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The production of prompt D0, D+
s , and �+

c hadrons, and their ratios, D+
s /D0 and �+

c /D0, are 
measured in proton–proton collisions at 

√
s = 13 TeV at midrapidity (|y| < 0.5) with the ALICE 

detector at the LHC. The measurements are performed as a function of the charm-hadron transverse 
momentum (pT) in intervals of charged-particle multiplicity, measured with two multiplicity estimators 
covering different pseudorapidity regions. While the strange to non-strange D+

s /D0 ratio indicates 
no significant multiplicity dependence, the baryon-to-meson pT-differential �+

c /D0 ratio shows a 
multiplicity-dependent enhancement, with a significance of 5.3σ for 1 < pT < 12 GeV/c, comparing the 
highest multiplicity interval with respect to the lowest one. The measurements are compared with a 
theoretical model that explains the multiplicity dependence by a canonical treatment of quantum charges 
in the statistical hadronisation approach, and with predictions from event generators that implement 
colour reconnection mechanisms beyond the leading colour approximation to model the hadronisation 
process. The �+

c /D0 ratios as a function of pT present a similar shape and magnitude as the �/K0
S ratios 

in comparable multiplicity intervals, suggesting a potential common mechanism for light- and charm-
hadron formation, with analogous multiplicity dependence. The pT-integrated ratios, extrapolated down 
to pT = 0, do not show a significant dependence on multiplicity within the uncertainties.

© 2022 European Organization for Nuclear Research. Published by Elsevier B.V. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Heavy-flavour hadrons are produced in high-energy particle 
collisions through the hadronisation of the corresponding heavy-
flavour quarks, which in turn typically originate from early hard 
scattering processes. The most common theoretical approach to de-
scribe this production is based on the quantum chromodynamics 
(QCD) factorisation theorem [1]. In this framework, the produc-
tion of hadrons containing charm or beauty quarks is calculated 
as a convolution of three independent terms: the parton distribu-
tion functions of the incoming protons, the cross sections of the 
partonic scatterings producing the heavy quarks, and the fragmen-
tation functions that parametrise the non-perturbative evolution of 
a heavy quark into a given species of heavy-flavour hadron. Calcu-
lations based on the factorisation approach rely on the assump-
tion that fragmentation functions, which are typically measured in 
electron–positron (e+e−) or electron–proton (e−p) collisions [2], 
are universal across all collision systems and energies. Systematic 
measurements of the relative production of heavy-flavour hadrons 
performed in different collision systems provide an excellent ex-
perimental benchmark to test this assumption.

� E-mail address: alice -publications @cern .ch.

Perturbative calculations at next-to-leading order, with next-to-
leading-log resummation [3–6], can successfully describe the pro-
duction cross section of strange and non-strange charm mesons 
and their ratios, as a function of transverse momentum (pT) 
and rapidity in proton–proton (pp) collisions, over a wide range 
of centre-of-mass energies [7–11]. In contrast, these calculations, 
which are based on collinear factorisation and fragmentation func-
tions tuned on e+e− and e−p collision measurements, provide a 
poor description of heavy-flavour baryon production in hadronic 
collisions. Measurements of the �+

c production cross section in 
pp collisions at centre-of-mass energies of 

√
s = 7, 5.02, and 

13 TeV [12–15] have shown a larger pT-differential cross section 
in the measured pT range, compared to QCD calculations [3,4,16]
as well as higher values for the �+

c /D0 ratio with respect to e+e−
collision data from LEP [17]. Similarly, a �+

c /D0 ratio larger than 
expectations from e+e− collisions was measured in p–Pb collisions 
at the LHC, both at midrapidity by ALICE [12,13] and at forward ra-
pidity by the LHCb experiment [18].

In particular, the measurements in pp collisions at 
√
s = 5.02

and 13 TeV provided the statistical precision to discriminate among 
different theoretical approaches. The measurements show, with 
good accuracy, a decrease of the �+

c /D0 ratio from about 0.6 in 
the interval 1 < pT < 2 GeV/c to about 0.3 for 8 < pT < 12 GeV/c. 
Calculations based on PYTHIA 8 [19] with Monash tune [20] and 
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HERWIG 7 [21], in which the charm fragmentation is tuned to 
e+e− and e−p measurements, cannot describe the experimen-
tal results since they predict a pT-independent �+

c /D0 ratio of 
about 0.1. The Monash tune is based on the Lund string frag-
mentation model [22,23], where quarks and gluons, connected by 
colour strings, fragment into hadrons, and colour reconnection al-
lows for partons created in the collision to interact via colour 
strings. A much better agreement is achieved by PYTHIA 8 cal-
culations that include colour reconnection mechanisms beyond the 
leading-colour approximation [24] (CR-BLC in the following). These 
hadronisation mechanisms are implemented in addition to those 
included in the standard Monash tune. The CR-BLC calculations 
introduce new colour-reconnection topologies enhancing the con-
tribution of “junctions” that fragment into baryons, thus provid-
ing an augmented baryon production. Calculations based on the 
statistical hadronisation model [25] or calculations that include 
mechanisms of charm-hadron formation through coalescence of 
constituent quarks in the presence of a colour-deconfined state of 
matter [26], also provide a satisfactory description of the �+

c /D0

ratio in pp collisions. This suggests the presence of modified or 
additional hadronisation mechanisms in small hadronic collision 
systems with respect to fragmentation in vacuum. Similar conclu-
sions are drawn from recent measurements of higher-mass charm-
baryon states, �0,+

c and �0,++
c , in pp collisions at 

√
s = 5.02, 7, 

and 13 TeV [15,27–29]. The fragmentation fractions, i.e. the prob-
abilities for a charm quark to hadronise into a specific charm 
hadron, computed for the first time from hadronic collision mea-
surements at the LHC including the charm baryon states, are found 
to be different than those measured in e+e− and e−p collisions. 
This observation confirms that the hadronisation of charm quarks 
into charm hadrons is not a universal process among different col-
lision systems [30].

