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Abstract

Epidemics like Covid-19 and Ebola have impacted people’s lives significantly. The impact of mobility of people across the
countries or states in the spread of epidemics has been significant. The spread of disease due to factors local to the population
under consideration is termed the endogenous spread. The spread due to external factors like migration, mobility, etc., is
called the exogenous spread. In this paper, we introduce the Exo-SIR model, an extension of the popular SIR model and a few
variants of the model. The novelty in our model is that it captures both the exogenous and endogenous spread of the virus.
First, we present an analytical study. Second, we simulate the Exo-SIR model with and without assuming contact network
for the population. Third, we implement the Exo-SIR model on real datasets regarding Covid-19 and Ebola. We found that
endogenous infection is influenced by exogenous infection. Furthermore, we found that the Exo-SIR model predicts the peak
time better than the SIR model. Hence, the Exo-SIR model would be helpful for governments to plan policy interventions at
the time of a pandemic.

Keywords Covid-19 - Ebola - Epidemic modeling - Compartment model - Exogenous infection - Endogenous infection -

SIR - Exo-SIR

1 Introduction

An epidemic is a disease that spreads rapidly to a large num-
ber of people in a given population within a short period.
Many epidemics occur in the world. Covid-19 and Ebola are
recent prominent examples.

People have tried many methods to study epidemics. The
susceptible, infected, and recovered model (SIR model) is
considered as one of the seminal models of epidemics [1]. A
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recent work [2] gives a comprehensive review of the meth-
ods to model and analyze Covid-19. Out of these methods,
the models relevant to our model are compartmental models.
They are prominent methods used for the analysis and pre-
diction of Covid-19 dynamics [2—4]. However, these works
consider only infection from people to people from within
the population and do not consider any external source of
infection explicitly.

World Health Organization (WHO) has identified exter-
nal transmission as one of the three modes of transmission
[5]. According to WHO, the infection within the population
is called as Local transmission and community transmis-
sion, and the infection external to the population is called as
Imported cases. We call the infection from a source within
the population and external to the population as the endoge-
nous and exogenous spread of infection, respectively. Human
migration is one of the prime reasons behind the exogenous
spread of infection.

The governments can intervene to curb the spread of
the disease by bringing in policies to stop human mobil-
ity [6]. However, the implementations of such intervention
policies have a lot of challenges. Social disagreement is an
example. Social disagreement means people do not abide by
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the government’s directives. The Tablighi Jamaat'. religious
congregation that happened in India and the human mobility
as a result of it is an example of social disagreement.

As a part of intervention, the Governments can restrict
human mobility. However, they cannot completely prevent
all such human mobility and migration. For example, in the
Indian sub-continent, people migrate to metropolitan cities
for work. Due to the risk of Covid-19 exposure in these over-
populated cities, people migrate back to their homes [7]. This
is also known as reverse migration?.

The government cannot deny one’s right to go home. How-
ever, the government can allow necessary movement in a
controlled manner. For example, when people move from
one state to another, the state governments can issue passes
for anyone who is allowed to travel to that state similar to
what was practiced by the State of Kerala®. They can iden-
tify the incoming people and ensure that they correctly follow
the procedures advised by the respective governments.

These movements will increase the exogenous spread of
the infections compared to the ideal condition of sealed bor-
ders. To find the amount of infection during this movement
and when the peak occurs, authorities need an explicit model
that can predict infection through exogenous means [8]. Our
model extends the SIR model and explicitly takes care of
the amount of exogenous infection and endogenous infec-
tions. In the case of the spread of epidemics, even if there
is a small increase in the number of infected people, the
impact grows exponentially with time. Hence, it is impor-
tant to consider the exogenous infections while studying the
dynamics of epidemics [9]. This allows the governments to
have pertinent information regarding the possible exogenous
infections. This gives the government authorities time to pre-
pare their medical resources accordingly.

There are challenges even if people do not migrate. For
example, frontline workers like doctors and nurses are more
frequently exposed to the virus than a common man. Corre-
spondingly, we need to be able to model different rates of
infections for different groups of people. The governments
will have to make all the necessary safety equipment available
to the frontline workers and monitor their health constantly
to control the infection as a measure of intervention.

In this context, we address the following research ques-
tions that significantly modifies the current, well-studied SIR
model by infusing external knowledge related to pandemic
[10]:

! https://en.wikipedia.org/wiki/Tablighi_Jamaat.

2 https://www.epw.in/journal/2020/19/commentary/migration-and-
reverse-migration-age-covid-19.html.

3 https://www.news18.com/news/auto/covid- 19-omicron-kerala-
travel-guidelines-for-international-and-domestic-passengers-
4525862.html.
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1. How to quantify the exogenous spread of infection?
2. What is the interplay between the exogenous and endoge-
nous spread of infection concerning the following:

(a) In the presence of social disagreement.

(b) In the presence of controlled migration.

(c) In the presence of n communities that have a differ-
ent rate of infection—e.g., frontline workers such as
healthcare workers or hospitality workers.

3. What is the change in the peak position (the most signif-
icant number of people infected in a unit of time) in the
presence of exogenous infection?

4. Whatis the change in the height of the peak in the presence
of exogenous infection?

The following are our contributions in this work. We study
the impact of external reasons of infections such as cross-
border mobility on COVID infection by introducing a novel
SIR-like compartmental model called Exo-SIR.

