for a gate time tg,
it results in an ‘ideal’ time-propagator for the gate that
we represent with Ûg(t). We note that, unless it would
lead to ambiguities, we will drop the time arguments of
operators from here on. Under realistic conditions, the
actual Hamiltonian will deviate from Ĥg, producing a
value of F that is less than one. In this manuscript, we
only consider high-fidelity gates (F ∼ 1), meaning that
we can take each individual error source to be small, and
assume their resultant infidelities (I ≡ 1 − F) will be

additive. If we represent each source of error with Ĥe,
this makes the total Hamiltonian:

Ĥt = Ĥg + Ĥe. (2)

which results in a time-propagator for the system acting
under Ĥt, which we represent as Ût. The fidelity Fn for
a system with initial phonon number n being acted on

by Ût is given by:

Fn =
∑

n′

| 〈ψ(0)| 〈n′| Û †g Ût |ψ(0)〉 |n〉 |2 (3)

where Ûg |ψ(0)〉 is the ‘ideal’ target state.

In this work, we isolate the small deviations of Ût from
Ûg by factoring the total time-propagator such that

Ût = ÛgÛe. (4)

If this factorization is straightforward, we can immedi-
ately rewrite Eq. (3) as:

Fn =
∑

n′

| 〈ψ(0)| 〈n′| Ûe |ψ(0)〉 |n〉 |2. (5)

We can, subsequently, Taylor expand Ûe, and determine
the leading-order correction to Fn due to Ĥe. When it is
not straightforward to factor Ût, we transform into the
interaction picture with respect to Ĥg, then use 2nd-order

time-dependent perturbation theory to approximate Ûe.
Similar techniques have been used before Ref. [22, 23],
and date back to work on NMR [24, 25]. The interaction
picture Hamiltonian is given by:

ĤI(t) = Û †g (t)Ĥt(t)Ûg(t) + i~ ˙̂
U†g (t)Ûg(t). (6)

Upon doing this, we can determine the time-propagator
for a system acting under a small ĤI for a time tg by
using 2nd-order time-dependent perturbation theory:

ÛI ' Î −
i

~

∫ tg

0

dt′ĤI(t
′)− 1

~2

∫ tg

0

∫ t′

0

dt′dt′′ĤI(t
′)ĤI(t

′′).

(7)

Transforming out of the interaction picture, this gives:

|ψ(tg)〉 = ÛgÛe |ψ(0)〉 , (8)

where we have replaced ÛI with Ûe, as that the two oper-
ators are synonymous in this frame. We have now factor-
ized Ût = ÛgÛe, at which point Eq. (5) applies, and we
can determine the leading-order correction to Fn using
the expansion given by Eq. (7).

For all of the calculations below, we first calculate the
infidelity of a gate for an initial phonon number In ≡
1−Fn. Each value of In’s dependence on the initial qubit
state is written in terms of the variance of an operator Â
that acts on the qubit subspace:

λ2
Â
≡ 〈Â2〉 − 〈Â〉2 , (9)

such that Â ∈ {σ̂α, Ŝα, Ŝ2
α}, where σ̂α is a Pauli spin op-

erator with eigenstates pointing in the α-direction on the
Bloch sphere, and Ŝα = σ̂α,1 + σ̂σ,2 is a collective spin
operator acting on qubits 1 and 2. Physically, λ2

Â
encap-

sulates the degree to which the qubit is initialized to an
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eigenstate of the gate Hamiltonian, meaning that there is
less infidelity when an operation affects the qubit(s) less.
We use each equation for In to determine an ensemble
average over an initial mixed state by summing over the
probability distribution Pn via:

I =
∑

n

PnIn, (10)

resulting in the replacement nk with its average over Pn
nk for each equation. Thus, all of the equations derived
below are general to any initial qubit state and ensem-
ble average of Fock states. Finally, we note that we are
here discussing the value of I associated with a single
gate implementation; if the error mechanisms discussed
in this work significantly change the motional state, and
the motion is not sympathetically cooled between gate
operations, our formulae could become less accurate in
some cases.

III. SINGLE-QUBIT GATE ERRORS

For the ideal case, we represent a single-qubit gate
Hamiltonian with:

Ĥ1g = ~Ω1gσ̂α. (11)

This Hamiltonian is in the rotating frame with respect
to the qubit frequency, and we have made the rotat-
ing wave approximation with respect to terms oscillat-
ing near the qubit frequency. Here, Ω1g is the Rabi fre-
quency of the microwave field oscillating in the n̂α direc-
tion, and σ̂α = (n̂α · ~σ) is a single-qubit Pauli operator,
with eigenvectors that point in the ±α direction on the
Bloch sphere. We also assume that the qubit frequency
deviates significantly from the motional frequency. After
a gate time tg, the time-propagator for Ĥ1g is:

Û1g = e−iΩ1gtgσ̂α , (12)

which (by definition) would give F = 1 in the absence
of an error term. In this section, we consider the infi-
delity of gates generated by Eq. (11) in the presence of
inhomogeneities in the microwave field.

Driving field inhomogeneity

Inhomogeneities of the driving field do not constitute a
significant part of the error budget of the highest-fidelity
single-qubit laser-free gates in trapped ions [10]. Due
to their light mass, though, trapped electrons typically
have a relatively large spatial extent compared to ions.
The problem is exacerbated by the absence of laser cool-
ing methods, likely leading to substantially higher mo-
tional temperatures. This could render inhomogeneities
a significant part of the trapped electron single-qubit er-
ror budget. Here, we provide analytical and numerical

quantification of the infidelity due to these errors. We
represent the error Hamiltonian for driving field inhomo-
geneities in the presence of two phonon modes as:

H̃1e = ~
{
ωaâ

†â+ ωbb̂
†b̂+ σ̂α

(
Ω′a[â† + â] + Ω′b[b̂

† + b̂]

+Ω′′a[â† + â]2 + Ω′′b [b̂† + b̂]2

+Ω′′ab[â
† + â][b̂† + b̂]

)}
, (13)

where the tilde indicates that we are in the lab-frame with
respect to the motion, ωa(b) is the motional frequency

of the a(b) mode, Ω′a(b) ≡
√
~/2mωa(b)∂Ω1g/∂x̂a(b) is

the Rabi frequency of the 1st-derivative of the driv-
ing field projected on along the a(b) mode, Ω′′a(b) ≡
(~/4mωa(b))∂

2Ω1g/∂x̂
2
a(b) is the Rabi frequency of the

2nd-derivative of the driving field along the a(b) mode,
and Ω′′ab ≡ (~/2m√ωaωb)∂2Ω1g/∂x̂a∂x̂b is the cross-Kerr
coupling Rabi frequency between modes a and b; here,
each partial derivative is evaluated at the qubit’s loca-
tion. Moving into the rotating frame with respect to each
mode’s frequency, and dropping the 2nd-order terms that
oscillate near 2ωa(b) and ωa + ωb, we get:

Ĥ1e ' ~σ̂α
{

Ω′a
(
â†eiωat+ âe−iωat

)
+ Ω′b

(
b̂†eiωbt+ b̂e−iωbt

)

+Ω′′a
(

2â†â+ 1
)

+ Ω′′b
(

2b̂†b̂+ 1
)

+Ω′′ab
(
â†b̂eiωabt + âb̂†e−iωabt

)}
, (14)

where ωab ≡ ωa − ωb. Note that the above equation
comprises what are effectively three different error types:
∝ Ω′a(b) terms that arise from the 1st-derivative of the

driving field’s projection along the a(b) mode, ∝ Ω′′a(b)

terms that arise from the projection of the 2nd-derivative
of the driving field on the a(b) mode, and ∝ Ω′′ab cross-
Kerr terms.

