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Abstract
Epidemics like Covid-19 and Ebola have impacted people’s lives signifcantly. The impact of mobility of people across the
countries or states in the spread of epidemics has been signifcant. The spread of disease due to factors local to the population
under consideration is termed the endogenous spread. The spread due to external factors like migration, mobility, etc., is
called the exogenous spread. In this paper, we introduce the Exo-SIR model, an extension of the popular SIR model and a few
variants of the model. The novelty in our model is that it captures both the exogenous and endogenous spread of the virus.
First, we present an analytical study. Second, we simulate the Exo-SIR model with and without assuming contact network
for the population. Third, we implement the Exo-SIR model on real datasets regarding Covid-19 and Ebola. We found that
endogenous infection is infuenced by exogenous infection. Furthermore, we found that the Exo-SIR model predicts the peak
time better than the SIR model. Hence, the Exo-SIR model would be helpful for governments to plan policy interventions at
the time of a pandemic.

Keywords Covid-19 · Ebola · Epidemic modeling · Compartment model · Exogenous infection · Endogenous infection ·
SIR · Exo-SIR

1 Introduction

An epidemic is a disease that spreads rapidly to a large num-
ber of people in a given population within a short period.
Many epidemics occur in the world. Covid-19 and Ebola are
recent prominent examples.

People have tried many methods to study epidemics. The
susceptible, infected, and recovered model (SIR model) is
considered as one of the seminal models of epidemics [1]. A
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recent work [2] gives a comprehensive review of the meth-
ods to model and analyze Covid-19. Out of these methods,
the models relevant to our model are compartmental models.
They are prominent methods used for the analysis and pre-
diction of Covid-19 dynamics [2–4]. However, these works
consider only infection from people to people from within
the population and do not consider any external source of
infection explicitly.

World Health Organization (WHO) has identifed exter-
nal transmission as one of the three modes of transmission
[5]. According to WHO, the infection within the population
is called as Local transmission and community transmis-
sion, and the infection external to the population is called as
Imported cases. We call the infection from a source within
the population and external to the population as the endoge-
nous and exogenous spread of infection, respectively. Human
migration is one of the prime reasons behind the exogenous
spread of infection.

The governments can intervene to curb the spread of
the disease by bringing in policies to stop human mobil-
ity [6]. However, the implementations of such intervention
policies have a lot of challenges. Social disagreement is an
example. Social disagreement means people do not abide by

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41060-022-00334-z&domain=pdf


International Journal of Data Science and Analytics

the government’s directives. The Tablighi Jamaat1. religious
congregation that happened in India and the human mobility
as a result of it is an example of social disagreement.

As a part of intervention, the Governments can restrict
human mobility. However, they cannot completely prevent
all such human mobility and migration. For example, in the
Indian sub-continent, people migrate to metropolitan cities
for work. Due to the risk of Covid-19 exposure in these over-
populated cities, peoplemigrate back to their homes [7]. This
is also known as reverse migration2.

The government cannot deny one’s right to go home.How-
ever, the government can allow necessary movement in a
controlled manner. For example, when people move from
one state to another, the state governments can issue passes
for anyone who is allowed to travel to that state similar to
what was practiced by the State of Kerala3. They can iden-
tify the incoming people and ensure that they correctly follow
the procedures advised by the respective governments.

These movements will increase the exogenous spread of
the infections compared to the ideal condition of sealed bor-
ders. To fnd the amount of infection during this movement
and when the peak occurs, authorities need an explicit model
that can predict infection through exogenous means [8]. Our
model extends the SIR model and explicitly takes care of
the amount of exogenous infection and endogenous infec-
tions. In the case of the spread of epidemics, even if there
is a small increase in the number of infected people, the
impact grows exponentially with time. Hence, it is impor-
tant to consider the exogenous infections while studying the
dynamics of epidemics [9]. This allows the governments to
have pertinent information regarding the possible exogenous
infections. This gives the government authorities time to pre-
pare their medical resources accordingly.

There are challenges even if people do not migrate. For
example, frontline workers like doctors and nurses are more
frequently exposed to the virus than a common man. Corre-
spondingly, we need to be able to model different rates of
infections for different groups of people. The governments
will have tomake all the necessary safety equipment available
to the frontline workers and monitor their health constantly
to control the infection as a measure of intervention.

In this context, we address the following research ques-
tions that signifcantly modifes the current, well-studied SIR
model by infusing external knowledge related to pandemic
[10]:

1 https://en.wikipedia.org/wiki/Tablighi_Jamaat.
2 https://www.epw.in/journal/2020/19/commentary/migration-and-
reverse-migration-age-covid-19.html.
3 https://www.news18.com/news/auto/covid-19-omicron-kerala-
travel-guidelines-for-international-and-domestic-passengers-
4525862.html.

1. How to quantify the exogenous spread of infection?
2. What is the interplay between the exogenous and endoge-

nous spread of infection concerning the following:

(a) In the presence of social disagreement.
(b) In the presence of controlled migration.
(c) In the presence of n communities that have a differ-

ent rate of infection—e.g., frontline workers such as
healthcare workers or hospitality workers.

3. What is the change in the peak position (the most signif-
icant number of people infected in a unit of time) in the
presence of exogenous infection?

4. What is the change in the height of the peak in the presence
of exogenous infection?

The following are our contributions in this work.We study
the impact of external reasons of infections such as cross-
border mobility on COVID infection by introducing a novel
SIR-like compartmental model called Exo-SIR.