The measurements of the �+
c /D0 and D+

s /D0 ratios also play 
an important role in the study of heavy-ion collisions, where a 
hot and dense quark–gluon plasma, characterised by the presence 
of free colour charges, is formed [31]. In heavy-ion collisions, mea-
surements of baryon-to-meson ratios and of strange to non-strange 
hadron production ratios [14,32–39] are sensitive to the mecha-
nisms of hadronisation from the quark–gluon plasma [40]. A first 
measurement of the �+

c /D0 ratio in Pb–Pb collisions, in the 80% 
most central collisions, was performed at 

√
sNN = 5.02 TeV [34]

by ALICE. The measurement is consistent with the hypothesis of 
an enhancement of the �+

c /D0 ratio with respect to pp collisions 
in the intermediate pT region 6 < pT < 12 GeV/c, although the 
limited statistical precision does not yet allow for a firm conclu-
sion to be drawn. The �+

c /D0 ratio in heavy-ion collisions was 
also measured by CMS, in Pb–Pb collisions at 

√
sNN = 5.02 TeV 

for 10 < pT < 20 GeV/c [14], and by STAR, in Au–Au collisions 
at 

√
sNN = 200 GeV for 2.5 < pT < 8 GeV/c [35]. While the STAR 

result is significantly higher than PYTHIA 8 calculations with dif-
ferent tunes [20,24], the CMS ratio at higher pT is consistent with 
the pp result. A hint of enhancement of the D+

s /D0 ratio in central 
Pb–Pb collisions with respect to pp collisions was also observed at √
sNN = 5.02 TeV in the intermediate pT region 4 < pT < 8 GeV/c, 

as expected in the presence of a sizeable contribution of coa-
lescence processes and increased strangeness production in the 
medium [37,38]. A similar conclusion is drawn by STAR from the 
measured D+

s /D0 ratio in the 10% most central Au–Au collisions 
at 

√
sNN = 200 GeV relative to PYTHIA simulation of pp colli-

sions [39]. A measurement performed in high-multiplicity pp col-
lisions could shed light on the possible presence of similar effects 
also in smaller collision systems with large particle densities.

In this Letter, we present the first measurement of the pro-
duction yields of prompt D0, D+

s and �+
c (i.e. produced in the 

hadronization of charm quarks or from the decay of excited open 
charm and charmonium states) as well as corresponding ratios, 

D+
s /D0 and �+

c /D0, in pp collisions at 
√
s = 13 TeV, as a func-

tion of the charged-particle pseudorapidity density 〈dNch/dη〉. The 
aim of this study is to characterise the evolution of the aforemen-
tioned ratios from very low to moderate charged-particle density 
and provide new experimental constraints on the nature of these 
modifications in pp collisions. The study was performed consid-
ering events selected according to the charged-particle density at 
mid- and forward rapidities, in order to investigate the effects of 
possible biases originating from the determination of the multi-
plicity in the same pseudorapidity region in which charm hadrons 
are reconstructed. Comparisons with theoretical calculations and 
Monte Carlo simulations are also provided. In addition, the �+

c /D0

results are compared to �/K0
S measurements in similar multiplicity 

intervals [41]. The pT-integrated �+
c /D0 yield ratios, extrapolated 

down to pT = 0, are also presented.

2. Experimental apparatus and data samples

The ALICE experiment and its performance are presented in 
detail in Refs. [42,43]. The main detectors considered for the mea-
surements discussed in this paper are the Inner Tracking System 
(ITS) for tracking, vertex reconstruction, event multiplicity estima-
tion, and trigger purposes; the Time Projection Chamber (TPC) for 
tracking and particle identification; the Time-Of-Flight (TOF) for 
particle identification; and the V0 detector for event multiplicity 
estimation as well as for trigger purposes.

The event multiplicity selection was based on two estimators. 
At midrapidity (|η| < 1) the multiplicity was estimated via the 
number of tracklets (Ntrkl) defined as track segments built by asso-
ciating pairs of hits in the two Silicon Pixel Detector (SPD) layers, 
which are the two innermost layers of the ITS. The acceptance of 
the SPD in pseudorapidity changes with the longitudinal position 
of the vertex zvtx and, in addition, the acceptance-times-efficiency 
changes with time due to variations of the inactive channels. 
Therefore, a data-driven correction procedure was applied on an 
event-by-event basis to Ntrkl, depending on the zvtx position and 
the data taking period, as further described in Ref. [44]. The event 
multiplicity in the forward rapidity region was estimated from the 
percentile distribution pV0M of the V0M amplitude, which is the 
sum of signal amplitudes in the V0A and V0C scintillators. They 
are the two detecting components of the V0 detector on opposite 
sides of the interaction point along the beam axis, covering the 
pseudorapidity regions of 2.8 < η < 5.1 and −3.7 < η < −1.7, re-
spectively. The pV0M values towards 0 correspond to the highest 
multiplicity events, while the lowest are assigned a value towards 
100%.

The data from pp collisions at 
√
s = 13 TeV used for this analy-

sis were collected in the years 2016, 2017, and 2018. Three trigger 
setups were employed. The minimum-bias (MB) trigger required 
signals in both V0A and V0C in coincidence with the proton bunch 
arrival time. To enrich the data sample in the highest multiplicity 
regions, high-multiplicity triggers based on a minimum selection 
of the number of hits in the SPD (HMSPD) or of V0 amplitudes 
(HMV0) were used, which were fully efficient for Ntrkl > 65 and 
pV0M < 0.1%, respectively.

Offline selection criteria were applied in order to remove 
background events from beam–gas collisions and other machine-
induced background as described in Ref. [45]. To reduce the con-
tamination from events with superposition of more than one col-
lision within the colliding bunches (pile-up), events with multiple 
reconstructed primary vertices were rejected. The impact of poten-
tially remaining pile-up events is on the percent level and does not 
influence the final results of the present analysis. Only events with 
a vertex position of |zvtx| < 10 cm around the nominal interaction 
point were considered to ensure a uniform acceptance. In addition, 
events were required to have at least one reconstructed tracklet 
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Table 1
Summary of the multiplicity event classes at midrapidity (Ntrkl) and forward 
rapidity (pV0M [%]), the latter corresponding to the visible V0M cross sec-
tion. The average charged-particle densities 〈dNch/dη〉|η|<0.5 at midrapidity 
are shown, together with the value corresponding to the INEL > 0 event class. 
The trigger efficiency εINEL is also reported for each multiplicity interval, as 
estimated in Ref. [45].
Mult. estimator Mult. interval 〈dNch/dη〉|η|<0.5 εINEL

Ntrkl

[1,9] 3.10± 0.02 0.862± 0.015
[10,29] 10.54± 0.01 0.997± 0.002
[30,59] 22.56 ± 0.07 1 (negl. unc.)
[60,99] 37.83 ± 0.06 1 (negl. unc.)

pV0M[%]
[30,100] 4.41± 0.05 0.897± 0.013
[0.1,30] 13.81 ± 0.14 0.997± 0.001
[0,0.1] 31.53 ± 0.38 1 (negl. unc.)