1st-order inhomogeneity

In this subsection, we consider the infidelity I1a of a
single-qubit gate in the presence of a non-zero projec-
tion of the field gradient onto mode a, noting that the
calculation for mode b is identical. This is given by the
Hamiltonian:

Ĥa
1e = ~Ω′aσ̂α

{
â†eiωat + âe−iωat

}
. (15)

The total Hamiltonian for the system is then:

Ĥa
1t = Ĥ1g + Ĥa

1e. (16)

In this situation, Ĥa
1e creates a residual spin-dependent

displacement at tg, decohering the system.
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Ĩ1
a

n
a

Ĩ1
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FIG. 1. Comparison between the one-qubit gate infidelities due to field inhomogeneities given by numerical simulations (dashed
lines) and the analytic predictions (solid lines) given in the text. Each graph shows the gate infidelity, normalized by the phonon

dependence of the infidelity predicted by the analytic formulae, Ĩn versus the relative size of the error term compared to the
gate Rabi frequency Ω1g. Each gate is implemented for a time tg = π/2Ω1g. For each error source, we compare for two initial

states: |ψ(0)〉 = |↓〉 (analytic: upper black solid, numeric: upper blue), and |ψ(0)〉 =
√

3/4 |↓〉 +
√

1/4 |↑〉 (analytic: lower

grey solid, numerical: lower red). (a) Shows Ĩ1a
na = I1a

na/(2na + 1) versus the first-order field inhomogeneity Ωa/Ω1g, where
ωa = 10Ω1g. This is shown for initial phonon numbers of na = 0 (dotted), na = 100 (dashed dotted), and na = 200 (dashed).

(b) Shows Ĩ1a2

na = I1a2

na /(2na + 1)2 versus the strength of the second-order field inhomogeneity Ωa2/Ω1g, for na = 0 (dotted),

na = 100, and na = 200. (c) Shows Ĩ1ab
na,nb = I1ab

na,nb/(2nanb + na + nb) versus cross-Kerr coupling strength Ωab/Ω1g, when
ωab = 10Ω1g.

Because Ĥ1g and Ĥa
1e commute at all times, we can

immediately factor their time-propagator:

Ûa1t = Û1gÛ
a
1e, (17)

allowing us to apply Eq. (5) to calculate the infidelity of a
state initialized to phonon mode na for this error source
I1a
na . We calculate Ûa1e using the Magnus expansion [26]

for Ĥa
1e. Up to a phase, this is described by a spin-

dependent displacement operator:

Ûa1e = exp
{
− i

~

∫ tg

0

dt′Ĥa
1e(t
′)
}

= exp
{
− 2iΩ′a

ωa
σ̂α sin

(ωatg
2

)

×
(
â†eiωatg/2 + âe−iωatg/2

)}
, (18)

which we can plug into Eq. (5). Since we assume Ûa1e ∼ Î,
we can subsequently insert its Taylor series, and keep
only the quadratic contributions to the fidelity F1a

na . This

expression for F1a
na , keeping terms up to ∝ (Ω′a/ωa)2, is:

F1a
na ' 1− 4Ω′2a

ω2
a

sin2
(ωatg

2

)(
2na + 1

)
λ2
σ̂α . (19)

where we have simplified this expression by substi-
tuting the t = 0 variance of the σ̂α operator: 1 −
〈ψ(0)|σ̂|ψ(0)〉2 = 〈σ̂2

α〉 − 〈σ̂α〉2 ≡ λ2
σ̂α

. We can further
simplify our expression by taking the time-average of
sin2(ωatg/2) ' 1/2. We here note that if an experiment
has sufficient control over tg, this step is not necessary
and the error can be eliminated by setting ωatg to be an
integer multiple of 2π. This gives an equation for the
infidelity of a gate acting on a state beginning with na
phonons:

I1a
na '

2Ω′2a
ω2
a

(
2na + 1

)
λ2
σ̂α . (20)

In Fig. 1(a), we compare Eq. (20) to the direct numer-
ical integration of Eq. (16), varying |ψ(0)〉 and na, and
showing they converge when |Ω′a/ωa| � 1.

2nd-order inhomogeneity

If the 2nd-derivative of the driving field has a non-zero
projection onto phonon mode a, noting again the cal-
culation is identical for mode b, the Hamiltonian for a
single-qubit gate is:

Ĥ1t = Ĥ1g + Ĥa2

1e

= ~Ωgσ̂α + ~Ω′′aσ̂α
(

2â†â+ 1
)
. (21)

Here, Ĥ1g and Ĥa2

1e commute at all times, so we may

factor Ûa
2

1t = Ûa
2

1e Û1g, allowing us to apply Eq. (5), where:

Ûa
2

1e = exp
{
− iΩ′′atgσ̂α

(
2â†â+ 1

)}
. (22)

Assuming that |Ω′′atg| � 1, we only keep terms up to
∝ (Ω′′atg)

2. The result is:

F1a2

na ' 1− Ω′′2a t
2
g

(
2na + 1

)2

λ2
σ̂α , (23)

giving an equation for the infidelity of a gate acting on a
state that begins with na phonons:

I1a2

na ' Ω′′2a t
2
g

(
2na + 1

)2

λ2
σ̂α , (24)

where we have, again, simplified our expression by sub-
stituting in the t = 0 expression for the variance of the σ̂α
operator. In Fig. 1(b), we compare Eq. (24) to the direct
numerical simulation of Eq. (21), showing they converge
when |Ω′′atg| � 1.
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Cross-Kerr coupling

If the mixed, 2nd-order partial derivative of the driving
field has a non-zero projection over modes a and b, the
single-qubit gate is described by:

Ĥab
1t = Ĥ1g + Ĥab

1e

= ~Ω1gσ̂α + ~Ω′′abσ̂α
{
â†b̂eiωabt + âb̂†e−iωabt

}
,

(25)

where Ĥab
1e takes the form of a spin-dependent beam-

splitter interaction. While Ĥab
1e still commutes with Ĥ1g

at all times, allowing us to factor Ûab1t as Ûab1e Û1g, the

2nd-order term in the Magnus expansion in Ûab1e ’s con-
tribution to the dynamics is no longer merely a global
phase. Thus, keeping terms up to 2nd-order in Ûab1e gives:

Ûab1e ' exp
{
− i

~

∫ tg

0

dt′Hab
1e (t′)

− 1

2~2

∫ tg

0

∫ t′

0

dt′dt′′
[
Ĥab

1e (t′), Ĥab
1e (t′′)

]}

= exp
{
− iσ̂α

(
χâ†b̂+χ∗âb̂†

)
− iβ

(
â†â−̂b†b̂

)}
, (26)

where we have defined:

χ ≡ 2Ω′′ab
ωab

sin
(ωabtg

2

)
eiωabtg/2

β ≡ Ω′′2ab
ωab

{
tg −

sin(ωabtg)

ωab

}
, (27)

up to a phase. Since Ĥab
1e couples two modes, when ap-

plying Eq. (5) we must consider both when calculating
the fidelity:

F1ab
na,nb

=
∑

n′a,n
′
b

| 〈ψ(0)| 〈n′a| 〈n′b| Ûab1e |ψ(0)〉 |na〉 |nb〉 |2. (28)

Applying this equation and, again, keeping only the
leading-order contribution to the fidelity F̂ abna,nb , we get:

F1ab
na,nb

' 1− 4Ω′′2ab
ω2
ab

sin2
(ωabtg

2

)(
2nanb + na + nb

)
λ2
σ̂α ,

(29)

which we can simplify by substituting in the variance of
the σ̂α operator, and the time-average of the sinusoidal
oscillation sin2(ωabtg/2) ' 1/2. This gives:

I1ab
na,nb

' 2Ω′′2ab
ω2
ab

(
2nanb + na + nb

)
λ2
σ̂α . (30)

In Fig. 1(c), we compare this result to the direct numer-
ical integration of Eq. (25), showing that the two calcu-
lations converge when |Ω′′ab/ωab| � 1.