We study three variants of the model applicable for spe-
cial scenarios like the presence of social disagreement, the
presence of different groups that have a different amount of
risk, and infectiousness like the frontline workers.

We analyze the interplay between endogenous and exoge-
nous infections during the Covid-19 and Ebola pandemics in
the following ways.

1. Analytically.
2. By simulating the Exo-SIR model with and without

assuming contact network for the population.
3. By implementing the Exo-SIR model on real datasets

regarding Covid-19 and Ebola.

We compare the predictions of Exo-SIR with the SIR model
using real data on the recent spread of the Covid-19 in India
and the USA and the spread of Ebola in Africa as the ground
truth.

This paper is structured as follows. Section 2 discusses
related works and preliminaries. Then, we formulate the
Exo-SIR model by extending the SIR model and discuss
the different variants of the model (in Sect. 3). We ana-
lyze our model by comparing it with the SIR model and
study the behavior of the infected population in the presence
and absence of exogenous infection (in Sect. 4). Then, we
describe the simulation study where we simulated the SIR
model and Exo-SIR model and compared them (in Sect. 5).
Finally, we study the real data of Covid-19 and Ebola epi-
demics (in Sect. 6).
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2 Related works

Here, we discuss the works related to the idea of exogenous
infuence to the population under study.

The work in [11] considers exogenous infections for
Malaria at China—Myanmar border. However, the model
is not deterministic. In a deterministic model, individuals
in the population are assigned to different subgroups or
compartments, each representing a specifc epidemic stage.
Deterministic models often provide useful ways of gaining
suffcient understanding about the dynamics of populations
whenever they are large enough [12]. Also, the deterministic
models are simpler and more popular [13,14]. A mobility-
based SIR model [15] is a deterministic model. Our model
is also deterministic.

2.1 Models of external influence on online social
networks

Information diffusion in online social networks is similar to
the way the virus spreads in a population [16]. There are a
few recent works in the literature that attempt to model the
external infuence in information diffusion in online social
networks [17]. Moreover, [17] and [18] propose information
diffusion model on the network. These works assume that
the information fows through an underlining network. Also,
they consider links from other websites like the mainstream
media as external sources of information. Internal diffusion
is when the shared messages do not have any external links.

The work described in [17] uses very specifc parameters
like the following:

• Probability of any node receiving exposure at time t
• The random amount of time it takes an infected node to
expose its neighbors

• How the probability of infection changes with each expo-
sure

• The probability that a node I have received n exposures
by time t

The work described in [18] traces the information cascade
and thereby tries to reconstruct the underlying graph struc-
ture as much as possible. Also, they conclude that external
infuence has a bigger impact on the networkwhen compared
to the infuence of social media infuencers.

Themodel that is closest to ourwork isYang et. al.’smodel
[19]. This model is an extends the SIR model (explained in
Sect. 2.4) by including the external infuence on the network.
State transition diagram of the diffusion mechanisms of this
model is given in Fig. 1.

This model is defned in the following way.

s + i + r = 1 (1)

Fig. 1 State transition diagram of the diffusion mechanisms in Yang et
al’s model. Diagram taken from [19]

ds

dt
= −p1ksi − ((1 − p1)p3 + p4)θs (2)

ds

dt
= −p1ksi − ((1 − p1)p3 + p4)θs

−(1 − p1)p5ksi (3)
di

dt
= p1ksi + p4θs − p2i (4)

dr

dt
= p2i + (1 − p4)p3θs + (1 − p1)p5ksi (5)

In Fig. 1, there are two possible transitions from the state S
to I. One path is the normal endogenous path, and the second
is due to external infuence. These transitions have probabili-
ties p1 and p4, respectively. Similarly, there are two possible
transitions from the state S to R—one through endogenous
and the other through external infuence. Their probabilities
are p5 and p3, respectively. However, the transition from the
state I to R is not affected by external infuence(s).

Although the exogenous infection is modeled in Yang et
al.’s model, it fails to capture the dynamics between endoge-
nous and exogenous infections. This is because they do not
differentiate between the infections due to exogenous factors
from those due to endogenous factors.

2.2 Other studies of endogenous and exogenous
information diffusion

The dual nature of message fow over the online social net-
work is studied and verifed in [20]. Here, the dual nature
refers to the injection of exogenous opinions to the network
and the endogenous infuence-based dynamics. In [21], the
authors propose a method for extracting the relative contri-
butions of exogenous and endogenous contents. In [22], the
authors postulate that the nature of the information plays a
crucial role in the way it spreads through the network. They
quantify two properties of the information—endogeneity and
exogeneity. Endogeneity refers to its tendency to spread pri-
marily through the connections between nodes, and exogene-
ity refers to its tendency to spread to the nodes, independently
of the underlying network. In [23], the authors study the
bursts that originate fromendogenous and exogenous sources
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and their temporal relationship with baseline fuctuations in
the volume of tweets. The study reported in [24] classifes
the bursts into endogenous and exogenous. According to this
study, those bursts that reach the peak almost instantaneously
after the diffusion starts and then go down slowly are exoge-
nous bursts. Also, those bursts that gradually increase and
slowly decrease are endogenous.

