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The conventional process for developing an optimal
design for nonlinear optical responses is based on a trial-and-error
approach that is largely inefficient and does not necessarily lead to
an ideal result. Deep learning can automate this process and widen
the realm of nonlinear geometries and devices. This research
illustrates a deep learning framework used to create an optimal
plasmonic design for a nonlinear metamaterial. The algorithm
produces a plasmonic pattern that can maximize the second-order
nonlinear effect of a nonlinear metamaterial. A nanolaminate
metamaterial is used as a nonlinear material, and plasmonic
patterns are fabricated on the prepared nanolaminate to
demonstrate the validity and efficacy of the deep learning
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algorithm. The optimal pattern produced yielded second-harmonic generation from the nanolaminate with normal incident
fundamental light. The deep learning architecture applied in this research can be expanded to other optical responses and

light—matter interaction processes.

nanophotonics, metamaterial, nonlinear optics, deep learning, plasmonics

he essence of deep learning is to learn from sizable

data sets using algorithms loosely arising from models

of biological nervous systems.' > Deep learning has
evolved quite rapidly in the past few years, outgrowing the
designation as a subset of machine learning.®’ The basic
application of a deep learning model is that, once it is trained
on a labeled set of data, it can perform classification of data
using artificial neural networks (ANN) with multiple layers of
artificial neurons—hence the term “deep” learning. The power
of the ANN’s increasing complexity allows for the achievement
of accuracy that can equal and sometimes even exceed human
performance.”” "’

In general, inverse design in photonics is a method used to
identify a set of parameters to define a photonic structure or
device given the desired optical responses. This contrasts with
traditional design processes of a back and forth, trial and error
method starting with candidate patterns from empirical
guesses, using parametric sweeps to slightly adjust parameters,
and at times never reaching the desired goal due to limitations
such as computing power, or geometric candidates. Since the
use of ANN’s for inverse design can lead to fast, accurate, and
sometimes counterintuitive results that cannot be achieved by
traditional methods, it has been at the forefront of many
research problems as large as wind turbine design and even for
smaller applications such as plasmonics.'' ™"
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Plasmonics is a field that studies and utilizes the optical
properties of metal—dielectric interfaces on nanometer-scale
structures. Plasmonic structures can serve as unit cells for
metamaterials to find previously unseen phenomena or to
prove existing theories. Periodic unit cells, such as a plasmonic
structure, lead to a metamaterial whose properties are drawn
from the periodic structure, as well as the individual cells."*™"*

When designing plasmonic metamaterials and metasurfaces
for various design objectives, the linear optical regime, such as
spectral control, dispersion engineering, and beam steering, has
been well-researched.'”™>' Whereas, in the nonlinear regime,
there is much to be explored. Optical nonlinear processes
include frequency mixing, such as second-harmonic generation
(SHG), sum-frequency generation, and optical rectification, as
well as the Pockels effect and optical Kerr effect. Nonlinear
optics is essential for the generation of additional spectral
components and active control of light.
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Figure 1. Illustration of metamaterial device, as well as the material composition. (a) Schematic illustration of the ABC nanolaminate devices
and definition of the TE and TM polarization of the incident fundamental light. Without plasmonic structures to generate an electric field
with a z-component, the ABC nanolaminate will not emit a substantial second-harmonic response in the z-direction. (b) Nanolaminate
comprised of three periodic layers, TiO,, Al,O5, and HfO,. The plasmonic structure is patterned above the nanolaminate. (c) XPS survey
spectra of the fabricated ABC nanolaminate consisting of TiO,, Al,O;, and HfO,.

