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Abstract

Consider the effective Hamiltonian H(p) associated with the me-
chanical Hamiltonian H(p, z) = |p|?+V (z). We prove that for generic
V, H is piecewise 1d in a dense open set in two dimensions using Aubry-
Mather theory.

1 Introduction

Assume that H = H(p,z) € C(R" x R") is Z"-periodic in z and uniformly
coercive in p, i.e

lim min H(p,z) = +o0.
|p] =400 zER™

For each € > 0, let u¢ € C(R™ x [0,00)) be the viscosity solution to the
following Hamilton-Jacobi equation

{u§ + H (Du€, %) =0 in R™ x (0, 00), (1.1)

u(z,0) = g(x) on R".

It was proved by Lions, Papanicolaou and Varadhan [14] that u¢, as € — 0,
converges locally uniformly to u, the solution of the effective equation,

{ut +HDu)=0 inR" x (0,00), 12)

u(z,0) = g(z) on R™.

Here H : R"® — R is the so called “effective Hamiltonian”, which is deter-
mined by the following cell problem: for any p € R", there exists a unique
number H(p) € R such that the equation

H(p+ Dv,z) = H(p) (1.3)
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has a periodic viscosity solution. When H is convex in p, the effective
Hamiltonian is convex and has a variational formulation

H(p) = inf max H(p-+ Do), ). (1.4)

Although there is a lot of literature regarding homogenization of Hamilton-
Jacobi equations in various settings, not much is known about finer proper-
ties of the effective Hamiltonian H due to lack of tools. In this paper, we
focus on the mechanical Hamiltonian

1
Hip,) = 3ol + V(2).
Here V is assumed to be C*(R") for k > 2 and Z"-periodic. The following

properties hold in any dimension.

e Property 1: Quadratic growth.
+ min + max V.
2P e =P = P R
e Property 2: Minimum Value

min H = max V.
Rn Rn

More interestingly, for quite general V', the minimum level set
Fo={peR" H= HI}&%XV}

is an n-dimensional convex set ([6]).

e Property 3: Strict convexity along non-tangential direction Using
techniques from weak KAM theory, it was proved in [9] that H is not linear
along any direction that is not tangent to its level set. In particular, this

implies that if
— [ p1+ P2 1— 1—
Hl—— ) =-H -H

then

H(\p1 + (1 —N)pa) = H(py) for all X € [0,1].

Although H inherits some global features of %\p|2, its local properties
could be drastically different from those of %] p|?. In this paper, we will prove
that for generic V, H is piecewise 1d on a dense open set using Aubry-Mather
theory. Precisely speaking,



Theorem 1.1 For any k > 2, there is a residual subset G of C*(T?) such
that for every V € G, there exists a sequence of bounded open sets {O;}i>1
in R? such that

(1)

Oy = U?ilOi

is a dense open set in R?;
(2) For each i € N, there exist a unit vector ¢; € R? and a convex
function f; : R — R such that

Hy(p) = filai-p) in O
Here Hy is the effective Hamiltonian associated with §|p|* + V.

In general, the above conclusion might not be true. For example, consider
the separable case when V(z) = h(z1) + g(z2). In dynamical system, some
generic perturbation mechanisms based on Baire property in general topol-
ogy have often been employed to filter out those exceptional situations. How-
ever, it is usually impossible to tell whether a concrete example is generic
or not.

G in the above theorem is the intersection of a sequence of dense open
sets of Ck(']I‘z). There are two choices of G. One choice is to directly use
the residual set in Corollary 1.2 of [3] whose existence is established under
certain abstract frameworks of convex analysis. The other choice is the G
constructed in the appendix (4.15), which is weaker in the sense of dynamical
system but is more explicit and enough for our purpose. Moreover, the result
is expected to hold for more general Hamiltonian. In this paper, for clarity
of presentation, we will only focus on the mechanical Hamiltonian that is
interesting enough.

Notation and terminology:

e T" = R"/Z" represents the n-dimensional flat torus. C*¥(T") is the set of
all Z"-periodic C*¥(R™) functions.

e A vector ¢ € R™ is called a rational vector if there exists A € R\{0} such
that Aqg € Z"™.

e (m,n) € Z? is called irreducible if |m| and |n| are relatively prime.

e A curve £ : R — T" is called periodic if there exists 7' > 0 such that

Et+T)=¢(t) forallteR.