2.3 Compartmental models for Covid-19modeling

Compartmental models are prominent methods that are used
for the analysis and prediction of Covid-19 dynamics. The
SIR model is one of the seminal compartmental models.
Many compartmental models have come up recently to
improve the SIR model. QSIR model [25,26] is an example
in which they add an extra state to the standard SIR model
that represents the number of people in Quarantine. SPCIRD
model [27] adds three extra states—P, C, and D, where P rep-
resents the number of susceptible people who are partially
controlled. Partially controlled people are those who can be
considered as people not conforming to all the restrictions
of the Quarantine. C represents the number of susceptible
people who are controlled. Controlled people are those who
can be considered as people conforming to all the restrictions
of the Quarantine. D represents the number of people who
died. Multiple epidemic wave model [28] as its name sug-
gestsmodels themultiplewaves of infection that could occur.
Time-dependent SIR model [29,30] considers the constants
in the SIR model—beta and gamma to be varying with time.
However, none of these models consider infections arising
from outside the population, mostly due to the cross-border
mobility of infected people. Hence, we introduce the Exo-
SIR model to address this particular issue.

2.4 SIRmodel

This section briefy reviews the SIR epidemiological model
to learn how epidemics spread through population. SIR is
often used to study information diffusion by approximating
the process of epidemic spread.

In this model, the population is classifed into three—
susceptible (who are prone to infection), infected (who
contain the infection), and recovered (who do not have the
infection and its associated symptoms). In the limit of size-
able total population N that does not change over time, the
given equations model the dynamics of the spread [31]:

s(t) + i(t) + r(t) = 1 (6)
ds

dt
= −βsi (7)

di

dt
= βsi − γ i (8)

dr

dt
= γ i (9)

where the fraction of susceptible, infected, and recovered
people at time t are represented by s(t), i(t), and r(t), respec-
tively. β is the rate of infection, and γ is the rate of recovery.

3 Themodel

In this section,we propose the Exo-SIRmodel. It differs from
SIR model in the following ways. It classifes infected nodes
into two different types—Infected from exogenous source
and Infected from endogenous source. It also differentiates
between the spread fromendogenous and exogenous sources.

Susceptible nodes become infected with a certain prob-
ability called the rate of infection. This rate could be
different for endogenous and exogenous infections. The
nodes affected by endogenous and exogenous sources move
into different states. We assume that susceptible nodes get
infected from only one of these sources and never from both
sources. Hence, even when some nodes are susceptible to
endogenous and exogenous infection, they become infected
by either an endogenous or an exogenous source but not both.
The infected nodes recover with a certain probability called
the recovery rate. These nodes move into the recovered state.
The advantage of the Exo-SIR model compared to the SIR
model is that we can observe the endogenous and exogenous
diffusion separately.

We use the following notations:

S state of susceptible
Ix state of infected from exogenous source
Ie state of infected from endogenous source
R state of recovered
ix Fraction of nodes that are infected from exogenous
source
ie Fraction of nodes that are infected from endogenous
source
r Fraction of nodes that are recovered
βx Rate at which the exogenous source infects the nodes
βe Rate at which the nodes infect other nodes
γ Rate at which the nodes get recovered
We use the words infection, diffusion, and spread inter-
changeably according to the context.

The state transition diagramof theExo-SIRmodel is given
in Fig. 2.

We classify infected nodes into two different types—
infected fromexogenous source ix and infected fromendoge-
nous source ie.

ie + ix = i (10)
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We assume that the total population remains constant.

s + i + r = 1 (11)

A fraction of the susceptible people s gets infected by
exogenous sources, and another fraction of s gets infected
by endogenous sources. For endogenous infection, the pop-
ulation that is infected plays a big role. Hence, we have

ds

dt
= −βx s − βesi (12)

Increase in ix is determined by the number of susceptible
nodes and the decrease in ix is determined by ix . This gives

dix
dt

= βx s − γ ix (13)

Increase in ie is determined by the number of susceptible
nodes and the number of infected nodes and the decrease in
ie is determined by ie. This gives

die
dt

= βesi − γ ie (14)

Increase in r is determined by the number of infected
people in the network. This gives

dr

dt
= γ i (15)

3.1 Variants of themodel to address specific
situations

In this section, we discuss how the Exo-SIR may be used in
the different situations.

3.1.1 Exo-SIR model with social disagreement

This scenario occurswhen people do not abide by the govern-
ment’s orders, for example, notwearingmasks, not following
social distancing, etc. As a result, more people contract the
virus, and hence, the infectiousness of the disease will go up.

Fig. 2 State transition diagram of the nodes in the Exo-SIR model

This can be represented in the Exo-SIR model by increasing
the βe value.

3.1.2 Exo-SIR model with people migrating with the
permission of the government

This scenario can be studied using the Exo-SIRmodel. Here,
we assume that when the government allows people to travel,
the government makes sure that these people are isolated and
given treatment. Change in ix is infuenced by the action of
the government that allowed people to travel across their bor-
der.Hence, planning and execution effciency tominimize the
impact are essential. This is captured inβx . If the government
effciently contains the infection from these people, then the
value of βx goes down.

3.1.3 Exo-SIR model with multiple groups that have
different risk of infection

This case may be depicted as shown in Fig. 3. In this case,
there are n different groups of susceptible people with vary-
ing levels of infection risk. Hence, we add them up wherever
we use s in the equations of the Exo-SIR model. Also, the
value of each parameter is different for a different group of
people. Hence, we have different values for each group of
people for the parameters. Hence, there will be the summa-
tion of the n groups and parameters for each group. Figure 3
is the state diagram and the equations are given below.

ie + ix = i (16)

s =
n�

k=1

sk (17)

s + i + r = 1 (18)

ds

dt
= −

n�

k=1

βxksk −
n�

k=1

βekski (19)

Fig. 3 State transition diagram of the model
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dix
dt

=
n�

k=1

βxksk − γ ix (20)

die
dt

=
n�

k=1

βekski − γ ie (21)

dr

dt
= γ i (22)

4 Analysis

In this section, we compare our model with SIR model and
analyze the dynamics of exogenous spread and endogenous
spread.

