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Abstract. Let Ω be a bounded domain in Rn with C1 boundary and
let uλ be a Dirichlet Laplace eigenfunction in Ω with eigenvalue λ. We
show that the (n− 1)-dimensional Hausdorff measure of the zero set of

uλ does not exceed C(Ω)
√
λ. This result is new even for the case of

domains with C∞-smooth boundary.

1. Introduction

Let ∆M be the Laplace operator on an n-dimensional smooth compact
Riemannian manifold and let uλ be an eigenfunction of −∆M with the eigen-
value λ, i.e., ∆Muλ + λuλ = 0. Denote by Z(uλ) = {uλ = 0} the zero set
of uλ. S. T. Yau [21] conjectured that the surface area of the zero set of uλ
satisfies the following inequalities

c
√
λ ≤ Hn−1(Z(uλ)) ≤ C

√
λ,

where the constants c, C depend on M . This conjecture was proved by
Donnelly and Fefferman in [6] under the assumption that the metric is real
analytic. The lower bound and a polynomial in λ upper bound were obtained
recently by the first author in [16] and [15] respectively.

In this article we consider the case of eigenfunctions of the Euclidean
Laplace operator on a bounded domain with sufficiently regular boundary
and the Dirichlet boundary condition. One of our results is the following.

Theorem 1. Let Ω be a bounded domain in Rn with C1 boundary and let
uλ be an eigenfunction of the Laplace operator with the Dirichlet boundary
condition, ∆uλ + λuλ = 0 and uλ|∂Ω = 0. Then

(1) Hn−1(Z(uλ)) ≤ C
√
λ,

where C depends only on Ω.

The lower bound
Hn−1(Z(uλ)) ≥ c

√
λ,

for sufficiently large λ, follows from the results of Donnelly and Fefferman
in [6] combined with Lemma 10 below. We remark that this bound also
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holds for any solution of the equation ∆uλ + λuλ = 0 and the boundary
condition plays no role. This follows from the fact that the zero set is Cλ−1/2

dense and a non-trivial result of [16]. The inequality (1) was also proved
by Donnelly and Fefferman in [7] for the case of real analytic boundary
∂Ω. Their result was generalized to eigenfunctions of elliptic operators with
real analytic coefficients by Kukavica [9]. Similar estimates were recently
obtained by Lin and Zhu [14] for eigenfunctions of the bi-Laplace operator
with various boundary conditions under the assumption that the boundary
is real analytic. Also, the polynomial (in the eigenvalue) upper bounds for
the area of the zero set of the Dirichlet, Neumann, and Robin eigenfunctions
in smooth bounded domains in Rn were proved by Zhu in [22].

Our proof of Theorem 1 is based on the results of Donnelly and Feffer-
man and the ideas developed in [17, 15, 16]. In particular, we reduce the
statement of the theorem to an estimate of the size of the nodal set of a
harmonic function with controlled doubling index (the doubling index in
defined in Section 3 below). The novelty of the current work is the treat-
ment of domains with non-analytic boundaries. More precisely, we work
with Lipschitz domains in the Euclidean space and assume that (locally)
the Lipschitz constant is small enough; the precise definition and the formu-
lation of the main result are given in the next section. This class of domains
was recently considered by Tolsa [20] in a different problem.

The rest of the article is organized in the following way. In Section 3
we first discuss the doubling index of harmonic functions and its (weak)
monotonicity properties near the boundary of Lipschitz domains with small
Lipschitz constant, and then we formulate the main estimate for the size
of the zero set of harmonic functions in terms of the doubling index, see
Theorem 2 below. Two auxiliary results are contained in Section 4, where
the low regularity of the boundary requires some careful considerations.
We prove Theorem 2 for harmonic functions in Section 5, and explain how
Theorem 1 follows from Theorem 2 in Section 6.
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275113. F.N. was partially supported by NSF grant DMS-1900008.

2. Preliminaries

2.1. Smoothness of the boundary. Some of the tools used in the current
paper should be compared to those in [20], where the following boundary
uniqueness conjecture is studied.
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Let h be a bounded harmonic function in a Lipschitz domain Ω. Assume
that h vanishes on a relatively open set U ⊂ ∂Ω and ∇h vanishes on a subset
of U of positive surface measure. Then h = 0.

Recently Xavier Tolsa verified the conjecture for Lipschitz domains with
small Lipschitz constant, see [20]. We use the following definition.

Definition 1. Let Ω be a domain in Rd, τ ∈ (0, 1), and let B = B(x, r)
be a ball centred on ∂Ω. We say that ∂Ω is τ -Lipschitz in B if there is
an isometry T : Rd → Rd and a function f : Bd−1(0, r) → R such that
T (0) = x, f is a Lipschitz function with the Lipschitz constant bounded by
τ , f(0) = 0, and

Ω ∩B = T
(
{(y′, y′′) ∈ Bd(0, r) ⊂ Rd−1 × R : y′′ > f(y′)}

)
.

In this case we write ∂Ω ∩B ∈ Lip(τ).

Remark 1. Our considerations are mostly local. When considering the part
of the boundary ∂Ω∩B ∈ Lip(τ), we choose local coordinates inB = B(x, r),
x ∈ ∂Ω, so that the isometry T in the definition is the identity. We denote by
ed the unit vector in the direction of the last coordinate, so that x+εed ∈ Ω
for 0 < ε < r.

Remark 2. Note that if ∂Ω ∩ B ∈ Lip(τ) and B1 ⊂ B is a ball centred on
∂Ω, then ∂Ω ∩ B1 ∈ Lip(τ). Also, rescaling does not change the Lipschitz
constant. So if ∂Ω ∩ B ∈ Lip(τ) and x ∈ ∂Ω is the centre of B, then,
denoting Ωc = {x+ c(y− x) : y ∈ Ω} and Bc = cB = {x+ c(y− x) : y ∈ B}
for some c > 0, we have ∂Ωc ∩Bc ∈ Lip(τ).

Definition 2. We say that Ω is a Lipschitz domain with local Lipschitz
constant τ if there exists r > 0 such that ∂Ω ∩ B(x, r) ∈ Lip(τ) for any
x ∈ ∂Ω.

Clearly, any bounded C1 domain is a domain with local Lipschitz constant
τ for any positive τ . So Theorem 1 follows from the next result.

Theorem 1′. For each n, there exists τn > 0 such that the following state-
ment holds. Let Ω be a bounded Lipschitz domain in Rn with local Lipschitz
constant τn and let uλ be an eigenfunction of the Laplace operator in Ω with
the Dirichlet boundary condition, ∆uλ + λuλ = 0 and uλ|∂Ω = 0. Then

Hn−1(Z(uλ)) ≤ C
√
λ,

where C depends only on Ω.

The constant C depends only on the parameter r for Ω in the definition
of a Lipschitz domain with local Lipschitz constant τn, on the diameter of
Ω, and on the dimension n. In what follows we assume that the dimension
of the ambient Euclidean space is fixed so usually we will not emphasize the
dependence of our constants on it.

The rest of the article is devoted to a proof of Theorem 1′. We start with
the following property of Lipschitz domains.
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Lemma 1. Suppose that ∂Ω∩B ∈ Lip(τ), τ < 1/4, where B = B(x, r) and
x ∈ ∂Ω. We choose coordinates as in Remark 1. Let x0 ∈ Ω ∩ 1

4B, and let
x1 = x0 + τred. Then Ω ∩B(x1, r/2) is star-shaped with respect to x1.

A version of this lemma can be found in [10]. We provide a proof for the
convenience of the reader.

Proof. Let x1 = (x′1, x
′′
1). Suppose that x2 = (x′2, x

′′
2) ∈ Ω ∩ B(x1, r/2).

Let now x3 = (x′3, x
′′
3) be a point on the interval (x1, x2). Clearly x3 ∈

B(x1, r/2). We want to check that x′′3 > f(x′3).
Let x3 = ax1 + (1 − a)x2, a ∈ (0, 1). We have x′′1 ≥ f(x′1) + τr and

x′′2 > f(x′2). Therefore, we obtain

x′′3 = ax′′1 + (1− a)x′′2 > af(x′1) + aτr + (1− a)f(x′2).

