1724

IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL, 11, NO, 10, OCTOBER 2021

Supervised Machine-Learning Approach for the
Optimal Arrangement of Active Hotspots
in 3-D Integrated Circuits

Srikanth Rangarajan=, Leila Choobineh™, and Bahgat Sammakia, Fellow, IEEE

Abstract— 3D integration is now considered a new paradigm
for the semiconductor packaging industry to sustain Moore's law.,
Vertical stacking of semiconductor chips provides high power
density in a given footprint area. However, owing to increased
integration, 3-13 1Cs having multiple core areas (hotspats) on each
stack layer can often be prone to thermal interaction hetween the
stack layers (Interlayer) and within the stack layers (Intralayer).
In this work. three layers with three core hotspot areas on
each laver are considered. This article proposes an optimization
methodology to optimally arrange the hotspol active core areas
in three layers of 3-1d IC, The optimization methodology aims
to minimize the maximum core temperatures and maximize the
temperature uniformity in the stack. The optimal placement of
hotspot core areas in each layver not only aids in reducing the
thermal interaction but also aids in improving the temperature
uniformity by thermal spreading, A sampling algorithm based on
Latin Hypercube Sampling that incorporates the “nonoverlap™
constraint is demonstrated in this stundy. A Genetic algorithm
coupled with supervised machine-learning-based artificial neural
network is employed as an optimization methodology. The article
introduces a unigque arrangement parameter for the multiple
numbers of hotspots in various layers that could well represent
the problem under consideration. The methods and results from
this article could be efficiently wsed to perform a thermal
aware core hotspot arrangement of multilayer multihotspot 3-D
integrated circuits for any operating conditions,

Index Terms—3-D 1Cs, active silicon, artificial nenral network
{ANN), genetic algorithm (GA), machine learning, optimization.

NOMENCLATURE
G Number of generations.
N Size of the initial population.
F.  Probability of crossover.
P, Probability of mutation.
rl Arrangement parameter, mm->
CV  Coefficient of variation of local arrangement
parameters.
SD  Standard deviation.
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o Standard deviation of temperature (temperature
uniformity metric), "C {or) K.

X Centroid of heal source/substrate/arrangement in
X-direction, mm.

¥ Centroid of heat source/substrate/arrangement in

¥ -direction, mum.

Length of the heat source/substrate, mm.

Width of the heat source/substrate, mm.

Temperature rise, *C (or) K.

SN =~

Subscripts
a  Arrangement.
i Layer/subsirale.
J Heat source.
5 Substrate.
¢ Centroid,
Superscripis

# MNormalized parameters.

I. INTRODUCTION

HE 3-D integration is a viable technology that has

a proven potential to sustain Moore’s Law by verti-
cally integrating multiple layers of active electronic circuits
into a single circuit [1]. 3-D ICs facilitate helerogeneous
integration of various devices/functionalities in the vertical
direction. 3-D integrated circuits offer multiple advantages,
including increased device packaging density, shorter inter-
comnect length, low system form factor [2]. Although there
are many advantages to 3-D integration, one of the most
significant challenges is heat removal owing to the inter-
layer and intralayer overlap of multiple cores and hotspots.
Pangracious ef al. [3] demonstrated that by replacing the 2-D
system on chip with a 3-D system on chip, the Manhattan
wire length is significantly reduced for the same total surface
area. Geer ef al. [4] developed a mathematical model to solve
steady-state conduction heat transtfer in multiple rectangu-
lar domains that account for the interactive effects of the
heat-generating sources. This model has been employed to
solve heat transfer between stacks in 3-D ICs. Choobineh and
Jain [5] performed analytical calculations to estimate the 3-D
lemperature profile in multiple stacks of 3-D 1Cs. The study
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was conducted for equal and unequally sized dies. Choobineh
and Jain [6] also demonstrated a nonilerative approach to
analytically calculating the temperature field in 3-D [Cs. Using
this approach, the authors were able to predict the effect of
inter die contact resistance. Jain ef al. [7] performed a thermal,
electrical cooptimization of floor planning of 3-D 1Cs subject
to manufacturing constraints. The authors demonstrated an
optimal thermal floorplan has a high penalty concerning the
electrical delay. To date, only low-power commercial products
have been able to exploit the advantages of the improved
performance and increased device-packaging density realized
by the 3-D stacking of chips (Apple A7) [8]. As the number
of stacks increases and the number of chips/core processors
on each layer increases, the passive cooling or conventional
air-cooling will not meet the requirements, Although advanced
cooling technologies would be a polential solution to mitigate
the thermal management issues, this article proposes a thermal
aware floor planning of core locations in each layer, intending
to minimize the maximum (emperature in the stack and to
maximize the temperamre uniformity in the stacked layers.
The maximum temperature and temperature uniformity are
critical to the reliability of the device. Kumar Hotta et al. [9]
demonstrated a heuristic approach to oplimize discrete heat
sources on a substrate subject to mixed convection. The
authors developed an empirical correlation for the maximum
chip temperature as a function of a unique geometrical parame-
ter. Madadi and Balaji [10] demonstrated optimization using
the micro-genetic algorithm (GA) to optimize the location of
multiple discrete heat sources in a ventilated cavity.