While bulk thin-film nonlinear materials like LiNbO; are
commercially available, an easy to fabricate and thinner film is
possible using an ABC nanolaminate.””~>> An ABC nano-
laminate is a nonlinear metamaterial created using a repetition
of thin films of three different layers, an A, B, and C layer,
repeated as ABCABC. When using materials that have
inversion symmetry, such as silicon, under the electron dipole
approximation, there are no even order nonlinear effects, such
as second-order effects, meaning there is no nonlinear
susceptibility of the second type. At each of the layer
interfaces, such as at A—B, or B—C, centrosymmetry is broken
in the axis normal to the layers. Once the centrosymmetry is
broken, there can be second-order nonlinear effects, or a
nonlinear susceptibility in the bulk material along the
perpendicular direction.”””>> To utilize the break in
centrosymmetry, the incident light is at an angle in order to
possess a nonzero field component along the axial direction,
inducing a second-order nonlinear susceptibility. With a
TiO,—Al,0;—HfO, ABC nanolaminate, following the material
and geometric parameters from the successful demonstration
by Alloatti et al, the manmade nonlinear oxide composite
requires a simple deposition technique, such as atomic layer
deposition (ALD), and can have an easily controllable
thickness on the order of tens of nanometers, whereas thin-
film bulk materials require complicated growth methods to get
a crystalline structure, and typically the thickness is on the
order of hundreds of nanometers.”” The ABC nanolaminate is
also a better choice, as it is compatible with silicon, which
potentially enables numerous integrated optics applications on
CMOS compatible platforms. Silicon is very important for
integrated optics but is limited for second-order nonlinear
optics due to its centrosymmetry.

There has been recent related research that discusses
applications of inverse design and nonlinear optics using
materials which have nonzero nonlinear optical susceptibil-
ities.”*~>' The purpose of this research is to use inverse design
to identify an optimal plasmonic structure in order to induce
the second-harmonic generation and maximize the efficiency of
the SHG of an ABC nanolaminate, where the second-order
response is zero at normal incidence. The deep learning
algorithm finds the relationship between the parameters, the
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field profile, the y®, and the SHG response to provide an
optimal pattern for the metamaterial. The optimized plasmonic
structure is designed with strong field confinement near the
ABC nanolaminate and augmented symmetry engineering near
the ABC nanolaminate, which will induce the second-harmonic
generation in the ABC nanolaminate due to the electric field
distribution in the few tens of nanometers range. Using tailored
algorithms to solve the challenging inverse design problem,
previously unsolvable with conventional methods, of arbitrary
topology with almost infinite degrees of freedom, the inverse
design will allow the optimization of the metal pattern with
user-defined constraints.’>*”> This can be easily extended to
output best possible patterns for a number of scenarios given
additional data relating to the other parameters, for example a
different nonlinear material, or periodicity.

RESULTS AND DISCUSSION

The goal of this research is to use a deep learning framework to
find a metamaterial structure with an arbitrary plasmonic
structure atop a nonlinear ABC composite material, that
induces a maximal SHG response from the ABC composite.
The pattern that will be fabricated as the plasmonic structure is
based on a 64 X 64 canvas, meaning the inverse design
problem essentially has over 2*°¢ degrees of freedom.
Employing deep learning allows the solution of this problem,
which cannot be solved through the use of traditional
parameter sweeping methods or conventional geometries, for
true optimization. The general parameters for the metamaterial
shown in Figure la are periodicity, p = 360 nm, thickness of
the ABC composite, fygc = 75 nm, thickness of the gold
plasmonic structure, t,, = 45 nm, and normal incident
wavelength, 1, = 850 nm. For the ABC composite, the
individual layers also had specified thicknesses as seen in
Figure 1b, the thickness of the Al,O; layers, ty;,03 = 0.9 nm,
the thickness of the HfO, layers, ty, = 0.9 nm, and the
thickness of the TiO, layers, 1,0, = 0.3 nm. However, for the
simulation portion of this research, the ABC nanolaminate was
treated as a homogenized material with nonlinear susceptibil-
ities. The nonlinear polarization of the layered structures with
geometric features along the z-axis is calculated using this
equation
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Figure 2. General deep learning framework. (a) Overall flow of the generator, an algorithm used to represent the patterns in the training data
using a probability density function (PDF). The generator is based on a variational autoencoder (VAE), and the PDF is used by the encoder
and decoder to represent a pattern as a latent vector, v, through “encoding”, and then transform v into a reconstructed pattern through
“decoding”. (b) By randomly sampling v, we can use the decoder from the generator to create patterns. These patterns are passed through
the simulator, and a predicted SHG response is output. In order to optimize a pattern to a specific SHG response, an optimizer based on an
evolution strategy (ES) is utilized. Passing through a system of selection, reproduction, and mutation, the optimizer circles back to try
different v’s searching for better patterns until the closest fit is found. The final output is the best pattern for the desired parameters and

SHG response.
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and the y® susceptibilities used are y,,, = 0.667 pm/V, y,., =
0.254 pm/V, and y,,, = 0.225 pm/V.”"**

