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This article presents groomed jet substructure measurements in pp and Pb-Pb collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼
5.02 TeV with the ALICE detector. The soft drop grooming algorithm provides access to the hard parton
splittings inside a jet by removing soft wide-angle radiation. We report the groomed jet momentum splitting
fraction, zg, and the (scaled) groomed jet radius, θg. Charged-particle jets are reconstructed at midrapidity
using the anti-kT algorithm with resolution parameters R ¼ 0.2 and R ¼ 0.4. In heavy-ion collisions, the
large underlying event poses a challenge for the reconstruction of groomed jet observables, since
fluctuations in the background can cause groomed parton splittings to be misidentified. By using strong
grooming conditions to reduce this background, we report these observables fully corrected for detector
effects and background fluctuations for the first time. A narrowing of the θg distribution in Pb-Pb collisions
compared to pp collisions is seen, which provides direct evidence of the modification of the angular
structure of jets in the quark-gluon plasma. No significant modification of the zg distribution in Pb-Pb
collisions compared to pp collisions is observed. These results are compared with a variety of theoretical
models of jet quenching, and provide constraints on jet energy-loss mechanisms and coherence effects in
the quark-gluon plasma.
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Introduction.—Ultrarelativistic heavy-ion collisions at
the Large Hadron Collider (LHC) are used to study the
high temperature deconfined phase of strongly interacting
matter known as the quark-gluon plasma (QGP) [1–5].
Highly energetic jets created early in the collisions interact
with the QGP medium and through those interactions they
can lose energy and their internal structure can be modified.
This process, known as jet quenching, can be used to reveal
the physical properties of the QGP itself such as its
transport coefficients and the quasiparticle nature of its
degrees of freedom as a function of scale [6–9].
Experimentally, jet quenching is evaluated by comparing
jet measurements in heavy-ion collisions to analogous
measurements in pp collisions [10–18]. Notably, measure-
ments of the jet angularity [16] and jet transverse profile
[18], which are sensitive to a combination of the angular
and momentum space structure of jets, suggest a narrowing
of the jet core in heavy-ion collisions. Nonetheless, up to
now, no direct modification of the intrajet angular distri-
bution alone has been measured.

Jet grooming algorithms provide access to the hard
(high-momentum transfer) parton splittings inside a jet
by removing soft wide-angle radiation [19–21]. Access to
the hard splittings isolates substructures that are well-
controlled in perturbative QCD (PQCD), which in
heavy-ion collisions may help constrain various jet quench-
ing effects such as energy loss, transverse-momentum
broadening, and color coherence. Measurements of
groomed jet observables in heavy-ion collisions have been
performed by the ALICE and CMS Collaborations [22–
24], and opened a new avenue in the study of jet
substructure in heavy-ion collisions.
The soft drop (SD) [19–21] grooming algorithm iden-

tifies a single splitting by first reconstructing a jet with the
anti-kT algorithm and then reclustering the constituents of
the jet using the Cambridge-Aachen (CA) algorithm [25] in
order to follow the angular ordering of the QCD parton
shower. The splitting is selected from within the history of
the reclustering with a grooming condition, z > zcutθβ,
where β and zcut are tunable parameters, z is the fraction of
transverse momentum (pT) carried by the subleading
(lowest pT) prong,

z≡ pT;subleading

pT;leading þ pT;subleading
; ð1Þ

and θ is the relative angular distance between the leading
and subleading prong,
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θ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δy2 þ Δφ2

p

R
; ð2Þ

where Δy and Δφ are the distances measured in rapidity
and azimuthal angle, respectively, and R is the jet resolution
parameter. The groomed splitting is then characterized by
two relevant kinematic observables: the groomed momen-
tum fraction, zg, and the (scaled) groomed jet radius, θg,
which are the values of z and θ of Eqs. (1) and (2) for the
identified splitting, as shown in Fig. 1.
In pp collisions, measurements of the θg and zg distri-