We study three variants of the model applicable for spe-
cial scenarios like the presence of social disagreement, the
presence of different groups that have a different amount of
risk, and infectiousness like the frontline workers.

We analyze the interplay between endogenous and exoge-
nous infections during the Covid-19 and Ebola pandemics in
the following ways.

1. Analytically.

2. By simulating the Exo-SIR model with and without
assuming contact network for the population.

3. By implementing the Exo-SIR model on real datasets
regarding Covid-19 and Ebola.

We compare the predictions of Exo-SIR with the SIR model
using real data on the recent spread of the Covid-19 in India
and the USA and the spread of Ebola in Africa as the ground
truth.

This paper is structured as follows. Section 2 discusses
related works and preliminaries. Then, we formulate the
Exo-SIR model by extending the SIR model and discuss
the different variants of the model (in Sect. 3). We ana-
lyze our model by comparing it with the SIR model and
study the behavior of the infected population in the presence
and absence of exogenous infection (in Sect. 4). Then, we
describe the simulation study where we simulated the SIR
model and Exo-SIR model and compared them (in Sect. 5).
Finally, we study the real data of Covid-19 and Ebola epi-
demics (in Sect. 6).


https://en.wikipedia.org/wiki/Tablighi_Jamaat
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2 Related works

Here, we discuss the works related to the idea of exogenous
influence to the population under study.

The work in [11] considers exogenous infections for
Malaria at China—Myanmar border. However, the model
is not deterministic. In a deterministic model, individuals
in the population are assigned to different subgroups or
compartments, each representing a specific epidemic stage.
Deterministic models often provide useful ways of gaining
sufficient understanding about the dynamics of populations
whenever they are large enough [12]. Also, the deterministic
models are simpler and more popular [13,14]. A mobility-
based SIR model [15] is a deterministic model. Our model
is also deterministic.

2.1 Models of external influence on online social
networks

Information diffusion in online social networks is similar to
the way the virus spreads in a population [16]. There are a
few recent works in the literature that attempt to model the
external influence in information diffusion in online social
networks [17]. Moreover, [17] and [18] propose information
diffusion model on the network. These works assume that
the information flows through an underlining network. Also,
they consider links from other websites like the mainstream
media as external sources of information. Internal diffusion
is when the shared messages do not have any external links.

The work described in [17] uses very specific parameters
like the following:

e Probability of any node receiving exposure at time ¢

e The random amount of time it takes an infected node to
expose its neighbors

e How the probability of infection changes with each expo-
sure

e The probability that a node I have received n exposures
by time ¢

The work described in [18] traces the information cascade
and thereby tries to reconstruct the underlying graph struc-
ture as much as possible. Also, they conclude that external
influence has a bigger impact on the network when compared
to the influence of social media influencers.

The model that is closest to our work is Yang et. al.’s model
[19]. This model is an extends the SIR model (explained in
Sect. 2.4) by including the external influence on the network.
State transition diagram of the diffusion mechanisms of this
model is given in Fig. 1.

This model is defined in the following way.

s+i+r=1 (1)
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Fig.1 State transition diagram of the diffusion mechanisms in Yang et
al’s model. Diagram taken from [19]

ds
5 = —piksi = (1= p)ps + pa)fs )
ds .
i —piksi — (1 — p1)p3 + pa)fs

—(1 = p1)psksi )
di
o= piksi + pabs — pai (4)
dr . i
37 = P2l + (L= pa)ps0s + (1 = py)psksi ®)

InFig. 1, there are two possible transitions from the state S
to I. One path is the normal endogenous path, and the second
is due to external influence. These transitions have probabili-
ties p1 and p4, respectively. Similarly, there are two possible
transitions from the state S to R—one through endogenous
and the other through external influence. Their probabilities
are ps and p3, respectively. However, the transition from the
state I to R is not affected by external influence(s).

Although the exogenous infection is modeled in Yang et
al.’s model, it fails to capture the dynamics between endoge-
nous and exogenous infections. This is because they do not
differentiate between the infections due to exogenous factors
from those due to endogenous factors.

2.2 Other studies of endogenous and exogenous
information diffusion

The dual nature of message flow over the online social net-
work is studied and verified in [20]. Here, the dual nature
refers to the injection of exogenous opinions to the network
and the endogenous influence-based dynamics. In [21], the
authors propose a method for extracting the relative contri-
butions of exogenous and endogenous contents. In [22], the
authors postulate that the nature of the information plays a
crucial role in the way it spreads through the network. They
quantify two properties of the information—endogeneity and
exogeneity. Endogeneity refers to its tendency to spread pri-
marily through the connections between nodes, and exogene-
ity refers to its tendency to spread to the nodes, independently
of the underlying network. In [23], the authors study the
bursts that originate from endogenous and exogenous sources
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and their temporal relationship with baseline fluctuations in
the volume of tweets. The study reported in [24] classifies
the bursts into endogenous and exogenous. According to this
study, those bursts that reach the peak almost instantaneously
after the diffusion starts and then go down slowly are exoge-
nous bursts. Also, those bursts that gradually increase and
slowly decrease are endogenous.