4.1 Comparison with SIRmodel

Mirroring the rate of change of s(t), i(t), and r(t) in the
SIR model (Sect. 2), we fnd the expressions for the rate of
change of s(t), i(t), and r(t) for the Exo-SIR model.

Rate of change of s is given by

ds

dt
= −βx s − βesi (23)

Rate of change of r is given by

dr

dt
= γ i (24)

Differentiating Eq. 10 with respect to time, we get

di

dt
= die

dt
+ dix

dt
(25)

di

dt
= βesi − γ ie + βx s − γ ix (26)

di

dt
= βesi + βx s − γ (ix + ie) (27)

Applying Eqs. 10 on 27, we get

di

dt
= βes(ix + ie) + βx s − γ (ix + ie) (28)

Here, even ifwe assume that there are no infected people in
the beginning—i.e., ie = 0 and ix = 0, we get the following.

di

dt
= βx s (29)

This shows that, unlike the SIRmodel, the Exo-SIRmodel
explains how an infection starts spreading from the state
where no one is infected. SIR model assumes that there is
an initial outbreak size i0. This means i0 people are infected
in the beginning and i0 > 0 [32]. Our work addresses this

limitation of the SIR model. Note that the Exo-SIR model
would behave the same way as the SIR model if we assume
that ix = 0 and βx = 0.

4.2 Dynamics of exogenous spread and endogenous
spread

In this section, we fnd the relationship between the cumu-
lative exogenous infections (ix ) and the daily endogenous
infections ( diedt ).

Applying Eqs. 10 on 14, we get

die
dt

= βes(ie + ix ) − γ ie (30)

die
dt

����
ix>0

= βes(ie + ix ) − γ ie (31)

At ix = 0,

die
dt

����
ix=0

= βesie − γ ie (32)

Since all βe, s, ie, and γ are positive,

die
dt

����
ix=0

<
die
dt

����
ix>0

(33)

This shows that diedt increases in the presence of ix . In other
words, this shows that the presence of exogenous diffusion
causes endogenous diffusion to increase.

5 Simulation

We simulate the Exo-SIRmodel to determine its behavior for
various scenarios that are represented by the different values
of its parameters. We simulated the model in two ways:

One, by assuming no network (well-mixed population).
In this scenario, a susceptible node can get infected from any
of the infected nodes in the population under consideration.

Two, by assuming that the people network is a scale-free
network.Within this network, the susceptible nodes can catch
the infection from only those infected nodes, which they are
connected to through an edge, i.e., their immediate neigh-
bors. We chose scale-free network because there are pieces
of evidence that the human disease network could be scale-
free [33]. The results of these simulations are discussed in
the following section.

5.1 Using scale-free network

The analysis presented in this section has been done consid-
ering a scale-free contact network for the population under
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study, which is called Barabási-Albert network [34]. Under
this scenario, the susceptible nodes can catch the infection
from only those infected nodes, which they are connected to
through an edge, i.e., their immediate neighbors. We have
predicted the values for various combinations of βx , βe, and
γ using the Exo-SIRmodel in the network mentioned above.

Next, we study the dependency of endogenous spread on
the exogenous factors through simulation. The step-by-step
methodology adopted to carry out the simulation and the
analysis is given in Algorithm 1.

Algorithm 1Algorithm to perform the simulations and anal-
ysis by assuming that the contact network in the population
is scale-free
1: Initialize βx , βe, and γ with 3 different values, i.e., 0.1, 0.5, and 0.9.

Henceforth, we have 27 different combination of these parameters.
2: For each of the combinations of βx , βe, and γ , iterate over steps 3

and 4 ffty times.
3: Setup a Barabási-Albert network of 1000000 nodes having an aver-

age node degree of 2 [34].
4: Simulate and predict the values of S, Ie, Ix , and R using the Exo-SIR

model.
5: Extract the values of the height of the peak (we call it as peak value)

and the time slice at which it occurs (we call it as peak tick), for both
endogenous and exogenous peaks from each of the simulations.

6: Calculate the mean peak value and peak tick of exogenous and
endogenous infections so that we have one value per combination
of βx , βe, and γ .

In the above algorithm,we have carried out 50 simulations
for each combination of the parameters and averaged it out to
address the bias that might get introduced due to the network
structure since the setting up of a network in step 3 in the
above algorithm is random each time.

Sample simulation results are shown in Figs. 4 and 5.
Figure 4 shows the SIR model’s simulation results with no
exogenous infuence, and Fig. 5 shows the simulation results
with exogenous infuence. Here, we can see that when we
consider exogenous factors, the peak of the distribution of
the number of the infected population shows changes.

Fig. 4 plot of susceptible, infected, and recovered with no exogenous
source

Fig. 5 plot of susceptible, infected, and recovered with exogenous
source

Fig. 6 impact of βx on peak tick of ie

Fig. 7 impact of βx on peak value of ie

Figures 6 and 7 are a result of simulation and analysis done
as described inAlgorithm1 and provide uswith the following
insights. Figure 6 shows that endogenous peak tick decreases
with increase in βx . Figure 7 shows that βx (exogenous fac-
tors) infuence the peak value of endogenous infections. The
endogenous peak value increases with increase in βx .

We can conclude that exogenous source and its infection
impacts the endogenous spread in the network by advancing
the peak and increasing the height of the peak.