T is called a period. If Tj > 0 is the minimal period of £ and £ is lifted to
R™, then
£(To) — £(0) = (m,n) € Z°

is the first homology class of €.
e Denote by L(q,z) : R™ x R™ — R the Lagrangian

L@w%=§$ﬂrp—H@wﬂ-

e For p1, po € R™, let

[p1,p2] = {tp1 + (1 — t)p2| t € [0, 1]}

be the line segment connecting p; and ps.

2 Preliminary

For readers’ convenience, in this section, we give a brief review about some
basic knowledge and relevant results of Aubry-Mather theory and the weak
KAM theory. See [1], [7], [9] and [10] for more details. Our presentation
will be mainly from PDE point of view. Many parts are very close to the
standard theory of Hamilton-Jacobi equations. The major difference lies
on the classical Aubry-Mather theory, which is based on 2d topology and
cannot be captured by PDE approaches.

Let T" = R"/Z" be the n-dimensional flat torus and H(p,z) € C?(R" x
R™) be a Hamiltonian satisfying

(H1) (Periodicity) x — H(p,x) is Z™-periodic;
(H2) (Uniform convexity) There exists # > 0 such that for alln = (n1,...,m,) €
R™ and (p,x) € R™ x R™,
n
0’H
———n; > 0|
Zm%%m_w

1,j=1

A major goal in dynamical system is to understand long time behaviors of
trajectories of the Hamiltonian system

{c’c(t) = D,H(p, )
p(t) = _DIH(p7 x)
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When the Hamiltonian H is a small perturbation of the integrable case, the
famous KAM theory based on analytic approaches says that most trajecto-
ries lie on invariant tori and hence integrable. For general H, when n = 2,
the classical Aubry-Mather theory provides nice description of structures of
action minimizing trajectories based on topological approaches. See section
2.3 for more details. In [15], Mather has extended the Aubry-Mather theory
to higher dimensions through variational methods. The weak KAM theory
reveals interesting connections between Mather’s theory and solutions to the
cell problem (1.3). In fact, in the language of PDE, the classical KAM the-
ory can be formulated as: in the perturbative case, for “most” Q = DH (p),
the cell problem has a unique smooth solution v up to a constant and the
corresponding invariant torus is given by

Tg ={(¢,z) e R" xR": p+ Dv(xz) = DyL(q,x)}.

2.1 Aubry set and Mané set

Let v be a solution to the cell problem (1.3) . We say that a curvey : R — R”
is a global characteristic associated with v if for all t; < to and u(z) = p-z+v

/ " L) + F(p) ds = u(y(t)) — u(y(tr)).

t1

Write
Jy = U {(¥(t),7(t))| t € R, ~ is a global characteristic of v}.

Such a « is also called a (v, L, H(p))-calibrated curve in [10]. According
to classical theory in Hamilton-Jacobi equations [13], that v is a global
characteristic of v is equailvant to saying that v is differentiable along v and
forallt e R

p+ Du(y(t)) = Du(y(t)) = D L((t),7(t)). (2.5)

Moreover, owing to Lemma 2.1, every global characteristic is an absolutely
minimizing curve with respect to L(q,x) + H(p). So it satisfies the Euler-
Lagrange equation equation

d(DgL(5(1),¥(t)))
dt

= Do L(5(t),¥(t)). (2.6)

A curve v : R — R" is called an absolutely minimizing curve with respect
to L(q,z) + c if for any —oo < s3 < 51 < 00, —00 < tg2 < t; < oo and



n € AC([s1, s2], R™) subject to n(s2) = y(t2) and n(s1) = v(t1) the following
inequality holds,

to

/82 (L(1(s),n(s)) + ¢) ds = / (L(7(s),7(s)) + ¢) ds. (2.7)

S1 t1

Here AC([a,b], S) stands for the set of absolutely continuous curves [a, b] —
S.

n n(s2) = 7(t2)

'

Figure 1

v : R — R” is called a universal global characteristic if it is a character-
istic for every viscosity solution to (1.3).
For p € R™, the collection of all universal characteristics

A, =U{(3(t),7(t))| t € R, ~ is a universal global characteristic}

= My is a solution to (1.3) Iy

is defined as the Aubry set. Hence the following graph property holds:
A, c {(g,x) € R" x R" : Du(x) exists and p + Dv(z) = DyL(g,z)}. (2.8)

Write A, as the projection of ,[lp on R™.
Also, we define the collection of all global characteristics associated with
viscosity solutions of (1.3)

N, =U{(%(),7(t))| t € R, ~ is a global characteristic}

= Uy is a solution to (1.3) Jy

as the Mané set.