2.3 Compartmental models for Covid-19 modeling

Compartmental models are prominent methods that are used
for the analysis and prediction of Covid-19 dynamics. The
SIR model is one of the seminal compartmental models.
Many compartmental models have come up recently to
improve the SIR model. QSIR model [25,26] is an example
in which they add an extra state to the standard SIR model
that represents the number of people in Quarantine. SPCIRD
model [27] adds three extra states—P, C, and D, where P rep-
resents the number of susceptible people who are partially
controlled. Partially controlled people are those who can be
considered as people not conforming to all the restrictions
of the Quarantine. C represents the number of susceptible
people who are controlled. Controlled people are those who
can be considered as people conforming to all the restrictions
of the Quarantine. D represents the number of people who
died. Multiple epidemic wave model [28] as its name sug-
gests models the multiple waves of infection that could occur.
Time-dependent SIR model [29,30] considers the constants
in the SIR model—beta and gamma to be varying with time.
However, none of these models consider infections arising
from outside the population, mostly due to the cross-border
mobility of infected people. Hence, we introduce the Exo-
SIR model to address this particular issue.

2.4 SIR model

This section briefly reviews the SIR epidemiological model
to learn how epidemics spread through population. SIR is
often used to study information diffusion by approximating
the process of epidemic spread.

In this model, the population is classified into three—
susceptible (who are prone to infection), infected (who
contain the infection), and recovered (who do not have the
infection and its associated symptoms). In the limit of size-
able total population N that does not change over time, the
given equations model the dynamics of the spread [31]:

s(t)y+it)+r()=1 (6)
& i (7)
dr

di ) )

5 =Psi—vi ®)
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dr

2 9
=V )
where the fraction of susceptible, infected, and recovered
people at time ¢ are represented by s(¢), i (t), and r (¢), respec-
tively. B is the rate of infection, and y is the rate of recovery.

3 The model

In this section, we propose the Exo-SIR model. It differs from
SIR model in the following ways. It classifies infected nodes
into two different types—Infected from exogenous source
and Infected from endogenous source. It also differentiates
between the spread from endogenous and exogenous sources.

Susceptible nodes become infected with a certain prob-
ability called the rate of infection. This rate could be
different for endogenous and exogenous infections. The
nodes affected by endogenous and exogenous sources move
into different states. We assume that susceptible nodes get
infected from only one of these sources and never from both
sources. Hence, even when some nodes are susceptible to
endogenous and exogenous infection, they become infected
by either an endogenous or an exogenous source but not both.
The infected nodes recover with a certain probability called
the recovery rate. These nodes move into the recovered state.
The advantage of the Exo-SIR model compared to the SIR
model is that we can observe the endogenous and exogenous
diffusion separately.

We use the following notations:

S state of susceptible

I, state of infected from exogenous source

1, state of infected from endogenous source

R state of recovered

iy Fraction of nodes that are infected from exogenous
source

i, Fraction of nodes that are infected from endogenous
source

r Fraction of nodes that are recovered

By Rate at which the exogenous source infects the nodes
B. Rate at which the nodes infect other nodes

y Rate at which the nodes get recovered

We use the words infection, diffusion, and spread inter-
changeably according to the context.

The state transition diagram of the Exo-SIR model is given
in Fig. 2.

We classify infected nodes into two different types—
infected from exogenous source i, and infected from endoge-
nous source i,.

io+iy=1 (10)
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We assume that the total population remains constant.
s+i+r=1 (11)

A fraction of the susceptible people s gets infected by
exogenous sources, and another fraction of s gets infected
by endogenous sources. For endogenous infection, the pop-
ulation that is infected plays a big role. Hence, we have

ds .
— = —Bxs — Besi (12)

dr
Increase in iy is determined by the number of susceptible
nodes and the decrease in i, is determined by i,. This gives

diy .

E = BxS — Vix (13)
Increase in i, is determined by the number of susceptible

nodes and the number of infected nodes and the decrease in

i is determined by .. This gives

di, L

E = Besi — yi, (14)
Increase in r is determined by the number of infected

people in the network. This gives

dr

=i 15

=V 15)

3.1 Variants of the model to address specific
situations

In this section, we discuss how the Exo-SIR may be used in
the different situations.

3.1.1 Exo-SIR model with social disagreement

This scenario occurs when people do not abide by the govern-
ment’s orders, for example, not wearing masks, not following
social distancing, etc. As a result, more people contract the
virus, and hence, the infectiousness of the disease will go up.

Bx Y

Fig.2 State transition diagram of the nodes in the Exo-SIR model

This can be represented in the Exo-SIR model by increasing
the B, value.

3.1.2 Exo-SIR model with people migrating with the
permission of the government

This scenario can be studied using the Exo-SIR model. Here,
we assume that when the government allows people to travel,
the government makes sure that these people are isolated and
given treatment. Change in i, is influenced by the action of
the government that allowed people to travel across their bor-
der. Hence, planning and execution efficiency to minimize the
impact are essential. This is captured in §, . If the government
efficiently contains the infection from these people, then the
value of 8, goes down.