Kumar Hotta ef al. [9] performed optimal floor planning
of very large-scale integration (VLSI) using particle swarm
optimization. The entire optimization problem was driven by
nonoverlap constraints. Ni ef al. [11] adopted a “Greedy™
placement strategy in floor planning of 3-D ICs. The authors
concluded that the heat sources with high input are recom-
mended to be placed close to the convective surface.

Rangarajan et al. [12] performed optimization of hotspot
location for two-layer 3-D ICs with two hotspots on each layer
with hotspots of equal size. The optimization methodology,
however, lacked a global optimal solution and unique arrange-
ment parameters. The methodology demonstrated in this article
would not apply to more number of stacks and more holspots
on cach stack.

Wang ef al. [13] performed an analysis of hotspot dis-
tribution and the effect of external cooling on the thermal
performance of 3-D ICs. The authors examined the effect of
hotspot-targeted through-silicon vias (TSVs) inclusion in 3-D
stacks, The work concluded that the core centralized TSV
could mitigate the thermal issues owing to the overlap of core
hotspots between the layers. Ding et al. [14] proposed a novel
thermal management scheme for 3-D ICs with multiple cores
on each of the multiple layers. A novel interlayer microchannel
design was proposed for the efficient thermal management of
core hotspots® temperature. Yazawa ef al. [15] performed a
theoretical investigation and optimization for hotspot-targeted
cooling in stacked 3-D 1Cs. Hotspot size and power were
0.5 mm x 0.5 mm and 650 W/cm®, respectively. The authors
concluded that the thermal spreading from each layer of 3-D

(b)

Fig. 1. (2) Schematic of the 3-D TC chip stack. ib) Schematic of the exploded
view of 3-I 1C chip stack.

ICs plays an important role in mitigating the effect of on-chip
hotspots in 3-D ICs. The authors proposed cooling strategies
that could maintain hotspot temperature below 85 “C. The
lemperature uniformity in the 3-D stack was seen to influence
the microchannel performance. Furthermore, there are numer-
ous works from Shi ef al. [16] and Bar-Cohen ef al. [17] on
the 3-D IC thermal management by mitigation of hotspol.
Although there are numerous studies in the literature on
hotspot mitigation using efficient microchannel cooling, few
studies on the optimal arrangement of core hotspots could
achieve better thermal performance in terms of maximum chip
temperature and temperature nonunitformity.

Furthermore, due to high integration, when the number
of stacks and the number of core holspots on each stack
increases, efficient implementation of the nonoverlapping con-
straint becomes critical. This work tries to define and imple-
ment the nonoverlapping constraint as a part of the initial
sampling and perform an efficient and robust multiobjective
optimization. Furthermore, there is an absence of empirical
correlations for the maximum temperature as a function of heat
source arrangement. This article tries to bridge all the gaps
mentioned above in the literature and proposes a simplified
approach for core hotspots arrangement of 3-D 1Cs.

II. HEAT TRANSFER PROBLEM DESCRIFTION

The schematic of the geometry investigated in the cur-
rent article is as shown in Fig. 1{a). The dimension, aspect
ratio of the chips, and the substrate are given in Table L
An effective and quick thermal model is mandatory for an
efficient thermal-driven optimal floor planning algorithm to
solve many physics-based models that will serve as an input
to build the surrogate model for optimization [18]. The heat
transfer problems under consideration {governing equation and
boundary conditions) are solved analytically, as demonstrated
by Choobineh and Jain [6].