IV. TWO-QUBIT GATE ERRORS

We represent the, idealized, two-qubit gate Hamilto-
nian:

H̃2g =
~ω0

2
Ŝz + ~ωaâ†â+ 2~Ω2gf(t)Ŝα

(
â† + â

)
,

(31)

where, again, the tilde indicates that we are working in
the lab-frame, Ŝα ≡ σ̂α,1+σ̂α,2 is a multi-qubit Pauli spin
operator with eigenvectors pointing in the α direction,
Ω2g is the two-qubit gate Rabi frequency, and f(t) is a si-
nusoidal function representing the temporal dependence
of the gradient field, which is either f(t) ≡ cos([ωa−∆]t)
if α ≡ z, or f(t) ≡ cos([ω0−ωa+∆]t)+cos([ω0+ωa−∆]t)
if α is in the xy-plane; in both bases, ∆ acts as the de-
tuning of the gate. Transforming into the rotating frame
with respect to the qubit and motion, as well as making
the rotating wave approximation, gives:

Ĥ2g = ~Ω2gŜα

(
â†ei∆t + âe−i∆t

)
, (32)

the form of which can be generated using lasers [27–29]
and with microwaves [1, 11–14, 30–32]. We will begin
with Eq. (32) for all of the following sections except
Sec. IV C.

We analyze the unitary evolution of Eq. (32) under
the influence each subsection’s error term, giving a total
Hamiltonian Ĥ2t. We continue to assume each error’s
contribution to the final infidelity will be additive. We
analyze the unitary evolution using the Magnus expan-
sion [26], keeping terms up to 2nd-order:

Û2t = exp
(
− i

~

∫ t

0

dt′Ĥ2t(t
′)

− 1

2~2

∫ t

0

∫ t′

0

dt′dt′′[Ĥ2t(t
′), Ĥ2t(t

′′)]
)
. (33)

For geometric phase gates, the first term in the Mag-
nus expansion represents a spin-dependent displacement
operator, making a circular trajectory in phase-space.
Ideally, this term will disappear after each of N ‘loops’
in phase-space, occurring every integer multiple of t =
2π/∆. Because the spin and motion are entangled dur-
ing a loop, any decoherence of the motion will affect the
spin, and, ultimately, the fidelity of the gate. For an ideal
gate, after a time tg = 2πN/∆, this gives:

Û2g = eiφŜ
2
α , (34)

where, in this work, we set the phase φ = 2πNΩ2
2g/∆

2 =
π/8, to give a maximally entangled Bell state when op-
erating on |ψ(0)〉 = |↓↓〉. This may be turned into an
N -loop gate by setting tg → N1/2tg and ∆ → N1/2∆.
Finally, we note that we will frequently use the fact that

Ŝ
2(k+1)
α = 4kŜ2

α and Ŝ2k+1
α = 4kŜα, where k ∈ N.
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Single-Qubit Gate Errors

error name equation infidelity

1st-order inhomogeniety Eq. (20) I1a =
2Ω′2a
ω2
a

(
2n̄a + 1

)
λ2
σ̂α

2nd-order inhomogeniety Eq. (24) I1a2 = Ω′′2a t
2
g

(
4n2

a + 4n̄a + 1
)
λ2
σ̂α

cross-Kerr coupling Eq. (30) I1ab =
2Ω′′2ab
ω2
ab

(
2n̄an̄b + n̄a + n̄b

)
λ2
σ̂α

TABLE I. Summary of infidelities for single-qubit gates. See text for variable definitions.

A. Static motional frequency shifts

During a two-qubit gate, if the frequency of the mo-
tional mode is shifted from its idealized value the phase-
space trajectory is distorted, giving an error. In this
section, we will show that the effects of this error mecha-
nism may be separated into two physical sources: residual
spin-motion entanglement from the phase-space trajec-
tory, and the area encompassed in phase-space deviating
from its idealized value. These two effects require differ-
ent techniques to ameliorate their deleterious effects on
the gate fidelity.

The total gate Hamiltonian including a static motional
frequency shift is:

Ĥ2t = Ĥ2g + Ĥδ
2e

= ~Ω2gŜα

(
âe−i∆t + â†ei∆t

)
+ ~δâ†â, (35)

where δ � Ω2g is the frequency shift. Unlike the error

mechanisms we have explored thus far, [Ĥ2g, Ĥ
δ
2e] 6= 0,

meaning we cannot directly factor Û δ2t. In order to put

Û δ2t in a form that enables factorization, we transform
the above equation into the rotating frame with respect
to Ĥδ

2e, which gives:

Ĥ2g,I = ~Ω2gŜα

(
âe−i[∆+δ]t + â†ei[∆+δ]t

)
. (36)

We are now in a frame rotating at ∆+δ, noting that this
will have no effect on I2δ

na . Plugging this into Eq. (33),

and dropping terms higher-order than ∝ δ2, we can fac-
torize Û δ2t = Û2gÛ

δ
2e, up to a global (na dependent) phase,

where:

Û δ2e ' exp
(
− iΩ2gδtg

∆
Ŝα[â+ â†]− 2iΩ2

2gδtg

∆2
Ŝ2
α

)
.

(37)

The first term in this equation is a displacement opera-
tor, representing the error from residual spin-motion en-
tanglement, whereas the second term represents the erro-
neous area encompassed in phase-space, producing an in-
correct geometric phase. Due to the fact that ∆ ∝ N1/2

and tg ∝ N1/2 for an N -loop gate, we can see that in-
creasing N reduces the error due to the incorrect geomet-
ric phase, but does not affect the error due to residual
spin-motion entanglement. Because of this, more sophis-
ticated pulse sequences such as Walsh modulations [33]
(see appendix) or polychromatic gates [16, 23, 32, 34]
are needed. We note that, in the appendix, we derive
the value of I2δ

na for gates undergoing such Walsh modu-

lations. We can plug Eq. (37) into Eq. (5) to obtain I2δ
na

up to ∝ (δ/Ω2g)
2:

I2δ
na '

π2δ2

64Ω2
2g

[
(2na + 1)λ2

Ŝα
+ λ2

Ŝ2
α
/4N

]
, (38)

where we have encapsulated the dependence of I2δ
na on

the initial qubit state with the variances of Ŝα and Ŝ2
α.

In Fig. 2(a), we compare Eq. (38) to the direct numeri-
cal integration of Eq. (35), showing they converge when
|δ/Ω2g| � 1.

