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The prompt production of the charm baryon A} and the A /D° production ratios were measured at
midrapidity with the ALICE detector in pp and p-Pb collisions at /sy = 5.02 TeV. These new
measurements show a clear decrease of the A" /D ratio with increasing transverse momentum (py) in both
collision systems in the range 2 < py < 12 GeV/c, exhibiting similarities with the light-flavor baryon-to-
meson ratios p/x and A/KY. Atlow pr, predictions that include additional color-reconnection mechanisms
beyond the leading-color approximation, assume the existence of additional higher-mass charm-baryon
states, or include hadronization via coalescence can describe the data, while predictions driven by charm-
quark fragmentation processes measured in e*e™ and e~ p collisions significantly underestimate the data.
The results presented in this Letter provide significant evidence that the established assumption of
universality (colliding-system independence) of parton-to-hadron fragmentation is not sufficient to
describe charm-baryon production in hadronic collisions at LHC energies.
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Heavy-flavor hadron production in hadronic collisions
occurs through the fragmentation of a charm or beauty
quark, created in hard parton-parton scattering processes,
into a given meson or baryon. Theoretical calculations of
heavy-flavor production generally use the QCD factoriza-
tion theorem [1], which describes the hadron cross section
as the convolution of three terms: the parton distribution
functions, the parton hard-scattering cross sections, and the
fragmentation functions. It is generally assumed that the
fragmentation functions are universal between collision
systems and energies, and the measurement of the relative
production of different heavy-flavor hadron species is
sensitive to fragmentation functions used in perturbative
QCD (pQCD)-based calculations. While perturbative cal-
culations at next-to-leading order with next-to-leading-log
resummation [2—5] generally describe the D- and B-meson
cross-section measurements [6—10] and the ratios of strange
and nonstrange D mesons [6,10] within uncertainties,
heavy-flavor baryon production is less well understood.

The A} production cross section in pp collisions at
/s =7 TeV and p-Pb collisions at VSN = 5.02 TeV was
reported by ALICE [11]. It was shown that in both collision
systems the pp-differential A} production cross section
is higher than predictions from pQCD calculations with
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charm fragmentation tuned on previous ete™ and e p
measurements [2,3]. The A7/D° ratio in pp and p-Pb
collisions is consistent in both collision systems and also
significantly underestimated by several Monte Carlo gen-
erators implementing different charm-quark fragmentation
processes [12—15], suggesting that the fragmentation frac-
tions of charm quarks into different hadronic states are
nonuniversal with respect to collision system and center-of-
mass energy. The production of charm baryons has recently
been calculated within the k,-factorization approach using
unintegrated gluon distribution functions and the Peterson
fragmentation functions [16], and with the general-mass
variable-flavor-number scheme using updated fragmenta-
tion functions from OPAL and Belle [17]. These
approaches are unable to simultaneously describe
ALICE and LHCb data with the same set of parameters,
suggesting that the independent parton fragmentation
scheme is insufficient to fully describe the results. An
alternative explanation has been offered by a statistical
hadronization model, taking into account an augmented
list of charm-baryon states based on guidance from the
relativistic quark model (RQM) [18] and lattice QCD [19],
which is able to reproduce the A} /D° ratio measured by
ALICE. The magnitude of the relative yields of A baryons
and beauty mesons in pp collisions measured by LHCb
[20-22] and CMS [23] offers further evidence that the
fragmentation fractions in the beauty sector also vary
between collision systems.

The measurement of baryon production has also been
important in heavy-ion collisions, where the high energy
density and temperature create a color-deconfined state of
matter [24]. A measured enhancement of the light-flavor
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[25,26] and charm [27-29] baryon-to-meson ratio at the
LHC and RHIC can be explained via an additional
mechanism of hadronization known as coalescence (or
recombination), where soft quarks from the medium
recombine to form a meson or baryon [30], in addition
to hydrodynamical radial flow. Measurements in p-Pb
collisions are crucial to provide an “intermediate” collision
system where the generated particle multiplicities and
energy densities are between those generated in pp and
A-A collisions. ALICE and CMS reported an enhancement
of the baryon-to-meson ratios in the light-flavor sector
(p/m and A/K?) at intermediate pr (2 < pr < 10 GeV/c)
in high-multiplicity pp and p-Pb collisions similar to that
observed in heavy-ion collisions [31,32]. This adds to the
evidence that small systems also exhibit collective behav-
ior, which may have similar physical origins in pp, p-A,
and A-A collisions [33]. It has been suggested that
hadronization of charm quarks via coalescence may also
occur in pp and p-Pb collisions [34-36].