Deep Learning Framework. In order to optimize an
arbitrary pattern to create a plasmonic structure that can
induce a maximal SHG response from an ABC nanolaminate, a
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deep learning framework is used, as parameter-sweeping and
standard geometries cannot yield the most enhanced SHG
response. The framework can be broken into three parts, the
generator, the simulator, and the optimizer. The generator is
used to create 2D patterns that translate into the plasmonic
structure on top of the nonlinear material. Once patterns can
be generated, the simulator uses the generator to find the
related SHG response. To target a desired nonlinear response,
the optimizer is used to find the best pattern for the response
requested. The generator algorithm is based on a variational
autoencoder (VAE), as shown in Figure 2a.*

First, 10000 arbitrary created patterns (64 X 64 pixel
images) form a training set for the generator. The canvas that
the patterns are confined to is 64 X 64 pixels, which is
important as it creates essentially unlimited possibilities for
patterns rather than drawing traditional geometries. This can
be further explained as a single pixel turning “on” or “off”
leading to a different pattern, so patterns are drawn in a
completely different method than a user might create shapes
such as nanorods, bow-ties, elliptical patterns, etc. The patterns
are then passed through an encoder, which is a neural network.
The purpose of the encoder is to “encode” the data into a
latent space, or probability density function, with a standard
deviation, 6, and mean, u, which represents all the possible
patterns. Then, a randomly sampled latent vector, v, can be fed
to a decoder, which is another neural network, based on the
same latent space, and be “decoded” into a pattern. If a pattern
is encoded, the output is a latent vector, and if that same v is
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Figure 3. Linear and nonlinear simulations based on deep learning algorithm. (a) The scatter plot is a comparison of the predicted SHG
enhancement values from the deep learning simulator and the actual SHG enhancement values from a full-wave simulation for the same set
of patterns. The dotted line represents x = y, and the strong correlation between the line and scattered points shows that the simulator is
very accurate for a wide range of SHG enhancement values. The error of the simulator for predicting SHG responses is +31.8% and —14.2%.
As SHG responses are very sensitive to minor variations in parameters in the full-wave simulation, this error is considered accurate for this
research. The histogram above the graph represents the spread of the predicted SHG enhancement values for the patterns from the
simulator, and the histogram to the right represents the distribution of actual SHG enhancement values for the same patterns from a full-
wave simulation. The SHG enhancement was calculated based on an unpatterned surface. The inset patterns in the graph are examples of
patterns from the highlighted points in the scatter plot. The pattern in the top right is the pattern used for further simulation and fabrication
in the paper. (b) Cross-sectional view, along the central x-direction or the length of the pattern, of the normalized z-component of the
electric field with incident TM polarized light at a wavelength of 840 nm. The strong field enhancement due to the TM polarized light
indicates that the SHG response induced in the ABC nanolaminate will be much higher when exposed to TM polarized light as compared to
TE polarized light. (c) Calculated transmission spectra for TE and TM polarized light on the plasmonic ABC nanolaminate device.

input into the decoder, the output will be a reconstruction of algorithm. The optimizer is used to identify the pattern with
the input image. The generator allows for the creation of the highest SHG response for the given parameters, and the
patterns that were not in the original data set, which can lead resulting pattern is shown in the top right corner of Figure 3a.
to a pattern with a response better than if inverse design was The linear response, field enhancement and transmittance,
not utilized. of the identified optimal plasmonic structure was calculated
The simulator is based on the architecture of ResNetl18 and using a full-wave simulation, as shown in Figure 3b,c,
is used to predict the SHG response for the input image. To respectively. Referring to eq 2, the linear electric field response
train the simulator, 10000 patterns are created from the is integral to the induced second-order response in the ABC
generator.”> These patterns are then run through a full-wave nanolaminate. In essence, the simulator is finding a correlation
simulation to find the actual SHG responses. The fundamental between the pattern of the plasmonic structure and the related
light electric field components are used to calculate the electric electric field components and then predicting the correspond-
field components of the nonlinear response using the induced ing second harmonic generation. The plasmonic structure
polarization of the ABC composite. Data collected from the induces an electric field with a z-component, and the resonance
full-wave simulation is used to train the simulator. Once in the linear response shows that a wavelength of 840 nm with
trained, the generator is used to produce patterns for the TM-polarized light will lead to the most effective field
simulator to predict respective SHG responses. enhancement. To confirm that the specific features in the
We adapted an evolution strategy as our optimizer in the optimal pattern from the deep learning algorithm give rise to
framework, as shown in Figure 2b.”>*® Through a process of the optimal SHG response, and not the general shape, a full-
selection, reproduction, and mutation, while evaluating a wave simulation comparison is applied. A regular ellipse unit
fitness score for the pattern, patterns that maximize the SHG cell of similar dimensions to the unique ovoid unit cell shows
response are created. The accuracy of the simulator can be an SHG response that is ~6% of the optimal pattern. This
seen in Figure 3a, where 1000 patterns randomly produced further establishes the deep learning simulation as a tool for the
from the generator, to act as a representative sample of the inverse design of plasmonic structures, and the usefulness of
simulator output, are run through both the full-wave the algorithm to find unique geometries. The ellipse pattern
simulation for the accurate SHG value, and the simulator, for used for the confirmation can be found in the Supporting
the predicted value. The dotted line highlights the 1-—1 Information. Utilizing the optimal field enhancement leads to a