INEL > 0 6.93± 0.09 0.920 ± 0.003

within the pseudorapidity region |η| < 1 (INEL > 0 event class). 
This class of events minimises diffractive corrections and has a 
high trigger efficiency. It corresponds to about 75% of the total in-
elastic cross section [45,46]. After the aforementioned selections, 
the integrated luminosity of the data sample is about 32 nb−1 for 
the MB triggered events. Only the data periods granting an uni-
form efficiency of the HMV0 and HMSPD triggers, inside the range 
covered by the multiplicity intervals considered in the analysis, 
were used, resulting in an integrated luminosity of about 7.7 pb−1

with HMV0 and 0.8 pb−1 for the HMSPD trigger sample.
The events were assigned to multiplicity intervals based on the 

corresponding observables Ntrkl and pV0M, as presented in Table 1. 
The last Ntrkl and pV0M intervals contain data collected with the 
HMSPD and HMV0 triggers, respectively. To account for a possible 
trigger inefficiency for HMSPD triggered events in the range 60 <
Ntrkl < 65, a correction was applied with a data-driven reweighting 
procedure, as described in Ref. [44].

The mean multiplicity density (〈dNch/dη〉|η|<0.5) of charged pri-
mary particles, whose definition is given in Ref. [47], was ob-
tained by converting the measured event multiplicities as de-
scribed in Ref. [45]. For the pV0M percentiles the values reported in 
Ref. [45] were used. The conversion of the specific Ntrkl intervals 
used in this analysis was performed by means of a PYTHIA [19]
Monte Carlo (MC) simulation, with particle transport based on the 
GEANT3 package [48], and by selecting the charged primary par-
ticles measured at midrapidity in the events corresponding to the 
given Ntrkl intervals. Throughout the analysis reported in this pa-
per, PYTHIA 8.243 with Monash tune [20] was used; the version 
will not be reported later for the sake of simplicity.

A summary of the above information is given in Table 1 to-
gether with the trigger correction εINEL to account for those events 
which fulfil the INEL > 0 requirement but were not selected by the 
trigger, as specified in Ref. [45].

3. Data analysis

The D0, D+
s , and �+

c hadrons and their charge conjugates 
were reconstructed via the hadronic decay channels D0 → K−π+
(branching ratio BR = (3.950 ± 0.031)%), D+

s → φπ+ → K+K−π+
(BR = (2.24 ± 0.08)%), �+

c → pK−π+ (BR = (6.28 ± 0.32)%), and 
�+

c → pK0
S → pπ+π− (BR = (1.10 ±0.06)%) [49]. The analysis was 

performed for the different multiplicity intervals, as defined in Ta-
ble 1. Transverse-momentum intervals between 1 and 24 GeV/c
were chosen to guarantee a large statistical significance in all mul-
tiplicity event classes. In order to minimise systematic effects, 
which could have a different impact in the different multiplicity 
intervals considered in the analysis, the same event and candi-
date selection criteria were used in all the multiplicity classes. 
The charm-hadron decay tracks were excluded from the Ntrkl es-

timation at midrapidity, in order to reduce the effects of auto-
correlation that could arise from the measurement of the charged-
particle distribution in the same pseudorapidity region as the 
charm hadrons. A possible remaining bias could be induced by 
the charged particles produced in the fragmentation of the charm 
quarks or by decays of excited charm states that are not subtracted 
from the Ntrkl count.

Candidates of D0 → K−π+ , D+
s → φπ+ → K+K−π+ , and �+

c →
pK−π+ were defined by combining pairs or triplets of tracks with 
the proper charge signs, while the reconstruction of the �+

c → pK0
S

candidates relied on reconstructing the V-shaped decay of the K0
S

meson into two pions, which was then combined with a proton-
candidate track. Track-quality selections were applied to the candi-
date daughters as explained in Ref. [13]. As a consequence of these 
track-selection criteria, the detector acceptance for D mesons and 
�+

c baryons varies as a function of rapidity, falling steeply to zero 
for |y| > 0.5 at low pT and for |y| > 0.8 at pT > 5 GeV/c. For this 
reason, a fiducial acceptance selection was applied on the rapid-
ity of the candidates, |y| < yfid(pT), where the factor yfid(pT) was 
defined as a second-order polynomial function, increasing from 
0.5 to 0.8 in the transverse-momentum range 0 < pT < 5 GeV/c, 
and as a constant term, yfid = 0.8, for pT > 5 GeV/c. The correc-
tion factors for the acceptance were computed accordingly. Further 
selections on the charm-hadron decay topology and on the parti-
cle identification (PID) of their decay products were exploited to 
reduce the combinatorial background. The same selection criteria 
described in Refs. [11,13] were used for D0 and �+

c → pK−π+ , 
while for the D+

s and �+
c → pK0

S analyses, a machine-learning ap-
proach with Boosted Decision Trees (BDTs), using the toolkit from 
XGBoost [50], was employed. Binary BDT classifiers were used and 
the training sample was assembled considering the background 
from the sidebands of the candidate invariant-mass distribution in 
data, and the prompt signal candidates from MC simulations based 
on the PYTHIA Monash event generator. Independent BDTs were 
trained for each pT interval in the multiplicity-integrated sample. 
The most prominent variables that were used in the training for 
the �+

c analysis are related to the PID of the proton decay track, 
the reconstructed invariant mass and cτ of the K0

S candidate, the 
cosine of the pointing angle between the line of flight of the K0

S
meson (the vector connecting the primary and secondary vertices) 
and its reconstructed momentum vector, and the distance between 
the K0

S-meson decay vertex and the primary vertex. For the D+
s

analysis, the variables provided to the BDTs are the same as re-
ported in Ref. [51]. The selections on the BDT outputs were tuned 
to provide a large statistical significance for the signal.