Then, since f(x′1) ≥ f(x′2)− τ |x′1 − x′2| > f(x′2)− τr/2, we have

x′′3 > f(x′2) + aτr − aτr

2
= f(x′2) +

aτr

2
> f(x′3),

where the last inequality holds since |x′3 − x′2| = a|x′1 − x′2| < ar/2 and f is
τ -Lipschitz. �

2.2. Some observations. In this section we recall some results about har-
monic functions.

Suppose that h is a harmonic function in Ω, h ∈ C(Ω), and h = 0 on
∂Ω ∩ B, where B = B(x, r) and x ∈ Ω. We define the function v in B by
v = h2 in Ω ∩ B, and v = 0 in B \ Ω. Then v is subharmonic in B and the
mean-value theorem implies that for any y ∈ B(x, r/2) ∩ Ω,

(2) h2(y) ≤ 1

|B(y, r/2)|

∫
B(y,r/2)∩Ω

h2 ≤ 1

|B(y, r/2)|

∫
B(x,r)∩Ω

h2,

where |E| is the d-dimensional Lebesgue measure of the set E.
Another known fact that we use is the following quantitative version of

the Cauchy uniqueness theorem.

Lemma 2. Let B+ be the half-ball,

B+ = {(x′, x′′) ∈ Rd−1 × R : |x′|2 + (x′′)2 < 1, x′′ > 0}.

There exist γ ∈ (0, 1) and C > 0 such that if h is harmonic in B+, h ∈
C1(B+) and satisfies the inequalities |h| ≤ 1, |∇h| ≤ 1 in B+ and |h| ≤ ε,
|∂dh| ≤ ε on Γ = {(x′, x′′) ∈ B+, x

′′ = 0}, ε ≤ 1, then

|h(x)| ≤ Cεγ when x ∈ 1

3
B+ =

{
(x′, x′′) : |x′|2 + (x′′)2 <

1

9
, x′′ > 0

}
.

The reader can find a proof of a similar statement in [13] and a general
result on second order elliptic PDEs in Lipschitz domains in [5]. A simple
proof is also given in Section A.3 for the convenience of the reader.
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3. The doubling index

3.1. The doubling index inside the domain. Let h ∈ C(Ω) be a non-
zero harmonic function in a domain Ω ⊂ Rd. For each x ∈ Ω and r > 0, we
define

(3) Hh(x, r) =

∫
B(x,r)∩Ω

h2 and Nh(x, r) = log
Hh(x, 2r)

Hh(x, r)
,

and, with some abuse of language, we call Nh(x, r) the doubling index of h
in B = B(x, r).

Assume first that B(x, 2R) ⊂ Ω, then

(4) Nh(x, r) ≤ Nh(x,R), when r < R.

An elementary proof can be obtained by decomposing h into spherical har-
monics, see, e.g., [19]. This is a simple and useful result, its various versions
go back to the works of Landis [11, 12], Agmon [1], and Almgren [2].

Suppose that B(x, 4r) ⊂ Ω. Then we rewrite the inequality Nh(x, r) ≤
Nh(x, 2r) as

(5)

(∫
B(x,2r)

h2

)2

≤
∫
B(x,r)

h2

∫
B(x,4r)

h2.

Similarly to (2), for any y ∈ B(x, 3r/2), we have

h2(y) ≤ 1

|B(y, r/2)|

∫
B(y,r/2)

h2 ≤ 1

|B(y, r/2)|

∫
B(x,2r)

h2.

Finally, applying (5) and using the trivial bound of the L2 norms by the L∞

norms, we obtain

(6) sup
B(x,3r/2)

|h| ≤ 2d( sup
B(x,r)

|h|)1/2( sup
B(x,4r)

|h|)1/2.

3.2. The doubling index on the boundary. We need a version of the
monotonicity formula (4) and the three ball inequality (6) near a part of
the boundary on which the harmonic function vanishes. First, we recall a
lemma that is proven in [10].

Lemma 3 (Kukavica, Nyström). Let Ω be a domain in Rd and let B1 be a
ball centred on ∂Ω such that ∂Ω ∩B1 is C3 smooth. Let also x ∈ Ω be such
that Ω ∩ B(x,R) is star-shaped with respect to x, B(x,R) ⊂ B1. Suppose
that h ∈ C(Ω) is a non-zero harmonic function in Ω and h = 0 on ∂Ω∩B1.
Then

(7) log
Hh(x, r2)

Hh(x, r1)
≤ log(r2/r1)

log(r3/r2)
log

Hh(x, r3)

Hh(x, r2)
,

when 0 < r1 < r2 < r3 < R.
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The assumption that the boundary of Ω is C3 smooth implies that h ∈
C2(Ω ∩B1), so every integration by parts in [10] can be easily justified.

Now we prove the following almost monotonicity property of the doubling
index in Lipschitz domains.

Lemma 4. Let Ω be a domain in Rd. For any ε > 0, there exists τε > 0
such that if τ < τε, ∂Ω ∩ B ∈ Lip(τ), where B = B(x,R), x ∈ ∂Ω, and
h ∈ C(Ω) is a non-zero harmonic function in Ω, h = 0 on ∂Ω ∩B, then

(8) Nh(x0, r) ≤ (1 + ε)Nh(x0, 2r),

for any x0 ∈ Ω ∩ 1
4B and r < R/16.

We remark that a stronger result holds when the boundary of the domain
is smooth. For example for the case of a C1,Dini domain the inequality (8)
can be replaced by Nh(x0, r1) ≤ (1 + ε)N(x0, r2) when r1 < r2 < R/8, see
[10]1. Thus for C1,Dini domains, we know that the doubling index over balls
centred on ∂Ω ∩B stays uniformly bounded. We do not know if this is still
true for Lipschitz domains. For the case of the domains with small Lipschitz
constant, we can conclude only that the doubling index Nh(x0, r) does not
grow faster than r−a with some small positive a as r → 0, which is sufficient
for our purposes.

Proof. First we assume that ∂Ω∩B is a graph of a C3-smooth function. Let
ed be as in Remark 1 and let x1 = x0 + 16τred. We assume that τ < 1/16.
Then by Lemma 1 we see that B(x1, 8r) ∩ Ω is star-shaped with respect to
x1. We apply (7) and obtain

Nh(x0, r) = log
Hh(x0, 2r)

Hh(x0, r)
≤ log

Hh(x1, (2 + 16τ)r)

Hh(x1, (1− 16τ)r)

≤ log((2 + 16τ)/(1− 16τ))

log((4− 16τ)/(2 + 16τ))
log

Hh(x1, (4− 16τ)r)

Hh(x1, (2 + 16τ)r)

≤ (1 +O(τ)) log
Hh(x0, 4r)

Hh(x0, 2r)
= (1 + ε)Nh(x0, 2r),

when τ is small enough.
We want to drop the assumption that ∂Ω ∩ B is C3 smooth. We fix the

ball B and assume that ∂Ω∩B is given by the graph of a Lipschitz function
f : Bd−1(0, R) → R with the Lipschitz constant bounded by τ . In this
coordinate system the ball B is identified with Bd(0, R)

Let ϕ be a mollifier supported in the unit ball of Rd−1 and let, as usual,
ϕδ(x) = δ−(d−1)ϕ

(
x
δ

)
. We define fn = f ∗ ϕR/n + τR/n. Then {fn} is a

sequence of C3 smooth functions such that

fn : Bd−1(0, (1− 1/n)R)→ R, f(y′) < fn(y′) < f(y′) + 2τR/n,

1We refer the reader also to the preceding works [4] and [3] for related results.
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and the Lipschitz constant of fn is also bounded by τ . We also define

Ωn = {y = (y′, y′′) ∈ Bd(0, (1− 1/n)R) ⊂ Rd−1 × R : y′′ > fn(y′)}.

Clearly, Ωn ⊂ Bd(0, (1− 1/n)R) ∩ Ω. Let

Γn = {y = (y′, y′′) ∈ Bd(0, (1− 1/n)R) : y′′ = fn(y′)}.

First, we see that δn = supΓn |h| converge to zero as n → ∞ since h is

uniformly continuous on Ω ∩ B, h = 0 on ∂Ω, and dist(y, ∂Ω) < 2τR/n
when y ∈ Γn.

Next, we consider the harmonic function hn in Ωn such that on ∂Ωn

hn(x) =


h(x)− δn, if h(x) > δn,

0, if |h(x)| ≤ δn,
h(x) + δn, if h(x) < −δn.

Clearly we have hn ∈ C(Ωn), hn = 0 on Γn, and, by the maximum principle,
|h− hn| ≤ δn in Ωn. Thus hn → h uniformly on compact subsets of B ∩ Ω.