butions were performed at RHIC and the LHC [23,26–29].
At high-transverse momentum pT , the data are described
within uncertainties by PQCD predictions [30].
In heavy-ion collisions, it was proposed that θg may be

sensitive to several important jet-quenching physics mech-
anisms: the relative suppression of gluon vs quark jets,
transverse-momentum broadening, and the ability of the
medium to resolve a color dipole as two independent color
charges [31,32]. Uncertainty principle arguments suggest
that wider splittings are formed earlier in vacuum than
narrower splittings (tf ∼ 1=θg2 where tf is the splitting
formation time). In heavy-ion collisions, this would result
in wider splittings traversing a longer path in the medium
on average. Complementary to θg, it has been argued that zg
may be sensitive to the modification of the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi splitting function in the
QGP, the breaking of color coherence, and the response
of the medium to the jet [33–36]. By measuring both θg and
zg simultaneously, and thereby both the angular and
momentum scales of the hard substructure of jets, these
jet quenching mechanisms can be further constrained.
Up to now, no measurement of θg has been performed in

heavy-ion collisions. Previous measurements of the zg
distribution by the CMS [22] and ALICE Collaborations

[23] indicated significant modification with respect to pp
collisions. However, these results were not corrected for
background and detector effects, and are difficult to
compare directly to theoretical calculations [37]. In this
Letter, we report the first fully corrected measurement of
groomed substructure observables in heavy-ion colli-
sions, allowing for a rigorous comparison with theoretical
calculations.
Experimental setup and datasets.—A description of the

ALICE detector and its performance can be found in
Refs. [38,39]. The pp data set used in this analysis was
collected in 2017 during LHC Run 2 at

ffiffiffi
s

p ¼ 5.02 TeV
using a minimum-bias (MB) trigger defined by the coinci-
dence of the signals from two scintillator arrays in the
forward region (V0 detectors) [40]. The Pb-Pb dataset was
collected in 2018 at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV. Central and semi-
central triggers that select events in the 0%–10% and 30%–
50% centrality intervals based on the multiplicity of
produced particles in the forward V0 detectors, were used
[41,42]. The event selection includes a primary-vertex
selection and the removal of beam-induced background
events and pileup [10]. After these selections, the pp data
sample contains 870 million events and corresponds to an
integrated luminosity of 18.0� 0.4 nb−1 [43]. The Pb-Pb
data sample contains 92 million events in central collisions
and 90 million events in semicentral collisions, correspond-
ing to an integrated luminosity of 0.12 nb−1 and 0.06 nb−1,
respectively.
This analysis uses charged-particle tracks reconstructed

using information from both the Time Projection Chamber
(TPC) [44] and the Inner Tracking System (ITS) [45].
While track-based observables are collinear unsafe [46–
48], they can be measured with greater precision than
calorimeter-based observables and recent measurements
have demonstrated that for the groomed jet observables
considered here, track-based distributions are compatible
with the corresponding collinear-safe distributions [49].
Tracks with 0.15 < pT < 100 GeV=c were accepted over
pseudorapidity range jηj < 0.9. Further details about the
track selection are described in Ref. [50]. The accepted
tracks exhibit approximately uniform azimuthal acce-
ptance and momentum resolution σðpTÞ=pT ranging
from about 1% at track pT ¼ 1 GeV=c to 4% at track
pT ¼ 50 GeV=c.
Analysis method.—Jets were reconstructed from

charged-particle tracks with FastJet3.2.1 [51] using the
anti-kT algorithm with E-scheme recombination for reso-
lution parameters R ¼ 0.2 and 0.4 [52,53]. The pion mass
is assumed for all jet constituents. Jets in heavy-ion
collisions have a large uncorrelated background contribu-
tion due to fluctuations in the underlying event (UE) [54].
The event-by-event constituent subtraction method was
used, which corrects the overall jet pT and its substructure
simultaneously by subtracting UE energy constituent by
constituent [55,56]. A maximum recombination distance