The signal extraction was performed via binned maximum-
likelihood fits to the invariant-mass distributions of candidates 
in each pT and multiplicity interval. For all analyses, a Gaussian 
function was used to describe the signal peak. To model the back-
ground, an exponential function was used for the D0 mesons and 
for D+

s mesons with a transverse momentum higher than 4 GeV/c, 
while a second-order polynomial function was used for both �+

c
decay channels as well for the lowest two pT intervals of the D+

s -
meson analysis. Due to the limited number of candidates in some 
multiplicity classes and the large combinatorial background, it was 
not possible to extract the raw yield in the full pT range for all 
the multiplicity intervals: the range 1 < pT < 2 GeV/c in the low 
and high multiplicity classes and 12 < pT < 24 GeV/c in the low 
multiplicity class are missing, respectively, for the D+

s and �+
c

analyses. Examples of the invariant-mass distributions for D0, D+
s , 

�+
c → pK−π+ , and �+

c → pK0
S candidates for the different pT and 

multiplicity intervals are reported in Ref. [52].
The corrected per-event yields were computed for each pT and 

multiplicity interval as
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1

Nev
mult

d2Nhadron
mult

dydpT

= εINEL
mult

Nev
mult

1

c�y(pT) × �pT

1

BR

×
fprompt(pT) × 1

2 × Nhadron,raw
mult (pT)

∣
∣
∣|y|<yfid(pT)

(Acc× ε)prompt,mult(pT)
, (1)

where Nhadron,raw
mult is the raw yield (sum of particles and an-

tiparticles) extracted in a given pT and multiplicity interval. It is 
multiplied by the prompt fraction fprompt in order to correct for 
the corresponding beauty-hadron decay contribution, and divided 
by the multiplicity-dependent prompt acceptance-times-efficiency, 
(Acc × ε)prompt,mult. It is further divided by a factor of two to ob-
tain the charge-averaged yield, by the BR of the decay channel, 
the pT-interval width (�pT), and the correction factor for the ra-
pidity coverage c�y , computed as the ratio between the generated 
heavy-flavour hadron yield in �y = 2yfid and that in |y| < 0.5. The 
factor Nev

mult denotes the number of recorded events in each mul-
tiplicity class, which is then corrected for the fraction of INEL > 0
events that were not selected by the trigger, εINEL

mult, whose values 
are reported in Table 1.

The geometrical acceptance of the detector times the recon-
struction efficiency (Acc × ε) includes the tracking, the PID, and 
the topological selection efficiencies, and it was obtained sepa-
rately for prompt and feed-down hadrons. It was determined from 
pp collisions simulated with PYTHIA with Monash tune, with par-
ticle transport based on the GEANT3 package [48]. To account for 
the multiplicity dependence of the efficiency, which is driven by 
the primary-vertex resolution improving with increasing multiplic-
ity, the generated events were weighted based on the number of 
tracklets in order to match the distribution observed in data. The 
generated �+

c pT spectrum used to calculate the efficiencies was 
weighted to reproduce the shape obtained from the PYTHIA CR-
BLC tune, which describes the measured spectra better than the 
Monash tune as observed in Ref. [13].

The estimated (Acc× ε)prompt,mult varies between 0.5% and 60% 
depending on pT and species, and increases with multiplicity [52]. 
The largest difference with respect to the efficiency computed in 
the INEL > 0 class is observed in 1 < pT < 2 GeV/c, where it 
reaches 30% for D+

s , while it steeply decreases to few percents with 
increasing pT.

The fprompt fraction was estimated as reported in Refs. [13,51], 
using (i) the beauty-quark production cross section from FONLL 
calculations [5,6], (ii) the (Acc × ε) for feed-down charm hadrons, 
(iii) beauty-quark fragmentation fractions determined from LHCb 
data [53] for b → �0

b and from e+e− measurements [17] for 
b → B, and (iv) modelling the decay kinematics with PYTHIA sim-
ulations. The fprompt fraction was assumed to be independent of 
the event multiplicity and therefore computed for the minimum-
bias event class. This assumption is justified by the expected weak 
dependence of the feed-down fraction with multiplicity [44], pre-
dicted also by PYTHIA, and the small variations of the efficiency for 
the feed-down component of charm hadrons observed in the sim-
ulation for the different multiplicity intervals. The values of fprompt
range from 0.81 to 0.97 depending on pT and particle species.

4. Systematic uncertainty evaluation

Sources of systematic uncertainty on the measured corrected 
yields were studied following procedures similar to those de-
scribed in detail in Refs. [11,13] for the minimum-bias �+

c and 
D-meson analyses. The multiplicity-independent sources, i.e. those 
related to the tracking efficiency, the PID selection and the simu-
lated charm-hadron pT spectra, are discussed first, and then those 

related to the multiplicity dependence of the analyses are ad-
dressed.

The systematic uncertainties on the track-reconstruction effi-
ciency depend on the candidate pT and number of decay tracks 
of the candidate, and range from 3% to 5% for the D0, and from 
4% to 8% for the D+

s and �+
c . The contribution due to the PID was 

investigated by varying the selection criteria. For the D0 and the 
�+

c → pK−π+ analyses, the studies were performed as described 
in Refs. [11] and [13], respectively, resulting in a negligible uncer-
tainty for the D0, and a 5% uncertainty for the �+

c → pK−π+ . In 
the D+

s and �+
c → pK0

S analyses, where topological and PID selec-
tion variables are used simultaneously in the BDT, the uncertainties 
coming from the two sources are treated in a combined procedure 
as described further below.

The possible differences between the real and simulated charm-
hadron pT spectra result in a further source of systematic uncer-
tainty. It was evaluated by reweighting the pT shape from PYTHIA 
Monash for the D0 and D+

s analyses and from PYTHIA CR-BLC 
for the �+

c analyses to match the one from D-meson FONLL cal-
culations [5,6]. This contribution ranges from 1% to 6% for pT <

4 GeV/c, while it is negligible at higher pT.
The selection efficiencies of the various hadron candidates rely 

on the description of the detector resolution and alignment in 
the simulation. Systematic effects arising from imperfections in 
the simulation are studied by repeating the D0 and �+

c → pK−π+
analyses using different selection criteria on the displaced decay 
topology. In the D+

s and �+
c → pK0

S analyses, the selections on the 
BDT outputs were varied instead, covering both the PID and the 
decay-topology selection efficiency. For both approaches, the varia-
tions are performed separately for the different multiplicity and pT
intervals. The assigned systematic uncertainties are larger at low 
pT where the selection criteria are strict, reaching 5% for the D0

meson and 10% for the D+
s and �+

c analyses. The uncertainty due 
to the multiplicity dependence of the selection efficiency was eval-
uated as well, by changing the weight functions used to reproduce 
the measured charged-particle multiplicity in the simulation [54]. 
A maximum deviation of about 4% is observed at low pT and low 
multiplicity.