We fix x0 ∈ Ω∩ 1
4B and r ∈ (0, R/16). Then x0 ∈ Ωn∩B(0, (1−1/n)R/4)

and r < (1 − 1/n)R/16 for n large enough. Also, |hn| ≤ maxΩ∩B |h| and
|(Ω ∩B(x,R)) \ Ωn| → 0 as n→∞. Then we have

Nh(x0, r) =

∫
B(x0,2r)∩Ω h

2∫
B(x,r)∩Ω h

2
= lim

n→∞

∫
B(x0,2r)∩Ωn

h2
n∫

B(x0,r)∩Ωn
h2
n

= lim
n→∞

Nhn(x0, r).

The inequality (8) is now obtained as the limit of the corresponding inequal-
ities for hn. Finally the required inequality (8) for x0 ∈ ∂Ω∩ 1

4B follows by
taking the limit as ε→ 0+ of the corresponding inequalities for x0 +εed. �

Corollary 1. Let ∂Ω ∩ B ∈ Lip(τ), τ < τε, B = B(x,R), x ∈ ∂Ω, and
let x1, x2 ∈ Ω ∩ 1

4B with |x1 − x2| < r/4 and r < R/8. If h ∈ C(Ω) is a
non-zero harmonic function in Ω such that h = 0 on ∂Ω ∩B, then

Nh(x1, r/2) ≤ 3(1 + ε)2Nh(x2, r).

Proof. Note that B(x1, r) ⊂ B(x2, 2r) and B(x1, r/2) ⊃ B(x2, r/4). Thus
we obtain

Nh(x1, r/2) ≤ log

∫
B(x2,2r)∩Ω h

2∫
B(x2,r/4)∩Ω h

2
= Nh(x2, r/4) +Nh(x2, r/2) +Nh(x2, r).

Now Lemma 4 implies the required estimate. �

3.3. Three ball inequality. We apply the monotonicity lemma a number
of times. First, we claim that it implies a version of the three ball theorem
for harmonic functions vanishing on some part of the boundary.
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Lemma 5. Let Ω be a domain in Rd and let B be a ball centred on ∂Ω.
We assume that ∂Ω ∩ B ∈ Lip(τ), where τ is small enough. Then for any
function h ∈ C(Ω) harmonic in Ω and vanishing on ∂Ω ∩B, we have

sup
3
2
B0∩Ω

|h| ≤ 3d( sup
B0∩Ω

|h|)1/3( sup
4B0∩Ω

|h|)2/3,

for any ball B0 with the centre in Ω ∩ 1
4B and such that 16B0 ⊂ B.

Proof. Assume that τ < τ1 given by Lemma 4 for the case ε = 1. Let
B0 = B(x0, r). We apply Lemma 4. Taking the exponentials, we obtain∫

2B0∩Ω
h2 ≤

(∫
B0∩Ω

h2

)1/3(∫
4B0∩Ω

h2

)2/3

.

Then (2) and the trivial bound of the L2-norm by the L∞-norm imply that
for any y ∈ 3

2B0 ∩ Ω,

h2(y) ≤ 1

|B(y, r/2)|

∫
2B0∩Ω

h2 ≤ 8d
(

sup
B0∩Ω

|h|
)2/3(

sup
4B0∩Ω

|h|
)4/3

.

�

3.4. The maximal doubling index. Let Ω be a domain in Rd and let
∂Ω ∩ B ∈ Lip(τ) where B is centred on ∂Ω. We consider a closed cube
Q ⊂ 1

32B such that Q ∩ Ω 6= ∅. Assume that a non-zero function h ∈ C(Ω)
is harmonic in Ω and vanishes on ∂Ω ∩ B and let ` = diam(Q). We define
the maximal doubling index of h in Q by

(9) N∗h(Q) = sup
x∈Q∩Ω, `

2
≤r≤`

Nh(x, r).

Clearly the function (x, r) 7→ Nh(x, r) is continuous on (Q ∩ Ω) × [`/2, `].
Therefore the supremum above is finite.

Lemma 4 on the monotonicity of the doubling index implies that if ε > 0
and τ < τε, then for any cube Q1 ⊂ Q ⊂ 1

32B and Q1 ∩ Ω 6= ∅, we have

N∗h(Q1) ≤
(

2s(Q)

s(Q1)

)2ε

N∗h(Q),

where s(Q) is the side length of the cube Q; we have used the inequality
log2(1 + ε) ≤ 2ε.

3.5. A version of the main result for harmonic functions. Let Ω be
a domain in Rd and let h ∈ C(Ω) be a non-zero harmonic function in Ω.
We assume that h = 0 on the part ∂Ω ∩ B of the boundary, where B is
a ball centred on ∂Ω and ∂Ω ∩ B ∈ Lip(τ). Our aim is to estimate the
(d− 1)-dimensional measure of the zero set of h using the doubling index of
h. We define the zero set of h by

Z(h) = {x ∈ Ω : h(x) = 0},
so that the boundary points are not included into the zero set.
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Theorem 2. Let Ω ⊂ Rd, let x ∈ ∂Ω and let r > 0 be such that ∂Ω ∩
B(x, 128r) ∈ Lip(τ), where τ is small enough. Then there exists C = C(d)
such that

Hd−1(Z(h) ∩B(x, r)) ≤ C(Nh(x, 4r) + 1)rd−1,

for any non-zero function h ∈ C(Ω) that is harmonic in Ω and satisfies
h = 0 on ∂Ω ∩B(x, 128r).

Theorem 2 is proved in Section 5.2. We then deduce Theorem 1′ in
Section 6.2, where we consider the harmonic extension of the eigenfunction
and use Lemma 10 below to estimate the doubling index of the extension
by a multiple of the square root of the eigenvalue.

Theorem 2 allows us to estimate the area of the zero set of a harmonic
function near the part of the boundary where the function vanishes. We
remark also that the estimate for the zero set inside the domain was proved
by Donnelly and Fefferman in [6].

Lemma 6 (Donnelly, Fefferman). Let h be a non-zero harmonic function
in Ω ⊂ Rd. There exists C such that

Hd−1(Z(h) ∩B) ≤ C(Nh(x, 4r) + 1)rd−1,

for any ball B = B(x, r) that satisfies B(x, 8r) ⊂ Ω.

The proof follows from the argument in [6], some versions of this result
can be also found in [13] and [8]. We outline some steps of the proof for the
interested reader in the Appendix, see A.1.

4. Two auxiliary lemmas

4.1. A standard construction. In this section we give two versions of
the Hyperplane Lemma. We suggest that the reader compares the state-
ments to the one of [15, Lemma 4.1]. Both statements refer to the following
construction.

Assume that Ω ⊂ Rd and ∂Ω ∩B ∈ Lip(τ), where B is a ball centred on

∂Ω and τ ∈ (0, (16
√
d)−1). We fix a coordinate system as in Remark 1. Let

Q be a cube centred at xQ = (x′Q, x
′′
Q) ∈ ∂Ω ∩B whose sides are parallel to

the axes of this coordinate system and such that Q ⊂ B. As above, the side
length of Q is denoted by s(Q). Our choice of τ implies that ∂Ω does not
intersect the two faces of the cube Q which are orthogonal to ed, moreover,
∂Ω ∩Q is contained in the middle part {(x′, x′′) ∈ Q : |x′′ − x′′Q| < s(Q)/4}
of Q.

Let k ≥ 3. We partition the projection π(Q) of Q to the hyperplane

Rd−1 × {0} into 2k(d−1) small equal cubes w with the side length s(w) =
2−ks(Q) in the usual way so that any two distinct small cubes have no
common inner points. For each small cube w, there is a uniquely defined
d-dimensional cube q such that π(q) = w and the centre of q lies on ∂Ω∩Q.
Furthermore, we cover (π−1(w) ∩ (Ω ∩ Q)) \ q by at most 2k cubes p such
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w

Ω

q

p

Q

Figure 1. The standard construction

that p ⊂ Q, p, π(p) = w, p has no common inner points with q, and
s(p) = s(q) = 2−ks(Q), cubes p may overlap. See Figure 1.

We denote the set of all boundary cubes q by Bk(Q) and the set of all
inner cubes p by Ik(Q). Note that for each p ∈ Ik(Q), we have dist(p, ∂Ω) >
cs(p) for some absolute constant c. We call the triple (Q,Bk(Q), Ik(Q))
the standard construction. After we fix a coordinate system, our standard
construction depends on the choice of the cube Q and the parameter k, the
family Bk(Q) of the boundary cubes is defined uniquely and we may fix some
choice for the inner cubes Ik(Q).