B. Trap anharmonicity

We now examine the contribution of anharmonicities
in the trapping potential to the two-qubit gate infidelity.
Considering that 3rd-order anharmonicities only contain
terms that oscillate near ωa, we make the rotating wave
approximation and take the leading-order trap anhar-
monicity to be a quartic ∝ x̂4 addition to Ĥ2g. Rep-

resenting Ĥ2t in terms of ladder operators, and in the
rotating frame with respect to ωa, gives:

Ĥ2t = ~Ω2gŜα

{
â†ei∆t + âe−i∆t

}

+~ε
{
â†eiωat + âe−iωat

}4

. (39)

Upon making the rotating wave approximation, and
dropping a global phase, this can be reduced to give:

Ĥ2t ' ~Ω2gŜα

{
â†ei∆t + âe−i∆t

}
+ 6~ε

{
â†â+ (â†â)2

}
.

= Ĥ2g + Ĥε
2e. (40)
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We here transform into the interaction picture with re-
spect to Ĥ2g, using Û2g described by Eq. (33), which
gives:

Ĥε
2I = 6~ε

{
(â†+Ŝαγ

∗)(â+Ŝαγ)+[(â†+Ŝαγ
∗)(â+Ŝαγ)]2

}
,

(41)

where:

γ ≡ Ω2g

∆

{
1− ei∆t

}
. (42)

After this transformation, the time propagator for an
ideal gate is Ûε2I = Î. Since we assume that infideli-

ties are small, Ûε2I ∼ Î, which we can evaluate using
Eq. (7). Before evaluating Eq. (7) we transform out of

the interaction picture, giving a factored Ûε2t = Û2gÛ
ε
2I ,

and then apply Eq. (5). Here, we only wish to extract the
leading-order (∝ [ε/Ω2g]

2) contribution to the infidelity.
This means that in evaluating the fidelity we can neglect
imaginary, and off-diagonal, terms from the 2nd-order in-
tegral, simplifying the evaluation. Doing this, and then
plugging Eq. (7) into Eq. (5) gives an infidelity of:

I2ε
na '

9π2ε2

16Ω2
2g

{
λ2
Ŝα

[
4(2n3

a + 3n2
a + 3na + 1)

+
6

N
(2n2

a + 2na + 1) +
9

4N2
(2na + 1)

]

+λ2
Ŝ2
α

[ 3

8N
(11n2

a + 11na + 3)

+
3

4N2
(2na + 1) +

9

64N3

]}
, (43)

where we have, again, encapsulated the dependence on
the initial spin with the variances λŜα,Ŝ2

α
. Figure 3(b)

compares Eq. (43) to the direct numerical integration
of Eq. (40) for various initial states of the qubits and
motion, showing the two calculations converge when
|ε/Ω2g| � 1.

C. Field inhomogeneities

Another error occurs if the gradient field that gener-
ates spin-motion coupling for the two-qubit gate changes
significantly over the spatial extent of the qubits’ motion.
In this section, we consider a gradient with non-zero 1st

and 2nd derivatives. We begin by transforming Eq. (31)
into the rotating frame with respect to the qubit and
motional frequencies, and eliminating terms that oscil-
late ∝ ω0. This gives:

Ĥ2t = 2~ cos([ωa −∆]t)Ŝα

{
Ω2g + Ω′2g

(
â†eiωat + âe−iωat

)

+Ω′′2g
(
â†eiωat + âe−iωat

)2}{
â†eiωat + âe−iωat

}
,

(44)

where Ω′2g ≡ (~/2mωa)1/2∂Ω2g/∂x̂a, and Ω′′2g ≡
(~/4mωa)∂2Ω2g/∂x̂

2
a. In our treatment, we assume the

1st−order ∝ Ω′2g term is negligible relative to the 2nd-
order∝ Ω′′2g term, because the former contains only terms
that rotate ∝ ωa and the latter contains terms that ro-
tate ∝ ∆. This makes the relative contribution of the
∝ Ω′2g terms to the Ω′′2g terms ∼ (Ω′2g∆/Ω

′′
2gωa)2; since

the value of (∆/ωa)2 will be very small for both trapped
ions and trapped electrons, Ω′2g would need to be several
orders-of-magnitude larger than Ω′′2g to significantly con-
tribute. Further, because traps are typically designed so
that the ions are located near where Ω2g is at a maxi-
mum, they tend to minimize Ω′2g by default. Neglecting

the 1st-order inhomogeneity, and dropping all terms that
oscillate ∝ ωa, gives:

Ĥ2t = Ĥ2g + 3~Ω′′2gŜα
{
â†ââ†ei∆t + ââ†âe−i∆t

}
.

(45)

To calculate the fidelity, we, again, transform into the
interaction picture with respect to the ideal gate Hamil-
tonian Ĥ2g. Transforming into the interaction picture

using Û2g gives:

Ĥ
Ω′′2g
2I = 3~Ω′′2gŜα[â† + Ŝαγ

∗][â+ Ŝαγ][â† + Ŝαγ
∗]ei∆t + c.c.

(46)

After this transformation, we can apply Eq. (7), which

results in a factorized Û
Ω′′2g
2t = Û2gÛ

Ω′′2g
2I upon transform-

ing out of the interaction picture. We can subsequently
apply Eq. (5), and keep only the (∝ Ω′′2g/Ω2g)

2 contribu-
tions to the gate fidelity:

I2Ω′′2g
na =

9π2Ω′′22g

16Ω2
2g

{
λ2
Ŝ2
α

[
4n2

a + 4na + 1 +
3

2N

(
2na + 1

)

+
9

16N2

]
+

4

N
λ2
Ŝα

(
2na + 1

)}
, (47)

giving the infidelity of a two-qubit gate initialized to the
motional state na, as well as an initial qubit state with
variances λ2

Ŝα
and λ2

Ŝ2
α

. In Fig. 2(c), we compare Eq. (47)

to the direct numerical integration of Eq. (45), showing
for various initial states of the qubits and motion that
the two calculations converge when |Ω′′2g/Ω2g| � 1.

D. Infidelities from Markovian bath

There is a temporal window during a geometric phase
gate where the qubits are entangled to their motion. Dur-
ing this window, the fidelity of the gate is sensitive to ex-
traneous fields that couple to the motion. In this section,
we focus on fields that have very low coherence times rel-
ative to tg, namely those causing heating and motional
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FIG. 2. Comparison of infidelities Ina for an initial phonon number na versus error size between the analytic formulas (solid
lines) described in this work and their corresponding numerical simulations (dashed lines). This is shown for initial states:

|ψ(0)〉 = |↓↓〉 ((a-d) middle (e-f) top blue), |ψ(0)〉 =
√

1/3 |↓↓〉 +
√

2/3 |↑↑〉 ((a-d) top (e-f) middle red), and |ψ(0)〉 =√
1/3 |↓↓〉 −

√
2/3 |↑↑〉 (bottom green). The left column (a-b) is for a static motional frequency shift δ, the middle column

(c-d) is for a trap anharmonicities εa, and the right column (e-f) is for inhomogeneities of the gradient field Ω′′2g. The first row
(a,c,e) is for ion crystals that begin in the ground state of the phonon mode n = 0, and the second row (b,d,f) is for ion crystals
that begin with a phonon mode such that n = 50. Note that, for every figure, the values of In predicted by the numeric and
analytic results converge, for high-fidelity gates.

dephasing. In this work, we eschew the application of
the Lindblad equation, typically used to model these two
decoherence mechanisms [35]. We model our ‘coupling
to a bath’ by first calculating the fidelity of a two-qubit
gate in the presence of an error of the form:

Ĥ2ω ∝ cos(ωt)M̂, (48)

where M̂ is an operator describing bath coupling. Sub-
sequently, we average over the normalized power spectral
density Sω of each ω:

F =

∫ ∞

0

dωSωFω, (49)

where Fw is the fidelity of a gate undergoing the Ĥ2ω

perturbation.
We first show that, upon invoking the Markovian ap-

proximation, this prescription is equivalent to the Lin-
blad formalism. Take |ψω(t)〉 to be a wave function

undergoing Ĥ2t. We wish to calculate |ψω(t+ δt)〉,
then, upon averaging over Sω, show that ρ̂(t) ≡∫∞

0
dωSωρ̂ω follows the Lindblad formalism, where ρ̂ω ≡

|ψω(t)〉 〈ψω(t)|. Assuming 1/δt is significantly larger than

any Rabi frequency in Ĥ2t ≡ Ĥ2g + Ĥ2ω, we can use 2nd-
order time-dependent perturbation theory to calculate
|ψω(t)〉:

|ψω(t+δt)〉'|ψω(t)〉 − i

~

∫ t+δt

t

dt′Ĥ2t(t
′) |ψω(t)〉

− 1

~2

∫ t+δt

t

∫ t′

t

dt′dt′′Ĥ2t(t
′)Ĥ2t(t

′′)|ψω(t)〉 .

(50)

We now calculate ρ̂ω(t + δt) = |ψω(t+ δt)〉 〈ψω(t+ δt)|,
while keeping only terms that are linear in δt, and drop-
ping every term that averages to zero upon integrating

over Sω, i.e. terms that are proportional to Ĥ2ω, Ĥ2gĤ2ω,

or Ĥ2ωĤ2g. We also replace ρ̂ω(t) → ρ̂(t), equivalent to
making the Markovian approximation. This gives:

˙̂ρ(t) ' − i
~

[Ĥ2g(t), ρ̂(t)]

+
1

~2δt

∫ ∞

0

∫ t+δt

t

∫ t+δt

t

dωdt′dt′′SωĤ2ω(t′)ρ̂(t)Ĥ2ω(t′′)

− 1

~2δt

∫ ∞

0

∫ t+δt

t

∫ t′

t

dωdt′dt′′Sω

×
[
Ĥ2ω(t′)Ĥ2ω(t′′)ρ̂(t) + ρ̂(t)Ĥ2ω(t′′)Ĥ2ω(t′)

]
, (51)

taking the form of the Lindblad master equation. Note
that in the final line of the equation, we have made the
substitution ˙̂ρ(t) ' [ρ̂(t+ δt)− ρ̂(t)]/δt. In the appendix,
we show that evaluating the integrals gives the standard
form of the master equation for both heating and mo-
tional dephasing.

1. Heating

When an ion crystal is close to a surface, moving
charges within the surface create extraneous electric
fields that decohere the motion of the crystal [36]. We
assume these fields are homogeneous over the extent of
the qubits’ motion, and model Ĥgh

2ω as:

Ĥgh
2ω(t) = ~F cos(ωt)x̂a

= 2~gh cos(ωt)(â† + â), (52)

where F is the projection of the electric force onto the
designated mode of motion, x̂a is the position operator,
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FIG. 3. Comparison between infidelities for a given initial phonon number In between numerical simulations (dashed lines)
and the analytic formulas (solid lines) for motional heating and dephasing, as described in this work, versus the bath coupling

rate. This is shown for initial states: |ψ(0)〉 = |↓↓〉 (middle blue), |ψ(0)〉 =
√

1/3 |↓↓〉 +
√

2/3 |↑↑〉 (top red), and |ψ(0)〉 =√
1/3 |↓↓〉 −

√
2/3 |↑↑〉 (bottom green). The left column (a-b) motional heating ˙̄n and the right column (c-d) is for motional

dephasing η. The first row is for ion crystals that begin in the ground state of the phonon mode n = 0, and the second row
(b,d,f) is for ion crystals that begin with a phonon mode where n = 50. Note that, for every figure, the values of In predicted
by the numeric and analytic results converge, for high-fidelity gates.

and gh ≡ 1
2F
√
~/2mωa. Writing this in the interaction

picture with respect to the frequency of the motional
mode ωa, and making the rotating wave approximation,
we get:

Ĥgh′
2ω (t) ' ~gh(â†ei(ωa−ω)t + âe−i(ωa−ω)t). (53)

We analyze the effect of Ĥgh′
2ω on Fna,ω by transform-

ing Ĥ2t = Ĥ2g + Ĥgh′
2ω into the interaction picture with

respect to Ĥgh′
2ω . We do this using the transformation:

Ûω = exp
{
γω(t)â† − γ∗ω(t)â

}
, (54)

giving a displacement operator that transforms the sys-
tem into a frame that follows the changes to the ‘classi-
cal’ position and momentum induced by the electric field
[37–39], up to a phase, where:

γω(t) =
gh

ω − ωa

[
ei(ωa−ω)t − 1

]
, (55)

which makes:

Ĥgh
2t = Ĥ2g + Ĥgh

2e

= ~Ω2gŜα

(
â†ei∆t + âe−i∆t

)

+~Ω2gŜα

(
γ∗ωe

i∆t + γωe
−i∆t

)
. (56)

This equation shows that heating can be represented as a
∝ Ŝα shift of the qubit in this frame. This is because the
electric field displaces the charged particles along the the
spin-dependent gradient that is driving the gate, shift-
ing the spin coupling strength. As we will show, this
correspondence results in an infidelity that does not de-
pend on the initial state of the motion, and is, therefore,

independent of temperature. Noting that Ĥ2g and Ĥgh
2e

commute at all times, we can factor the time propagator
for the whole system Û2t = Û2gÛ

gh
2e , where:

Ûgh2e = exp
(
− iΩ2gŜα

∫ tg

0

dt′
[
γ∗ω(t′)ei∆t

′
+ γω(t′)e−i∆t

′])
.

(57)

Since we assume small errors, we can Taylor expand Ûgh2e ,
and apply Eq. (5), which, to leading-order, gives:

Fghna,ω = 1− ξω(tg)λ
2
Ŝα
, (58)

where:

ξω(tg) ≡ Ω2
2g

∫ tg

0

∫ tg

0

dt′dt′′
[
γ∗ω(t′)ei∆t

′
+ γω(t′)e−i∆t

′]

×
[
γ∗ω(t′′)ei∆t

′′
+ γω(t′′)e−i∆t

′′]
.

(59)

We can now apply Eq. (49) and average over Sω:

Fgdna = 1− λ2
Ŝα

∫ ∞

0

dωSωξω(tg), (60)

leaving a final integral over ω to determine the fidelity:

ξ(tg) ≡Ω2
2g

∫ ∞

0

∫ tg

0

∫ tg

0

dωdt′dt′′Sω
[
γ∗ω(t′)ei∆t

′
+γω(t′)e−i∆t

′]

×
[
γ∗ω(t′′)ei∆t

′′
+γω(t′′)e−i∆t

′′]
. (61)
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Keeping only terms that do not average to zero upon
integrating over time (since tg = 2πN/∆):

ξ(tg) =
∫ ∞

0

∫ tg

0

∫ tg

0
dωdt′dt′′

4g2
hSωΩ2

2g

(ω − ωa)2
cos(ω′t′) cos(ω′t′′)

=
∫ ∞

0

∫ tg

0

∫ tg

−tg
dωdt′dt′′

2g2
hSωΩ2

2g

(ω − ωa)2
cos(ω′t′) cos(ω′t′′),

(62)

where ω′ ≡ ωa − ω −∆. We now make two approxima-
tions: extending the limits of the the first integral from
[tg,−tg] to [−∞,∞], and setting Sωa−∆ ' Sωa . After
this, the above integrals may be straightforwardly inte-
grated, giving:

ξ(tg) =
4πg2

hSωaΩ2
2gtg

∆2
, (63)

resulting in a final infidelity of:

I2gh
na =

π2g2
hSωa

8Ω2gN1/2
λ2
Ŝα
, (64)

We substitute the heating rate ˙̄n = πg2
hSωa (see ap-

pendix), giving a final form:

I ˙̄na
na =

π ˙̄nλ2
Ŝα

8Ω2gN1/2
. (65)

Since I ˙̄na
na is independent of na, as expected, averaging

over Pna simply gives I ˙̄na
na = I ˙̄na . In Fig. 3(a), we com-

pare Eq. (65) to the direct integration of the heating
master equation (see appendix) for various initial states
of the qubits and motion, showing that the two converge
when ˙̄n/Ω2g � 1.