3.1.3 Exo-SIR model with multiple groups that have
different risk of infection

This case may be depicted as shown in Fig. 3. In this case,
there are n different groups of susceptible people with vary-
ing levels of infection risk. Hence, we add them up wherever
we use s in the equations of the Exo-SIR model. Also, the
value of each parameter is different for a different group of
people. Hence, we have different values for each group of
people for the parameters. Hence, there will be the summa-
tion of the n groups and parameters for each group. Figure 3
is the state diagram and the equations are given below.

iy iy =i (16)
n
=) s (17)
k=1
s+i+r=1 (18)
ds n n
Pl D Busk — Y Beksk (19)
k=1 k=1
S Bu L
By v
Sz
R
Bun Y
Sa s L

Fig.3 State transition diagram of the model
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di " ,

d_; = I;,Bxksk —Vix 20)
di, <& , ,

= = ;ﬁekskz — yie 1)
dr ) 22)
o

dr 4

4 Analysis

In this section, we compare our model with SIR model and
analyze the dynamics of exogenous spread and endogenous
spread.

4.1 Comparison with SIR model

Mirroring the rate of change of s(¢), i(¢), and r(¢) in the
SIR model (Sect. 2), we find the expressions for the rate of
change of s(t), i(¢), and r(¢) for the Exo-SIR model.

Rate of change of s is given by

ds

Fri —Bxs — Besi (23)

Rate of change of r is given by

dr . (24)
= i
ar 7

Differentiating Eq. 10 with respect to time, we get

di _ di,  diy

., 25
dr dr dt @5)
di . . .

d_l = BeSi — Yie + Bxs — Yiyx (26)
di . . .
a = Besi + Bys — v (ix +1i.) (27)
Applying Eqgs. 10 on 27, we get
di . . . .
E = Bes(iy +io) + Bxs — y(ix +ic) (28)

Here, even if we assume that there are no infected people in
the beginning—i.e., i, = 0 and i, = 0, we get the following.

& (29)
dr = Bxs

This shows that, unlike the SIR model, the Exo-SIR model
explains how an infection starts spreading from the state
where no one is infected. SIR model assumes that there is
an initial outbreak size ig. This means iy people are infected
in the beginning and iy > 0 [32]. Our work addresses this
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limitation of the SIR model. Note that the Exo-SIR model
would behave the same way as the SIR model if we assume
thati, = 0 and B, = 0.

4.2 Dynamics of exogenous spread and endogenous
spread

In this section, we find the relationship between the cumu-
lative exogenous infections (i,) and the daily endogenous
infections (%“).

Applying Egs. 10 on 14, we get

di, Lo .
E = Bes(ie +ix) — yie (30)
di, Lo .
— = Bes(ie +ix) — Vie (3D
dr iy>0
Ati, =0,
di, ) .
E o = Besi, — Vie (32)

Since all B,, s, i, and y are positive,

di,
dt

di,

< — (33)
=0 dr

iy>0

This shows that %e increases in the presence of 7. In other
words, this shows that the presence of exogenous diffusion
causes endogenous diffusion to increase.

5 Simulation

We simulate the Exo-SIR model to determine its behavior for
various scenarios that are represented by the different values
of its parameters. We simulated the model in two ways:

One, by assuming no network (well-mixed population).
In this scenario, a susceptible node can get infected from any
of the infected nodes in the population under consideration.

Two, by assuming that the people network is a scale-free
network. Within this network, the susceptible nodes can catch
the infection from only those infected nodes, which they are
connected to through an edge, i.e., their immediate neigh-
bors. We chose scale-free network because there are pieces
of evidence that the human disease network could be scale-
free [33]. The results of these simulations are discussed in
the following section.

5.1 Using scale-free network

The analysis presented in this section has been done consid-
ering a scale-free contact network for the population under
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study, which is called Barabasi-Albert network [34]. Under
this scenario, the susceptible nodes can catch the infection
from only those infected nodes, which they are connected to
through an edge, i.e., their immediate neighbors. We have
predicted the values for various combinations of Sy, 8., and
y using the Exo-SIR model in the network mentioned above.

Next, we study the dependency of endogenous spread on
the exogenous factors through simulation. The step-by-step
methodology adopted to carry out the simulation and the
analysis is given in Algorithm 1.

Algorithm 1 Algorithm to perform the simulations and anal-
ysis by assuming that the contact network in the population

is scale-free

1: Initialize By, B¢, and y with 3 different values, i.e., 0.1, 0.5, and 0.9.
Henceforth, we have 27 different combination of these parameters.

2: For each of the combinations of By, B., and y, iterate over steps 3
and 4 fifty times.

3: Setup a Barabasi-Albert network of 1000000 nodes having an aver-
age node degree of 2 [34].

4: Simulate and predict the values of S, /,, I, and R using the Exo-SIR
model.

5: Extract the values of the height of the peak (we call it as peak value)
and the time slice at which it occurs (we call it as peak tick), for both
endogenous and exogenous peaks from each of the simulations.

6: Calculate the mean peak value and peak tick of exogenous and
endogenous infections so that we have one value per combination

of By, Be,and y.

In the above algorithm, we have carried out 50 simulations
for each combination of the parameters and averaged it out to
address the bias that might get introduced due to the network
structure since the setting up of a network in step 3 in the
above algorithm is random each time.

Sample simulation results are shown in Figs. 4 and 5.
Figure 4 shows the SIR model’s simulation results with no
exogenous influence, and Fig. 5 shows the simulation results
with exogenous influence. Here, we can see that when we
consider exogenous factors, the peak of the distribution of
the number of the infected population shows changes.