In this Letter, the measurements of the prompt produc-
tion of the charm baryon A} in pp collisions at /s =
5.02 TeV in |y| < 0.5 and in p-Pb collisions at /sy =
5.02 TeV in —0.96 < y < 0.04 are presented, with a focus
on the AF/D° production ratios. The measurement is
performed as an average of the Al and its charge conjugate
Az, collectively referred to as A in the following. Two
hadronic decay channels were measured: Al — pK "
(branching ratio BR = 6.28 +0.33%), and A}l — ng
(BR =1.59 +0.08%)[37], which were reconstructed
exploiting the topology of the weakly decaying A}
(ct = 60.7 um) [37]. The results from both decay channels
were averaged to obtain more precise production cross
sections. With respect to the results presented in [11], this
work studies a different center-of-mass energy for pp
collisions, and the cross section is measured in finer pr
intervals and over a wider py range. The overall precision of
the measurements is significantly improved by a factor of
1.5-2, depending on py, for both pp and p-Pb collisions.
For a detailed description of the analysis techniques,
corrections, systematic uncertainty determination, and sup-
plementary measurements, the reader is referred to [38].

A description of the ALICE detector and its performance
are reported in [39,40]. The p p data sample was collected in
2017, and the p-Pb data sample was collected in 2016 during
the LHC Run 2. Both pp and p-Pb collisions were recorded
using a minimum bias (MB) trigger, which required coinci-
dent signals in the two VO scintillator detectors located on
either side of the interaction vertex. Further offline selection
was applied in order to remove background from beam-gas
collisions and other machine-induced backgrounds. To
reduce superposition of more than one interaction within
the colliding bunches (pileup), events with multiple recon-
structed primary vertices were rejected. Only events with a z
coordinate of the reconstructed vertex position within 10 cm
of the nominal interaction point were used. With these

requirements, approximately 1 x 10° MB-triggered pp
events were selected, corresponding to an integrated lumi-
nosity of L, = 19.5 nb~! (£2.1% [41]). Approximately
600 x 10® MB-triggered p-Pb events were selected, corre-
sponding to L;,, = 287 ub~! (£3.7% [42]).

The analysis techniques used for the results presented
here are described in detail in [38]. Charged-particle tracks
and particle decay vertices are reconstructed in the central
barrel using the Inner Tracking System (ITS) and the Time
Projection Chamber (TPC), which are located inside a
solenoid magnet of field strength 0.5 T. In order to reduce
the large combinatorial background, selections on the A}
candidates were made based on the particle identification
(PID) signals and the displacement of the decay tracks from
the collision point. The PID was performed using infor-
mation on the specific energy loss of charged particles as
they pass through the gas of the TPC and, where available,
with flight-time measurements given by the Time-Of-Flight
detector (TOF).

For the AT — pK~z™" analysis, candidates were built by
reconstructing triplets of tracks with the correct configu-
ration of charges. For this analysis, the high-resolution
tracking provided by the detectors meant that the decay
vertex of the Al candidates could be resolved from the
interaction point. To identify each of the p, K, and =
daughter tracks, information from the TPC and TOF was
combined using the ‘“maximum-probability” Bayesian
approach described in [43]. Kinematic selections were
made on the p; of the decay products of the A, and
geometrical selections were made on topological properties
related to the displaced vertex of the A decay.

The reconstruction of A — pKY candidates relied on
reconstructing the V-shaped decay of the K meson into
two pions, which was then combined with a proton track
(bachelor). In pp collisions, candidates were further
selected using criteria related to PID and properties of
the Al — ng decay. The Bayesian probability of the
combined TPC and TOF response for the bachelor track to
be a proton was required to be above 80%. The selection
criteria on kinematical and geometrical variables included
the distance of closest approach between the decay daugh-
ters, the invariant mass, and the cosine of the pointing angle
of the neutral decay vertex (K9) to the primary vertex.

For the Aj — pKY% decay channel in p-Pb collisions, the
analysis was performed using a multivariate technique
based on the boosted decision tree (BDT) algorithm
provided by the Toolkit for Multivariate Data Analysis
[44]. The BDT algorithm was trained using signal and
background A} — ng decay candidates simulated using
PYTHIA 6.4.25 [45] with the Perugia 2011 tune [46], and the
underlying p-Pb event simulated with HUING 1.36 [47].
Candidates obtained with the same reconstruction strategy
previously described were preselected using loose geomet-
rical selections and PID selection on the bachelor proton
track. The model was trained independently for each py
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interval analyzed, with input variables comprising the py
and Bayesian PID probability of the proton track, the cz
and invariant mass of the K%, and the impact parameters of
the A} decay tracks to the primary vertex. This model was
then applied on data, and a selection on the output response
was chosen based on the expected maximum significance
determined from simulations.