correlation between the two. The histograms show that the maximal SHG response from the ABC nanolaminate.
spread of SHG values follows an expected curve for both the Experimental Results. For the experiments of this
full-wave simulation data and simulator data. The whole image research, two devices are fabricated—a device with the ABC
illustrates the reliability and accuracy of the simulator nanolaminate and the gold pattern as well as an alumina
3929 https://doi.org/10.1021/acsnano.1¢09298
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Figure 4. Enhancement of the SHG from the ABC nanolaminate with the deep-learning designed plasmonic structure as well as linear and
nonlinear measurements for the ABC nanolaminate device. (a, b) Visualization of a unit cell of ABC nanolaminate device, and the control
alumina device with an AlL,O; film, both with the same deep-learning optimized gold structure on the surface. (c) SEM image of the
fabricated plasmonic structure on the ABC nanolaminate. The scale bar at the bottom represents 500 nm. (d) Experimental linear
transmission spectra for TE and TM polarized light. The linear response for the ABC nanolaminate device is similar to the calculated linear
response in Figure 3. The resonance wavelength of 840 nm will be used as the fundamental wavelength for subsequent nonlinear
measurements. (e) Experimental SHG responses of the respective devices. The blue and red dots are from patterned ABC and alumina
devices. The cyan dots represent the response from bare, unpatterned ABC nanolaminate. (f) Power dependence of the ABC patterned
nanolaminate. The green line in the double logarithmic plot represents a slope of 2, confirming the second-order nature of the response. The
inset shows the SHG spectrum for an incident wavelength of 850 nm measured from 370 to 470 nm, to show the nature of the second-
harmonic response.
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Figure 5. Induced second-harmonic response from ABC nanolaminate and SHG output polarization results for the devices. (a, b) For the
patterned ABC device, the SHG output polarization in plotted in polar plots for TE and TM polarized incident fundamental light,
respectively. The blue dots are the measured SHG response, and the red curve is the calculated SHG response. In b, the green dots represent
the SHG response induced from the ABC nanolaminate. The cyan circle best fits the SHG due to the ABC nanolaminate. (c, d) SHG output
polarization plots for the patterned control device for TE and TM polarized incident fundamental light, respectively. The measured second-
harmonic signal values are the blue dots, and the calculated second-harmonic response is shown as the red curve. We expected the TE
polarized incident light to lead to similar responses in the patterned ABC device and the control device, and that is seen in a and c. The loss
of linear polarization observed in a and b indicate that the second-harmonic response does not stem solely from the plasmonic structure, and
that is further confirmed by the degeneration of the peanut shape in b.
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control device with an AL, O; layer of the same thickness,
replacing the ABC nanolaminate layer, below the same gold
pattern, as shown in Figure 4a,b. The purpose of the alumina
control device is to measure the nonlinear response due to the
gold nanoparticle, to eventually differentiate the SHG response
due to the ABC nanolaminate and the SHG response from the
gold structure. To ensure that the ABC nanolaminate was
fabricated correctly, an XPS analysis was done, and the results
are displayed in Figure 1c which demonstrates that all three
oxides are present in corresponding ratios to the layer
thickness. An SEM image, Figure 4c, was taken of the ABC
nanolaminate device to validate that the patterned device
closely matches the optimal plasmonic shape found through
the deep learning algorithm. The SEM shows that there is a
slight variation between the fabricated patterns and the
designed pattern. This is due to an understandable difficulty
in precise fabrication at the sub-100 nm range. The Supporting
Information further explains why this was not a cause for
concern. Figure 4d is the measured linear transmission
response for the ABC device under both TM- and TE-
polarized illumination at normal incidence. As the refractive
index of the ABC nanolaminate (n = 1.714) and alumina (n =
1.7591) are similar, the linear responses are as well. The linear
transmission response for the control device can be found in
the Supporting Information. Comparing Figures 3¢ and 4d, we
can see that the simulated and experimental linear responses
are in agreement. The slight differences are due to fabrication
irregularities, which are to be expected but do not indicate that
the fabricated patterns are wildly different from the designed
patterns. The linear responses also indicate that the maximum
SHG response for the ABC device should be expected at a
wavelength 840 nm due to the resonance. The resonance in
the linear response indicates that the plasmonic structure leads
to the most extinction of light at the peak.