—— Susceptible
—— Infected
Recovered

02

00

0 20 40 60 80 100
Time(in days)

Fig. 4 plot of susceptible, infected, and recovered with no exogenous
source

~  Susceptible
- Infected
Recovered

0 20 40 60 80 100
Time(in days)

Fig. 5 plot of susceptible, infected, and recovered with exogenous
source

30

20

peak tick of ie

2 4 6 8
beta x

Fig.6 impact of S, on peak tick of i,

30

20

peak value of ie

2 4 6 8
beta x

Fig.7 impact of S, on peak value of i,

Figures 6 and 7 are aresult of simulation and analysis done
as described in Algorithm 1 and provide us with the following
insights. Figure 6 shows that endogenous peak tick decreases
with increase in B. Figure 7 shows that S, (exogenous fac-
tors) influence the peak value of endogenous infections. The
endogenous peak value increases with increase in f;.

We can conclude that exogenous source and its infection
impacts the endogenous spread in the network by advancing
the peak and increasing the height of the peak.

5.2 With no network

In this section, we determine the relative effects of By, B,
and y on the endogenous peak statistically and measure the
impact of B, on endogenous infections, which is consis-
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Table 1 Impact of B,, By, and y on [n(ie_peak)

Coef Std err Confidence interval
Be 0.6319 0.006 0.6204 to 0.6434
By 0.6319 0.006 0.6204 to 0.6434
y —0.4390 0.006 —0.4505 to —0.4274

tent with the results shown above. Here, we did not assume
any network for our population, and the objective of these
simulations was to determine the impact of By, B, and y
on endogenous peak value and peak tick (see Table 1). To
achieve this, we took a sample of 27000 simulations and
analyzed them as described in Algorithm 2.

Algorithm 2 Algorithm to perform the simulations and anal-
ysis by assuming no contact network in the population. Note:
If we look at the differential equations, the system is not a
linear one, but rather exponential. Therefore, we took natu-
ral log of the peak value as the dependent variable. Table 1
shows the impact of the above three independent variables
on the dependent variable.

1: Initialize By, B and y with 30 random values between 0 and 1.

2: Initialize the number of susceptible, infected (endogenous and
exogenous), and recovered nodes experimentally as: N = 1000000.0,
So =999996.0, I, =3.0, I, = 1.0, and Ry = 0.0.

3: For each of the 27000 combinations of S, B, and y, with the above
initial condition, predict the endogenous and exogenous peak value
and peak tick using the Exo-SIR model.

4: Then, compute the natural logarithm of the peak value and scaled it
between 0 and 1.

5: Finally, fit an OLS regression model with S, B, and y as the
independent variables and the natural log of the peak value as the
dependent variable and analyze the coefficients statistically.

The following inferences can be drawn from the results of
regression analysis. The p value for all the three variables is
less than 0.05. This means we would reject the null hypothesis
and adopt the alternate hypothesis that the impact of all the
three parameters on the peak endogenous infection’s peak is
statistically significant.

The adjusted R-squared value is maximum(0.70) when
all the three parameters are considered while fitting the
regression model. This means that we can better explain
the variation in the dependent variable when considering all
three, i.e., B¢, By, and y. Removing any one of them would
decrease the adjusted R-squared value. Also, the confidence
interval of each parameter is mentioned in Table 1.

By impacts endogenous infections as much as S, (the con-
tribution of both is almost equal), which is an important
observation. This means that exogenous factors also have a
considerable impact on the endogenous infection, and ignor-
ing the exogenous factors would not give an accurate estimate
of the endogenous infections.
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6 Analysis using real data

In this section, we describe the data and the analysis of the
implementation of the SIR model and Exo-SIR model on the
Covid-19 and Ebola epidemics.

6.1 Covid-19 infection in India

Covid-19 has caused large and persistent negative effects
on the world economy*. India is one of the countries that
are worst affected. There were many issues that made the
spread of Covid-19 in India complicated. One of them was
the migration of people from different parts of the country
and abroad.

Many sub-events in India involved the migration of peo-
ple. Examples are a celebrity coming to India from the UK
and socializing at many places even after being tested positive
for Covid-19°., laborers working in different states or other
countries moving back to their native places [7], and large
religious meetings with participation from many national and
international locations.

A major sub-event was the Tablighi Jamaat religious con-
gregation in Delhi from 1st March 2020 to 21st March 2020°.
Over 9000 people from various states of India participated in
this event’. Nearly 4300 cases have been reported that can be
traced to the event3. As of 18th April 2020, 30% of the cases
in India were due to this event®. The number of people from
each state is widely deferred. Hence, the impact of the event
was significantly different for different states. However, it is
reasonable to state that the mobility of people is a causative
phenomenon that changed the dynamics of the spread of the
virus.

We apply the Exo-SIR model on a real dataset regarding
the spread of the Covid-19 pandemic in the Indian states of
Rajasthan, Tamil Nadu, and Kerala from 14th March, 2020 to
14th April, 2020. Exogenous spread dominates endogenous
spread in Tamil Nadu, whereas the contrary is true in the case
of Rajasthan. Both the endogenous and exogenous spread in
Kerala have roughly the exact prevalence. The trends in the
analytical study, results of the simulations, and the analysis
of the real dataset are consistent.

We analyzed the data of three states in India, namely Tamil
Nadu, Rajasthan, and Kerala. The reason for choosing these
states is that i, < iy in Tamil Nadu, i, > i, in Rajasthan,
and i, ~ i, in Kerala.

4 shorturl.at/qBZ05.
5 shorturl.at/imBGK.