For both decay channels, the yield of A baryons was
extracted in each pp interval via fits to the candidate
invariant-mass distributions. The fitting function con-
sisted of a Gaussian to estimate the signal and an
exponential or polynomial function to estimate the back-
ground. The width of the Gaussian was fixed in each py
interval to values obtained from Monte Carlo simulations,
and the mean was treated as a free parameter. A statistical
significance higher than 4 standard deviations was
achieved in all p; intervals.

Several corrections were applied to the measurement of
the Al cross section. The geometrical acceptance of the
detector as well as the selection and reconstruction effi-
ciencies for prompt A} were taken into account. These
correction factors were determined from pp collisions
generated with PYTHIA 6 and PYTHIA 8.243 [48], with each
event including either a ¢ or a bb pair. For p-Pb collisions,
this was supplemented with an underlying event from the
HIING event generator. In p-Pb collisions, the efficiency
was calculated after reweighting the events based on their
charged particle multiplicity. This accounts for the fact that
the event multiplicity in simulation does not reproduce the
one in data, and the efficiency depends on the multiplicity
of the event as a consequence of the improvement of the
resolution of the primary vertex and thus of the perfor-
mance of the topological selections at higher multiplicities.
The fraction of the A} yield originating from beauty decays
(feed-down) was obtained using the beauty-quark produc-
tion cross section from FONLL [4,5], the fraction of beauty
quarks that fragment into beauty hadrons H, from LHCb
measurements [22], and H, - A} + X decay kinematics
from PYTHIA 8, as well as the selection and reconstruction
efficiency of Al from beauty-hadron decays. The fraction
of the A} yield from beauty decays was found to be 2% at
low pr and up to 16% at high p;, and was subtracted from
the measured yield. As done in the D-meson analysis [49],
the possible modification of beauty-hadron production
in p-Pb collisions was included in the feed-down calcu-
lation by scaling the beauty-quark production by a nuclear
modification factor R5i-4o"", where it was assumed that
Rigordown = ROGT P! with their ratio varied in the range
0.9 < Risgh-down /RIEM < 1.3 to evaluate the systematic
uncertainties.

Systematic uncertainties on the A cross sections were
estimated considering the same sources as described in
[11]. The contributions from the raw-yield extraction were
evaluated by repeating the fits varying the fit interval and

the functional form of the background fit function. For each
of these variations the four combinations of free and fixed
Gaussian mean and width parameters of the fit were
considered. Overall, the relative uncertainty ranged from
4% to 11% depending on the pr and analysis. The
uncertainties on the track reconstruction efficiency were
estimated by adding in quadrature the uncertainty due to
track quality selection and the uncertainty due to the TPC-
ITS matching efficiency (from 3% to 7%). The former is
estimated by varying the track-quality selection criteria,
and the latter is estimated by comparing the probability to
match the tracks from the TPC to the ITS hits in data and
simulation. The uncertainty on the A selection efficiency
was estimated by varying the selection on the kinematical
and topological properties of the A decays or the selection
on the BDT response (from 3% to 15%). The uncertainty on
the PID efficiency was estimated by varying the selection
on the Bayesian probability variables (from 2% to 5%). The
systematic effect on the efficiencies due to the shape of the
simulated Al p; distribution was evaluated by reweighting
the generated A} from PYTHIA 6 to match the p; distri-
bution obtained from FONLL calculations for D mesons
(maximum 1% uncertainty). The relative statistical uncer-
tainty on the acceptance and efficiency correction was
considered as an additional systematic uncertainty source
(from 1%-2% at low py to 3%-5% at high p7). The
uncertainties on fpomy Were estimated by varying the
hypothesis on the production of A from B-hadron decays
to account for the theoretical uncertainties of b-quark
production within FONLL and experimental uncertainties
on B-hadron fragmentation (around 2% at low pr and from
4% to 7% at high pr, depending on the analysis). Global
uncertainties of the measurement include those from the
luminosity and A} branching ratios. The raw-yield extrac-
tion uncertainty source are considered to be uncorrelated
across pr bins, while all other sources are considered
to be correlated.