The systematic uncertainty on the raw-yield extraction was 
evaluated in each combination of the studied pT and multiplicity 
intervals by repeating the fit to the invariant-mass distributions 
varying the fit range and the background fit function as done in 
Ref. [11]. In order to test the sensitivity to the functional form of 
the fit function of the signal, the same strategy was performed us-
ing a bin-counting method, in which the signal yield was obtained 
from integrating the background-subtracted invariant-mass distri-
bution. This systematic uncertainty ranges between 2% and 14% 
depending on the hadron species, the pT, and the multiplicity in-
terval.

As described above, a data-driven event reweighting procedure 
was applied for the HMSPD triggered data sample to account for 
the trigger inefficiency. Three strategies were explored to ensure 
normalised weights as outlined in Ref. [44]. The different normal-
isation procedures were propagated to the raw yield calculation 
resulting in a relative systematic difference of 1% to 4% compared 
to the central values depending on the particle species, indepen-
dent of their pT.

Possible differences between the primary-vertex position distri-
butions along the beam axis, zvtx, in simulations and in data were 
investigated, since a slight dependence of the efficiencies with zvtx
is observed. Hence, a further data-driven reweighting procedure 
was performed, taking this effect into account. A pT-dependent 
systematic uncertainty was estimated, resulting in a contribution 
of about 0.5% for pT < 4 GeV/c, and negligible elsewhere. This 
systematic source is considered particle dependent because the 
weights are defined by selecting events with a charm-hadron can-
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Fig. 1. Transverse-momentum spectra of D0, D+
s , and �+

c hadrons measured in pp collisions at √s = 13 TeV for different multiplicity classes selected with the Ntrkl estimator 
at midrapidity. The corresponding ratios to INEL > 0 are shown in the bottom panels.

didate in a given invariant-mass range, for each hadron indepen-
dently.

Systematic effects due to the dependence of the efficiency on 
the Ntrkl interval limits were also studied. These effects were 
a consequence of removing the reconstructed candidate’s decay 
tracks from the multiplicity in data but not in MC, which was 
done as the efficiencies have little dependence on multiplicity. The 
systematic uncertainty was evaluated by comparing the efficiency 
computed in a Ntrkl interval shifted by one or two units (for two-
or three-body decays, respectively) with the one in the default in-
tervals. It was observed to range from 2% to 8%, especially affecting 
the lowest pT and multiplicity interval.

Two systematic uncertainties were assigned to the prompt frac-
tion calculations, coming from the FONLL calculations of the b-
quark production [5,6] and the assumed multiplicity independence 
of the fprompt factor. The FONLL parameters (b-quark mass, factori-
sation, and renormalisation scales) were varied as prescribed in 
Ref. [6]. The assigned uncertainty values for the D mesons range 
from 3% to 12%. In the �+

c analyses, the additional contribution 
from the fb→�0

b
fragmentation fraction is considered, as discussed 

in detail in Ref. [13]. It leads to more asymmetrical values of the 
uncertainty, ranging from +2

−4% at low pT to +6
−8% at high pT. As 

mentioned above, Eq. (1) describes the corrected prompt yields 
under the assumption that fprompt does not vary with multiplic-
ity. To estimate the uncertainty related to this assumption, PYTHIA 
simulations where employed, with Monash and CR-BLC tunes. The 
feed-down contribution from beauty-hadron decays, f feed-down =
1 − fprompt, was varied in each multiplicity interval based on the 
observed f mult

feed-down/〈 f feed-down〉 trends in simulations. The feed-
down contributions were found to be compatible for the D and 
�+

c hadrons and show a global increasing trend from 0.7 to 1.5 
from the lowest to the highest multiplicity event class. The result-
ing systematic uncertainties depend on the charm-hadron species, 
the pT interval, and the multiplicity classes considered in the anal-
yses. For the part related to the fprompt multiplicity-dependence 
assumption, typical values for the uncertainty for intermediate pT
are +8

−0% at low multiplicity and +0
−15% at high multiplicity.

The statistical uncertainty on the selection efficiency is assigned 
as systematic uncertainty. It strongly depends on the pT and multi-
plicity intervals, especially affecting the pT < 4 GeV/c and highest 
multiplicity intervals, where it reaches 1% for the D0, 4% for the 
D+
s and �+

c → pK−π+ , and 5% for the �+
c → pK0

S analysis. Fi-

nally, an overall normalisation systematic uncertainty induced by 
the branching ratios [49] was considered.

The sources of systematic uncertainty described above are as-
sumed to be uncorrelated among each other and the total system-
atic uncertainty in each pT and multiplicity interval is calculated 
as the quadratic sum of the estimated values. Depending on the 
pT and multiplicity intervals, the resulting values range from 7% to 
13% for the D0, from 10% to 17% for the D+

s , from 7% to 24% for the 
�+

c → pK−π+ , and from 8% to 17% for the �+
c → pK0

S analyses.

5. Results

The pT-differential corrected yield of the �+
c baryon was ob-

tained in the different event-multiplicity classes, averaging the re-
sults from the two decay channels �+

c → pK−π+ and �+
c → pK0

S
to obtain a more precise measurement, for which the inverse of 
the quadratic sum of the relative statistical and uncorrelated sys-
tematic uncertainties were used as weights. In the propagation 
of the uncertainties, the correlation between the statistical and 
systematic uncertainties was taken into account, with the strat-
egy explained in Ref. [13]. In addition, the multiplicity-dependent 
systematic sources were considered as correlated between the 
two decay channels. In the rest of this section, �+

c will refer to 
the weighted average of the �+

c → pK−π+ and �+
c → pK0

S decay 
channels.

The pT-differential spectra of D0, D+
s , and �+

c hadrons, mea-
sured in |y| < 0.5, are shown in Fig. 1 for the INEL > 0 class and 
the four multiplicity classes selected using the Ntrkl estimator at 
midrapidity. The statistical and total systematic uncertainties are 
shown by vertical error bars and boxes, respectively, as for all the 
figures in this section. The pT spectra of the individual decay chan-
nels �+

c → pK−π+ and �+
c → pK0

S , as well as the D0, D+
s , and 

�+
c yields in the multiplicity classes selected using the pV0M es-

timator at forward rapidity, are reported in Ref. [52]. The bottom 
panels of Fig. 1 present the ratios to the INEL > 0 class, for which 
the multiplicity-dependent systematic sources were considered as 
uncorrelated among different multiplicity classes and the contribu-
tions of the tracking and PID efficiency, the shape of MC pT spectra 
and zvtx distribution, the beauty feed-down, and the branching ra-
tio as correlated. The statistical uncertainties and the systematic 
uncertainties related to the selection efficiency and to the raw-
yield extraction were considered partially correlated with respect 
to the measurement performed in the INEL > 0 class.
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Fig. 2. The D+
s /D0 (top) and �+

c /D0 (bottom) ratios measured in pp collisions at
√
s = 13 TeV for different multiplicity classes at mid- (left) and forward (right) rapidity.