6 https://en.wikipedia.org/wiki/2020_Tablighi_Jamaat_coronavirus_
hotspot_in_Delhi.

7 shorturl.at/qryKU.

8 shorturl.at/myFQ2.
9 shorturl.at/iyVY9.
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We constructed our dataset from three different sources!©

for our analysis—covid19india.org.'!, the government web-
site of the respective states for their press release to find the
daily number of Tablighi cases and Wikipedia page on state-
wise daily data'?.

covid19india.org. is a publicly available volunteer-driven
dataset of Covid-19 statistics in India'3. There are multiple
files in this dataset. One of which is called raw data that cap-
tures the anonymized details of the patients. In the raw data,
the columns of interest for our study are DateAnnounced,
DetectedState, and TypeOfTransmission.

Another file from covid19india.org is called states_daily.
In this file the columns of interest are states_daily/status,
states_daily/kl, states_daily/rj, states_daily/m, and
states_daily/date. kI, rj and tn are the codes used in this
dataset for the states of Kerala, Rajasthan, and Tamil Nadu,
respectively.

Here, status can have the following values: infected, recov-
ered, and diseased. From these columns, we prepared the
time series dataset for each state. The columns available in
the dataset we created are daily confirmed, daily deceased,
daily recovered, date, total confirmed, total deceased, totally
recovered, and daily imported cases.

Another dataset that we used is the compilation of the
press releases (news bulletins) from the states’ governments
under study. This is to get the daily number of cases due
to a significant event that influenced the Covid-19 spread in
India—Tablighi Jamaat religious congregation. Since there
was no ready-made data available, we manually went through
the press releases and collected the data.

Now, we discuss how the values in the dataset is mapped
on to the variables in the Exo-SIR model. On a particular day,
say day k, by rearranging and differentiating Eq. 11, we get
the following.

ds di dr
- = _ 4
dr <dt + dt> 4)

where g—; is the sum of the numbers of the daily recovered
and the daily deceased cases on day k and

di _ dig  diy )
dr — dr = dr

where % is the daily confirmed cases on day k and %‘ is the

sum of daily imported cases on day k and the daily cases due
to Tablighi event on day k.

10 The code and all the data used in our experiments will be made
openly available upon the acceptance of this paper

" www.covid19india.org.

12 https://en.wikipedia.org/wiki/Statistics_of_the_COVID-
19_pandemic_in_India.

13 www.covid19india.org.
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Fig.8 I, in the presence of i,. The values of i, are very small for the
scale of this plot. Hence, it is plotted separately. Please refer Fig. 10

The initial values of s, i and r are found as follows.

s=1—— (36)

where d(0) is the daily confirmed on day 0 and N is the total
population who are prone to the infection.

i is the total number of confirmed cases on day 0 and
r is the sum of the total numbers of the deceased and the
recovered cases on day 0.

Algorithm 3 Algorithm to plot the Exo-SIR model.

1: Foreach time slice, calculate the values of % and # from the dataset.

2: Consider s as the susceptible people from the population of the state
under study.

3: Calculate the cumulative values i and r.

4: Find y, B, and By using values of the time for which the data is
available.

5: Run the Exo-SIR model with these values as the initial values and
plot i, in the presence of i, and i, in the absence of i,

Next, we analyze the data from Tamil Nadu, Rajasthan,
and Kerala. We compare the peak tick and peak value of the
plot of i, in the presence and absence of i,. This would give
information about the impact of i, on i,. For this purpose,
we used Algorithm 3.

For the state of Tamil Nadu, the plots of I, in the presence
and absence of i, are plotted in Figs. 8 and 9, respectively.
I, is plotted in Fig. 10. For the state of Rajasthan, the plots
of I, in the presence and absence of i, are plotted in Figs. 11
and 12, respectively. For the state of Kerala, the plots of /, in
the presence and absence of i, are plotted in Figs. 14 and 15,
respectively. I is plotted in Fig. 13. In all these plots, we can
see that i, is very small compared to i,. Yet, i, is having an
impact on i,. I, is plotted separately in Figs. 10, 13 and 16.

The peak tick and peak values corresponding to the I,
of the Exo-SIR model in the presence and absence of i,
for Tamil Nadu, Rajasthan, and Kerala are mentioned in
Tables 2, 3, and 4, respectively. In all the tables, we can
see that the peak value of i, is different when the case of i is

@ Springer
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Table 2 Impact of I, on I, in the state of Tamil Nadu

peak value peak tick
I, in the presence of iy 0.1714 907 Days
I, in the absence of i 0.1710 1351 Days
Table 3 TImpact of I, on I, in the state of Rajasthan

Peak value Peak tick
I, in the presence of iy 0.3487077 143 Days
I, in the absence of i 0.3486663 147 Days
Table4 TImpact of I, on I, in the state of Kerala

Peak value Peak tick

I, in the presence of iy 0.0842 608 Days
I, of in the absence of i 0.0841 715 Days

present. Also, we can see that the peak tick of i, is different
for the instance when i, is present.