5.2 With no network

In this section, we determine the relative effects of βx , βe,
and γ on the endogenous peak statistically and measure the
impact of βx on endogenous infections, which is consis-

123



International Journal of Data Science and Analytics

Table 1 Impact of βe, βx , and γ on ln(ie_peak)

Coef Std err Confdence interval

βe 0.6319 0.006 0.6204 to 0.6434

βx 0.6319 0.006 0.6204 to 0.6434

γ −0.4390 0.006 −0.4505 to −0.4274

tent with the results shown above. Here, we did not assume
any network for our population, and the objective of these
simulations was to determine the impact of βx , βe, and γ

on endogenous peak value and peak tick (see Table 1). To
achieve this, we took a sample of 27000 simulations and
analyzed them as described in Algorithm 2.

Algorithm 2Algorithm to perform the simulations and anal-
ysis by assuming no contact network in the population.Note:
If we look at the differential equations, the system is not a
linear one, but rather exponential. Therefore, we took natu-
ral log of the peak value as the dependent variable. Table 1
shows the impact of the above three independent variables
on the dependent variable.
1: Initialize βx , βe and γ with 30 random values between 0 and 1.
2: Initialize the number of susceptible, infected (endogenous and

exogenous), and recovered nodes experimentally as: N = 1000000.0,
S0 = 999996.0, Ix0 = 3.0, Ie0 = 1.0, and R0 = 0.0.

3: For each of the 27000 combinations of βx , βe, and γ , with the above
initial condition, predict the endogenous and exogenous peak value
and peak tick using the Exo-SIR model.

4: Then, compute the natural logarithm of the peak value and scaled it
between 0 and 1.

5: Finally, ft an OLS regression model with βx , βe and γ as the
independent variables and the natural log of the peak value as the
dependent variable and analyze the coeffcients statistically.

The following inferences can be drawn from the results of
regression analysis. The p value for all the three variables is
less than0.05.Thismeanswewould reject the null hypothesis
and adopt the alternate hypothesis that the impact of all the
three parameters on the peak endogenous infection’s peak is
statistically signifcant.

The adjusted R-squared value is maximum(0.70) when
all the three parameters are considered while ftting the
regression model. This means that we can better explain
the variation in the dependent variable when considering all
three, i.e., βe, βx , and γ . Removing any one of them would
decrease the adjusted R-squared value. Also, the confdence
interval of each parameter is mentioned in Table 1.

βx impacts endogenous infections as much as βe(the con-
tribution of both is almost equal), which is an important
observation. This means that exogenous factors also have a
considerable impact on the endogenous infection, and ignor-
ing the exogenous factorswould not give an accurate estimate
of the endogenous infections.

6 Analysis using real data

In this section, we describe the data and the analysis of the
implementation of the SIR model and Exo-SIR model on the
Covid-19 and Ebola epidemics.

6.1 Covid-19 infection in India

Covid-19 has caused large and persistent negative effects
on the world economy4. India is one of the countries that
are worst affected. There were many issues that made the
spread of Covid-19 in India complicated. One of them was
the migration of people from different parts of the country
and abroad.

Many sub-events in India involved the migration of peo-
ple. Examples are a celebrity coming to India from the UK
and socializing atmanyplaces even after being tested positive
for Covid-195., laborers working in different states or other
countries moving back to their native places [7], and large
religiousmeetingswith participation frommany national and
international locations.

A major sub-event was the Tablighi Jamaat religious con-
gregation inDelhi from 1stMarch 2020 to 21stMarch 20206.
Over 9000 people from various states of India participated in
this event7. Nearly 4300 cases have been reported that can be
traced to the event8. As of 18th April 2020, 30% of the cases
in India were due to this event9. The number of people from
each state is widely deferred. Hence, the impact of the event
was signifcantly different for different states. However, it is
reasonable to state that the mobility of people is a causative
phenomenon that changed the dynamics of the spread of the
virus.

We apply the Exo-SIR model on a real dataset regarding
the spread of the Covid-19 pandemic in the Indian states of
Rajasthan, Tamil Nadu, andKerala from 14thMarch, 2020 to
14th April, 2020. Exogenous spread dominates endogenous
spread in Tamil Nadu, whereas the contrary is true in the case
of Rajasthan. Both the endogenous and exogenous spread in
Kerala have roughly the exact prevalence. The trends in the
analytical study, results of the simulations, and the analysis
of the real dataset are consistent.

We analyzed the data of three states in India, namely Tamil
Nadu, Rajasthan, and Kerala. The reason for choosing these
states is that ie � ix in Tamil Nadu, ie � ix in Rajasthan,
and ie ≈ ix in Kerala.

4 shorturl.at/qBZ05.
5 shorturl.at/imBGK.
6 https://en.wikipedia.org/wiki/2020_Tablighi_Jamaat_coronavirus_
hotspot_in_Delhi.
7 shorturl.at/qryKU.
8 shorturl.at/myFQ2.
9 shorturl.at/iyVY9.
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We constructed our dataset from three different sources10

for our analysis—covid19india.org.11, the government web-
site of the respective states for their press release to fnd the
daily number of Tablighi cases and Wikipedia page on state-
wise daily data12.

covid19india.org. is a publicly available volunteer-driven
dataset of Covid-19 statistics in India13. There are multiple
fles in this dataset. One of which is called raw data that cap-
tures the anonymized details of the patients. In the raw data,
the columns of interest for our study are DateAnnounced,
DetectedState, and TypeOfTransmission.