4.2. The first hyperplane lemma. In the first lemma we assume that
the maximal doubling index N∗h(Q) is large enough.

Lemma 7. There exist constants k0 ≥ 3 and N0 ≥ 1 such that for any
integer k ≥ k0, there exists τ(k) > 0 for which the following statement
holds. Suppose that Ω is a domain in Rd, ∂Ω ∩ B ∈ Lip(τ), τ < τ(k), and
Q ⊂ 1

64B is a cube as above centred on ∂Ω. Then for any function h ∈ C(Ω)
harmonic in Ω, with h = 0 on B ∩∂Ω, and N∗h(Q) > N0, there exists a cube
q ∈ Bk(Q) such that N∗h(q) ≤ N∗h(Q)/2.

Proof. Let xQ be the centre of the cube Q and let B1 = B(xQ, `), where
` = diam(Q). We have B1 ⊂ B and define M2 =

∫
B1∩Ω h

2.

Denote N = N∗h(Q) and suppose that the inequality N∗h(q) > N/2 holds

for each cube q ∈ Bk(Q). Then for each such q, there exist yq ∈ q ∩ Ω and
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rq ∈ (2−k−1`, 2−k`) such that Nh(yq, rq) > N/2. Suppose that

(10) τ < τε, and (1 + ε)k < 2,

where we use the notation of Lemma 4. Then the almost monotonicity of
the doubling index, Lemma 4, implies Nh(yq, 2

mrq) > N/4 when 0 ≤ m ≤ k.
Assuming that k ≥ 20, we apply the estimate of the doubling index k− 4

times and use that B(yq, `/2) ⊂ B1 to obtain∫
B(yq ,2−k+2`)∩Ω

h2 ≤
∫
B(yq ,8rq)∩Ω

h2 ≤ e−N(k−4)/4

∫
B(yq ,2k−1rq)∩Ω

h2

≤ e−N(k−4)/4

∫
B(yq ,`/2)∩Ω

h2 ≤ e−Nk/5M2.

Next, we note that the integral estimate above implies a pointwise estimate
in a smaller ball by (2). We have

(11) sup
B(yq ,2−k+1`)∩Ω

h2 ≤ C2dk`−d
∫
B(yq ,2−k+2`)∩Ω

h2 ≤ C2dk`−de−Nk/5M2,

where C = C(d).

As above, we assume also that τ < (16
√
d)−1. For each cube q ∈ Bk(Q),

denote by q+ its upper quarter, where ”up” is in the direction of ed. Then
q+ ⊂ Ω and dist(q+, ∂Ω) ≥ 2−ks(Q)/10. For y ∈ q+, the standard Cauchy
estimate implies

|∇h(y)| ≤ C2k`−1 sup
B(y,2−ks(Q)/10)

|h|.

We note that B(y, 2−ks(Q)/10) ⊂ B(yq, 2
−k+1`) ∩ Ω. Then combining the

above inequality with (11), we obtain

(12) sup
q+
|∇h| ≤ C2k`−1 sup

B(yq ,2−k+1`)∩Ω

|h| ≤ C2k(d+2)/2`−(d+2)/2e−Nk/10M.

Let B0 = B(xQ + 3 · 2−k−3s(Q)ed, s(Q)/2) and let

B0,+ = {x = (x′, x′′) ∈ B0 : x′′ ≥ x′′Q + 3 · 2−k−3s(Q)}

be the upper half of B0. We denote by Γ0 the flat part of the boundary
of B0,+. We note that 2B0 ⊂ B1. Assuming that τ < 2−k−3, we have

dist(B0,+, ∂Ω) ≥ 2−k−2s(Q). Then using (2) and the Cauchy estimate, we
get

sup
B0∩Ω

|h| ≤ C`−d/2M, sup
B0,+

|∇h| ≤ C2k`−d/2−1M.

Also, by (11) and (12), we have

sup
Γ0

|h| ≤ C2kd/2`−d/2e−Nk/10M, sup
Γ0

|∇h| ≤ C2kd/2+k`−d/2−1e−Nk/10M,

since Γ0 ⊂
⋃
q∈Bk(Q) q

+.
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Applying Lemma 2 to B0,+, we get

sup
1
3
B0,+

|h| ≤ C2γkd/2+k`−d/2e−γNk/10M.

Let yQ = xQ+s(Q)ed/12 and letm be the least integer such that 2m > 16
√
d.

Then B2 = B(yQ, 2
−m`) ⊂ 1

3B0,+ when k is large enough (we remark that
B0,+ depends on k). Integrating the last inequality over B2 and using that

vol(B2) ≤ C`d, we obtain∫
B2

h2 ≤ C2γkd+2ke−γNk/5M2.

Finally, we compare the last integral to
∫
B1∩Ω h

2 = M2. Note that B1 ⊂
B(yQ, 2`) = 2m+1B2. By the almost monotonicity of the doubling index,
recalling that τ < τε < τ1, we have

2m+1Nh(yQ, `) ≥
m∑
j=0

Nh(yQ, 2
−j`) = log

∫
B(yQ,2`)∩Ω h

2∫
B2
h2

≥ log

∫
B1∩Ω h

2∫
B2
h2
≥ γNk/5− γkd− 2k − C.

Since Nh(yQ, `) ≤ N∗h(Q) = N , we get 2m+1N ≥ γNk/5 − γkd − 2k − C.
Taking k large enough we may achieve γk/5 > 2m+2. Then the inequality
above implies

N ≤ 10(γkd+ 2k + C)

γk
≤ 10

(
d+ (2 + C)γ−1

)
.

Taking N0 = 10
(
d+ (2 + C)γ−1

)
, we obtain a contradiction for N > N0.

We also choose ε = ε(k) such that (1 + ε)k < 2 and finally choose τ(k) =

min{τε, 2−k−3, (16
√
d)−1}.

�

4.3. The second hyperplane lemma: cubes without zeros. For cubes
with the maximal doubling index bounded by N0, we use the following
version of the above statement. The reader may compare it to Corollary in
Section 3.4 of [18].

Lemma 8. For any N > 0 there exist τ(N) and k(N) such that the following
statement holds. Suppose that Ω is a domain in Rd, ∂Ω ∩ B ∈ Lip(τ),
τ < τ(N), and Q ⊂ 1

64B is a cube centred on ∂Ω. Let also h ∈ C(Ω) be a
non-zero function harmonic in Ω, with h = 0 on B ∩ ∂Ω and N∗h(Q) ≤ N .
Then for any k ≥ k(N), there exists q ∈ Bk(Q) such that Z(h) ∩ q = ∅.

We remark that in this version both τ and k depend on N . First, we
prove the following version of the lemma for a half ball.
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Lemma 9. Let B be the unit ball in Rd and let B+ be the half ball,

B+ = {y = (y′, y′′) ∈ Rd−1 × R : |y′|2 + y′′2 < 1, y′′ > 0}.

Let g be a function harmonic in B+, g ∈ C(B+), g = 0 on B+ ∩ {y′′ = 0},
and

sup
1
4
B+

|g| = 1.

For any N > 0, there exist ρ = ρ(N) ∈ (0, 1/16) and c0 = c0(N) > 0 such
that if Ng(0, 1/4) ≤ N , then there is x′ ∈ Rd−1 with |x′| < 1/16 such that

|g(y)| ≥ c0y
′′, for any y = (y′, y′′) ∈ B((x′, 0), ρ) ∩B+.

Proof. Let B− be the reflexion of the half-ball B+ with respect to the hy-
perplane y′′ = 0. Then g can be extended to a harmonic function in B
by g(y′, y′′) = −g(y′,−y′′) when (y′, y′′) ∈ B−. We denote this extension
by g as well. The normalization sup 1

4
B+
|g| = 1 and the standard Cauchy

estimate imply that every partial derivative of g is uniformly bounded in
B(0, 1/8).

Let δ = maxx′∈Rd−1,|x′|≤1/16 |∇g(x′, 0)|. Lemma 2, applied to the half ball
1
16B+ implies that

sup
B(0, 1

64
)

|g| ≤ Cδγ .

Then
∫
B(0, 1

64
) g

2 ≤ Cδ2γ and
∫
B(0, 1

2
) g

2 ≥ c supB(0, 1
4

) g
2 = c. On the other

hand,

log

∫
B(0, 1

2
) g

2∫
B(0, 1

64
) g

2
≤ 5Ng(0,

1

4
) ≤ 5N.