The heat transfer study is carried for two ditferent boundary
heat transfer scenarios. Study | is conducted for constant heat
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TABLE 1

DIMENSIONS OF THE SUBSTRATES AND THE
HOTSPOT SHOWN TN F1G. 1{A)

S no Dimension Value (mm)
parameter
1 W 10
2 L 10
3 Cl 0.5
4 C2 0.5
5 C3 0.5

transfer coefficient on the convective boundary with different
hotspot sizes of the same power. Study 2 is conducted on the
convective surface’s local heat transfer coefficient with varying
hotspot sizes, power density, and power dissipation.

For Smdy 1, each hotspot generates 4 W heat that corre-
sponds to a heat flux of 4 W/mm®. The heater sizes chosen
for the first part of the study (Study 1) are 1 mm x | mm
(g % L), 1,618 mm x (0L618 mm (wizx L), and 1 mm x
2 mm (w;z = Liz). The aspect ratio of each of the heaters
is 1, 2.618, and 0.38, respectively. The heat input received
by each of these heaters was 4 W, corresponding to a heat
flux of 4 W/mm®. A background heat flux of 4 kW/m’
was added. The background heat flux is seen to have a
negligible or a very monotonic effect on the optimal solution.
An interdie resistance of 0.75 K-mm*'W was modeled [19)].
The convection heat transfer coefficient on the top wall is
assigned to 5000 W/m?K. The size of the hotspots for Study 1
was chosen in such a way that for all three hotspots for a
fixed heat input, the heat flux remains the same and only
the aspect ratio of the hotspot varies. The methodology and
the results from this article are independent of the chosen
value of heat inputs and boundary conditions. This is demon-
strated through two separate studies Study | and Study 2.
The designer can choose this methodology for his operating
conditions. The schematic of the heaters in the substrate is as
shown in Fig. 1{a) and (b). The substrate is assigned thermal
properties equivalent to pure silicon. The bottom surface of
substrate 1 is exposed to convection and the top surface of
substrate 3 and sidewalls are kept adiabatic. The temperature
field across the stack is computed by assuming one active heat
source [ jth heat source @y (x, ¥)]. This approach simplifies
the governing equation to linear form. The governing equation
for the problem is

52T+53T T a
X T taE T )
ﬂ:ﬂalx:ﬂ_L (2)
&x
aT

=0aty=0W (3)
Eﬂ'
iTs
k—;:‘:q;[x,}-)atz:f; (4)
T
k—(alz-rg) k—[alz—ﬁ]-l—qu(x ¥ (5
c"f 2
ka—z(alz=c1}=kE(alz=G]+q1{x.y} (6)
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Fig. 2. Schematic showing the arrangement parameter calculation in ith
layer,
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The dﬁlallﬁd procedure of the analytical model and valida-
tion is explained in [6]. The results from the analytical model
were compared with results from the Ansys [6] and COMSOL
multiphysics, and the maxirum error was found to be less than
7.4% and 5.2%, respectively. For the second part of the study,
COMSOL was employed because it was straightforward to

interface the module with MATLAB 2017b,

IIl. ARRANGEMENT PARAMETER DEFINITION

The arrangement parameters are defined in this article to
identify any interlayer and intralayer hotspol arrangement
using a single parameter. For this purpose 4; and iy are
defined.

The centroid of the substrate is chosen as a reference since
the heat transfer coefficient is uniform and constant on the
convective boundary. 4; is defined as the distance between the
centroid of the heat sources to the centroid of the substrate.
Az is defined as the distance between the centroid of the
arrangement and the centroid of the substrate. Both 4; and 4»
are defined globally for the entire stack and locally for each
stack.

Aip and iy, are the global arrangement paramelers.
Ay and iy are the local arrangement parameters.

1) g indicates global.

2) i indicates layer (within each layer).

3) j indicates a heat source.

The centroid of the heat sources, arrangement of heat
sources, and the substrate are calculated as shown in (8)—(19).
The calculation is also depicted in Fig. 2 for any ith layer

ZJ_"" A Xij
Xy — Centroid of a jthheater inith layer = T
Z’I 1 Aij
(8)
U ALY
¥.:;; — Centroid of a jthheater inithlayer = = ———
g J‘—J'lnA
z_r—l
{9}
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X5 — Centroid of the substrate = % (10)
Yes — Centroid of the substrate = % (11)
Xcas — Centroid of the arrangement in ith layer = %
( ]I?)
¥ea: — Centroid of the arrangement in ith layer = ;—;i"
(13)

The initial studies revealed that i's are not enough to
characterize a unique arrangement of hotspots in multiple
stacked layers. For this purpose we define:

Cuvy — Coefficient of variation 4y;, where { = 1,2,..., 1
Cuvyz — Coefficient of variation 4y, where { = 1,2, ..., 12
41; — Distance between Centroid of Arrangement and

Centroid of heal sources:;

A

troid of substrate.