Another fle from covid19india.org is called states_daily.
In this fle the columns of interest are states_daily/status,
states_daily/kl, states_daily/rj, states_daily/tn, and
states_daily/date. kl, rj and tn are the codes used in this
dataset for the states of Kerala, Rajasthan, and Tamil Nadu,
respectively.

Here, status canhave the followingvalues: infected, recov-
ered, and diseased. From these columns, we prepared the
time series dataset for each state. The columns available in
the dataset we created are daily confrmed, daily deceased,
daily recovered, date, total confrmed, total deceased, totally
recovered, and daily imported cases.

Another dataset that we used is the compilation of the
press releases (news bulletins) from the states’ governments
under study. This is to get the daily number of cases due
to a signifcant event that infuenced the Covid-19 spread in
India—Tablighi Jamaat religious congregation. Since there
was no ready-made data available,wemanuallywent through
the press releases and collected the data.

Now, we discuss how the values in the dataset is mapped
on to the variables in the Exo-SIRmodel. On a particular day,
say day k, by rearranging and differentiating Eq. 11, we get
the following.

ds

dt
= −

�
di

dt
+ dr

dt

�
(34)

where dr
dt is the sum of the numbers of the daily recovered

and the daily deceased cases on day k and

di

dt
= die

dt
+ dix

dt
(35)

where die
dt is the daily confrmed cases on day k and dix

dt is the
sum of daily imported cases on day k and the daily cases due
to Tablighi event on day k.

10 The code and all the data used in our experiments will be made
openly available upon the acceptance of this paper
11 www.covid19india.org.
12 https://en.wikipedia.org/wiki/Statistics_of_the_COVID-
19_pandemic_in_India.
13 www.covid19india.org.

Fig. 8 Ie in the presence of ix . The values of ix are very small for the
scale of this plot. Hence, it is plotted separately. Please refer Fig. 10

The initial values of s, i and r are found as follows.

s = 1 − d(0)

N
(36)

where d(0) is the daily confrmed on day 0 and N is the total
population who are prone to the infection.

i is the total number of confrmed cases on day 0 and
r is the sum of the total numbers of the deceased and the
recovered cases on day 0.

Algorithm 3 Algorithm to plot the Exo-SIR model.

1: For each time slice, calculate the values of di
dt and

dr
dt from the dataset.

2: Consider s as the susceptible people from the population of the state
under study.

3: Calculate the cumulative values i and r .
4: Find γ , βe and βx using values of the time for which the data is

available.
5: Run the Exo-SIR model with these values as the initial values and

plot ie in the presence of ix and ie in the absence of ix

Next, we analyze the data from Tamil Nadu, Rajasthan,
and Kerala. We compare the peak tick and peak value of the
plot of ie in the presence and absence of ix . This would give
information about the impact of ix on ie. For this purpose,
we used Algorithm 3.

For the state of Tamil Nadu, the plots of Ie in the presence
and absence of ix are plotted in Figs. 8 and 9, respectively.
Ix is plotted in Fig. 10. For the state of Rajasthan, the plots
of Ie in the presence and absence of ix are plotted in Figs. 11
and 12, respectively. For the state of Kerala, the plots of Ie in
the presence and absence of ix are plotted in Figs. 14 and 15,
respectively. Ix is plotted in Fig. 13. In all these plots, we can
see that ix is very small compared to ie. Yet, ix is having an
impact on ie. Ix is plotted separately in Figs. 10, 13 and 16.

The peak tick and peak values corresponding to the Ie
of the Exo-SIR model in the presence and absence of ix
for Tamil Nadu, Rajasthan, and Kerala are mentioned in
Tables 2, 3, and 4, respectively. In all the tables, we can
see that the peak value of ie is different when the case of ix is
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Fig. 9 Ie in the absence of ix

Fig. 10 ix in Exo-SIR model. Please note that y axis is in the scale of
10−4

Fig. 11 Ie in the presence of ix . The values of ix are very small for the
scale of this plot. Hence, it is plotted separately. Please refer Fig. 13

Fig. 12 Ie in the absence of ix

Fig. 13 ix in Exo-SIR model. Please note that the y axis is in the scale
of 10−6

Fig. 14 Ie in the presence of ix in the state of Kerala. The values of ix
are very small for the scale of this plot. Hence, it is plotted separately.
Please refer Fig. 16

Fig. 15 Ie in the absence of ix in the state of Kerala

Fig. 16 ix in Exo-SIR model. Please note that the y axis is in the scale
of 10−5
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Table 2 Impact of Ix on Ie in the state of Tamil Nadu

peak value peak tick

Ie in the presence of ix 0.1714 907 Days

Ie in the absence of ix 0.1710 1351 Days

Table 3 Impact of Ix on Ie in the state of Rajasthan

Peak value Peak tick

Ie in the presence of ix 0.3487077 143 Days

Ie in the absence of ix 0.3486663 147 Days

Table 4 Impact of Ix on Ie in the state of Kerala

Peak value Peak tick

Ie in the presence of ix 0.0842 608 Days

Ie of in the absence of ix 0.0841 715 Days

present. Also, we can see that the peak tick of ie is different
for the instance when ix is present.

Finally, we present the comparison of the predictions of
Exo-SIR model and SIR model with the real data for the
following cases:

1. Covid-19 in Kerala (Fig. 17)
2. Covid-19 in Tamil Nadu (Fig. 18)
3. Covid-19 in Rajasthan (Fig. 19)

Here, the peak values are scaled down as they are very
high for both SIR and Exo-SIR predictions. This may be due
to the fact that in both SIR and Exo-SIR models, we assume
that each infected person is equally likely to infect all the
susceptible people. In the real life, this is not true. However,
we can see that in all the three cases (shown in Figs. 17, 18,
and 19), the peak of the Exo-SIR model is closer to the peak
of the real data.