Finally, we present the comparison of the predictions of
Exo-SIR model and SIR model with the real data for the
following cases:

1. Covid-19 in Kerala (Fig. 17)
2. Covid-19 in Tamil Nadu (Fig. 18)
3. Covid-19 in Rajasthan (Fig. 19)

Here, the peak values are scaled down as they are very
high for both SIR and Exo-SIR predictions. This may be due
to the fact that in both SIR and Exo-SIR models, we assume
that each infected person is equally likely to infect all the
susceptible people. In the real life, this is not true. However,
we can see that in all the three cases (shown in Figs. 17, 18,
and 19), the peak of the Exo-SIR model is closer to the peak
of the real data.
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Fig. 17 Comparison of the predictions of Exo-SIR and SIR models
with real data for Covid-19 in Kerala
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Fig. 18 Comparison of the predictions of Exo-SIR and SIR models
with real data for Covid-19 in Tamil Nadu
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Fig. 19 Comparison of the predictions of Exo-SIR and SIR models
with real data for Covid-19 in Rajasthan

6.2 Covid-19 infection in the USA

In this section, we discuss the analysis that we carried out on
the data of Covid-19 infection in the USA.

We constructed our dataset from two different sources
for our analysis—kaggle.com and incoming tourists travel
data for the USA from the CEIC database .

Now, we discuss how the values in the dataset is mapped
on to the variables in the Exo-SIR model. We calculated the
number of endogenous infections (/g (¢t)) from the following
equation.

14

Ig(t) = Ig(t — 1)+ Daily(t) — D(t — 1) 37

where, Daily(7) is the daily new cases at the time slice ¢
and D(r — 1) is the deaths from within the USA population
at the time slice t — 1.

We estimated infected tourists death number from endoge-
nous deaths in the following way. First, we calculated y from
endogenous data by using equation

14 The code and all the data used in our experiments will be made

openly available upon the acceptance of this paper

15 https://www.ceicdata.com/en/indicator/united-states/visitor-
arrivals.
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dr/dt
Yy =—

1

(3%)

Applied the same gamma to get the number of deaths from
data of exogenous infections using the equation

r(t) =r(t—1)+dr/dt 39)
where
dr/dt =y xi(t —1) (40)

Then, we calculated the number of exogenous infections
(Ix (t)) by using the equation:

Ix(t) = Ix(t — 1) + Daily(t) — D(¢) (41)
where Daily(#) is the daily new tourist cases at the time
slice  and D(t) is the number of deaths at the time slice ¢

Then, we calculated the number of susceptible people by
using the following equation:
S(t)y=N—1I5@) —I%(1) (42)

where I (¢) is the cumulative value of /g (¢) and I5(¢) is
the cumulative value of Ix (¢).

Finally, we computed %, dg%, % and % values.

Next, we analyze the Covid-19 data from the USA by
applying the Exo-SIR model. We compare the peak tick and
peak value of the plot of i, in the presence and absence of
iy. This would give information about the impact of iy on
i.. For this purpose, we used Algorithm 3. The cases in the
presence and absence of I, are plotted in Figs. 20 and 21,
respectively. I, is plotted in Fig. 22.

In these plots, it can be observed that the peak and the
height of the peak are different compared to the values in the
absence of i, The peak tick and peak values corresponding
to the I, of Exo-SIR model in the presence and absence of
i, are mentioned in Table 5.

Figure 23 shows the comparison of the predictions of Exo-
SIR model and SIR model with the real data. Here, we can see
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Fig.20 i, and i, for Covid-19 in the USA
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Table 5 Impact of I, on I, in Covid-19 in the USA

Peak value Peak tick
1, in the presence of iy 0.7 130 days
1, in the absence of i 0.7 135 days
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Fig. 23 Comparison of the predictions of Exo-SIR and SIR models
with real data for Covid-19 in the USA

that the peaks in the SIR and Exo-SIR plots are of the same
height and are coming more or less simultaneously. However,
both of them are very different from the peak position in the
real data.
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6.3 Ebola infection in Guinea

Ebola, also known as EVD, was another severe, often fatal
epidemic that hit the Western African countries from 2014
to 2016, particularly Guinea, Sierra Leone, and Liberia. Its
fatality rate'® varies from 25 to 90%. Like the case of Covid-
19, there was migration of people from abroad, especially
tourists traveling into these countries. The dataset regarding
travel and tourism is publicly available!”.

We compared peak tick and peak value of the plot of i,
in the presence and absence of iy, as per Algorithm 3. This
gave us information and important insights on the impact of
iy ON i,.

We constructed our dataset from two different sources:
kaggle.com and incoming tourists travel data for Guinea from
UNWTO Dashboard!®.

Now, we discuss how the values in the dataset is mapped
on to the variables in the Exo-SIR model. We calculated the
number of endogenous infections (/g (¢)) from the following
equation.

Ig(t) = Igt—1)+M(t)— D@ —1) (43)

where M (¢) is the monthly new cases at the time slice ¢
and D (¢ — 1) is the deaths from within the Guinea population
at the time slice ¢ — 1.

We estimated infected tourists death number from endoge-
nous deaths in the following way. First, we calculated y from
endogenous data by using the equation

dr/dt
y=— (44)

Then, we applied the same gamma to get the number of
deaths from data of exogenous infections using the equation:

r(t) =r(t—1)+dr/dt (45)
where
dr/dt =y xi(t —1) (46)

Then, we calculated number of exogenous infections
(Ix(t)) by using the equation:

Ix() =Ix(t —1) + M) — D) (47)

where M (¢) is the monthly new tourist cases at the time
slice  and D(t) is the number of deaths at the time slice ¢.