— Distance between Centroid of arrangement and Cen-

Ly = Z Xear — Xey): + (Yeai — Yeiy)’ (14)
_r_nlﬁ
A = D" (Xcai — Xes)® + (Yeai — Yes) (15)
Ji=l1
rl  nk s ,
dig = ZZ{X{’_‘Ag — Xey) + (Yeay — Yeiy) (16)
i=1 j=1
nlL nh ., .,
dog = Z Z{Xc»q — Xes) 4 (Yeag — Yes) | (1T)
i=1 % j=I1
) A
v (;_”_Ea;_t_")
ED_;[] \ n—1
CV = - — (18)
'™ Mean(i) p o
) iznp R E
(- 50)
SDj0 \ m—1
OV, = . . 19
P MenGn YL B 0

n; is the number of layers and ny is the number of hotspots
in each layer.

The conditions at which the arrangement parameters attain
maximum and minimum values are tabulated in Table 1L

(CV);, helps in identifying variation of local A;. For
instance, if the arrangement centroid of a particular layer i
highly deviates from the other two layers, then the value of
(CV);2 is very high, indicating a high localized grouping
of heat sources in any one of the layers. This contributes
to the overall thermal performance of the stack. This is the
same case with (CV),,. High values indicate local grouping
{intralayer grouping/overlap) of heal sources in a particular
layer. To conclude, (CV);,, (CV);, are defined to account for
the tradeotf between the localized grouping of hotspots and
the thermal heat spreading for a given boundary condition,
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TABLE 11
CONDITIONS FOR MAX AND MIN FOR LOCAL AND GLOBAL

Parameter Condition
Minimum 4, XE‘A!=XEU
Y(.‘At:rcij
Maximum Ay Xea=X.o and

(Keai = x{?fj)e{% - W_;,r_];g "'{g - L';j' :

Minimum 45; Xeai=Xes
Minimum 4, 4 Xeag =Xeij
Yeag=Yeij
Maximum 4, Xcag=Xcs and
(Xeag = Xey)'=(5— i;-‘: 2 +(;-' - "_2‘!!. 2
Minimum 4, Xeag=Kes

These parameters are included in the regression and opti-
mization to account for the effect of the localized grouping
of heaters, which will otherwise be not accounted in the
equation alongside 4;; and A2;. The maximum temperature of
the stack/layers is only a function of global and local 4, 47
(CV);,, (CV),.

The primary objective of defining the arrangement para-
meters in this study is to arrive at a unique arrangement of
heat sources for any given combination of the arrangement
parameters. Furthermore, the optimization goal is to minimize
the maximum stack temperature rise and maximize temper-
ature uniformity. o is defined as the temperature uniformity
metric, which is calculated as the standard deviation of the
temperature in the entire stack volume.

IV. OPTIMIZATION
The optimization problem, in general is driven mainly by
constraints than the objective function.
The mathematical statement of the oplimization problem is
as shown from (20031}

F1:min Toax = f (414, A2, CV21, CVi2)  (20)
F2 :min ¢ = f{!".]g, ﬂgg, CV ., CV;Q}. (21)
sbo A min < 4y, = 4y, max (22)
Azgmin = da, = 43, max (23)
(CVadmin = CVir < (CVi)a (24)
(CVi2)min <CViz < (CVi2) max- (25)

The nonoverlap constraint is stated as
st Ay # Aiamin (26)
Adig # dig,min (27)
Azt # A2(it1)smin (28)
Az # Azp (29)
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Fig. 3. Flowchart for the constraint incorporated sampling algorithm.

"

dog

_ < 0.8 (30)
A2p max
o8, (31)
A2{ max

The purpose of choosing the value 0.8 was to make sure the
centroid of arrangement is not too close to the edge/corner of
the substrate. When 4; ; = 42 p max the holspots are crowded
near the edge/corner of the substrate. To allow some clearance
between the hotspots and the edge of the substrate a value
lower than “1” was chosen (0.8). However, the designer can
choose a much lower value based on his design constraint. The
first and foremost step in optimization is to generate initial
samples for the problem.