Fig. 17 Comparison of the predictions of Exo-SIR and SIR models
with real data for Covid-19 in Kerala

Fig. 18 Comparison of the predictions of Exo-SIR and SIR models
with real data for Covid-19 in Tamil Nadu

Fig. 19 Comparison of the predictions of Exo-SIR and SIR models
with real data for Covid-19 in Rajasthan

6.2 Covid-19 infection in the USA

In this section, we discuss the analysis that we carried out on
the data of Covid-19 infection in the USA.

We constructed our dataset from two different sources14

for our analysis—kaggle.com and incoming tourists travel
data for the USA from the CEIC database 15.

Now, we discuss how the values in the dataset is mapped
on to the variables in the Exo-SIR model. We calculated the
number of endogenous infections (IE (t)) from the following
equation.

IE (t) = IE (t − 1) + Daily(t) − D(t − 1) (37)

where, Daily(t) is the daily new cases at the time slice t
and D(t − 1) is the deaths from within the USA population
at the time slice t − 1.

We estimated infected tourists death number fromendoge-
nous deaths in the following way. First, we calculated γ from
endogenous data by using equation

14 The code and all the data used in our experiments will be made
openly available upon the acceptance of this paper
15 https://www.ceicdata.com/en/indicator/united-states/visitor-
arrivals.
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γ = dr/dt

i
(38)

Applied the same gamma to get the number of deaths from
data of exogenous infections using the equation

r(t) = r(t − 1) + dr/dt (39)

where

dr/dt = γ ∗ i(t − 1) (40)

Then, we calculated the number of exogenous infections
(IX (t)) by using the equation:

IX (t) = IX (t − 1) + Daily(t) − D(t) (41)

where Daily(t) is the daily new tourist cases at the time
slice t and D(t) is the number of deaths at the time slice t

Then, we calculated the number of susceptible people by
using the following equation:

S(t) = N − I cE (t) − I cX (t) (42)

where I cE (t) is the cumulative value of IE (t) and I cX (t) is
the cumulative value of IX (t).

Finally, we computed d(ie)
dt , d(ix )

dt , d(r)
dt and d(s)

dt values.
Next, we analyze the Covid-19 data from the USA by

applying the Exo-SIR model. We compare the peak tick and
peak value of the plot of ie in the presence and absence of
ix . This would give information about the impact of ix on
ie. For this purpose, we used Algorithm 3. The cases in the
presence and absence of Ix are plotted in Figs. 20 and 21,
respectively. Ix is plotted in Fig. 22.

In these plots, it can be observed that the peak and the
height of the peak are different compared to the values in the
absence of ix The peak tick and peak values corresponding
to the Ie of Exo-SIR model in the presence and absence of
ix are mentioned in Table 5.

Figure 23 shows the comparison of the predictions of Exo-
SIRmodel and SIRmodelwith the real data. Here, we can see

Fig. 20 ie and ix for Covid-19 in the USA

Fig. 21 ie in the absence of ix for Covid-19 in the USA

Fig. 22 ix for Covid-19 in the USA

Table 5 Impact of Ix on Ie in Covid-19 in the USA

Peak value Peak tick

Ie in the presence of ix 0.7 130 days

Ie in the absence of ix 0.7 135 days

Fig. 23 Comparison of the predictions of Exo-SIR and SIR models
with real data for Covid-19 in the USA

that the peaks in the SIR and Exo-SIR plots are of the same
height and are comingmore or less simultaneously. However,
both of them are very different from the peak position in the
real data.
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6.3 Ebola infection in Guinea

Ebola, also known as EVD, was another severe, often fatal
epidemic that hit the Western African countries from 2014
to 2016, particularly Guinea, Sierra Leone, and Liberia. Its
fatality rate16 varies from 25 to 90%. Like the case of Covid-
19, there was migration of people from abroad, especially
tourists traveling into these countries. The dataset regarding
travel and tourism is publicly available17.

We compared peak tick and peak value of the plot of ie
in the presence and absence of ix , as per Algorithm 3. This
gave us information and important insights on the impact of
ix on ie.

We constructed our dataset from two different sources:
kaggle.comand incoming tourists travel data forGuinea from
UNWTO Dashboard18.

Now, we discuss how the values in the dataset is mapped
on to the variables in the Exo-SIR model. We calculated the
number of endogenous infections (IE (t)) from the following
equation.

IE (t) = IE (t − 1) + M(t) − D(t − 1) (43)

where M(t) is the monthly new cases at the time slice t
and D(t−1) is the deaths fromwithin the Guinea population
at the time slice t − 1.

We estimated infected tourists death number fromendoge-
nous deaths in the following way. First, we calculated γ from
endogenous data by using the equation

γ = dr/dt

i
(44)

Then, we applied the same gamma to get the number of
deaths from data of exogenous infections using the equation:

r(t) = r(t − 1) + dr/dt (45)

where

dr/dt = γ ∗ i(t − 1) (46)

Then, we calculated number of exogenous infections
(IX (t)) by using the equation:

IX (t) = IX (t − 1) + M(t) − D(t) (47)

where M(t) is the monthly new tourist cases at the time
slice t and D(t) is the number of deaths at the time slice t .