The optical nonlinear characterization in Figure 4e is the
SHG response from the ABC nanolaminate. The device is
excited by a fundamental wavelength, 4,, ranging from 740 to
940 nm, with a step size of 10 nm, from TM-polarized laser
pulses at a constant intensity. The blue dots represent the SHG
response from the patterned ABC device, the red dots
represent the frequency doubled output from the patterned
control device, and the cyan dots represent the generated
second-harmonic signal from the unpatterned ABC surface.
The SHG values were evaluated by photon counting the
intensity of the signal and clearly show enhancement of the
unpatterned ABC surface. The last column of panels, Figure 4f,
contains the power dependence plot for the ABC device. The
plot shows the relationship between the fundamental light that
is input, I, and the intensity of the output SHG response, I,,,
on a log—log scale. The solid line represents I,,, I, where K
= 2, and the quadratic dependency verifies the second-order
nature of the signal. Referring to the SHG spectra, the
maximum peaks show that the ABC device has clearly higher
response, but comparing the two values is misleading. A proper
comparison of the SHG response due to the plasmon induced
second-harmonic response can be conducted by comparing the
output polarization results of the control device and the ABC
nanolaminate device.

The SHG output polarization characterization reveals the
presence of an SHG signal from the ABC nanolaminate under
normal incidence. Figure Sa,b shows the output polarization of
the ABC device for TE- and TM-polarized incident
fundamental light, respectively. The blue dots are the

3931

experimental data taken at every S5° and for the TE-
polarization, the red peanut or two-lobe shape represents the
data collected after a linear polarizer. The TM-polarization plot
shows a wider shape than normally expected for an SHG
signal. The peanut or two-lobe shape is expected for an SHG
response, as the frequency doubled output is linked with the
polarization angle. Comparing this plot to the alumina control
device for TE- and TM-polarized incident fundamental light
(Figure Sc,d, respectively) elucidates the difference. It is
essential to realize that for, the control device, both the TM-
and TE-polarized incident fundamental light lead to peanut
shapes with a very tight “waist”, having zero waist indicates the
light is linearly polarized, along the TM- and TE-polarization,
respectively. For the patterned ABC device with incident TE-
polarization, it is easy to see that, while similar to the control
device, the waist of the peanut is wider, or no longer perfectly
linearly polarized, with a nonzero ellipticity. Analyzing the
incident TM-polarized fundamental light figure gives us a
better insight into the phenomena.

In Figure Sb, the red curve represents the peanut best fit
curve from the control device; we can refer to that as the
polarization due to the gold pattern. The green dots in the
figure were calculated by subtracting the measured SHG due to
the gold pattern, from the measured SHG response of the
patterned ABC device, to find the SHG response stemming
solely from the ABC nanolaminate. The circle best fits the
calculated data. Referring to the output polarization of the
incident TE-polarized fundamental light, we can see there must
be a very small circle relating to the ABC composite
polarization present there too. This shows that there is a
large presence of the SHG response due to the gold pattern,
which is why the earlier comparison of the AL, from the SHG
spectra was misleading. To separate the SHG response from
the plasmonic structure and the induced SHG response of the
ABC composite, the output polarization with incident TM-
polarized fundamental light is crucial.