The measured pT-differential yields increase from the lowest to 
the highest multiplicity class for the three hadron species. Their 
ratios to INEL > 0 increase (decrease) with increasing pT for the 
highest (lowest) multiplicity class, suggesting a plateau towards 
pT > 10 GeV/c, as recently observed for the light-flavour hadrons 
in Refs. [41,55,56], where it was explained as a hardening of the 
measured pT spectra with increasing 〈dNch/dη〉. Different MPI 
models were able to describe such effects [57], and it was shown 
to be more pronounced for protons than for kaons and pions, while 
similar for strange baryons and mesons.

In order to investigate potential differences in the 〈dNch/dη〉
dependence of the D0-meson production with respect to the D+

s
meson and �+

c baryon, the D+
s /D0 and �+

c /D0 yield ratios are 
compared in different multiplicity event classes in Fig. 2, consid-
ering both forward and midrapidity multiplicity estimators. The 
sources of uncertainty assumed to be uncorrelated between dif-
ferent charm-hadron species included the raw-yield extraction, the 
selection efficiency, the shape of the MC pT spectra, the zvtx dis-
tribution, and the branching ratio. The systematic uncertainty de-
riving from the variation of the multiplicity-interval limits was 
propagated as partially correlated, while the other systematic un-
certainties were assumed to be fully correlated.

Within the current experimental uncertainties, the D+
s /D0 ra-

tios are independent of pT in the measured pT range. They 
are compatible with measurements performed in pp collisions at √
s = 5.02 and 7 TeV [11], and also with the average of the pT-

integrated results from experiments at e+e− and e−p colliders, 
0.17 ± 0.03 [17,58]. A dependence of these ratios with multiplic-
ity, as seen for the ratio of (multi-)strange hadrons to π± [41,59], 
is not observed within the uncertainties.

The pT-differential �+
c /D0 ratios show an evident dependence 

on multiplicity, and a hierarchy is observed going from the lowest 
to the highest multiplicity intervals, for both the Ntrkl and pV0M
estimators, for all but the first pT bin. The increasing trend with 
〈dNch/dη〉 for the �+

c /D0 ratio is consistent among the measure-
ments done with the two multiplicity estimators, indicating that 
the enhancement between low and high multiplicity intervals is 
not a consequence of a possible bias arising from the coincid-
ing rapidity regions between the multiplicity estimator and the 

measurement of interest at midrapidity. It is worth noticing that 
the measured �+

c /D0 ratio in the lowest multiplicity class is still 
higher, in the measured pT range, than the average of correspond-
ing ratios measured in e+e− collisions at LEP, which was found to 
be 0.113 ± 0.013(stat) ± 0.006(syst) [13,17].

In order to estimate a significance level for the difference ob-
served in the two extreme multiplicity classes at midrapidity, the 
highest multiplicity (HM) over the lowest multiplicity (LM) �+

c /D0

ratio was computed. The probability of the measured double-ratio 
DR = (�+

c /D0)HM/(�+
c /D0)LM > 1, corresponds to a significance of 

5.3σ in the 1 < pT < 12 GeV/c interval, considering as null hy-
pothesis DR = 1. This estimate was performed taking into account 
statistical and systematic uncertainties, for which the raw-yield ex-
traction, the selection efficiency, the shape of the MC pT spectra, 
and the zvtx distribution sources were considered as uncorrelated, 
the multiplicity-interval limits as partially correlated, while the 
other sources cancelled out in the double ratio. With the aim of 
investigating the least favourable case, the measured values in all 
pT intervals were shifted down by one standard deviation, by con-
sidering the sources of systematic uncertainties correlated with pT
that do not cancel out in the double ratio, i.e. those arising from 
the selection efficiency and the generated pT spectra.

The measured charm-hadron ratios for the lowest and highest 
multiplicity class for the Ntrkl multiplicity estimator are compared 
to model predictions from MC generators and a statistical hadro-
nisation model in Fig. 3. The simulations with the PYTHIA event 
generator were performed with the Monash and the CR-BLC tunes. 
For the latter, three modes are suggested by the authors, applying 
different constraints on the allowed reconnections among colour 
sources, in particular concerning the causality connection among 
strings involved in a reconnection, and time dilation caused by 
relative boosts of the strings [24]. The simulations are shown in 
intervals of primary particle multiplicities selected at midrapidity, 
evaluated by studying the correlation between Ntrkl intervals and 
Nch values. The estimated intervals are 1 ≤ Nch ≤ 12 and Nch > 75
for the lowest and highest multiplicity event classes, respectively. 
The measured D+

s /D0 ratios at low and high multiplicity are com-
patible with PYTHIA with Monash and CR-BLC tunes. The Monash 
tune, however, does not reproduce the �+

c /D0 ratio, and further-

6



ALICE Collaboration Physics Letters B 829 (2022) 137065

Fig. 3. The D+
s /D0 (top) and �+

c /D0 (bottom) ratios measured in pp collisions at √s = 13 TeV for the lowest (left) and highest (right) multiplicity classes at midrapidity. The 
measurements are compared to PYTHIA predictions with the Monash [20] and the CR-BLC tunes [24], and the CE-SH model [60], estimated in similar multiplicity classes. 
The uncertainty bands for the PYTHIA predictions are the statistical uncertainties on the simulations, while for the CE-SH model they refer to the variation of the branching 
ratios of the additional charm-baryon states from RQM [61].

more it does not show a multiplicity dependence. By contrast, the 
CR-BLC tunes describe the �+

c /D0 decreasing trend with pT, and 
are closer to the overall magnitude, as also observed for minimum-
bias pp collisions at 

√
s = 5.02 and 13 TeV [13,15]. The CR-BLC 

tunes show a clear dependence with multiplicity, qualitatively re-
producing the trend observed in data.