16 https://www.who.int/health-topics/ebola.
17 https://www.unwto.org/unwto-tourism-dashboard.
18 https://www.unwto.org/seasonality.

Then, we calculated the number of susceptible people by
using the following equation:

S(t) = N − I cE (t) − I cX (t) (48)

where I cE (t) is the cumulative value of IE (t) and I cX (t) is
the cumulative value of IX (t).

Finally, we computed d(ie)
dt , d(ix )

dt , d(r)
dt and d(s)

dt values.
Next, we analyze the data from Guinea. We compare the

peak tick and peak value of the plot of ie in the presence and
absence of ix . This would give information about the impact
of ix on ie. For this purpose, we used Algorithm 3. The cases
in the presence and absence of Ix are plotted in Figs. 24 and
25, respectively. Ix is shown in Fig. 26.

From Figs. 24, 25, and 26, the peak and the height of the
peak are different compared to the values in the absence of ix .
The peak tick and values corresponding to Ie of the Exo-SIR
in the presence and absence of ix are mentioned in Table 6.

Figure 27 shows the comparison of the predictions of Exo-
SIR model and SIR model with the real data. Here, we can
see that the peak of Exo-SIR and SIR models is coming dif-
ferently and they are coming far from the peak of the actual
data.

6.4 Discussion

Both Covid-19 and Ebola satisfy our hypothesis that the
endogenous spread changes in the presence of exogenous

Fig. 24 ie and ix for Ebola

Fig. 25 ie in the absence of ix for Ebola
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Fig. 26 ix for Ebola

Table 6 Impact of Ix on Ie in Guinea

Peak value Peak tick

Ie in the presence of ix 0.00012 5 Months

Ie in the absence of ix 0.00012 6 Months

Fig. 27 Comparison of the predictions of Exo-SIR and SIR models
with real data for Ebola in Guinea

spread. Also, the results in the case of Covid-19 infection in
India show that the Exo-SIR model predicts the epidemic’s
peak tick better than the SIR model.

Covid-19 in the USA and Ebola in Guinea show less accu-
rate predictions than Covid-19 in India. This may be because
of the following reasons.

In these cases, we took the data from the beginning of
the spread of the infection. As soon as the infections started
growing, the governments began multiple interventions to
curb the spread of the epidemics. If these efforts were suc-
cessful, that would change the values of the constants that
we calculated using the initial values. This will refect in the
curve of the real data primarily by delaying the peak and
fattening the curve. This can be observed in the real data of
Covid-19 in theUSAandEbola inGuinea.On the other hand,
in the case of the data from India, we took the data when the
migration of people after the Tablighi religious congregation
happened. By this time, Indiawas already on the alert, and the
government had already intervened in the matter. Hence, our
calculation of the constants was closer to the actual values.

We analyzed a sub-event in the case of Covid-19 in India,
the Tablighi religious congregation, with many participants
from almost all the states in India. The number of these peo-
ple who traveled back to the states was considered Ix . The
probability of these people being infected was very high as
the event was a hot spot of the infection. However, in the case
of Covid-19 in the USA and Ebola in Guinea, we considered
the tourist arrival data as Ix . We made strong assumptions in
these cases due to the unavailability of the daily infow of the
infected people to the population. In the case of Covid-19 in
the USA, we calculated the external infection as the tourist
arrival data multiplied by the total infection in the world. We
normalized it by the total population of the world. In the case
of Ebola inGuinea,we calculated the external infection as the
tourist arrival data multiplied with the total population of the
three countries where the infection was the most prevalent
and normalized it by the world’s total population. In these
cases, the probability that all the people in the travel data
are infected is comparatively less. This may be the reason
for the difference. It is important to note that the SIR model
performed equally bad in these cases. This also suggests that
the issue might be with the data.

The peak value of the predictions of both SIR andExo-SIR
modelswas very high compared to the real values. The reason
for this may be the following. In the case of SIR and Exo-SIR
models, we assume that susceptible people are equally likely
to get infected from each infected person in the population.
This is not true in real life. In real life, people are likely to get
infected only from those they contact. This number is much
less than the assumption in both SIR and Exo-SIR models.

7 Conclusion

This study introduced the Exo-SIR model by extending the
SIR model. Unlike the other epidemiological models, the
Exo-SIR model differentiates between the endogenous and
exogenous spread of virus/information.We studied themodel
in the following ways:

1. Analytical study
2. Simulation considering the presence of contact network of

the population and assuming it to be a scale free network
3. Simulation without considering the presence of contact

network
4. Implementation of the Exo-SIR model on real data about

the spread of Covid-19 in India, Covid-19 in the USA,
and the spread of Ebola in Guinea.

We found that all the four analyses mentioned here con-
verge to the same result: the peak comes differently in time
and size when the exogenous source is present. We studied
the impact of exogenous infection on endogenous diffusion.
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We found that exogenous diffusion impacts the endogenous
spread of infection. If there are exogenous sources of infec-
tion, like in the case of Covid-19 or Ebola, then the Exo-SIR
model is more appropriate to estimate the scenario better.
This will help the government allocate its resources better as
the endogenous and exogenous spread needs different sets of
actions to stop them.
Limitations and Future works:We used the SIR model for
comparison as it is simple and widely used. Other models
like SEIR, SEYAR, etc., that could be used for a similar
study. There is scope for introducing the external source of
infection to these models like SEIR and SEYAR. Also, we
have considered only one external source of infection. There
may exist multiple external sources of infection like bats,
pigs, birds, etc. Another possible scenario is the possible
presence of multiple viruses. We propose to study these in
the future.
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