The results in each collision system from the two A}
decay channels were averaged to obtain the final results.
A weighted average of the results was calculated, with
weights defined as the inverse of the quadratic sum of the
relative statistical and uncorrelated systematic uncertain-
ties. The sources of systematic uncertainty assumed to be
uncorrelated between different decay channels were those
due to the raw-yield extraction, the statistical uncertainties
on the efficiency and acceptance, and those related to the
AJ selection. The remaining uncertainties were assumed to
be correlated, except the branching ratio uncertainties,
which were treated as partially correlated among the
hadronic-decay modes as defined in [37].

Figure 1 (left) shows a comparison of the A} p;-
differential cross sections in pp and in p-Pb collisions
at /sy = 5.02 TeV. The D p,-differential cross sections
measured in the same collision systems and at the same
center-of-mass energy during the same data taking periods
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FIG. 1. Left: Prompt A and D° p;-differential cross section in pp collisions and in p-Pb collisions at V/Snn = 5.02 TeV. The results
in p-Pb collisions are scaled with the atomic mass number A of the Pb nucleus. Right: The A} /DO ratio as a function of p; measured in
pp collisions at /s = 5.02 TeV compared with theoretical predictions (see text for details). Statistical uncertainties are shown as
vertical bars, while systematic uncertainties are shown as boxes, and the bin widths are shown as horizontal bars.

[10,50] are also shown. In order to compare the spectral
shapes in the two different collision systems at the same
energy, the results in p-Pb collisions are scaled by the
atomic mass number of the lead nucleus. For Al baryons
the spectral shape in p-Pb collisions is slightly harder than
in pp collisions, while for D° mesons the spectral shapes
are fully consistent within uncertainties.

Figure 1 (right) shows the baryon-to-meson ratio A} /D°
measured in pp collisions at /s = 5.02 TeV as a function
of pr compared to theoretical predictions. The uncertainty
on the luminosity cancels in the ratio. The A} /D ratio is
measured to be 0.4-0.5 at low p; and decreases to around
0.2 at high p. The previous results at /s = 7 TeV hinted
at a decrease of the A7/DP ratio with p;, although the
precision was not enough to confirm this [11]. The results
in pp collisions at /s =5.02 TeV, with much higher
precision than /s = 7 TeV results, show a clear decrease
with increasing pr. The strong pr dependence of the
A} /D° ratio is in contrast to the ratios of strange and
nonstrange D mesons in pp collisions at /s = 5.02 TeV
and /s =7 TeV [10,51] and in p-Pb collisions at \/syy =
5.02 TeV [50], which do not show a significant pr
dependence within uncertainties and thus indicate that
there are no large differences between fragmentation
functions of charm quarks to charm mesons. The result
presented here instead provides strong indications that the
fragmentation functions of baryons and mesons differ
significantly.

The measured A} /D ratios in pp collisions are
compared to predictions from several Monte Carlo gen-
erators and models in which different hadronization proc-
esses are implemented. The PYTHIA 8 predictions include

the Monash tune [12] and a tune that implements color
reconnection beyond the leading-color approximation,
corresponding to CR Mode 2 as defined in [13].
Hadronization in PYTHIA is built on the Lund string
fragmentation model [52,53], where quarks and gluons
connected by color strings fragment into hadrons, and color
reconnection allows for partons created in the collision to
interact via color strings. The latter tune introduces new
color reconnection topologies beyond the leading-color
approximation, including “junctions” that fragment into
baryons, leading to increased baryon production. As a
technical point, the PYTHIA 8 simulations are generated with
all soft QCD processes switched on [48]. The PYTHIA 8
Monash tune and HERWIG 7.2 [15] predictions are driven by
the fragmentation fraction f(c¢ — A}) implemented in
these generators, which all suggest a relatively constant
A} /D ratio versus py of about 0.1, significantly under-
estimating the data at low p7. At high pr, the data approach
the predictions from these generators, although the meas-
urement in 8 < py < 12 GeV/c is still underestimated
by about a factor of 2. A significant enhancement of the
A} /D ratio is seen with color reconnection beyond the
leading-color approximation (PYTHIA 8 CR Mode 2). This
prediction is consistent with the measured A /D ratio in
pp collisions, also reproducing the downward py trend.
The statistical hadronization model (“SH model” in the
legend) [19] uses either an underlying charm-baryon
spectrum taken from the Particle Data Group, or includes
additional excited charm baryons that have not yet been
observed but are predicted by the RQM. These additional
states decay strongly to A baryons, which contribute to
the prompt A, spectrum. The RQM predictions include a
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FIG.2. The charm baryon-to-meson ratio A7 /D in pp collisions (left) and p-Pb collisions (right) at ,/syy = 5.02 TeV compared to
the light-flavor baryon-to-meson ratios A/K$ and p/x. Statistical uncertainties are shown as vertical bars, while systematic uncertainties
are shown as boxes, and the bin widths are shown as horizontal bars.