A. Learning-Based Sampling

To generate the samples for a different arrangement of
hotspots on each layer, Latin hypercube sampling combined
with Random sampling was employed with spatial constraints.
The most important constraint of nonoverlap in each layer
and between the layers was implemented by employing a
self-learning sampling algorithm. The overlap in any layer
was identified by calculating the centroid of the arrangement
and the centroid of the heat sources. IT the centroid of the
heat sources coincided with the centroid of the arrangement
in any particular layer, the nonoverlap constraint is declared
violated. The probability of this is high at high values of iy
the probability of overlap of heat sources between the layers
are seen o increase with simultaneously high and equal values
of 43,. When such samples are encountered, the nonoverlap
constraint is declared violated.

However, it is challenging to detect the overlap in between
the heaters at low values of 4;,. When i is equal and low
for all the layers, the probability of nonoverlap still exists.
Finally, the chosen samples that do not violate the nonoverlap
constraints are employed for the regression analysis. The
Howchart of the constraint incorporated sampling algorithm
is as shown in Fig. 3. A total number 135 samples that do not
violate the overlap constraints were generated.

The initial sampling process observed that the response
parameters Ty, and & are nonconflicting, as shown in Fig. 4.
This implies that optimizing any one of the objectives opti-
mizes the other.,
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TABLE T

RESPONSE PARAMETERS FOR RANDOMLY CHOSEN 5 AMPLES
FROM THE INITIAL SAMPLES

SNo | 4y, | Az |CVy | OV [Twax(CO| @
1 4852 | 0.009 | 0.04 | 1.41 |97.05 |4.21
2 4848 | 0.58 | 0.04 | 023 [101.75 |5.42
3 2748 | 0.58 | 0.06 | 0.23 | 106.78 |7.02
4 1248 | 0.58 | 0.08 | 0.23 | 118.80 |8.36
5 1242 | 461 | 0.08 | 0.09 | 130.94 |14.17
6 1238 | 12.48 | 0.08 | 0.05 | 148.61 |2L.16
7 143 | 24.19| 024 | 0.04 |139.09 |20

B 12471 | 0.15 | 041 | 1.6 [96.3 |2.55

B. Supervised Machine Learning Through Artificial
Newral Network

Tmax = f{-‘hﬁ, ;-25', CV3,, CV;__:}_

Table Il presents the results of the response parameters for
a small subset of the initial samples. To have a more accurate
regression function as a representative surrogate model for
oplimization, artificial neural network (ANN), which is a non-
linear regression tool, is developed [20] using MATLAB. One
of the advantages of adopting an ANN is its efficiency to han-
dle nonlinear trends in initial data. Supervised learning-based
static ANN is employed in this smdy.

The ANN development procedure is as follows.

1) Dividing available data collected from the sampling into
three groups namely, training, validation, and testing
datasets. In total, 135 seis of data collected from the
physics-based model provide input for the network: 895
of datasets are allocated to the training, and 11% of
which are employed to evaluate the network. About
21 sets of data within the limits of the variables but
excluded from training the network are considered to
test the robustness of the network.,
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Fig. 5. Parity plot for the ANN-based regression.

2) Normalization of the data is done in the range of [—1,
1] as the tan hyperbolic function has its limiting values
in the range [—1, 1].

3) Determining the optimal number of neurons using the
neuron independent study [20]. In this study, the optimal
number of neurons is calculated to be 4.

The results of the supervised learning algorithm are shown
in Fig. 5. The network’s prediction has a good agreement with
the actual physics-based data for a different arrangement of
the heat sources in the stacked layers. The Parity plot (shown
in Fig. 5) obtained from the ANN makes it evident that the
curve fitting is accurate for this nonlingar problem. This can
be attributed to the regressive sensitivity analysis performed
during the training process of ANN. The physics-informed
machine-learning algorithm serves the purpose of simplifying
a complex problem using an effective surrogate model. The
R? and the maximum error from ANN-based regression are
0.99 and 4.3%, respectively.