We have used that the doubling index of g in B+ and of the extension are
the same for balls centred at the origin and that the doubling index inside

the domain is monotone by (4). We conclude that δ ≥ ce−3Nγ−1
.

Let x′∗ ∈ Rd−1, |x′∗| ≤ 1/16, be such that |∇g(x′∗, 0)| = δ. Clearly we have
|∇g(x′∗, 0)| = |∂dg(x′∗, 0)| and we may assume that ∂dg(x′∗, 0) = δ, otherwise
we consider the function −g. Then ∂dg(x) > δ/2 when dist(x, (x′∗, 0)) <
ρ = min{c0δ, 1/16}, where c0 depends on the constant upper bound for the
second derivatives of g in B(0, 1/8). Therefore

g(y) ≥ δy′′/2 ≥ ce−3Nγ−1
y′′,

when y = (y′, y′′) ∈ B((x′∗, 0), ρ). �

Proof of Lemma 8. Now we deduce Lemma 8 from Lemma 9. By rescaling,
see Remark 2, we can achieve that s(Q) = 4. We may also assume that

(13) sup
B(xQ,3)∩Ω

|h| = 1.

Let x1 = xQ− 3τed, B1 = B(x1, 1), and let B1,+ be the upper half of B1.
Let also B2 = 2B1. First, we consider the harmonic function g0 such that
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g0 = 1 on the upper half of the sphere ∂B2 and g0 = −1 on the lower half
of ∂B2. We denote as usual x′′1 = x1 · ed. Clearly g0 = 0 on

Γ0 = {x = (x′, x′′) ∈ B2 : x′′ = x′′1}

and g0 ≥ 0 on B2,+. We note that Γ0 does not intersect Ω. Then |h| ≤ g0 on
Ω∩B2 ⊂ B2,+ by the maximum principle. We also have g0(x) ≤ C1(x′′−x′′1)
when x = (x′, x′′) ∈ B1,+, since g0 = 0 on Γ0 and g0 has bounded derivatives
in B1. Therefore |h(x)| ≤ g0(x) ≤ C1(x′′ − x′′1) when x = (x′, x′′) ∈ Ω ∩B1.

Let now g be the harmonic function in B1,+ such that g = h on ∂B1,+∩Ω
and g = 0 on ∂B1,+ \Ω. We have |g(x)| ≤ C1(x′′−x′′1) in B1,+ by the above
estimate on h and the maximum principle. We consider the difference g−h.
We have g = h on Ω ∩ ∂B1 and |g − h| = |g| ≤ 4C1τ on ∂Ω ∩B1. Then, by
the maximum principle, |g − h| ≤ 4C1τ in Ω ∩ B1. We extend h by zero
to B1,+ \ Ω. Then |g − h| ≤ 4C1τ in B1,+.

Let m be the integer such that 2
√
d ≤ 2m < 4

√
d, clearly m ≥ 1. Then

the estimate N∗h(Q) ≤ N implies Nh(xQ, 2
m) ≤ N . We choose ε such that

(1 + ε)m+3 ≤ 2 and assume that τ < τε using the notation of Lemma 4.
Then Nh(xQ, 2

j) ≤ 2N when −3 ≤ j ≤ m. We use (13) and (2) to conclude
that ∫

B(xQ,
1
8

)∩Ω
h2 ≥ e−10N

∫
B(xQ,4)∩Ω

h2 ≥ ce−10N .

Suppose that τ < 1
24 . Then B(xQ,

1
8) ∩ Ω ⊂ 1

4B1,+ and we have(∫
1
4
B1,+

g2

)1/2

≥

(∫
1
4
B1,+

h2

)1/2

− C2τ ≥

(∫
B(xQ,

1
8

)∩Ω
h2

)1/2

− C2τ.

Assuming that τ(N) is small enough, we conclude that

(14)

∫
1
4
B1,+

g2 ≥ c1e
−10N .

We also have sup 1
2
B1,+
|g| ≤ supB1∩Ω |h| ≤ 1 by (13). Then

Ng(x1,
1

4
) = log

∫
1
2
B1,+

g2∫
1
4
B1,+

g2
≤ C(N + 1).

We note that (14) implies sup 1
4
B1,+
|g| ≥ ce−5N . Then, by Lemma 9, there

exist x∗ ∈ Γ0 ∩ 1
16B1, c2 = c2(N) > 0, and ρ = ρ(C(N + 1)) such that

|g(x)| ≥ c2(x′′ − x′′1) for x = (x′, x′′) ∈ B(x∗, ρ) ∩B1,+.

We may assume that g > 0 in B(x∗, ρ) ∩B1,+, otherwise we consider −h in
place of h. Then we obtain

h(x) ≥ g(x)− 4C1τ ≥ c2(x′′ − x′′1)− 4C1τ in B(x∗, ρ) ∩ Ω.

We note that ρ does not depend on τ and for τ small enough we have
B(x∗,

ρ
4) ∩ ∂Ω 6= ∅. We also have B(x∗,

ρ
2) ⊂ Q.
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Our goal is to show that h > 0 on B(x∗,
ρ
2) ∩ Ω. Let y∗ = (y′∗, y

′′
∗) ∈

B(x∗,
ρ
2) ∩ ∂Ω. We note that

(15) h(x) ≥ c2(x′′ − y′′∗)− c3τ in B(x∗, ρ) ∩ Ω,

where c3 = 4C + 4c2. We consider the harmonic function

h∗(x) =
1

dρ

(
(d− 1)(x′′ − y′′∗)2 − |x′ − y′∗|2

)
,

where x = (x′, x′′). We claim that h(x) ≥ c2h∗(x), when x ∈ B
(
y∗,

ρ
2

)
∩ Ω

and τ is small enough.
First, we note that h∗(x) ≤ 0 if |x′′ − y′′∗ | ≤ (d − 1)−1/2|x′ − y′∗| and

therefore h∗ ≤ 0 on ∂Ω ∩ B(y∗,
ρ
2) when τ is small enough, while h = 0 on

∂Ω ∩B(y∗,
ρ
2). On ∂B(y∗,

ρ
2) ∩ Ω we have

h∗(x) =
(x′′ − y′′∗)2

ρ
− ρ

4d
.

Comparing (15) to the last identity and denoting t = x′′−y′′∗ , we reduce the
inequality h ≥ c2h∗ on ∂B(y∗,

ρ
2) ∩ Ω to the following one:

c2t− c3τ ≥ c2

(
t2

ρ
− ρ

4d

)
,

when t ∈ (−τρ/2, ρ/2) and τ is small enough. It suffices to check the
inequality for t = −τρ/2 and t = ρ/2. For t = −τρ/2 we obtain the
inequality

c2ρ

4d
≥ τ

(c2ρ

2
+
c2τρ

4
+ c3

)
,

which holds when τ is small enough. On the other hand, for t = ρ/2, the
inequality is reduced to

c2ρ

(
1

4
+

1

4d

)
≥ c3τ.

This one is also satisfied for small τ .
Thus, by the maximum principle, h ≥ c2h∗ inB(y∗, ρ/2)∩Ω. In particular,

h(y′∗, y
′′) ≥ c2h∗(y

′
∗, y
′′) > 0 when y′′∗ < y′′ < ρ/2. Therefore h > 0 on

B(x∗,
ρ
2) ∩ Ω.

Finally, since B(x∗, ρ/2) contains a ball of radius ρ/4 centred on ∂Ω, if
k is large enough, there is q ∈ Bk(Q) such that q ⊂ B(x∗,

ρ
2) and then

Z(h) ∩ q = ∅. �

5. Proof of Theorem 2

Let N0 be as in Lemma 7 and let Ω, B = B(x, r), and h be as in the state-
ment of Theorem 2. We remind that the maximal doubling index N∗h(Q)
of h in a cube Q was defined by (9). For the rest of the proof we mod-
ify the maximal doubling index and write N∗∗h (Q) = max{N∗h(Q), N0/2}.
Then Lemmas 7 and 8 imply that there is k such that for τ small enough,
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if Q ⊂ 2B and (Q,Bk(Q), Ik(Q)) is a standard construction, then there is a
cube q0 ∈ Bk(Q) such that

(16) either (i) N∗∗h (q0) < N∗∗h (Q)/2 or (ii) Z(h) ∩ q0 = ∅.