In standard definitions ([10]), Aubry set and Mané set are on R"™ x T".
Here for convenience, we lift them to R™ x R™. Let us highlight several key
properties

e Property 4 Two absolutely minimizing curves cannot intersect twice
unless they are the same after suitable translations in time. This property
together with 2d topology plays a crucial role in the classical Aubry-Mather
theory in two dimensions.



e Property 5 Two universal global characteristics cannot intersect unless
they are the same after suitable translation in ¢;

e Property 6 Any global characteristic, when it is projected to T™, cannot
intersect itself unless the orbit is periodic.

e Property 7 If ¢ is a global characteristic, then for any sequence T;, — oo
as m — o0,

1 — H 2.
oSBT SOHD) (29)
if the limit exists. Here OH (p) is the subdifferential of H at p. The full limit
i 6D —€0)
T—o0 T

if exists, is called the rotation vector of &.

2.2 Mather set

Denote by W the set of all Borel probability measures on R™ x T™ which
are Euler-Lagrangian flow invariant. For fixed p € R", u € W is called a
“Mather measure” if

/ (L(g,x) —p-q)dp = mm/ L(q,z) —p-q)dv.
Rnx’ﬂ‘n I/EW nX’]I‘n

Denote by W, the set of all such Mather measures. The value of the mini-
mum action on the right hand side turns out to be —H (p), i.e.,

min (L(g,z) —p-q)dv = —H(p). (2.10)
vew R xTn

In dynamical system literature, the effective Hamiltonian H is called “o-
function” and is often denoted as a(c), where ¢ is the same as p.

The Mather set is defined to be the closure of the union of the support
of all Mather measures, i.e.,

M, = | supp(p).

HEWD

The projected Mather set M,, is the projection of Mp to the torus. A curve
€ :R — T" is called an orbit on M,, if it satisfies (2.6) and

(£(0).£(0)) € M,
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If we lift Mvp to R™ x R"™ (or project .Zp and ./\7p in our definition to R™ x T™)
, the following relation holds

M, C A, C N,
In particular, the graph property (2.8) also holds for Mp. Also, all tra-
jectories on M), are universal global characteristic and, hence, absolutely
minimizing curves with respect to H(p). Moreover, all viscosity solutions to
the cell problem (1.3) are C1! on M,,. See [9] for instance.

One hope is that Mather sets might have some sort of “integrable struc-
ture” in the sense that long term behaviors of trajectories there can be better
understood. However, when n > 3, very little has been known in this direc-
tion except in certain special cases like the classical Hedlund example and its
generalizations ([11], [12]). We also would like mention that for generic V,
Corollary 1.2 in [3] says that there are at most n+1 ergodic Mather measures
for every p, which is proved under some framework of convex analysis.

The following Lemma is a well known fact in the theory of Hamilton-
Jacobi equations [13].

Lemma 2.1 Let U be an open subset of R™. Assume that for some ¢ € R,
w € WH(U) satisfies that

H(Dw,z) <c¢ foraexeclU.
Then for any n € AC([t1,t2],U),

/ " L) n(0) + cdt > win(ta)) — win(ty)).

t1

The equality holds if and only if n is a characteristic of w, i.e., w is differ-
entiable along 1, H(Dw(n(t)),n(t)) = ¢ and Dw(n(t)) = DeL(n(t), n(t)) for
te [t1,t2].

Using solutions to the cell problem (1.3), as an immediate corollary, we
have that

Corollary 2.1 If~:[0,7] — R satisfies that
A(T) = (0) =T 2",
then
T R —
| re )z p T
0

The equality holds if and only if v is a periodic orbit in M.