C. Genetic Algorithm

GAs are a class of stochastic optimization algorithms
inspired by the process of natural selection. GA is commonly
employed for obtaining a global optimal solution for multi-
variable multiconstraint optimization problems. The variables
considered in GA are represented as binary strings (0s and
15). The upper bound, lower bound, decimal accuracy required
for each variable determine the length of the binary string
of that variable, commonly termed as a chromosome. The
flowchart of GA is as shown in Fig. 6. The process begins with
the generation of the initial population of size N. The initial
population generated should satisfy the nonoverlap constraint.
The fitness value for each individual of the population is
calculated using the objective function derived from regression
analysis. GAs aims to improve the fitness value with each
iteration/generation. The selection of individuals from the
initial population is performed by employing roulette wheel
selection. The selected population undergoes crossover and
mutation to generate the offspring. The parameters governing
the rate of crossover and mutation are the probability of
crossover P. and the probability of mutation Py,.
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Fig. 7. Schematic of the optimal hotspot arangement [the numbers ghove

gach heat source represent (laver number i, heat source number j}].

A sensitivity analysis is performed [20] to determine the
optimal values of P, and P,. The fitness values of the new
off spring population are calculated, and the process continues
until the convergence criteria is satisfied. The results from the
sensitivity analysis yielded the following values F, = 0.7 and
Py =03

V. RESULTS AND DMSCUSSION

A, Study 1

The optimization results carried out in the article were
obtained using the GA coupled with the ANN. The oplimal
configuration that was obtained is as shown in Fig. 7. The
corresponding optimal values of the arrangement parameter are
presented in Table TV. It is evident from the optimization that
a very low value of A3, is recommended. However, an optimal
value of 4, is obtained for this particular configuration.
Furthermore, the optimal values of CV;; and CV ;3 are near
to 0, indicating that a uniform nonoverlapping arrangement
of heat sources between the layers is recommended. Tt is
also quite intuitive that the optimal arrangement parameters
should facilitate efficient heat spreading [15], thereby reducing
the maximum temperature from the heat transfer physics.
Furthermore, the value of ¢ for the optimal configuration
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TABLE IV

OPTIMAL WALUES OF THE VARIABLES AND RESPONSE
PARAMETERS IN THIS STUDY |
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TABLE ¥

HOTSPOT DIMENSIONS AND CORRESPONDING HOTSPOT
POWER EMPLOYED IN THIS STUDY

Variable Optimal value Hotspot Size (mm?) Heat flux | Power(W)
Arg 108.52 (W/mm®)
Azg 0.01 H1 1x1 8 8
CVs, 0.03
CVi, 0.51 H2 2x1 5 10
Response parameter Optimal Value H3 2x2 4 16
T max 89.91
a 1.75
10 This reinforces the fact that the primary objective of this study
3,2 to define unique arrangement parameters was satisfied.
21 2.3
& . B. Study 2
. 3,1 To test the efficiency of the proposed methodology,
G - we extend the same study to the case with:
1,2 1} Variable local heat transfer coefficient on the convection
4 R 2,2 surface (with the values obtained from Lee ef al [22]
3.3 1,1 for liquid flow through parallel microchannel).
al . - 2) Variable fluid temperature along the flow direction.
3) Three different heater sizes on each layer with different
power values as given in Table V.
0 ' ! 4) Interdie resistance of 0.75 K-mm*/W [19].
o 2 4 6 8 10 Interdie thermal resistance was modeled a thin layer contact
Fig. 8. Schematic of one of the hotspot arrangements with optimal 1;, — 110,  resistance characterized by the effective thermal resistance

Azp = 0.15 and different CV;, and CV, [the numbers above each heat source
represent {layer number {, heat source number j11.

is 1.75, indicating the best temperature uniformity in the stack
volume.

From Table TV, it is evident that the optimal arrangement
parameters correspond to a very low value of Az, and CV; .

From the optimal value of da,, which is near to 0, it is under-
stood that the centroid of the arrangement should coincide or
have a little offset from the centroid of the substrate. 4;
could be the pivotal point to derive the holspot arrangement
layout from the arrangement parameters. The optimal value
of other arrangement parameters could be derived based on a
similar approach.

To understand why the arrangement parameters consid-
ered could lead to a unique arrangement of heat sources,
we considered design guidelines from the optimal values of
arrangement parameter pertaining only o A, = 110 and
Azp = 0.15(very close to optimal values). The corresponding
arrangement is as shown in Fig. 8. However, the response para-
melers for this case are Ty = 91.7 °C and ¢ = 2.88, which
are highly deviated from the optimal response parameters. The
results from this arrangement reinforce the importance of CV;,
and CV ;. The values of CV; and CV, are 0.55 and 1.18,
respectively, indicating a local grouping of the hotspots as seen
in Fig. &. The results reiterate that only a unique arrangement
could be derived from the four arrangement paramelers con-
sidered in this study. These arrangement parameters become
more critical when the number of stacks and hotspots on each
stack increases a forecast trend in the packaging industry [21].

between the stacks and the physics available in COMSOL.