FIG. 1. Graphical representation of the angularly ordered
Cambridge-Aachen reclustering of jet constituents and sub-
sequent soft drop grooming procedure [19], with the identified
splitting denoted in black and the splittings that were groomed
away in light blue.
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Rmax ¼ 0.25 was used. After background subtraction, the
measured range is 40 < pT;ch jet < 120 GeV=c. The jet axis
is required to be within the fiducial volume of the TPC,
jηjetj < 0.9 − R, where ηjet is the jet pseudorapidity.
Local background fluctuations in a heavy-ion collision

environment can result in an incorrect splitting (unrelated to
the hard scattering) being identified by the grooming
algorithm. In order to address this issue, the measurement
was performed by applying a strong grooming condition,
zcut ¼ 0.2 (with β ¼ 0), which better mitigates these effects
as compared to softer grooming conditions (e.g., zcut ¼ 0.1)
[37]. To further reduce the mistagging effects, we report
measurements with either a small resolution parameter
(R ¼ 0.2 in central collisions) or with more peripheral
collisions (30%–50% for R ¼ 0.4).

The rate of prong mistagging from residual background
effects was evaluated by embedding jets simulated with the
PYTHIA8 event generator [57] into measured Pb-Pb data and
following the procedure in Ref. [37]. The residual back-
ground contribution ranges from approximately 5% up to
15% at lower pT, in more central events, and at larger R.
This level of background contamination is small enough to
allow the results to be unfolded for detector effects and
background fluctuations. The impact of the residual back-
ground contribution remains one of the main sources of
systematic uncertainty [50].
The reconstructed pT;ch jet, θg, and zg distributions were

corrected for effects related to the tracking inefficiency,
particle-material interactions, and track pT resolution.
Moreover, in Pb-Pb collisions, background fluctuations
significantly smear the reconstructed distributions of θg and
zg. To account for these effects, events were simulated with
the PYTHIA8 generator using the Monash 2013 tune [57]
and the GEANT3 model [58] for the particle transport in the
ALICE detectors’ material. For the Pb-Pb data, we
embedded the simulated events into measured Pb-Pb data
to mimic the background effects. A four-dimensional
response matrix describing the detector and background
response in pT;ch jet and θg or zg was constructed and used in
the two-dimensional unfolding in pT;ch jet, θg, or zg using
the iterative Bayesian unfolding algorithm [59,60].
Systematic uncertainties.—The largest systematic uncer-

tainties in this measurement originate from the tracking
inefficiency, the unfolding procedure, residual mistagged
prongs, and the background subtraction procedure. The
total systematic uncertainty is calculated as the quadratic
sum of all of the individual systematic uncertainties
described below.
The systematic uncertainty due to the uncertainty of the

tracking efficiency is evaluated using random rejection of
additional tracks in jet finding according to the estimated
tracking efficiency uncertainty of 4%, based on variations
in the track selection criteria and on the ITS-TPC track-
matching efficiency uncertainty. The systematic uncertainty
arising from the unfolding regularization procedure is

evaluated by varying the number of unfolding iterations
by �2 units, scaling the prior distribution, varying the
binning, and varying the lower bound in the detector-level
charged-particle jet transverse momentum pch jet

T;det range by
5 GeV=c. The systematic uncertainty due to the model-
dependence of the generator used to construct the response
matrix is estimated by comparing results obtained with
PYTHIA [57], HERWIG [61], and JEWEL [62]. The systematic
uncertainty due to the bias introduced by the constituent
subtraction procedure is estimated by varying Rmax from
“undersubtraction” (Rmax ¼ 0.05) to “oversubtraction”
(Rmax ¼ 0.7), around the nominal value of Rmax ¼ 0.25.
The systematic uncertainty due to a possible residual
contamination of mistagged splittings after unfolding is
estimated with a closure test. The total relative systematic
uncertainty ranges from 3%–24% for θg and 4%–10% for
zg. See Ref. [50] for more details about the systematic
uncertainties used in this measurement.
Results.—We report the θg and zg distributions in the

pT;ch jet interval between 60 and 80 GeV=c for zcut ¼ 0.2 in
central (0%–10%, R ¼ 0.2) and semicentral (30%–50%,
R ¼ 0.4) Pb-Pb collisions. The distributions are reported as
normalized differential cross sections,