2.3 The classical Aubry-Mather theory when n = 2

In this section, we assume that n = 2 and focus on
Lo
H(p,z) = Slpl” + V.
Throughout this section, we fix

¢ > maxV.
Rn

Due to (2.9), the 2d topology and fact that different trajectories on M,,
cannot intersect, it can be proved that the level curve ([5])

Se={H(p) = c}

is C'. This is equivalent to saying that for every p € S., there exists a unit
vector g, such that

OH(p) = {Agp| A € la,b]}. (2.11)
Here a < b are two positive constants depending on p. ¢, is the outward
unit normal vector of S, at p. Note that if a = b, then H is differentiable at
p.
e Property 8: Cornerstone of the Aubry-Mather theory. If g, is a

rational vector, then all orbits on M, are periodic orbits with the same first
homology class (m,n) € Z? that is irreducible.

Remark 2.1 Choose p, — p as k — ~+oo such that H(py) > H(p) and
dp. = 4p, then by standard convex analysis,

lim 0H = bq,.
k—+o0 (pk> v
Together with the stablity of periodic orbits (see the analysis in the appendix),
we can deduce that there is a periodic orbit on M, whose rotation vector is
bg,. Similarly, there is a periodic orbit on M, whose rotation vector is agy.

e Property 9: Identification with circle homeomorphism. Choose
p € S such that g5 = (0,1). Let £ be a periodic orbit on M, and lift it to
R2. Now for each k € Z, denote

For p € R? with ¢, # (0,1) or (0,—1), let 7 : R — R? be a global character-
istic associated with a solution to the cell problem (1.3). Owing to Property



1 in section 2, for each k € Z, = intersects with & exactly once. Let ai € R
be such that

v N & = Ep(arT).

Figure 2

Since v cannot intersect itself when it is projected to T?, either a; = 0
for all k € Z or {ap}rez is a strictly monotonic sequence. If {ay}rez is
strictly increasing, there exists a circle homeomorphism f such that

flag) = agy1 for all k € Z.

See [1, Theorem 3.15] for further details on the definition of f. If {ax}rez
is strictly decreasing, then consider f(ar) = ap_1. We would like to men-
tion that this identification plays a crucial role in obtaining the optimal
convergence rate |u¢ — u| = O(e) for homogeneous H(p, z) [16].

We say that p € S, is a linear point if there exists p’ € R? such that
p’ # p and the line segment (edge)
p,p'] C Se.

Clearly, ¢, = gy and g, - (p — p') = 0. Combining with the definition of
Mather sets, we can deduce that, for every p” € [p, /],

My = M,,. (2.12)
The following two results were poved in [2].

e Property 10 p € S. is a linear point if and only if M,, # T2. Moreover, p
is a linear point, then ¢, is a rational vector. The converse might not be true
in general. Nevertheless, for generic V, Corollary 1.2 in [3] and the above
Property 8 imply that if g, is an rational vector, then M, has at most 3
periodic orbits and, hence, p must be a linear point. See [4] for hyperbolicity
of periodic orbits.
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e Property 11 S, is not strictly convex (i.e., the set of linear points on S,
is not empty) unless V' is a constant.

Results in [2] are presented under the framework of minimizing geodesic
associated with a periodic Riemannian metric on R?2. Note that for me-
chanical Hamiltonians, every absolutely minimizing curve associated with
L(q, x)+ c is a minimizing geodesics associated with the Riemannian metric

g=12(c—V(z))(dr1 ® dzy + dra @ dxa).

The converse is also true after proper reparametrization.

3 Proof of Theorem 1.1

Fix pp € R? with H(pp) > maxpz V. Denote

co = H(po)
and o
Seo = {p € R*| H(p) = co}.

Assume that the outward unit normal vector g, (see (2.11)) at po is a

rational vector. Denote
~ (myn)

o = iy n2

Here
(m,n) : the first homology class of periodic orbits on M,,.

Throughout this section, we lift M,,, to R? and still denote it as M,,. In
addition, for convenience, the lift of a periodic orbit on M,, is also called a
periodic orbit.

Suppose that v is a viscosity solution to

1
§|P0 + D> 4+V = cp.

For A, B C R? and
u=po-T+v,

we define the barrier between two sets as

(A B) = _int_ (h(z,y) = (u(y) — u(@))

11



Here .
1
h(z,y) = inf 2=V d
@ =, it ([ SRV +ads)
7(0)=z, y(t)=y
and AC([0,t]) the set of all absolutely continuous curve [0,t] — R?. Owing

to Lemma 2.1,
dy(A,B) > 0.