5.1. Reduction to one cube. Let Q be a cube as above. We claim that

(17) Hd−1(Z(h) ∩Q) ≤ CN∗∗h (Q)s(Q)d−1.

Assume first that (17) holds. We show that Theorem 2 follows. We need
to switch from cubes to balls and from the maximal doubling index to the
doubling index at a single point.

To this end, we cover the ball B(x, r) with cubes Qj ⊂ B(x, 2r) such that
diam(Qj) = r/10 and either dist(Qj , ∂Ω) > s(Qj)/10 (inner cubes) or Qj
satisfies the assumptions in the main construction (boundary cubes). We
may assume that there are not more than C = C(d) of such cubes.

First, for each cube Q = Qj in this cover, we have Q∩B(x, r) 6= ∅, and we

compare N∗h(Q) to Nh(x, 4r). There exists y ∈ Q ∩ Ω and ry ∈ [r/20, r/10]
such that N∗h(Q) = Nh(y, ry). Assuming that τ < τ1 in the notation of

Lemma 4, we get Nh(y, 32ry) ≥ 2−5N∗h(Q). We have dist(x, y) ≤ 11
10r and

Nh(y, 32ry) = log

∫
B(y,64ry)∩Ω h

2∫
B(y,32ry)∩Ω h

2
≤ log

∫
B(x,8r)∩Ω h

2∫
B(x,r/2)∩Ω h

2
≤ 16Nh(x, 4r)

by Lemma 4. Hence, N∗h(Q) ≤ 29Nh(x, 4r) and N∗∗h (Q) ≤ C(Nh(x, 4r) + 1).
Each inner cube Q ⊂ Ω can be covered by at most C balls b with centres in

Q and with radii s(Q)/100. Then 8b ⊂ Ω. Moreover, if b = B(y, s(Q)/100),
we have Nh(y, s(Q)/25) ≤ CN∗h(Q) by Lemma 4 again. Then we use Lemma
6 to estimate the area of the zero set of h in each of the balls b and obtain

Hd−1(Z(h) ∩ b) ≤ C(Nh(y, s(Q)/25) + 1)rd−1

≤ C ′(N∗h(Q) + 1)rd−1 ≤ C ′′(Nh(x, 4r) + 1)rd−1.

For the boundary cubes, we use the inequality (17). Thus for every Qj ,
we obtain

Hd−1(Z(h) ∩Qj) ≤ C(Nh(x, 4r) + 1)s(Qj)
d−1.

Summing these inequalities over all cubes, we obtain the required estimate.
It remains to prove (17).

5.2. Proof of (17). We fix a compact set K ⊂ Ω and prove that

(18) Hd−1(Z(h) ∩Q ∩K) ≤ C0N
∗∗
h (Q)s(Q)d−1,

where Q ⊂ 2B is a cube as in the standard construction and C0 is indepen-
dent of K. Then (17) follows.

First, note that (18) holds for all cubes Q small enough, since Q∩K = ∅
for such cubes. We prove (18) by induction on the size of Q, going from
small cubes to larger ones. Assume that it holds for cubes with s(Q) < s,
we want to prove it for cubes with s(Q) < 2ks, where k is as in (16).
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We consider the standard construction (Q,Bk(Q), Ik(Q)). Each inner
cube q ∈ Ik(Q) can be covered by balls b centred in q with radii s(q)/100 and
such that 8b ⊂ Ω, so that the number of balls is bounded by a dimensional
constant. For each such ball b = B(y, s(q)/100), applying Lemma 4, we get
Nh(y, s(q)/25) ≤ C(k)N∗h(Q) when τ is small enough. Then by Lemma 6,
we have

(19)
∑

q∈Ik(Q)

Hd−1(Z(h)∩q) ≤ C(N∗h(Q)+1)s(Q)d−1 ≤ C1N
∗∗
h (Q)s(Q)d−1,

where C and C1 depend on k.
For all other boundary cubes q, we have N∗∗h (q) ≤ (1 + ε)kN∗∗h (Q). Also

(16) implies that there is a cube q0 ∈ Bk(Q) such that either N∗∗h (q0) ≤
N∗∗h (Q)/2 or Z(h) ∩ q0 = ∅. We apply the induction assumption to each
boundary cube and obtain

Hd−1(Z(h) ∩K ∩ (∪q∈Bk(Q)q))

≤
∑

q∈Bk(Q),q 6=q0

Hd−1(Z(h) ∩K ∩ q) +Hd−1(Z(h) ∩K ∩ q0)

≤
∑

q∈Bk(Q),q 6=q0

C0N
∗∗
h (q)s(q)d−1 +

C0

2
N∗∗h (Q)s(q0)d−1

≤

(
2k(d−1) − 1

2k(d−1)
(1 + ε)k +

1

2
· 1

2k(d−1)

)
C0N

∗∗
h (Q)s(Q)d−1.

Finally, we choose ε small and C0 large enough so that

C1 +

(
2k(d−1) − 1

2k(d−1)
(1 + ε)k +

1

2
· 1

2k(d−1)

)
C0 < C0.

Note that C0 does not depend on K. Then, assuming that τ is small enough
and taking into account (19), we obtain

Hd−1(Z(h) ∩K ∩Q) ≤ C0N
∗∗
h (Q)s(Q)d−1.

This concludes the induction step and the proof of (17).

6. Dirichlet Laplace eigenfunctions

6.1. Harmonic extension and an estimate of the doubling index.
Let Ω0 ⊂ Rn be a bounded Lipschitz domain. Let uλ be an eigenfunction
of the Dirichlet Laplace operator, uλ ∈ W 1,2

0 (Ω0), ∆uλ + λuλ = 0. Then

uλ ∈ C(Ω0). This fact is well-known, we provide a proof in the Appendix
below, see Section A.2.

We consider the harmonic extension of uλ to the domain Ω = Ω0 × R ⊂
Rn+1, given by

h(x, t) = uλ(x)e
√
λt.
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Then h ∈ C(Ω) and, clearly, Z(h) = Z(uλ)×R, where the zero sets are sets
inside the domains Ω and Ω0 respectively. We need the following estimate
of the doubling index of this harmonic extension.

Lemma 10. Let Ω0 be a bounded domain in Rn with a sufficiently small local
Lipschitz constant τ . Let r0 > 0 be such that ∂Ω0∩B(x, r0) ∈ Lip(τ) for any
x ∈ ∂Ω0. Then for any r ∈ (0, r0/16), there exists C = C(r,Ω0) > 0 such
that for any Dirichlet Laplace eigenfunction uλ, the corresponding harmonic

extension h(x, t) = uλ(x)e
√
λt satisfies Nh(y, r) ≤ C

√
λ when y = (x, t) ∈ Ω.

This result is similar to the results of Donnelly and Fefferman, [6, 7],
who considered eigenfunctions on compact manifolds and on domains with
C∞-smooth boundaries and obtained the above estimate of the doubling
index for eigenfunctions. However, in contrast to the previous results, the
doubling index is allowed to blow up as r → 0 in the above lemma. The
statement of the lemma follows by application of Lemma 5 and inequality
(6) to a chain of balls, the argument is similar to the one in [18, Section 2.4].
For the convenience of the reader, we provide the details below.

Proof. We consider any y = (x, t) ∈ Ω and let y0 = (x, 0). Since h(x, t+s) =

e
√
λth(x, s), we have Nh(y, r) = Nh(y0, r). So it is enough to estimate the

doubling index of h in the balls centred on Ω0 × {0}.
We fix r ∈ (0, r0/16) and let S ∈ Ω0 be a finite r/8-net for Ω0, i.e.,

Ω0 ⊂
⋃
p∈S B(p, r/8). Let B∗ = B(y, r) be a ball of radius r centred at

y = (y∗, 0) ∈ Ω0 × {0}. Assume that maxΩ0 |uλ| = |uλ(x0)| = 1. We
consider a path γ : [0, 1]→ Ω0 from y∗ to x0 such that γ((0, 1)) ⊂ Ω0. Now
we construct a chain of balls {Bj}Jj=0. Let B0 = B(y∗, r/2). Assuming that

Bj = B(yj , r/2) is constructed, we define

sj = sup{s ∈ [0, 1] : |γ(s)− yj | ≤ r/8}.