1

σjet;inc

dσ
dzg

¼ 1

Njet;inc

dN
dzg

; ð3Þ

where N is the number of jets passing the SD condition
with a given pT;ch jet, Njet;inc is the number of inclusive jets,
and σ; σjet;inc are the corresponding cross sections. The
analog of Eq. (3) also applies for θg.
The zg and θg distributions are shown in Figs. 2 and 3,

respectively. The distributions from Pb-Pb collisions are
compared with the corresponding distributions from pp
collisions, with their ratios displayed in the bottom panels.
The relative uncertainties are assumed to be uncorrelated
between pp and Pb-Pb collisions, and are added in
quadrature in the ratio. In Pb-Pb collisions the precision
of the measurements decreases as the jet resolution param-
eter is increased or the centrality is decreased, as the prong
mistagging probability decreases with centrality and with
decreasing R.
The fraction of jets that do not contain a splitting which

passes the SD condition (ftagged) differs by at most 1%
between Pb-Pb and pp collisions. Therefore, any mod-
ifications in Pb-Pb compared to pp collisions can change
the shape of the distribution, but keep the integral approx-
imately the same.
The zg distributions in Pb-Pb and pp collisions are

consistent within experimental uncertainties for all jet
momenta, jet resolution parameters, and centralities
measured.
The situation is remarkably different when comparing

the groomed jet radius, θg, in both systems. For R ¼ 0.2 in
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central collisions, the data suggests a narrowing of the
Pb-Pb distribution relative to the pp distribution is
observed. This narrowing persists even in semicentral
Pb-Pb collisions for R ¼ 0.4 where quenching effects
are expected to be less than in central collisions.

We compare the ratio of the measurements in pp and
Pb-Pb collisions with several theoretical implementations
of jet quenching:
(i) JETSCAPE [63] consists of a medium-modified

parton shower with the MATTER model [68] controlling
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with zcut ¼ 0.2 for 0%–10% centrality for R ¼ 0.2 (left) and 30%–50% centrality for R ¼ 0.4 (right). The distributions are normalized
to the inclusive jet cross section in the 60 < pT;ch jet < 80 GeV=c interval, and ftagged indicates the fraction of splittings that were tagged
to pass the SD condition in the selected pT;ch jet interval. The ratios in the bottom panel are compared to the following theoretical
predictions: JETSCAPE [63], JEWEL [62,64], Caucal et al. [34,65], Pablos et al. [36,66,67], and Yuan et al. [31]. Further details can be
found in Ref. [50].
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the high-virtuality phase and the Linear Boltzmann
Transport (LBT) model describing the low-virtuality phase
[69]. The version of JETSCAPE used for this calculation
employs a jet transport coefficient, q̂, that includes depend-
ence on parton virtuality, in addition to dependence on the
local temperature and running of the parton-medium
coupling.
(ii) JEWEL [62,64] consists of a Monte Carlo implemen-

tation of Baier-Dokshitzer-Mueller-Peigne-Schiff-Zakharov-
based medium-induced gluon radiation in a medium
modeled with a Bjorken expansion. We consider the impact
of medium recoil by including calculations both with and
without recoils enabled [70].
(iii) Caucal et al. [34,65] implements a PQCD parton

shower with incoherent interactions including both factor-
ized vacuum and medium-induced emissions in a static
brick medium.
(iv) Chien et al. [33] (for zg only) applies Soft Collinear