If L1 : R — R? and Lo : R — R? are two curves, d, (L1, L2) is understood
as du(Al,Ag) for A1 = Ll(R) and A2 = LQ(R)

Lemma 3.1 Suppose that v1 and vz are two periodic orbits on My,. Then

du(yi,72) =, lim - (h(71(s),72(8) — (u(2(t) — u(71(5))))-

t——+o00, s——
Proof: Denote
G(t,s) = h(1(s),72(1)) — (u(12(t)) — w(n1(s)))-

We claim that G is decreasing on ¢ and increasing s. In fact, for 1 < to, due
to the triangle inequality,

h(71(8);72(t2)) < h(71(8),72(t1)) + h(12(t1), 12(t2))

= h(71(8),72(t1)) + (u(v2(t2)) — u(ra(t1))))

Hence G(s,t2) < G(s,t1). Similarly, we can show that G is increasing on s.
Then our lemma follows immediately.

Let D be an open set bounded by two unbounded simple curves L; and
Ly on R2. For any § with 0 < < dy(L1, L), let

{g(x) =u(x) forz el

g(x) =u(x)+06 forxz e Lo
u(x)+46 Lo
/\/
D
- Ly
Figure 3
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Define

us(x) = yei?BLQ{g( y) +h(y,x)} forzeD.

The following lemma is due to the well known compatibility condition for
existence of solutions to Hamilton-Jacobi equations [13].

Lemma 3.2 ug is a Lipschitz continuous viscosity solution to
LDusl2+V =
2‘ us|® + V() = co

us=u on Iy

us=u-+0 on Lo.
As a corollary, we have that

Corollary 3.1 Let & and & be two periodic orbits on M,y,. If the region
D C R? bounded by & and & is foliated by periodic orbits on My, , then

du(éla 52) =0
g
M
/\/

/ ~_ % / ~ mp+ (myn)

Figure 4

Proof: Let (m,n) be the homology class of periodic orbits on M,.
Choose § = dy(&1,&2). Apparently, D + (m,n) = D. Also,

us(z + (m,n)) = infyer,ur,{9(y) + h(y, = + (m,n))}
= infyer,ur,{9(y + (m,n)) + h(y + (m,n),x + (m,n))}
= infyer,ur {g(y + (m,n)) + h(y, =)}
= infyer,uL,{9(y) + h(y, )} + po - (m, n)

= us(x) + po - (m,n).
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The second equality in the above is due to (L1 U L2) + (m,n) = L U Lo.
The third one is owing to the periodicity of V. The last equality is because
g(y+h) — g(y) = u(y + h) —u(y) = po - h for all h € R2.

To prove d,(&1,&2) = 0, it suffices to show that

us=u in D.

In fact, choose an arbitrary point zog € D and let & be the periodic orbit
that passes through xy with minimum period Ty. Then

us(zo + (m,n)) —us(zg) = (m,n) -pg = u(xo+ (Mm,n)) — u(zg)

= [T L1&)> — V(&) + cods.

The second “=" is due to the fact that every trajectory on M,, is a universal
global characteristic. Hence ¢ is also a characteristic of us and Dugs(xg) =
Du(xg) = £(0). Accordingly,

Dus=Du in D.

Therefore us = v in D. O

Lemma 3.3 Suppose that & is a periodic orbit on M,,. Let & = & +
(—n,m).
(1) There exists T > 0 such that

Eport = {po +t(=n,m)[ £ € [0, 7]} C Se,

if and only if
du(&1,&2) > 0.
(2) There exists T > 0 such that
Epoﬂ'ﬁ = {po + t(na _m)| te [OaT]} - Scov

if and only if
du(€27§1) > 0.

Proof: It is enough to prove (1). The proof for (2) is similar.

“ =" Denote
pr =po + 7(—n,m).

14



Let v; be a viscosity solution to
1 2
§|PT + Dv |* + V(z) = cp.

Recall that co = H(po). Owing to (2.12), & and & are also periodic orbits
on M, . Hence
Dur = Du on & U&

Without loss of generality, we may assume that u; = v on &. Then u, =

u+7(m? +n?) on & = & + (—n,m). Accordingly,

du(£1,6) = du, (&1,&) + 7(m? +n%) > 7(m® +n®) > 0.