2. Motional dephasing

In Sec. IV A, we derived the infidelity of a gate due
to a static shift in motional frequency. In this section,
we derive the effects of non-static shifts in the limit of
vanishingly small coherence times. We begin by adding
an error term:

Ĥgd
2ω(t) = ~gd cos(ωt)â†â, (66)

which adds a sinusoidally oscillating frequency shift to
the motional mode, giving Ĥ2t = Ĥ2g + Ĥgd

2ω for the to-
tal system Hamiltonian. In this section, we first trans-
form Ĥ2t into the interaction picture with respect to Ĥ2g,
which gives:

Ĥgd
2I = ~gd cos(ωt)[â† + Ŝαγ

∗][â+ Ŝαγ], (67)

where γ is here defined by Eq. (42). We now determine

Ûgd2I using Eq. (7), leaving the integrals unevaluated for

now. Since this results in a factored Ûgd2t = Û2gÛ
gd
2I , we

can apply Eq. (5). Dropping all terms higher-order than
∝ g2

d gives:

Fgdna,ω = 1− 2g2
d

∫ tg

0

∫ t′

0

dt′dt′′ cos(ωt′) cos(ωt′′)
[
n2
a

+ 〈Ŝ2
α〉
{
na
(
|γ(t′)|2 + |γ(t′′)|2

)
+ naγ(t′)γ∗(t′′)

+(na + 1)γ∗(t′)γ(t′′)
}

+ 〈Ŝ4
α〉 |γ(t′)|2|γ(t′′)|2

]

+g2
d

∫ tg

0

∫ tg

0

dt′dt′′ cos(ωt′) cos(ωt′′)
[
n2
a

+ 〈Ŝ2
α〉na

(
|γ(t′)|2 + |γ(t′′)|2

)
+

〈Ŝα〉
2
{
naγ

∗(t′)γ(t′′) + (na + 1)γ(t′)γ∗(t′′)
}

+ 〈Ŝ2
α〉

2 |γ(t′)|2|γ(t′′)|2
]
. (68)

We can plug this equation into Eq. (49) to obtain Fgdna .
Upon doing this, we are left with a sum of triple integrals,
each of which is proportional to:

ζ =

∫ ∞

0

∫ tg

0

∫ ts

0

dωdt′dt′′
Sω
2

{
cos(ω[t′′+t′])+cos(ω[t′′−t′])

}
,

(69)

where ts ∈ {tg, t′}. In order to evaluate Eq. (69), we
perform the following manipulations:

ζ =

∫ ∞

−∞

∫ tg

0

∫ ts

0

dωdt′dt′′
Sω
4

{
cos(ω[t′′+t′])+cos(ω[t′′−t′])

}

' S0

4

∫ ∞

−∞

∫ tg

0

∫ ts

0

dωdt′dt′′
{

cos(ω[t′′+t′])+cos(ω[t′′−t′])
}

=
πS0

2

∫ tg

0

∫ ts

0

dt′dt′′
{
δ(t′′ + t′) + δ(t′′ − t′)

}
, (70)

where, in the second line, we assumed a white noise bath
of ω and pulled Sω ' S0 outside of the integral. We can
now straightforwardly evaluate the integrals in Eq. (68),
which gives:

Fgdna ' 1− πg2
dS0

(Ω2
2gtg

∆2

)(
[2na + 1]λ2

Ŝα
+

3Ω2
2g

∆2
λ2
Ŝ2
α

)
,

(71)

where, plugging in tg = 2πN/∆ and ∆ = 4Ω2gN
1/2 gives

a final infidelity of:

Igdna =
πη

16Ω2gN1/2

(
[2na + 1]λ2

Ŝα
+

3

16N
λ2
Ŝ2
α

)
, (72)

where η ≡ πg2
dS0/2 (see appendix). Note that η = 2/τ ,

where τ corresponds to the decay time of the coherence
between two neighboring Fock states. In Fig. 3(b), we
compare Eq. (72) to the direct numerical integration of
the motional dephasing master equation (see appendix),
showing the two calculations converge when η/Ω2g � 1
for various initial states of the qubits and motion.
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Two-Qubit Gate Errors

error name equation infidelity

static motional shift Eq. (38) I2δ = π2δ2

64Ω2
2g

[
(2n̄a + 1)λ2

Ŝα
+ λ2

Ŝ2
α
/4N

]
trap anharmonicity Eq. (43) I2ε = 9π2ε2

16Ω2
2g

{
λ2
Ŝα

[
4
(

2n3
a + 3n2

a + 3na + 1
)

+ 6
N

(
2n2

a + 2n̄a + 1
)

+ 9
4N2

(
2n̄a + 1

)]
+λ2

Ŝ2
α

[
3

8N
(11n2

a + 11n̄a + 3) + 3
4N2 (2n̄a + 1) + 9

64N3

]}
field inhomogeneities Eq. (47) I2Ω′′2g =

9π2Ω′′22g

16Ω2
2g

{
λ2
Ŝ2
α

[
4n2

a + 4n̄a + 1 + 3
2N

(
2n̄a + 1

)
+ 9

16N2

]
+ 4

N
λ2
Ŝα

(
2n̄a + 1

)}
heating Eq. (65) I2 ˙̄na = π ˙̄n

8Ω2gN
1/2 λ

2
Ŝα

motional dephasing Eq. (72) I2η = πη

16Ω2gN
1/2

[(
2n̄a + 1

)
λ2
Ŝα

+ 3
16N

λ2
Ŝ2
α

]
TABLE II. Summary of infidelities for N -loop two-qubit gates. See text for variable definitions.