A background heat flux of 4 kW/m? was added. The entire
model was built with COMSOL Multiphysics 5.6 and inter-
faced with MATLAB 2017b for generating the initial samples
and optimization. The model in COMSOL was built with the
physics incorporating “heat transfer in solids,” physics using
the governing equation same as the previous Study 1. The
active silicon region (hotspots) was created as a boundary heat
source in each of the silicon substrate layers. The boundary
condition at the convective boundary was incorporated using
a function that incorporates the local heat transfer coefficient
consistent with measurements reported by Lee erf al. [22].

The local fluid temperature was calculated using the energy
balance equation in the following equation:

m.‘fp{nml — Tl = q”-"-.-:- (32)

A flow rate of 0.5 lpm was chosen for this study, and the
heat transfer coefficient corresponding to the flow was chosen
from Lee ef al. [22]. The heal transfer coefficient was given
as continuous function in X-direction in COMSOL

f q.r.'A: T ’
- fix = & fi41,x-
CP

- (33)

Since the fluid temperature variation is a function of the
boundary heat on the top boundary, we divided the top surface
into ten divisions, calculated the fluid temperature at the
entrance (i), and exit (f + 1) at each of these divisions using
(31). An expression was written in COMSOL software for
incorporating the variation of fluid temperature as a function
of each division's outgoing average heat flux. The variation
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TABLE V1

RESPONSE PARAMETERS FOR RANDOMLY CHOSEN DIVERSIFIED
SAMPLES FROM THE INITIAL SAMPLES
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Flow direction, x {mm)

Fig, 9. Vanation of local heat transfer coefficient and local fluid temperature
boundary condition emploved in the model. (Local fluid femperature is a
function of local boundary heat flux and the varistion shown here is for a
specific case.)

of local heat transfer coefficient and fluid temperature is as
shown in Fig. 9.

The fiuid temperatre was coupled with the entire physics
and solved,

The grid independent study was performed for the model
under consideration. The mesh elements were varied in the
range of 17232-292580, and the maximum temperature and
temperature uniformity metric were noted. From the results
of our grind independence study, it was found that beyond
156420 mesh elements the temperature and uniformity metric
changed less than 0.2%, indicating stable mesh. This mesh was
employed for the rest of the study. We employed the learning-
based sampling algorithm as shown in Fig. 3 to generate initial
cases for the optimization study. For this part of the study,
a total of 150 samples that does not violate the constraint
were generated. Diversified samples are very important for the
robust supervised machine-learning algorithm. The response
parameters for the randomly chosen diversified samples from
this study are given in Table VL

The samples were solved in the COMSOL Multiphysics
and the maximum core temperature, and the temperature
uniformity metric was derived from the results. The arrange-
ment parameters as established previously were extracted from
the initial sample points. The results from the COMSOL
multiphysics model were fed into the supervised learning-
based machine-learning algorithm employing the ANN.

Among the 180 data points.

1) 110 data point were used for the training purpose.

2) 30 data points were employed for validation,

3) 40 data points were employed for the testing purpose.

A neuron independent study was performed to decide the
optimal number of neurons in the hidden layer. The results
indicated that four hidden neurons were optimal at the hidden
layer. Fig. 10 shows the Parity plot obtained from the learning
algorithm.

The results from Fig. 10 reiterate the fact that the arrange-
ment parameters defined in the article well represent the

S No kg A g C¥ CVaz T mas
1 127 0.22 0.46 1.5 146.41
2 112 1.31 0.29 1.04 139.75
3 50.06 5.43 0.05 0.34 155.98
4 31.8 7.58 0.56 0.32 191.68
5 109.35 0.05 0.07 0.99 134.1
170
165 L
160 Ya
o 155 L
z .
Z 150 . x
: e ok
=145 e 7
140 .
ELT IR
130

130 135 140 145 150 155 160 165 170
Terawe Data, =

masf

Fig. 10.  Parity plot for supervised machine-leaming-based ANN using the
festing data (40 data points) B* = 0.96,

TABLE ¥l

OPTIMAL VALUES OF THE VARIABLES AND RESPONSE
PARAMETERS IN THIS STUDY 2

Arrangement Parameter Value
hig 127.54

hag 0.83

CVau 0.49

CVi 0.73
Response parameters Value
Tmax 123.08

g 1.92

problem under consideration. The oplimization is performed
using the GA as explained in Fig. 6. The optimal arrangement
parameter and the response parameter obtained are as given
in Tahle VIL.