Effective Theory with Glauber gluon interactions.
(v) Qin et al. [35] (for zg only) applies the higher twist

formalism with coherent energy loss.
(vi) Pablos et al. [36,66,67] consists of partons produced

by a vacuum shower that interact with the medium
according to a strongly coupled AdS=CFT-based model.
The parameter Lres describes the degree to which the
medium can resolve the jet angular structure, where Lres ¼
0 corresponds to full resolution of all jet constituents (fully
incoherent), Lres ¼ ∞ corresponds to fully coherent energy
loss, and Lres ¼ 2=πT is an intermediate case, where T is
the local medium temperature.
(vii) Yuan et al. [31] (for θg only) “med q=g” and

“quark” consist of medium-modified quark-gluon fractions
without any additional effects, where the quark-gluon
fractions in the med q=g case are extracted in Ref. [71]
with a relative suppression factor of approximately four
between gluon jets and quark jets. The calculation labeled
“q̂L” includes an implementation of transverse-momentum
broadening.
The Pb-Pb–to–pp ratios of the zg distributions are

consistent with all theoretical predictions considered.
The predicted modifications, which have been constrained
by previous measurements [22,23], are small, and the
differences between them are yet smaller than the current
uncertainty of the data. Nevertheless, these new measure-
ments are the first direct comparisons of predictions to fully
corrected data, and limit the possible in-medium modifi-
cations of the momentum structure of hard splittings to be
less than 10–20% depending on the centrality, jet R, and the
grooming settings considered.
Despite employing different microscopic implementa-

tions of the jet-medium interactions, the majority of the
models capture the qualitative feature of the narrowing seen
in the θg distributions. The theoretical models can be
grouped according to three distinct mechanisms by which
θg is modified: incoherent energy loss, coherent energy

loss, and transverse broadening. The measurements are
consistent with models implementing (transverse) incoher-
ent interaction of the jet shower constituents with the
medium. This is illustrated by calculations of Pablos et al.
where the data favor the incoherent energy loss (Lres ¼ 0)
and is also supported by Caucal et al., JEWEL, and
JETSCAPE. On the other hand, the Yuan et al. calculation
with medium-modified “quark-gluon” fractions indicates
that the data could be explained by the stronger suppression
of gluon showers, which are on average broader, with fully
coherent energy loss. These two physics mechanisms—the
degree of incoherent energy loss, and the relative quark-
gluon suppression—both lead to a suppression of wide-
angle splittings. The prediction by Yuan et al. q̂L exhibits
the opposite trend compared to the data, demonstrating that
there is no strong transverse broadening in the hard
substructure.
The presented measurements indicate that the medium

has a significant resolving power for splittings with a
particular dependence on the angular (or coherence) scale,
promoting narrow structures or filtering out wider jets
altogether.
Conclusions.—We reported the groomed jet momentum

fraction, zg, and the (scaled) groomed jet radius, θg, of
charged-particle jets measured in pp and Pb-Pb collisions
at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV with the ALICE detector. By using
stronger grooming conditions in the SD grooming algo-
rithm, we suppressed contamination of mistagged splittings
from the underlying event, and unfolded the final distri-
butions for detector and background fluctuation effects.
This allows for the first time the direct comparison of
groomed jet measurements in heavy-ion collisions with
theoretical predictions of jet quenching in the QGP. The zg
distributions are consistent with no modification in Pb-Pb
collisions compared to pp collisions. The θg distributions
are narrower in Pb-Pb collisions compared to pp collisions,
which is the first direct experimental evidence for the
modification of the angular scale of groomed jets in heavy-
ion collisions.
These new results demonstrate sensitivity to the micro-

scopic structure of the QGP, including its angular resolving
power. This marks an important step towards quantitative
understanding of the properties of the QGP, and provides a
new path for novel differential jet substructure measurements
to further elucidate the microscopic nature of the QGP.
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Y. Ding,7,138 R. Divià,35 D. U. Dixit,19 Ø. Djuvsland,21 U. Dmitrieva,65 J. Do,63 A. Dobrin,69 B. Dönigus,70 O. Dordic,20