If sj < 1, we have |γ(sj) − yj | = r/8 and we choose yj+1 ∈ S such that
|yj+1 − γ(sj)| < r/8. If sj = 1, we define yj+1 = yJ = x0 and stop the
chain. We have |yj − yj+1| < r/4 and define Bj+1 = B(yj+1, r/2). We note
that sj+1 > sj when 0 ≤ j < J − 1 and that yj+1 ∈ S \ {y0, ..., yj} when
0 ≤ j < J − 1. We also have Bj+1 ⊂ 3

2Bj . The resulting chain is finite,
moreover, the number of balls in the chain is bounded by the number of
elements in S plus two.

Let now B̃j = B((yj , 0), r/2) be the corresponding ball in Rn+1. Then

sup
4B̃j∩Ω

|h| ≤ e2
√
λr. If 4B̃j ⊂ Ω, then (6) gives

sup
3
2
B̃j

|h| ≤ 2n+1(sup
B̃j

|h|)1/2(sup
4B̃j

|h|)1/2

≤ 3n+1(sup
B̃j

|h|)1/3(sup
4B̃j

|h|)2/3 ≤ 3n+1e4
√
λr/3(sup

B̃j

|h|)1/3.
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Otherwise we have dist(yj , ∂Ω0) < 2r < r0/8. In this case, there is a ball B̃

of radius r0 centred on ∂Ω0×{0} such that (yj , 0) ∈ Ω∩ 1
4B̃ and 16B̃j ⊂ B̃.

Then Lemma 5, applied to the ball B̃j , implies that

sup
3
2
B̃j∩Ω

|h| ≤ 3n+1( sup
B̃j∩Ω

|h|)1/3( sup
4B̃j∩Ω

|h|)2/3 ≤ 3n+1e4
√
λr/3( sup

B̃j∩Ω

|h|)1/3.

Therefore, we obtain for each j,

sup
B̃j∩Ω

|h| ≥ 3−3(n+1)( sup
3
2
B̃j∩Ω

|h|)3e−4
√
λr ≥ 3−3(n+1)( sup

B̃j+1∩Ω

|h|)3e−4
√
λr.

We also have sup
B̃J∩Ω

|h| = e
√
λr/2. Combining the above inequalities, we

get

sup
B̃0∩Ω

|h| ≥ c1e
−C2

√
λ,

where c1 and C2 depend on r and J but not on λ. We can choose the r/8-
net S so that the number of points in S depends only on diam(Ω0), r, and
the dimension. Thus we conclude that the constants in the last inequality
depend only on r, the diameter of Ω0, and n.

Finally, applying (2), we obtain

Nh(y, r) = log

∫
4B̃0∩Ω

h2∫
2B̃0∩Ω

h2
≤ log

sup
4B̃0∩Ω

|h|2

sup
B̃0∩Ω

|h|2
+C ≤ (4r+2C2)

√
λ+C ≤ C

√
λ,

where C = C(Ω0, r). We remark that λ ≥ λ1(Ω0) > 0, where λ1(Ω0) is the
first Dirichlet Laplace eigenvalue in Ω0. Moreover, if B∗ is a ball of radius
diam(Ω0) then λ1(Ω0) ≥ λ1(B∗). Thus the constant C in the conclusion of
this Lemma depends only on r, diam(Ω0), and n. �

6.2. Proof of Theorem 1′. Let Ω0 ⊂ Rn be a bounded domain with
a sufficiently small local Lipschitz constant τ . Let also r0 > 0 be such
that ∂Ω0 ∩ B(x, r0) ∈ Lip(τ) for every x ∈ ∂Ω0. We consider the domain
Ω = Ω0 × R ⊂ Rn+1 and let Ω1 = Ω0 × [−1, 1]. For each x ∈ ∂Ω × [−1, 1]
we consider a ball centred at x of radius 2−9r0. These balls cover the closed
2−10r0-neighborhood of the set ∂Ω × [−1, 1]. We can choose a disjoint col-
lection of these balls bj such that the balls Bj = 4bj cover the same closed
neighborhood of ∂Ω× [−1, 1]. Then for each point of Ω1 \ ∪jBj , we choose
a ball b centred at the point of radius 2−15r0, so that 32b ⊂ Ω. Once again,
we find a finite sub-collection of disjoint balls b′k such that B′k = 4b′k cover
Ω1 \ ∪jBj . We note that 8B′k ⊂ Ω. We fix this covering of Ω1 and remark
that radii of all balls depend only on r0 and the number of balls depends on
r0, the diameter of Ω0, and n.

Let now uλ be a Dirichlet Laplace eigenfunction in Ω0: ∆uλ + λuλ = 0
in Ω0 and uλ = 0 on ∂Ω0. We consider its harmonic extension h(x, t) =

e
√
λtuλ(x). Then h ∈ C(Ω) is non-zero, and h = 0 on ∂Ω. Let C0 =

max{C(2−5r0,Ω0), C(2−11r0,Ω0)}, where C(r,Ω0) is as in Lemma 10. Then

for B(x, r) ∈ {Bj} ∪ {B′k}, we have Nh(x, 4r) ≤ C0

√
λ. Finally, we apply
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Theorem 2 to each of the balls Bj and Lemma 6 to each of the inner balls
B′k. We conclude that

Hn(Z(h) ∩ Ω1) ≤
∑
j

Hn(Z(h) ∩Bj) +
∑
k

Hn(Z(h) ∩B′k)

≤ C(C0

√
λ+ 1)

∑
j

r(Bj)
n +

∑
k

r(B′k)
n

 ≤ C1

√
λ.

Then Hn−1(Z(uλ) ∩ Ω0) ≤ C1

√
λ, which finishes the proof of Theorem 1′.

Appendix: Proofs of some auxiliary results

A.1. Estimates for the zero set of harmonic functions inside the
domain. We outline some steps of the proof of Lemma 6. First the har-
monic function h is extended to a holomorphic function H on a domain in
Cd, see Lemma 7.2 in [6]. Our situation is particularly simple, since we only
consider the standard Laplace operator on Euclidean domains. For this case
the holomorphic extension is given by the complexification of the Poisson
kernel. The Poisson kernel in a ball B(x, r) ⊂ Rd is given by

Pr(z, y) = cd
r2 − |z − x|2

r|z − y|d
, |z − x| < r, |y − x| = r.

For any y ∈ ∂B(x, r), the function z = (z1, ..., zd) 7→
∑

j(zj − yj)2 maps

the complex ball BC(x, r/
√

2) ⊂ Cd of radius r/
√

2 centred at x ∈ Rd ⊂ Cd
to the half-plane <ξ > 0. Then the Poisson kernel has the holomorphic
extension to BC(x, r/

√
2). Moreover, for any a < 1/

√
2,

|Pr(z, y)| ≤ C(a)r−(d−1), z ∈ BC(x, r0), r0 ≤ ar.

We consider a ball B = B(x, 8r) such that B ⊂ Ω. Then there exists a
holomorphic extension H(z) of h defined on a ball BC(x, 3r),

H(z) =

∫
∂B(x,6r)

P6r(z, y)h(y)dσ(y),

such that |H(z)| ≤ C maxB(x,6r) |h|. Then

sup
BC(x,3r)

|H(z)| ≤ C ′r−d/2
(∫

B(x,8r)
h2

)1/2

.

Now we can cover the set Z(h) ∩B(x, r) by a finite number of balls with
centrs in B(x, r) of radii r/20 so that the number of the balls is bounded
by a constant depending on the dimension only. Let B(y, r/20) be one of
such balls. By a version of Corollary 1 for the doubling index inside the



NODAL SETS OF DIRICHLET LAPLACE EIGENFUNCTIONS 21

domain, we have Nh(y, 2r) ≤ 3N , where N = Nh(x, 4r), and, therefore,
Nh(y, r1) ≤ 3N when r1 < 2r. Thus

sup
B(y, r

16
)
h2 ≥ cr−d

∫
B(y, r

16
)
h2 ≥ cr−de−15N

∫
B(y,2r)

h2 ≥ cr−de−15N

∫
B(x,r)

h2.

Therefore,

sup
B(y, r

10
)
|H| ≥ sup

B(y, r
16

)
|h| ≥ cr−d/2e−7.5N

(∫
B(x,r)

h2

)1/2

.

Combining the inequalities above, we obtain

supBC(y,2r) |H|
supB(y,r/10) |H|

≤
supBC(x,3r) |H|
supB(y,r/10) |H|

≤ Ce7.5N

(∫
B(x,8r) h

2∫
B(x,r) h

2

)1/2

≤ Ce9N .