The measurements in Fig. 3 are also compared with the pre-
dictions of a canonical-ensemble statistical hadronisation (CE-SH) 
model [60], where the authors generalise the grand-canonical sta-
tistical hadronisation model (SHM) [25] of charm-hadron produc-
tion to the case of canonical SHM, and explore the multiplicity de-
pendence of charm-hadron particle ratios. The version of the SHM 
model based on the measured charm-baryon spectrum reported by 
the PDG [49] was observed to strongly underestimate the �+

c /D0

measurements in minimum-bias pp collisions [13]. For this rea-
son, for the �+

c /D0 case, the underlying charm-baryon spectrum in 
the calculations is augmented to include additional excited baryon 
states predicted by the Relativistic Quark Model (RQM) [61]. For 
the D+

s /D0 predictions, only the PDG case is shown, since the RQM 
does not modify the D-meson yields with respect to the PDG set. 
The model calculations describe the �+

c /D0 ratios, reproducing the 
multiplicity dependence. The D+

s /D0 prediction is compatible with 
the measurement for the low multiplicity class, while it overes-
timates the data in the highest multiplicity interval. The CE-SH 
model explains the multiplicity dependence as deriving from the 
reduced volume size of the formalism towards smaller multiplicity, 
where a decrease of the �+

c /D0 ratio is a consequence of the strict 
baryon-number conservation. Such behaviour is also predicted for 
charm-strange mesons relative to charm mesons, based instead on 
strangeness-number conservation.

Fig. 4 shows the comparison of the �+
c /D0 and the �/K0

S [41]
baryon-to-meson ratios as a function of pT in pp collisions at √
s = 13 TeV, in similar low and high Ntrkl and pV0M multiplic-

ity classes. In the vacuum-fragmentation scenario, the light-flavour 

hadron production has a significant contribution from gluon frag-
mentation, whereas heavy-flavour hadrons are primarily produced 
through the fragmentation of a charm quark, which is in turn 
produced in the initial hard scattering. In addition, at low pT, light-
flavour hadrons originate mainly from small-momentum soft scat-
tering processes. Despite these differences, the light- and heavy-
flavour baryon-to-meson ratios, �+

c /D0 and �/K0
S , show a remark-

ably similar trend as a function of 〈dNch/dη〉. The measurements 
also suggest a similar shift of the baryon-to-meson ratio peaks to-
wards higher momenta, with increasing multiplicity. These similar-
ities, observed as well in minimum-bias pp and p–Pb collisions at √
sNN = 5.02 TeV both in terms of shape and magnitude [62], hint 

at a potential common mechanism for light- and charm-baryon 
formation in hadronic collisions at LHC energies.

The pT-integrated yields of �+
c and D0 were computed by in-

tegrating the pT-differential spectra in their measured range and 
extrapolating them down to pT = 0 in each multiplicity interval. In 
the integration, the systematic uncertainties were propagated con-
sidering the uncertainty due to the raw-yield extraction and the 
statistical uncertainty on the efficiency as fully uncorrelated and 
all the other sources as fully correlated among pT intervals. The 
PYTHIA predictions with CR-BLC Mode 2 were used for the extrap-
olation in each multiplicity interval, for both �+

c and D0, following 
a similar procedure as the one described in Ref. [13]. The extrap-
olation factor was computed as the ratio of the PYTHIA spectrum 
integrated in the full pT range to the integral in the visible pT
range. The �+

c and D0 yields in the full pT range were obtained 
by integrating the yield in the visible pT interval and scaling by 
the extrapolation factor. The fraction of extrapolated yield from the 
lowest to the highest multiplicity interval is about 39% (31%), 28% 
(22%), 20% (16%), and 15% (13%) for �+

c (D0). The procedure was 
repeated considering also the CR-BLC Mode 0 and Mode 3 as well 
as two different functions fitted to the spectra (a Tsallis-Lévy [63]
and a power-law function). The fits were performed considering 
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Fig. 4. The baryon-to-meson ratios in the light-flavour, based on measurements from Ref. [41] and charm sector measured in pp collisions at √s = 13 TeV for similar low-
and high-multiplicity classes at mid- (left) and forward (right) rapidity.

Fig. 5. Ratios of pT-integrated yields of �+
c and D0 hadrons as a function of 

〈dNch/dη〉 in pp collisions at √s = 13 TeV. Measurements performed in pp and 
p–Pb collisions at √sNN = 5.02 TeV from Ref. [13] are also shown. Statistical and 
systematic uncertainties are shown by error bars and empty boxes, respectively. 
Shaded boxes represent the extrapolation uncertainties. The corresponding PYTHIA 
predictions [20,24] are also shown.

the statistical and pT-uncorrelated sources of systematic uncer-
tainties, and also shifting up and down the data by one sigma of 
the pT-correlated systematic uncertainties. The envelope of the ex-
trapolation factors obtained with all the trials was assigned as the 
extrapolation uncertainty on �+

c and D0, and it was propagated to 
the �+

c /D0 ratio, resulting in a value that ranges from 2% to 21% 
depending on multiplicity. The same procedure was used to esti-
mate the pT-integrated D+

s yields and D+
s /D0 yield ratios in the 

different multiplicity intervals, reported in Ref. [52]. The �+
c and 

D0 pT-integrated yields are also reported in Ref. [52], together with 
the pT-integrated �+

c /D0 yield ratios in the visible pT range, and 
the tables with the numerical values of the pT-integrated ratios. 
The pT-integrated �+

c /D0 yield ratio as a function of 〈dNch/dη〉
is shown in Fig. 5, where the systematic uncertainties from the 
extrapolation (shaded boxes, assumed to be uncorrelated among 
multiplicity intervals) are drawn separately from the other sources 
of systematic uncertainties (empty boxes). The sources related to 
the raw-yield extraction, the multiplicity-interval limits, the high-
multiplicity triggers, the multiplicity-independent prompt fraction 
assumption, and the statistical uncertainties on the efficiencies are 
also considered uncorrelated with multiplicity. The other system-
atic uncertainties are assumed to be correlated. The measurements 
performed in pp and p–Pb collisions at 

√
s = 5.02 TeV [13] are 

also shown. The result does not favour an increase of the yield ra-
tios with multiplicity and the trend is compatible with a constant 
function. The same trend was also observed for the �/K0

S ratio in 

Ref. [41]. This suggests that the increasing trend observed for the 
1 < pT < 24 GeV/c range comes from a re-distribution of pT that 
acts differently for baryons and mesons, while this is not observed 
in the meson-to-meson ratios, as shown in Fig. 3 for D+

s /D0 and 
in Ref. [56] for K/π . The results are compared to the pT-integrated 
PYTHIA predictions. The measurements exclude the Monash pre-
diction in the whole multiplicity range, and tend to be significantly 
below the CR-BLC Mode 2 for the three highest multiplicity inter-
vals.