A. K. Dubey,143 A. Dubla,93,110 S. Dudi,103 M. Dukhishyam,89 P. Dupieux,137 N. Dzalaiova,13 T. M. Eder,146 R. J. Ehlers,99

V. N. Eikeland,21 F. Eisenhut,70 D. Elia,54 B. Erazmus,117 F. Ercolessi,26 F. Erhardt,102 A. Erokhin,115 M. R. Ersdal,21

B. Espagnon,80 G. Eulisse,35 D. Evans,113 S. Evdokimov,94 L. Fabbietti,108 M. Faggin,28 J. Faivre,81 F. Fan,7 A. Fantoni,53

M. Fasel,99 P. Fecchio,31 A. Feliciello,61 G. Feofilov,115 A. Fernández Téllez,46 A. Ferrero,140 A. Ferretti,25

V. J. G. Feuillard,107 J. Figiel,120 S. Filchagin,111 D. Finogeev,65 F. M. Fionda,21,56 G. Fiorenza,35,109 F. Flor,127

A. N. Flores,121 S. Foertsch,74 P. Foka,110 S. Fokin,91 E. Fragiacomo,62 E. Frajna,147 U. Fuchs,35 N. Funicello,30 C. Furget,81

A. Furs,65 J. J. Gaardhøje,92 M. Gagliardi,25 A. M. Gago,114 A. Gal,139 C. D. Galvan,122 P. Ganoti,87 C. Garabatos,110

J. R. A. Garcia,46 E. Garcia-Solis,10 K. Garg,117 C. Gargiulo,35 A. Garibli,90 K. Garner,146 P. Gasik,110 E. F. Gauger,121