“ <7 The part is not really needed for our main result. Since it is the
essential PDE part in proving the existence of edges of S.,, we present it
here. Choose

du <£17 52)

m2 4+ n?’

For p' € Ey + +, define

_Ju on&
“\utp (cnm) on
Clearly,

inf (h(z,y) — (F(y) — F(z))) = 0.
z,y€€1UE2

Hence for x € D

uy () = yeiglla 52{F (y) + h(z,y)}

is a viscosity solution of

HDuy?+V(z) =cy inD
uy = F on dD.

As in Corollary 3.1, we have that for z € D,
Uy (x4 (m,n)) = uy () +po - (M, n) = uy(x) +p" - (m,n).
Next we may extend u, to R? by

uy (@ 4+ k(—n,m)) = uy(x) + kp'- (—n,m) for allz € D and k € Z.

15



See Figure 5 below. Apparently, v,y = uy — p' - x is (m? 4+ n?)Z? periodic
viscosity solution to

1 .
§\p’ + Duy|? +V =¢y in R*/(& + (—n,m)Z).
Since ¢ is a periodic characteristic of v, it is easy to see that v, is a
(m? 4+ n?)Z? periodic viscosity solution to
1
§|p/ + Dvp/|2 +V =c¢ on RQ.
By the inf-max formula (1.4), it is not hard to deduce that

H(p) = cp.

& +2(—n,m)

w+2p - (—n,m)

& =&+ (—n,m)

w+p' - (—n,m)

w—p - (—n,m) & — (—n,m)
Figure 5
]

Lemma 3.4 Suppose that L1, Lo, L3, -+, Ly, are m different periodic
orbits on My,,. Fori=2,---m —1, L; lies between L;_1 and L;11. Then

m—1
dy(L1, L du(Ly, Liy1)-
k=1

Proof: By induction, it suffices to establish the above equality for m = 3.
By definition of d,, it is clear that

dy(L1,L3) > dy(L1, La) + dy (L2, L3).

16



Now let us prove the other direction. According to the definition, for any
§ > 0, there exist two Lipschitz continuous curves v; : [0,a] — R? and
Yo : [0,b] — R? such that

71(0) € L1,  v1(a), 72(0) € La, 2(b) € L3

du(L1, Lo) > /Oa %\71\2 —V(m1) + cods — u(1(0)) + u(yi(a)) — 6.

and

b
Lo L) > [ GHaft = Vi) + cods = u(ra(0)) + u(re(b) ~ &

By periodic translation, we can make 7;(a) at an earlier time than ~2(0),
i.e., there exists t; < t9 such that

yi(a) = La(t1) and ~2(0) = La(te).
By connecting 71, Lo and 72, we define v : [0, a +to —t; + b] — R? as
v (t) fort € 0,dq]

Y(t) = La(t —a+ty) fort € [a,a+ty—tq]
Yot +ty —to—a) fort € [a+ty—t1,a+ta—t1 +b].

Since

2

1

/ttg L\ a2 = V(La) + cods — u(La(ts)) + u(La(tr)) = 0,

we have that for t = a + b+t — tq,
t
L.
| 51P = V) +cods = ulr®) + ur(0) < du(Lr, La) + du(La La) + 25
0

17



Accordingly,
dy(L1,L3) < dy(L1, La) + dy(La, L3) + 26.
Sending § — 0 leads to
dy(L1,Ls) < dy(L1, La) + dy(L2, L3).

Hence our lemma holds. [

Next we prove that H is 1d near any point that is in the interior of an
edge. This conclusion holds for any V' € C*(T?) when k > 2.