In summary, we have demonstrated an inversely designed
plasmonic structure that maximizes the second-harmonic
generation in an ABC nanolaminate nonlinear metamaterial.
Further, we were able to differentiate the optical nonlinear
response due to the plasmonic structure, and the response due
to the y® of the ABC nanolaminate. The deep learning
algorithm is a robust and flexible means for inverse design tasks
that can lead to exciting metamaterial designs. Traditional
guess-and-check methods involving parameter sweeping and
simple geometries cannot guarantee optimal results for
complex nonlinear responses. Occasionally, traditional meth-
ods also cannot reach a solution for certain desired optical
responses. The deep learning framework utilized in this
research is a capable instrument that can be applied to a
variety of nonlinear optical responses and more challenging
applications. It is important to note that a single unit structure
is designed and described in this research. There have been
many multiunit structures identified and studied for plasmonic
and nonlinear optical purposes, including meta-lens and
antenna structures.”’ >’ Multiunit patterns can increase the
applications of the research and allow for more precise
optimization and more unique structures. However, this
research specifically highlighted single unit structures in
order to simplify the algorithm and to show the enhancement
of nonlinear generation of light in the ABC nanolaminate
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through the use of an inversely designed plasmonic structure is
possible and successful. Using the deep learning algorithm, our
results represent the ability to optimize and demonstrate the
nonlinear optical response of a thin-film nonlinear material
using a plasmonic metamaterial device. The plasmonic ABC
nanolaminate structure also allows for further investigation of
optical phenomena that can be applied to areas such as
integrated optics, as the ABC nanolaminate is compatible with
inorganic materials and CMOS technology. The results of this
research expand the scope of inverse design applications and
shows the potential for unconventional optical nonlinear
phenomena.

EXPERIMENTAL SECTION/METHODS

Device Fabrication. The fabrication process starts with
depositing ABC nanolaminates on the glass substrate (Corning,
C1737 glass) via atomic layer deposition technique (Cambridge Fiji
Plasma Atomic Layer Deposition System). The ABC layer is
composed of 3.57 A of TiO,, 9.56 A of Al,O;, and 9.11 A of HfO,
layer, and the ABC layer deposition is repeated 34 times to get a 756
A thickness of the ABC nanolaminate, following the material and
geometric parameters of the ABC from Alloatti et al. More detailed
information is described in the Supporting Information. After the
ABC nanolaminate is fabricated, the gold nanoparticles are formed on
top of the nanolaminates in a three-step process: (i) standard electron
beam lithography (E-beam litho., Elionix ELS-G100 EBL system)
using poly(methyl methacrylate) (PMMA) as the positive tone
electron resist, (ii) E-beam evaporation of 3 nm/4S5 nm Cr/Au metal,
and (iii) an overnight lift-off process in acetone to resolve the
plasmonic structures.

Linear Optical Characterization. A tungsten halogen lamp
(B&W Tek BPS 120) is used as a broadband light source to
characterize the linear response of the device. The polarization of the
input light source is controlled by a set of linear polarizers and half
waveplates. The transmittance spectra of the device at a normal
incident angle is focused on the sample using 10X objective (NA:
0.25) and collected with a 20X objective (NA: 0.4). The light
collected by the objective is delivered to the spectroscopy system
(Princeton Instrument Acton SP 2300i with PIXIS 400B camera). For
the reflectance spectra of the device, a 20X objective (NA: 0.4) is
used to both focus and collect the light.

Nonlinear Optical Characterization. The excitation source for
the nonlinear optical characterization is a tunable Ti:sapphire ultrafast
oscillator (Spectra-Physics, Mai Tai HP, 690—1040 nm) with a 100 fs
pulse duration and 80 MHz repetition rate. The power and
polarization state are controlled by a set of halfwave plates and a
Glan polarizer. The fundamental beam is delivered and focused on the
device via a 10X objective (NA: 0.25), which results in a spot size of
~20 pm on the sample. Both the fundamental light and the harmonic
generated light from the sample are collected by a 20X objective (NA:
0.4), where the fundamental wave is eliminated as it passes through
the bandpass filter. The harmonic signal is then characterized by the
detector system which is composed of a monochromator (Princeton
Instruments, IsoPlane) with a charge-coupled device (CCD) camera
(Princeton Instruments, Pixis 400B). The state of polarization of the
harmonic generated signal is analyzed by using a rotating polarizer.
The peanut or lobe-shaped pattern shown in the polar diagram was
formed by collecting the portion of the intensity of the harmonic
generated light that passes through the rotating polarizer.

Simulator. The data set created by this study is available from the
corresponding author upon reasonable request.
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