source of uncertainty related to the branching ratios of the
excited baryon states into A final states, which is
estimated by varying the branching ratios between 50%
and 100%. With the Particle Data Group charm-baryon
spectrum, the model underpredicts the data. With the
additional baryon states, the model instead gives a good
description of the pp data, both in the magnitude of the
ratio and the decreasing trend with p;. The Catania model
[36] assumes that a color-deconfined state of matter is
formed and hadronization can occur via coalescence in
addition to fragmentation. Coalescence is implemented
through the Wigner formalism, where a blast wave model
is used to determine the p; spectrum of light quarks and
FONLL pQCD calculations are used for heavy quarks.
Hadronization via coalescence is predicted to dominate
at low pr, while fragmentation dominates at high ps. This
model provides a good description of both the magnitude
and shape of the data over the full p; range.

Figure 2 shows the A}/D° baryon-to-meson ratio
measured in pp collisions at /s = 5.02 TeV (left) and
in p-Pb collisions at /sy = 5.02 TeV (right) as a
function of p; compared to baryon-to-meson ratios in
the light-flavor sector, A/K(S) [25,54] and p/z [31,55]
[calculated as the sum of both charged particles and
antiparticles, (p 4+ p)/(z* + z7)]. The p/x ratio in pp
collisions is shown at both /s =35.02 TeV and
/s =7 TeV, displaying consistent results at both
center-of-mass energies, while the A/KY ratio in pp
collisions is shown only at /s =7 TeV. Unlike heavy-
flavor hadron production, which occurs primarily through
the fragmentation of a charm quark produced in the initial
hard scattering, light-flavor hadrons have a significant
contribution from gluon fragmentation. Low-p; light-
flavor hadrons also primarily originate from soft scattering

processes involving small momentum transfers. All particle
yields in these ratios were corrected for feed-down from
weak decays, although the pion spectrum is expected to
have significant feed-down contributions also from the
strong decays of other particle species, primarily p and @
mesons. Despite these differences, the three ratios
—Af/D° A/KY, and p/r—demonstrate some remarkably
similar characteristics in both collision systems. All ratios
exhibit a decreasing trend after py = 2-3 GeV/c. The
Af/D° and A/K?Y ratios are consistent, in terms of both
shape and magnitude, within uncertainties. The light-flavor
ratios both peak at ~2-3 GeV/c in both pp and p-Pb
collisions, and there is an indication of a peak at 2 < p; <
4 GeV/c in the A}/D° ratio in p-Pb collisions. These
similarities between heavy-flavor and light-flavor measure-
ments hint at a potential common mechanism for light- and
charm-baryon formation in pp and p-Pb collisions at LHC
energies. It is interesting to note that all baryon-to-meson
ratios also indicate a shift toward higher momenta in p-Pb
collisions, which for light-flavor particle production is
often attributed to radial flow [54]. However, while flow
effects in the charm sector (D° and heavy-flavor decay
leptons) have been observed in high-multiplicity p-Pb
collisions [56,57], these effects are expected to be smaller
at lower multiplicities as well as smaller for charm than for
light-flavor hadrons.

In summary, A} -baryon production was measured in pp
collisions at midrapidity (]y| < 0.5) and in p-Pb collisions
in the rapidity interval —0.96 <y <0.04 at ,/syy =
5.02 TeV. A clear p; dependence of the A /DO ratio is
reported, with the ratio decreasing as the p; increases. This
trend is similar to that of baryon-to-meson ratios measured
in the light-flavor sector in pp and p-Pb collisions,
suggesting common mechanisms for light- and
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charm-baryon formation. While models incorporating frag-
mentation parameters from ete” and e p collisions
significantly underestimate the A} /D ratio, three models
can reproduce the measurements. The first is a tune of
PYTHIA 8 that considers that, in pp collisions at high
energy, multiparton interactions produce a rich hadronic
environment that requires an extension of color reconnec-
tion in hadronization processes beyond the leading-color
approximation. The second method is the statistical
hadronization + RQM model, which relies on the presence
of a large set of yet-unobserved higher-mass charm-baryon
states with relative yields following the statistical hadro-
nization model. The third relies on hadronization via
coalescence and fragmentation after the formation of a
color-deconfined state of matter. All three models imply a
substantially different description of the charm-baryon
production in pp collisions with respect to ete™ and
e~ p collisions, indicating that the assumption of universal
parton-to-hadron fragmentation between collision systems
is not sufficient to describe charm-baryon production.
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