V. CONCLUSION

In this work, we derived formulae describing how sev-
eral motional error sources in trapped ions and trapped
electrons affect the fidelity of one- and two-qubit gates.
The effect of these error sources on infidelities are typ-
ically calculated numerically when determining an indi-
vidual experiment’s error budget. Therefore, this work
serves to both expedite the creation of error budgets,
and provide physicists with a deeper understanding of
how these gate infidelities depend on the parameters of
their experiments: temperature, initial qubit state, the
number of loops traversed in phase-space, and so on. Fi-
nally, we compare all our analytic derivations to their
respective numerical simulations, showing they converge
for high-fidelity gates.
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APPENDIX

A. Static Qubit frequency shifts

If the qubit frequency is erroneously shifted from its
desired value during the course of a one-qubit gate, the
Hamiltonian is given by:

Ĥ1t = Ĥ1g + Ĥq
1e

= ~Ω1gσ̂x + ~δσ̂z, (73)

where we have assumed that the gate operation is polar-
ized in the x̂-direction. Equation (73) acts as a rotation
about the n̂ axis, where:

n̂ ≡ Ω1gx̂+ δẑ√
Ω2

1g + δ2
, (74)

at an angular frequency:

Ω′1g ≡
√

Ω2
1g + δ2. (75)

This gives a time evolution operator:

Ût(t) = e−iΩ
′
1gt(n̂·~σ)

= Î cos(Ω′1gt)− i(n̂ · ~σ) sin(Ω′1gt). (76)

This is the exact solution for the time evolution of
Eq. (73) [40]. In this work, however, we concerned with
calculating the the infidelity I1q due to small values of δ.
We, therefore, relate Ût to Û1g by expanding Ω′1g and n̂
about the point δ = 0, which gives:

Ω′1g ' Ω1g +
δ2

2Ω1g

n̂ '
(

1− δ2

2Ω2
1g

)
x̂+

( δ

Ω1g

)
ẑ. (77)
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After expanding these two variables, we can also expand
the sinusoidal functions that appear in Eq. (76):

cos(Ω′1gt) ' cos(Ω1gt)−
( δ2t

2Ω1g

)
sin(Ω1gt)

sin(Ω′1gt) ' sin(Ω1gt) +
( δ2t

2Ω1g

)
cos(Ω1gt). (78)

Plugging these expansions into Eq. (76) gives:

Û1g

{
1−i

( δ2t

2Ω1g

)
σ̂x

}
+i sin(Ω1gt)

{( δ2

2Ω2
1g

)
σ̂x−

( δ

Ω1g

)
σ̂z

}
.

(79)

We can then plug this equation into Eq. (3), which gives:

F =
∣∣∣ 〈ψ(0)|

{
1− i

( δ2t

2Ω1g

)
σ̂x

}
+ i sin(Ω1gt)Û

†
1g

{( δ2

2Ω2
1g

)
σ̂x

−
( δ

Ω1g

)
σ̂z

}
|ψ(0)〉

∣∣∣
2

. (80)

Only keeping terms up to O([δ/Ω1g]
2), we get:

F ' 1−
( δ

Ω1g

)2{
sin2(Ω1gt)

−
[

cos(Ω1gt) sin(Ω1gt) 〈σ̂z〉+ sin2(Ω1gt) 〈σ̂y〉
]2}

.

(81)

If we assume that |ψ(0)〉 = |0〉, i.e. 〈σz〉 = −1 and 〈σy〉 =
0, this gives an infidelity of:

I1q '
( δ2

Ω2
1g

)
sin4(Ω1gt). (82)

If we average |ψ(0)〉 over the Bloch sphere, this gives:

I1q '
( 2δ2

3Ω2
1g

)
sin2(Ω1gt). (83)

B. Static motional frequency shifts with Walsh
sequences

In Sec. IV A, we showed that a geometric phase gate
traversing a single loop in phase-space produces an error
operator of:

Û δ,02e ≡ exp
(
− iΩ2gδtl

∆
Ŝα[â+ â†]− 2iΩ2

2gδtl

∆2
Ŝ2
α

)
,

(84)

where we have replaced the gate time tg in Eq. (37) with

a single loop time tl = 2π/∆. The error described by Û δ,02e

comprises a spin-dependent (∝ Ŝα) displacement opera-
tor, representing the residual spin-motion entanglement,
and a ∝ Ŝ2

α operator, representing the error in the geo-
metric phase. Reference [33] showed that administering

pi-pulses such that Ĥ → −Ĥ can suppress the former of
these. To see how this works, we first must understand
that the kth-order Walsh sequence W (2k−1, x) is simply
two concatenated (k−1)th-order Walsh sequences, where

Ĥ → −Ĥ for the latter of the two. If the error operator
for the (k − 1)th-order Walsh function takes the form:

Û δ,k−1
2e = exp

(
− iŜαε

[
γâ† + γ∗â

])
, (85)

where ε is an arbitrary constant, and:

γ(t) =

∫ t

t0

dt′ei(∆+δ)t′

= ei(∆+δ)t0

∫ t−t0

0

dt′ei(∆+δ)t′

= eiδt0
∫ t−t0

0

dt′ei(∆+δ)t′ , (86)

where, in the third-line, we have assumed that that t0 is
an integer multiple of 2π/∆. If tk−1 is the time it takes a
(k − 1)th-order Walsh sequence to complete, γ(t) for the
second of the two concatenated Walsh sequences is:

γ(2tk−1) =

∫ 2tk−1

tk−1

dt′ei(∆+δ)t′

= eiδtk−1

∫ tk−1

0

dt′ei(∆+δ)t′ , (87)

meaning that γ for the second sequence will be identical
to the first, up to a phase eiδtk−1 . Keeping this in mind,
we get:

Û δ,k2e =exp
(
iŜαε

[
eiδtk−1γâ†+e−iδtk−1γ∗â

])
exp
(
−iŜαε

[
γâ†+γ∗â

])

' exp
(
− iŜαε(iδtk−1)

[
− γâ† + γ∗â

])
, (88)

showing that increasing k by one reduces the argument of

Û δ,k−1
2e by a factor of iδtk−1. A W (1, x) Walsh sequence

is a two loop gate where Ĥ → −Ĥ after the first loop at
tk−1 = tl. This gives:

Û δ,12e = exp
(
− Ω2g(iδtl)

2

∆
Ŝα[â− â†]− 2iΩ2

2gδtg

∆2
Ŝ2
α

)
,

where tg = 2πN/∆, where N = 2k is the number of
loops in phase space. This process can be repeated for a
W (3, x) sequence, which is just two concatenated W (1, x)

sequences, such that Ĥ → −Ĥ after the first sequence at
tk−1 = 2tl:

Û δ,22e = exp
(
− Ω2g(iδtl)

3

∆
(1 · 2)Ŝα[â+ â†]− 2iΩ2

2gδtg

∆2
Ŝ2
α

)
.

(89)

This pattern can be repeated to give the error propagator
for a general kth-order Walsh sequence:

Û δ,k2e = exp
(
− Ω2g(iδtl)

k+12
k(k−1)

2

∆
Ŝα[â+(−1)kâ†]

− 2iΩ2
2gδtg

∆2
Ŝ2
α

)
. (90)
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This error operator can be plugged into Eq. (5) and Tay-
lor expanded to find the leading-order corrections to the
gate infidelity:

Iδ,kna =2k(k−1)
Ω2

2g(δtl)
2(k+1)

∆2
(2na + 1)λ2

Ŝα
+

4Ω4
2gδ

2t2g
∆4

λŜ2
α
,

(91)

which we can simplify by substituting ∆ = 4Ω2gN
1/2,

tl = 2π/∆, tg = 2πN/∆, and N = 2k. Upon averaging
over Pna , we obtain the infidelity of a two-qubit gate un-
dergoing a W (2k−1, x) Walsh sequence, for an arbitrary
initial state of the qubits’ and mixed-state of the motion:

Iδ,k=
( πδ

Ω2g

)2(k+1)

2−(5k+6)(2n̄a+1)λ2
Ŝα

+
π2δ2

Ω2
2g

2−(k+8)λ2
Ŝ2
α
.