16 https://www.who.int/health-topics/ebola.
17" https://www.unwto.org/unwto-tourism-dashboard.

18 https://www.unwto.org/seasonality.

Then, we calculated the number of susceptible people by
using the following equation:

Sty =N — I§(1) — I5(1) (48)

where I (t) is the cumulative value of /g (¢) and I5 (¢) is
the cumulative value of Ix(t).

Finally, we computed %, %, % and % values.

Next, we analyze the data from Guinea. We compare the
peak tick and peak value of the plot of i, in the presence and
absence of i,.. This would give information about the impact
of i, on i,. For this purpose, we used Algorithm 3. The cases
in the presence and absence of I, are plotted in Figs. 24 and
25, respectively. I, is shown in Fig. 26.

From Figs. 24, 25, and 26, the peak and the height of the
peak are different compared to the values in the absence of i .
The peak tick and values corresponding to I, of the Exo-SIR
in the presence and absence of i, are mentioned in Table 6.

Figure 27 shows the comparison of the predictions of Exo-
SIR model and SIR model with the real data. Here, we can
see that the peak of Exo-SIR and SIR models is coming dif-
ferently and they are coming far from the peak of the actual
data.

6.4 Discussion

Both Covid-19 and Ebola satisfy our hypothesis that the
endogenous spread changes in the presence of exogenous
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Table 6 Impact of I, on I, in Guinea
Peak value Peak tick
1, in the presence of iy 0.00012 5 Months
1, in the absence of i, 0.00012 6 Months
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Fig. 27 Comparison of the predictions of Exo-SIR and SIR models
with real data for Ebola in Guinea

spread. Also, the results in the case of Covid-19 infection in
India show that the Exo-SIR model predicts the epidemic’s
peak tick better than the SIR model.

Covid-19 in the USA and Ebola in Guinea show less accu-
rate predictions than Covid-19 in India. This may be because
of the following reasons.

In these cases, we took the data from the beginning of
the spread of the infection. As soon as the infections started
growing, the governments began multiple interventions to
curb the spread of the epidemics. If these efforts were suc-
cessful, that would change the values of the constants that
we calculated using the initial values. This will reflect in the
curve of the real data primarily by delaying the peak and
flattening the curve. This can be observed in the real data of
Covid-19 in the USA and Ebola in Guinea. On the other hand,
in the case of the data from India, we took the data when the
migration of people after the Tablighi religious congregation
happened. By this time, India was already on the alert, and the
government had already intervened in the matter. Hence, our
calculation of the constants was closer to the actual values.

@ Springer

We analyzed a sub-event in the case of Covid-19 in India,
the Tablighi religious congregation, with many participants
from almost all the states in India. The number of these peo-
ple who traveled back to the states was considered I,. The
probability of these people being infected was very high as
the event was a hot spot of the infection. However, in the case
of Covid-19 in the USA and Ebola in Guinea, we considered
the tourist arrival data as /. We made strong assumptions in
these cases due to the unavailability of the daily inflow of the
infected people to the population. In the case of Covid-19 in
the USA, we calculated the external infection as the tourist
arrival data multiplied by the total infection in the world. We
normalized it by the total population of the world. In the case
of Ebola in Guinea, we calculated the external infection as the
tourist arrival data multiplied with the total population of the
three countries where the infection was the most prevalent
and normalized it by the world’s total population. In these
cases, the probability that all the people in the travel data
are infected is comparatively less. This may be the reason
for the difference. It is important to note that the SIR model
performed equally bad in these cases. This also suggests that
the issue might be with the data.

The peak value of the predictions of both SIR and Exo-SIR
models was very high compared to the real values. The reason
for this may be the following. In the case of SIR and Exo-SIR
models, we assume that susceptible people are equally likely
to get infected from each infected person in the population.
This is not true in real life. In real life, people are likely to get
infected only from those they contact. This number is much
less than the assumption in both SIR and Exo-SIR models.

7 Conclusion

This study introduced the Exo-SIR model by extending the
SIR model. Unlike the other epidemiological models, the
Exo-SIR model differentiates between the endogenous and
exogenous spread of virus/information. We studied the model
in the following ways:

1. Analytical study

2. Simulation considering the presence of contact network of
the population and assuming it to be a scale free network

3. Simulation without considering the presence of contact
network

4. Implementation of the Exo-SIR model on real data about
the spread of Covid-19 in India, Covid-19 in the USA,
and the spread of Ebola in Guinea.

We found that all the four analyses mentioned here con-
verge to the same result: the peak comes differently in time
and size when the exogenous source is present. We studied
the impact of exogenous infection on endogenous diffusion.
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We found that exogenous diffusion impacts the endogenous
spread of infection. If there are exogenous sources of infec-
tion, like in the case of Covid-19 or Ebola, then the Exo-SIR
model is more appropriate to estimate the scenario better.
This will help the government allocate its resources better as
the endogenous and exogenous spread needs different sets of
actions to stop them.

Limitations and Future works: We used the SIR model for
comparison as it is simple and widely used. Other models
like SEIR, SEYAR, etc., that could be used for a similar
study. There is scope for introducing the external source of
infection to these models like SEIR and SEYAR. Also, we
have considered only one external source of infection. There
may exist multiple external sources of infection like bats,
pigs, birds, etc. Another possible scenario is the possible
presence of multiple viruses. We propose to study these in
the future.
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