6. Conclusions

The first measurement of D+
s /D0 and �+

c /D0 ratios as a func-
tion of charged-particle multiplicity in pp collisions at 

√
s = 13 TeV 

was presented. The pT-differential D+
s /D0 yield ratio does not 

show a dependence on multiplicity, within uncertainties. In con-
trast, the charm baryon-to-meson ratio, �+

c /D0, measured as a 
function of pT, shows a significant increase (5.3σ ) when compar-
ing the measurements performed in the lowest and highest multi-
plicity intervals in 1 < pT < 12 GeV/c. In addition, the �+

c /D0 ratio 
measured in the lowest multiplicity interval (〈dNch/dη〉 = 3.1) is 
higher, at low and intermediate pT, than the values measured at 
e+e− colliders at lower centre-of-mass energies. These observa-
tions imply a modification of the hadronisation mechanisms that 
is collision-system and multiplicity dependent, further confirming 
the limited validity of the assumption of universality of the frag-
mentation functions. The measurements are compared with two 
calculations. Those based on PYTHIA with CR-BLC describe the 
D+
s /D0 measurements and capture the trend of the �+

c /D0 ratio, 
qualitatively describing the increasing magnitude of the baryon-to-
meson ratios with multiplicity. Calculations based on a statistical 
hadronisation model, with the multiplicity dependence originat-
ing from the canonical treatment of quantum-charge conservation, 
describe the �+

c /D0 measurements in the lowest and highest mul-
tiplicity intervals. The prediction is also in agreement with the 
D+
s /D0 ratio for the low multiplicity interval, while it overesti-

mates the data in the high-multiplicity class. The baryon-to-meson 
ratios in the charm sector, �+

c /D0, are also compared to those in 
the light-flavour sector, �/K0

S , in similar multiplicity classes, show-
ing a remarkably similar trend as a function of pT and similar 
enhancement with 〈dNch/dη〉. These similarities hint at a possi-
ble common mechanism for light- and charm-baryon formation in 
pp collisions at LHC energies. The pT-integrated �+

c /D0 ratios, ex-
trapolated to pT = 0 based on spectral shapes from PYTHIA with 
CR-BLC, show no significant dependence on multiplicity, suggest-
ing that the increase in the baryon-to-meson yield ratio observed 
in the measured pT range is due to a different redistribution of 
pT between baryons and mesons, rather than to an enhancement 
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in the overall baryon yield. More precise measurements with the 
data sample collected in Run 3 of the LHC, that is planned to start 
late spring 2022, will allow us to further investigate the shape 
of the pT-integrated baryon-to-meson ratios versus multiplicity, 
extending the multiplicity reach to lower and higher multiplicity 
intervals.
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L. Kreis 108, M. Krivda 111,64, F. Krizek 96, K. Krizkova Gajdosova 37, M. Kroesen 105, M. Krüger 68, 
D.M. Krupova 37, E. Kryshen 99, M. Krzewicki 39, V. Kučera 34, C. Kuhn 138, P.G. Kuijer 91, T. Kumaoka 134, 
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97 Oak Ridge National Laboratory, Oak Ridge, TN, United States
98 Ohio State University, Columbus, OH, United States
99 Petersburg Nuclear Physics Institute, Gatchina, Russia

14



ALICE Collaboration Physics Letters B 829 (2022) 137065

100 Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia
101 Physics Department, Panjab University, Chandigarh, India
102 Physics Department, University of Jammu, Jammu, India
103 Physics Department, University of Rajasthan, Jaipur, India
104 Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
105 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
106 Physik Department, Technische Universität München, Munich, Germany
107 Politecnico di Bari and Sezione INFN, Bari, Italy
108 Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
109 Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
110 Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
111 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
112 Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
113 St. Petersburg State University, St. Petersburg, Russia
114 Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria
115 SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, Nantes, France
116 Suranaree University of Technology, Nakhon Ratchasima, Thailand
117 Technical University of Košice, Košice, Slovakia
118 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
119 The University of Texas at Austin, Austin, TX, United States
120 Universidad Autónoma de Sinaloa, Culiacán, Mexico
121 Universidade de São Paulo (USP), São Paulo, Brazil
122 Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
123 Universidade Federal do ABC, Santo Andre, Brazil
124 University of Cape Town, Cape Town, South Africa
125 University of Houston, Houston, TX, United States
126 University of Jyväskylä, Jyväskylä, Finland
127 University of Kansas, Lawrence, KS, United States
128 University of Liverpool, Liverpool, United Kingdom
129 University of Science and Technology of China, Hefei, China
130 University of South-Eastern Norway, Tonsberg, Norway
131 University of Tennessee, Knoxville, TN, United States
132 University of the Witwatersrand, Johannesburg, South Africa
133 University of Tokyo, Tokyo, Japan
134 University of Tsukuba, Tsukuba, Japan
135 University Politehnica of Bucharest, Bucharest, Romania
136 Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
137 Université de Lyon, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon, Lyon, France
138 Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Strasbourg, France
139 Université Paris-Saclay Centre d’Etudes de Saclay (CEA), IRFU, Départment de Physique Nucléaire (DPhN), Saclay, France
140 Università degli Studi di Foggia, Foggia, Italy
141 Università di Brescia, Brescia, Italy
142 Variable Energy Cyclotron Centre, Homi Bhabha National Institute, Kolkata, India
143 Warsaw University of Technology, Warsaw, Poland
144 Wayne State University, Detroit, MI, United States
145 Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, Münster, Germany
146 Wigner Research Centre for Physics, Budapest, Hungary
147 Yale University, New Haven, CT, United States
148 Yonsei University, Seoul, Republic of Korea

I Deceased.
II Also at: Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Bologna, Italy.
III Also at: Dipartimento DET del Politecnico di Torino, Turin, Italy.
IV Also at: M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics, Moscow, Russia.
V Also at: Department of Applied Physics, Aligarh Muslim University, Aligarh, India.
VI Also at: Institute of Theoretical Physics, University of Wroclaw, Poland.
VII Also at: University of Kansas, Lawrence, Kansas, United States.
15


	Observation of a multiplicity dependence in the pT-differential charm baryon-to-meson ratios in proton--proton collisions a...
	1 Introduction
	2 Experimental apparatus and data samples
	3 Data analysis
	4 Systematic uncertainty evaluation
	5 Results
	6 Conclusions
	Declaration of competing interest
	Acknowledgements
	References
	ALICE Collaboration