Finally an estimate for the size of the zero set of a holomorphic function,
Proposition 6.7 in [6], implies that

Hd−1(Z(h) ∩B(y, r/20)) ≤ C(Nh(x, 4r) + 1).

We sum these inequalities over all balls B(y, r/20) to obtain the required
estimate for Hd−1(Z(h) ∩B(x, r)).

A.2. Continuity of eigenfunctions in Lipschitz domains. First we
prove the following regularity result.

Lemma 11. Let Ω be a domain in Rd and let h be a harmonic function in
Ω. Suppose that B is a ball centred on ∂Ω and that there exists a sequence
of functions {hn}, hn ∈ C∞0 (Rd) with the support of hn contained in Ω, such
that hn → h and ∇hn → ∇h in L2(B∩Ω). Assume also that ∂Ω∩B ∈ Lip(τ)
and define h = 0 on ∂Ω ∩B. Then h ∈ C(Ω ∩ 1

2B).

Proof. We define the function

v =

{
h2 in Ω ∩B,
0 in B \ Ω.

Then v ∈ L1(B). Let ϕ ∈ C∞0 (B). We have

(20)

∫
B
v∆ϕ = lim

n→∞

∫
B
h2
n∆ϕ

= −2 lim
n→∞

∫
B
hn∇hn · ∇ϕ = −2

∫
B∩Ω

h∇h · ∇ϕ.

On the other hand, since h is harmonic in Ω , we obtain

0 =

∫
Ω
∇h · ∇(hnϕ) =

∫
Ω
hn∇h · ∇ϕ+

∫
Ω
ϕ∇h · ∇hn.

Taking the limit as n→∞, we get∫
Ω
h∇h · ∇ϕ = −

∫
Ω
ϕ|∇h|2.
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Combining the last identity and (20) gives∫
B
v∆ϕ = 2

∫
B∩Ω
|∇h|2ϕ.

In particular, v is subharmonic in B in the weak sense: If ϕ ≥ 0, ϕ ∈ C∞0 (B),
then

∫
B v∆ϕ ≥ 0. If α is a standard mollifier, αδ(x) = δ−dα(δ−1x), and

vε = v ∗αεr, where r is the radius of B. Then vε is subharmonic in (1− ε)B
and vε → v in L1(B) and almost everywhere. In particular, v satisfies the
mean value inequality at each of its Lebesgue points. Clearly any y ∈ Ω∩B
is a Lebesgue point of v as v = h2 in Ω ∩ B and h ∈ C(Ω). So for any
y ∈ Ω ∩B and any ball B1 ⊂ B centred at y we have

v(y) ≤ 1

|B1|

∫
B1

v.

In particular,

sup
2
3
B∩Ω

h2 ≤ 3d

|B|

∫
B∩Ω

h2 <∞.

Suppose that x1 ∈ ∂Ω ∩ 1
2B. There exists a cone C with the vertex at x1

such that C ∩ (Ω ∩ B) = ∅ and the aperture of C does not depend on x1

(it depends on τ only). We use the following simple fact. If y1 ∈ Rd and
ρ > 2 dist(x1, y1), then

|B(y1, ρ) ∩ C| ≥ α|B(y1, ρ)|,

for some α = α(τ) ∈ (0, 1).
Let mk = supB(x1,3−kr)∩Ω |h| for k ≥ 2. We know that mk < ∞. Let

y ∈ B(x1, 3
−kr) ∩ Ω, k ≥ 3. By the mean value inequality applied to v, we

obtain

v(y) ≤ 1

|B(y, 2 · 3−kr)|

∫
B(y,2·3−kr)

v ≤ (1− α)m2
k−1.

Thus supB(x1,3−kr)∩Ω |h| ≤ (1− α)(k−2)/2 sup 2
3
B∩Ω |h|. We conclude that

lim
y→x1,y∈Ω

h(y) = 0.

�

We remark that the argument above implies that h is Hölder continuous
in Ω ∩B and there exist C > 0 and β ∈ (0, 1) such that

|h(y)| ≤ Cdist(y, ∂Ω)βr−β sup
Ω∩ 2

3
B

|h|, y ∈ Ω ∩ 1

2
B.

Corollary 2. Let Ω0 ⊂ Rn be a bounded Lipschitz domain. Let uλ be
Laplace Dirichlet eigenfunction in Ω0. Then uλ extended by zero to ∂Ω0 is
continuous on Ω0.
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Proof. We have uλ ∈ W 1,2
0 (Ω0) ∩ C∞(Ω0) and ∆uλ + λuλ = 0 in Ω0. We

consider the harmonic function h(x, t) = e
√
λtuλ(x) in Ω = Ω0 × R. We

note that for any B centred on ∂Ω, h satisfies the assumptions of Lemma
11. Then h is continuous in Ω and vanishes on ∂Ω. This implies that
uλ ∈ C(Ω0) and uλ = 0 on ∂Ω0. �

A.3. Quantitative Cauchy uniqueness. We give an elementary proof of
Lemma 2 in this section for the convenience of the reader.

Let G(x, y) = −cd|x − y|2−d be the fundamental solution of the Laplace
equation in Rd when d ≥ 3 (similar computations can be done with G(x, y) =
c2 log |x− y| for d = 2). We write ∂B+ = Γ ∪ Σ, where Γ is the flat part of
the boundary and Σ = ∂B+ \ Γ. We denote by n the outer normal to ∂B+.
Then for x ∈ B+, the Green formula implies

h(x) =

∫
∂B+

[
∂G

∂n
(x, y)h(y)−G(x, y)

∂h

∂n
(y)

]
dy

=

∫
Γ

[
∂G

∂n
(x, y)h(y)−G(x, y)

∂h

∂n
(y)

]
dy

+

∫
Σ

[
∂G

∂n
(x, y)h(y)−G(x, y)

∂h

∂n
(y)

]
dy

= h1(x) + h2(x).

The functions h1 and h2 are defined in the complements of Γ and Σ re-
spectively and are harmonic in the corresponding domains. Moreover, for
x 6∈ B+, applying the Green formula to the functions h and G(x, ·) in B+,
we obtain h1(x) + h2(x) = 0.

First, we estimate the value of h1 at some point x = (x′, x′′) ∈ B \ Γ ⊂
Rd−1 × R. We divide the integral into two

h1(x) =

∫
Γ

∂G

∂n
(x, y)h(y)dy −

∫
Γ
G(x, y)

∂h

∂n
(y)dy = I1(x) + I2(x).

Since |∂h/∂n| < ε on Γ, the second integral is bounded by

|I2(x)| ≤ cdε
∫
Bd−1(x′,2)

|x′ − y′|2−ddy′ ≤ Cε.

To estimate the first term, we note that for y ∈ Γ,

∂G

∂n
(x, y) = c′dx

′′|x− y|−d,

and thereby∫
Γ

∣∣∣∣∂G∂n (x, y)

∣∣∣∣ dy ≤ c′d ∫
Rd−1

|x′′|
(x′′2 + |x′ − y′|2)d/2

dy′ = c′′d.

Using that |h(y)| < ε on Γ, we conclude that |I1(x)| < Cε in B \ Γ.
Therefore |h1(x)| ≤ Cε in B \Γ. Since h1(x) +h2(x) = 0 when x ∈ Rd \B+,
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and |h1 + h2| = |h| ≤ 1 in B+, we obtain that h2(x) satisfies

|h2(x)| < Cε in B− = B \B+ and |h2(x)| ≤ 1 + Cε in B+.

Now we apply the three sphere inequality (6). We note that h2 is harmonic
in B. First we take x = (0,−1/5) and r = 1/5 and obtain

sup
B(0,1/10)

|h2| ≤ sup
B(x,3/10)

|h2| ≤ 2d( sup
B(x,1/5)

|h2|)1/2( sup
B(x,4/5)

|h2|)1/2 ≤ Cε1/2.

Next, we apply inequality (6) to the balls centred at the origin with
r = 1/10. We obtain

sup
B(0,3/20)

|h2| ≤ Cε1/4.

Iterating two more times, by applying the same inequality to the balls cen-
tred at the origin and r = 3/20 and, finally, r = 9/40, and noticing that
27/80 > 1/3, while 9/10 < 1, we conclude that

sup
1
3
B

|h2| ≤ Cε1/16.

Finally, combining the last inequality with the bound |h1| ≤ Cε in B+, we
get the required estimate |h| ≤ Cεγ in 1

3B+.

References
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