(92)

C. Markovian master equations

Equation (51) contains three triple integrals:

Υi =
1

~2δt

∫ ∞

0

∫ t+δt

t

∫ t+δt

t

dωdt′dt′′SωĤ2ω(t′)ρ̂(t)Ĥ2ω(t′′)

Υii =
1

~2δt

∫ ∞

0

∫ t+δt

t

∫ t′

t

dωdt′dt′′Sωρ̂(t)Ĥ2ω(t′′)Ĥ2ω(t′)

Υiii =
1

~2δt

∫ ∞

0

∫ t+δ

t

∫ t′

t

dωdt′dt′′SωĤ2ω(t′)Ĥ2ω(t′′)ρ̂(t).

(93)

Once we determine Ĥ2ω(t), we can evaluate these inte-
grals using the similar approximations to that in the text.

Heating master equation

We begin with Eq. (53), representing a stray electric
field at frequency ω, taken in the rotating frame with
respect to the frequency of the trap ωa, and makes the
rotating wave approximation:

Ĥgh′
2ω (t) ' ~gh

(
â†ei[ωa−ω]t + âe−i[ωa−ω]t

)
. (94)

Plugging this into Υi in Eq. (93) gives:

Υi =
g2
h

δt

∫ ∞

0

∫ t+δt

t

∫ t+δt

t

dωdt′dt′′Sω
{
â†ρ̂(t)â†eiω

′(t′′+t′)

+ âρ̂(t)âe−iω
′(t′′+t′)+ â†ρ̂(t)âe−iω

′(t′′−t′)

+ âρ̂(t)â†eiω
′(t′′−t′)

}
, (95)

where ω′ ≡ ωa−ω. We can evaluate this integral by first
replacing Sω with a constant Sωa :

Υi '
g2
hSωa
δt

∫ ∞

0

∫ t+δt

t

∫ t+δt

t

dωdt′dt′′
{
â†ρ̂(t)â†eiω

′(t′′+t′)

+âρ̂(t)âe−iω
′(t′′+t′)+â†ρ̂(t)âe−iω

′(t′′−t′)+âρ̂(t)â†eiω
′(t′′−t′)

}

' g2
hSωa
2δt

∫ ∞

−∞

∫ t+δt

t

∫ t+δt

t

dωdt′dt′′
{
â†ρ̂(t)â†eiω

′(t′′+t′)

+âρ̂(t)âe−iω
′(t′′+t′)+â†ρ̂(t)âe−iω

′(t′′−t′)+ âρ̂(t)â†eiω
′(t′′−t′)

}

=
πSωag

2
h

δt

∫ t+δt

t

∫ t+δt

t

dt′dt′′
{
δ(t′′ + t′)[â†ρ̂(t)â† + âρ̂(t)â]

+δ(t′′ − t′)[â†ρ̂(t)â+ âρ̂(t)â†]
}

= πSωag
2
h[â†ρ̂(t)â+ âρ̂(t)â†]

= ˙̄n[â†ρ̂(t)â+ âρ̂(t)â†], (96)

where, in the last line, we have introduced the heating
rate ˙̄n ≡ πSωag

2
h. Keeping in mind the added factor of

1/2 that comes from changing the limits of integration
from t + δt to t′ in the integral over dt′′, we can follow
this prescription to evaluate Υii and Υiii. This gives a
final master equation for Markovian heating of:

˙̂ρ(t) = − i
~

[
Ĥ2g(t), ρ̂(t)

]
+ ˙̄n

{
â†ρ̂(t)â+ âρ̂(t)â†

−1

2

(
â†â+ ââ†

)
ρ̂(t)− 1

2
ρ̂(t)

(
â†â+ ââ†

)}

(97)

Motional dephasing master equation

We begin with Eq. (66), representing fluctuations of
the motional frequency of the trap at frequency ω as:

Ĥgd
2ω(t) = ~gd cos(ωt)â†â. (98)

Plugging this into Υi in Eq. (93) gives:

Υi =
g2
d

δt

∫ ∞

0

∫ t+δt

t

∫ t+δt

t

dωdt′dt′′Sωcos(ωt′)cos(ωt′′)â†âρ̂(t)â†â

=
g2
d

2δt

∫ ∞

0

∫ t+δt

t

∫ t+δt

t

dωdt′dt′′Sω
{

cos(ω[t′′ + t′])

+ cos(ω[t′′ − t′])
}
â†âρ̂(t)â†â. (99)

We can, again, make the approximation of replacing the
Sω term with a constant S0, and change the limits of the
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integral over ω to obtain:

Υi '
g2
dS0

4δt

∫ ∞

−∞

∫ t+δt

t

∫ t+δt

t

dωdt′dt′′
{

cos(ω[t′′ + t′])

+ cos(ω[t′′ − t′])
}
â†âρ̂(t)â†â

=
πg2

dS0

2δt

∫ t+δt

t

∫ t+δt

t

dt′dt′′
{
δ(t′′+t′) + δ(t′′ − t′)

}
â†âρ̂(t)â†â

=
πg2

dS0

2
â†âρ̂(t)â†â

= ηâ†âρ̂(t)â†â, (100)

where, in the last line, we have introduced the motional
dephasing rate η ≡ πg2

dS0/2. Again, keeping in mind
the limits of integration over dt′′, Υii and Υiii can be
evaluated in the same manner. This gives a final equaiton
for Markovian motional dephasing:

˙̂ρ(t) = − i
~

[
Ĥ2g(t), ρ̂(t)

]

+η
{
â†âρ̂(t)â†â− 1

2
[â†â]2ρ̂(t)− 1

2
ρ̂(t)[â†â]2

}
.

(101)
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C. Langer, T. Rosenband, and D. J. Wineland, “Exper-
imental demonstration of a. robust, high-fidelity geomet-
ric two ion-qubit phase gate,” Nature 422, 412 (2003).

[30] S. Weidt, J. Randall, S. C. Webster, K. Lake, A. E.
Webb, I. Cohen, T. Navickas, B. Lekitsch, A. Retzker,
and W. K. Hensinger, “Trapped-ion quantum logic with
global radiation fields,” Phys. Rev. Lett. 117, 220501
(2016).

[31] R. T. Sutherland, R. Srinivas, S. C. Burd, D. Leibfried,
A. C. Wilson, D. J. Wineland, D. T. C. Allcock, D. H.
Slichter, and S. B. Libby, “Versatile laser-free trapped-
ion entangling gates,” New J. Phys. 21, 033033 (2019).

[32] R. T. Sutherland, R. Srinivas, S. C. Burd, H. M. Knaack,
A. C. Wilson, D. J. Wineland, D. Leibfried, D. T. C.
Allcock, D. H. Slichter, and S. B. Libby, “Laser-free
trapped-ion entangling gates with simultaneous insensi-
tivity to qubit and motional decoherence,” Phys. Rev. A
101, 042334 (2020).

[33] D. Hayes, S. M. Clark, S. Debnath, D. Hucul, I. V. Inlek,
K. W. Lee, Q. Quraishi, and C. Monroe, “Coherent error
suppression in multiqubit entangling gates,” Phys. Rev.
Lett. 109, 020503 (2012).

[34] Y. Shapira, R. Shaniv, T. Manovitz, N. Akerman, and
R. Ozeri, “Robust entanglement gates for trapped-ion
qubits,” Phys. Rev. Lett. 121, 180502 (2018).

[35] L. Mandel and E. Wolf, Optical coherence and quantum
optics (Cambridge university press, 1995).

[36] M. Brownnutt, M. Kumph, P. Rabl, and R. Blatt, “Ion-
trap measurements of electric-field noise near surfaces,”
Rev. Mod. Phys. 87, 1419 (2015).

[37] P. Ehrenfest, “Bemerkung über die angenäherte
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