The schematic of the optimal arrangement for Study 2 is as
shown in Fig. 11,

From Fig. 11, it becomes evident that any further increase
of iz, will induce interlayer and interlayer overlap leading to
more hot zones and increased maximum temperature. Further-
more, any simultaneous decrease in i3, and increase in Ay,
would move the hotspots away from the entrance, leading to
more intense hot regions. Furthermore, the optimal value of
CV;; is not close to 7ero as it was seen in a previous study
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Fig, 11. Schematic of the optimal arrangement [the flow inlet on the top
of the package is o the lefi (x = 0) and has the highest heat transfer
coefficient]. [The numbers above each heal source represent (laver number i,

heat source/hotspol aumber f).]
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Fig. 12. Contour of absolute chip surface temperature (K) on the convection
surface for (ai-{e) nonoplimal and (f) optimal arrangement [the flow inlet is
to the left (x = 0) and has the highest heat transfer coefficient and decreases
downstream]. The wvertical lines on the contours represent different work
planes created in COMSOL 5.6,
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with uniform boundary conditions. This indicates that the
optimal arrangement in each layer has become nonsymmetric
to adapt to the varying heat transfer boundary condition. The
above-stated inferences were a part of the supervised learning
algorithm and hence the optimization algorithm was able to
converge to the global optimal solution. Therefore, the GA was
able to determine the global optimal solution corresponding to
the parameters. This study proves that a combination of robust
supervised learning-based ANN coupled with a GA can be
used as an efficient methodology. For the sake of comparison
the nonoptimal case with the optimal case for study 2 is shown
in Fig. 12.

The optimal arrangement parameters for a uniform heat
transfer coefficient (in Study 1) shown in Fig. 7 is seen
to be significantly different from the oplimal arrangement
parameters shown in Fig. 11 under varying heat transfer
coefficient (Study 2).

Owing to the high heat transfer coefficient on one side of the
domain the optimal centroid of arrangement is seen to shift and
have a nonzero value. However, higher value of 4; ; is seen to
introduce inter die and intradie partial overlap. To conclude,

IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL, 11, NO, 10, OCTOBER 2021

there is a unique value of A; , and 4; ;. The arrangement
centroid is closer to a high heat transfer coefficient region
with minimum overlap and maximum heat spreading. Further
increase in 4; ; increases the effect of overlap). The opti-
mization algorithm was able to give us the unique optimal
arrangement 1o minimize maximum lemperature.

This reiterates the fact that the methodology proposed in the
article is still valid for a variable heat transfer boundary con-
dition and can be extended to many such boundary conditions
by the designer.

V1. CONCLUSION

The authors performed an efficient multiohjective con-
strained optimization of the hotspot  arrangement for
three-layer three hotspots on each layver by employing super-
vised machine-learning-based ANN combined with a GA.
An empirical correlation was developed for the maximum
temperature of the 3-D stack as a function of the arrangement
parameters. The constraints for the optimization problem were
also derived as a function of the arrangement parameters.
We considered two objectives: minimizing the maximum tem-
perature and maximizing the temperamre uniformity across the
stack volume.

The nonconflicting nature of the objective functions helped
to reduce the multiobjective optimization problem to a single
objective optimization problem. The study was conducted in
two parts (Study 1 and Study 2) with constant and varying heat
transfer coefficient on the convection surface, respectively. The
major conclusions from this study are:

1) A constraint incorporated sampling algorithm was devel-
oped that could generate initial samples that do not
violate the overlap constraint.

2) The maximum temperamre of the 3-D stack and the
temperature uniformity seemed to be nonconflicting
objectives.

3) There is a unique optimal arrangement of hotspots in
the 3-D stack for any boundary condition that could
be efficiently represented by the optimal arrangement
parameters defined in this article.

4) The arrangement parameters defined in this article effi-
ciently recognized the grouping of heaters within the
layer and between the layers.

5) The methodology demonstrated in this article can be
efficiently extended to optimize hotspot location for a
3-D IC stack n; = 3 and ny, == 3 for variable heat
transfer boundary conditions.
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