Lemma 3.5 Suppose there exist p1 # p2 € S, such that
po € {tp1 + (1 —t)p2| t € (0,1)} C Se,

i.e., po 1s in the interior of an edge. Then, there exist r > 0 and a convex
function f: R — R? such that

H(p) = f(ap, -p) for p € By(po).
Proof: It suffices to show that there exists r > 0 such that
ap = qp, for p € By(po). (3.13)

Recall the definition of g, in (2.11). If this holds, H is constant along the
direction that is perpendicular to ¢,, in B,(pg). Then

f(t) = H(po +qp0(t —DPo- QPO))-

We argue by contradiction. If not true, then there exist {pj}r>1 such that
Pr — po as k — +oo and

Qp, - (—n,m) # 0.
Without loss of generality, let us assume that
Ip, - (—n,m) > 0. (3.14)

Let v be a periodic viscosity solution to
1 9 _
5P+ D"+ V(z) = H(pg).
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subject to sz v dxr = 0. Up to a subsequence if necessary, we assume that

lim vy =% uniformly on R2.
k—+o0

Then ¢ is a Z2-periodic viscosity solution of
1 ~12 2
§\po+Dv| +V(z)=c onR

subject to [, ¥ dx = 0.
For k > 1, since the level curve {H = H(py)} is C', we can choose py,
such that

H(px) = H(pr)

and the outward unit normal vector at pj

I (_nam)
B =

Let gy, : R — R? be a periodic orbit on M, (lift to R?). Up to a subsequence,
we may assume that

lim pg =p,
k—+o00
and
lim ny =n locally uniformly on R.
k—4o0
Then H(p) = H(po) and 7 is a periodic orbit on Mj with first homology

u .+ (m,n) n n+ (m,n)

Suppose that §; and & are two periodic orbits on M, such that there
is no other periodic orbit in the region bounded by &; and & (a gap).
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Claim: For . =pg-x + 0

dq(&1,62) = 0.

& divides the plane into two regions. Without loss of generality, we may
assume that £ is on the same region as & + (—n,m). For k > 1, let
Y : R — R? be an orbit on M,, (lift to R?) with 4,(0) = =z for some
z, € [0,1]? satisfying that the distance from zj, to & is half of the distance
between &; and &o:

1
distance(zy, £2) = idistance(&, £2).

Up to a subsequence if necessary, we assume that

lim v =~ locally uniformly on R.
k—+oo
and

1i =25 € [0,1]%
i, = a0 €101

Due to the stability, v : R — R? is a global characteristic of ¢ with v(0) =
ZToo. Owing to (3.14), intersections of v with respect to n + (m,n)Z are
non-decreasing (see 6 in section 2.3 for the precise meaning). Since there is
no periodic orbit between ¢; and &, there exist {t; };>1 and {t; };>1 such
that

lim 7 =+oo and lim |y(t])— &t )| =0

i——+00 1——+00

and
lim ¢; =—o0 and lim |y(t;)—&(t; )| =0.

i——+00 1——+00

Accordingly, we can derive that

da(§1,&2) =0

Combining Corollary 3.1 and Lemma 3.4, we deduce that

dy(&1,& + (—n,m)) = 0.

This contradicts to Lemma 3.3 and the assumption that pg is in the interior
of an edge. Hence (3.13) and the Lemma holds. O

Proof of Theorem 1.1. Let
g = mqe(@2’ TEQC(Q7 7").
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Here Q? is the collection of points on R? whose both coordinates are rational
numbers. See the appendix for the definition of C(q,r). Fix V € G. Then
for any p € R?, if H(p) > maxg2 V and 0H (p) N Q? # (), p must be a linear
point. Now write

Oy = {p € R? H(p) > min V' and p is an interior linear point} U Fy.
R
Recall that the minimum level set Fy = {p € R?| H(p) = maxpe V}. Owing
to Lemma 3.5, Oy is an open set. We only need to show that Oy is dense.

Let us argue by contradiction. If not, then there exists p € R? and B,(p)
for some r > 0 such that H is strictly convex in B, (p). Then the set

W = Upep, (5 9H (p)

is a non-empty open set. In particular, W N Q? is not empty. This contra-
dicts the choice of V' and Oy,. I

4 Appendix

Definition 4.1 Given r > 0 and a non-zero rational vector q. Denote by
Clg,r)

the collection of all V € C*(T?) such that for any p € R?, if

Hy(p) > n}rzzxxV +r7, and g¢€ OH(p)

then
M, # T?  (equivalently, p is a linear point).

Theorem 4.1 For r > 0 and any non-zero rational vector q,
Clq,r)
is an open dense set.

Proof: It is equivalent to showing that the complement

S = CHT*)\C(q,7)
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is closed and nowhere dense. Write
q = A(m,n),
where A\ > 0 and (m,n) € Z? is irreducible.