A. Gautam,129 M. B. Gay Ducati,72 M. Germain,117 P. Ghosh,143 S. K. Ghosh,4 M. Giacalone,26 P. Gianotti,53

P. Giubellino,61,110 P. Giubilato,28 A. M. C. Glaenzer,140 P. Glässel,107 D. J. Q. Goh,85 V. Gonzalez,145

L. H. González-Trueba,73 S. Gorbunov,40 M. Gorgon,2 L. Görlich,120 S. Gotovac,36 V. Grabski,73 L. K. Graczykowski,144

L. Greiner,82 A. Grelli,64 C. Grigoras,35 V. Grigoriev,96 S. Grigoryan,1,77 O. S. Groettvik,21 F. Grosa,35,61

J. F. Grosse-Oetringhaus,35 R. Grosso,110 G. G. Guardiano,124 R. Guernane,81 M. Guilbaud,117 K. Gulbrandsen,92

T. Gunji,135 W. Guo,7 A. Gupta,104 R. Gupta,104 S. P. Guzman,46 L. Gyulai,147 M. K. Habib,110 C. Hadjidakis,80

G. Halimoglu,70 H. Hamagaki,85 G. Hamar,147 M. Hamid,7 R. Hannigan,121 M. R. Haque,89,144 A. Harlenderova,110

J. W. Harris,148 A. Harton,10 J. A. Hasenbichler,35 H. Hassan,99 D. Hatzifotiadou,55 P. Hauer,44 L. B. Havener,148

S. Hayashi,135 S. T. Heckel,108 E. Hellbär,110 H. Helstrup,37 T. Herman,38 E. G. Hernandez,46 G. Herrera Corral,9

F. Herrmann,146 K. F. Hetland,37 H. Hillemanns,35 C. Hills,130 B. Hippolyte,139 B. Hofman,64 B. Hohlweger,93

J. Honermann,146 G. H. Hong,149 D. Horak,38 S. Hornung,110 A. Horzyk,2 R. Hosokawa,15 Y. Hou,7 P. Hristov,35

C. Hughes,133 P. Huhn,70 T. J. Humanic,100 H. Hushnud,112 L. A. Husova,146 A. Hutson,127 D. Hutter,40 J. P. Iddon,35,130

R. Ilkaev,111 H. Ilyas,14 M. Inaba,136 G. M. Innocenti,35 M. Ippolitov,91 A. Isakov,38,98 M. S. Islam,112 M. Ivanov,110

V. Ivanov,101 V. Izucheev,94 M. Jablonski,2 B. Jacak,82 N. Jacazio,35 P. M. Jacobs,82 S. Jadlovska,119 J. Jadlovsky,119

S. Jaelani,64 C. Jahnke,123,124 M. J. Jakubowska,144 A. Jalotra,104 M. A. Janik,144 T. Janson,76 M. Jercic,102 O. Jevons,113

A. A. P. Jimenez,71 F. Jonas,99,146 P. G. Jones,113 J. M. Jowett,35,110 J. Jung,70 M. Jung,70 A. Junique,35 A. Jusko,113

J. Kaewjai,118 P. Kalinak,66 A. Kalweit,35 V. Kaplin,96 S. Kar,7 A. Karasu Uysal,79 D. Karatovic,102 O. Karavichev,65

T. Karavicheva,65 P. Karczmarczyk,144 E. Karpechev,65 A. Kazantsev,91 U. Kebschull,76 R. Keidel,48 D. L. D. Keijdener,64

M. Keil,35 B. Ketzer,44 Z. Khabanova,93 A. M. Khan,7 S. Khan,16 A. Khanzadeev,101 Y. Kharlov,84,94 A. Khatun,16

A. Khuntia,120 B. Kileng,37 B. Kim,17,63 C. Kim,17 D. J. Kim,128 E. J. Kim,75 J. Kim,149 J. S. Kim,42 J. Kim,107 J. Kim,149

J. Kim,75 M. Kim,107 S. Kim,18 T. Kim,149 S. Kirsch,70 I. Kisel,40 S. Kiselev,95 A. Kisiel,144 J. P. Kitowski,2 J. L. Klay,6

J. Klein,35 S. Klein,82 C. Klein-Bösing,146 M. Kleiner,70 T. Klemenz,108 A. Kluge,35 A. G. Knospe,127 C. Kobdaj,118

M. K. Köhler,107 T. Kollegger,110 A. Kondratyev,77 N. Kondratyeva,96 E. Kondratyuk,94 J. Konig,70 S. A. Konigstorfer,108

P. J. Konopka,2,35 G. Kornakov,144 S. D. Koryciak,2 L. Koska,119 A. Kotliarov,98 O. Kovalenko,88 V. Kovalenko,115

M. Kowalski,120 I. Králik,66 A. Kravčáková,39 L. Kreis,110 M. Krivda,66,113 F. Krizek,98 K. Krizkova Gajdosova,38

M. Kroesen,107 M. Krüger,70 E. Kryshen,101 M. Krzewicki,40 V. Kučera,35 C. Kuhn,139 P. G. Kuijer,93 T. Kumaoka,136

PHYSICAL REVIEW LETTERS 128, 102001 (2022)

102001-9



D. Kumar,143 L. Kumar,103 N. Kumar,103 S. Kundu,35,89 P. Kurashvili,88 A. Kurepin,65 A. B. Kurepin,65 A. Kuryakin,111

S. Kushpil,98 J. Kvapil,113 M. J. Kweon,63 J. Y. Kwon,63 Y. Kwon,149 S. L. La Pointe,40 P. La Rocca,27 Y. S. Lai,82

A. Lakrathok,118 M. Lamanna,35 R. Langoy,132 K. Lapidus,35 P. Larionov,35,53 E. Laudi,35 L. Lautner,35,108 R. Lavicka,38

T. Lazareva,115 R. Lea,24,59,142 J. Lehrbach,40 R. C. Lemmon,97 I. León Monzón,122 E. D. Lesser,19 M. Lettrich,35,108
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24Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy
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