Step 1: We first prove that S is closed. Suppose that {V;};>1 is a
sequence of functions in S and

lim V; =V in C*(T?).
A V=V i G

Then
lim Hy,(p) = Hy(p) locally uniformly in R2.

j—+oo

Since V; € S, for each j € N, there exists p; € R? such that

Hy,(p;) 2 max V47, q € 9Hy,(p))

and
Due to the convexity, FVJ. 0) > ij (pj) + q - (—pj). Together with the

quadratic growth of ij, it is easy to see that {p;};>1 is uniformly bounded.
Upon a subsequence if necessary, we assume that

jEI—Poop i =P
Then o
Hy (p) = maxV +r
and by upper-semi-continuity of subdifferentials
q € OHy(p).
Now we just need to show that
Mgy = T2

This follows easily from stability of periodic orbits. For reader’s convenience,
we present details here. Fix zq € T2

For each j > 1, let &; : [0,7;] — T? be a periodic orbit on M, v, with
£;(0) = xo and T} is the minimum period. Then
§(T5) —

— 0 ¢ oy, (p))

g](TJ) ::ro—i—(m,n), T]
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and
Tiq1 . 9 _
i (mom) = [ DI < Vi) + Hyy (o)
0

It is easy to see that T; and [|¢j||c2(jo,r;)) are uniformly bounded. Up to a
subsequence if necessary, we may assume that

lim T; =T and lim & =¢ uniformly in CHR).

Jj—+oo Jj—+oo

Then
€0)=s0 and E(T) =+ (m,n)

and
T . —
e mn) = [ G- V(O + (i) ar

So £ is a periodic orbit on My and zg € M. Hence Mzy = T2.

Step 2: Next we prove that C(q,r) is dense. Given Vj € S. Then
there exists py € R? such that Hy;,(po) > maxpe Vo + 7, ¢ € OH(py) and
Mo, vy = T2, Assume that

dHv, (po) = [aq, Bq]

for 0 < a <1 < 8. By Remark 2.1, we can choose two periodic orbits &, and
§g on M, v, such that their rotation vectors are aig and ¢ respectively.

Choose zg € T? such that ¢, and s do not pass through xq. Pick 6 > 0
such that

Bas(xo) NEa(R) = 0 and Bas(xzo) N f@(R) = (.
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Choose ¢ € C(T?) satisfying that
¢ >0 in Bs(zg) and ¢ =0 in T?\Bs(xo)

For § > 0, denote
Vs =Vo—d¢.

It suffices to show that V5 € C(g,r). Suppose that ¢ € OHy;(p') for some
p’ € R2. The goal is to verify that

My v, # T2

Claim: B B
Hy;(po) = Hy(po)-

Since V5 <V, owing to the inf-max formula (1.4),
Hy;(po) < Hyy(po)
So it suffices to show that
Hy,(po) > Hy, (po)-

Due to Corollary 2.1,
Jo" 36al? = Vs(€a()) + Hy, (o) dt = po - (m,n)

= Jo " 3léal? = Vo(€a(t)) + Hy, (po) dt.

Hence Hy; (p) > Hy,(p). Therefore our claim holds and &, is also a periodic
orbit on M, v; and all periodic orbits on M,, y; have the first homology
class (m,n). Similarly, £z is also a periodic orbit on M, v;. Hence

q € g, Bq] € OHy;(po).

Therefore FV(; is linear on [pg,p']. Owing to Property 3 in section 1 and
(2.12),
Mopo,vs = My vs-

So we just need to prove that

MPO,Va 7é T?.
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We argue by contradiction. Assume that
Mpo,vs = T?.

Let no : [0, To] — T? be the periodic orbit on M, v, with 10(0) = xo. Here
Ty > 0 is the minimum periodic. Then

po- (myn) = [ Liol? = Vs(mo) + Hy; (po) dt

— [T Lio|2 = Vs(no) + Hvy (po) dt

> [ Lliol? = Vo(no) + Huy (po) dt.

This contradicts to Corollary 2.1.0J

The residual set G in Theorem 1.1 is chosen as

G =Ngeq2, re@C(g; 7). (4.15)

Here Q? is the collection of points on R? whose both coordinates are rational
numbers.
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