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ABSTRACT. Let Q be a bounded domain in R™ with C' boundary and
let ux be a Dirichlet Laplace eigenfunction in €2 with eigenvalue A. We
show that the (n — 1)-dimensional Hausdorff measure of the zero set of
uy does not exceed C(Q)v/A. This result is new even for the case of
domains with C'*°-smooth boundary.

1. INTRODUCTION

Let Ajps be the Laplace operator on an n-dimensional smooth compact
Riemannian manifold and let u) be an eigenfunction of —Aj; with the eigen-
value A, i.e., Apuy + Auy = 0. Denote by Z(uy) = {uy = 0} the zero set
of uy. S. T. Yau [2I] conjectured that the surface area of the zero set of uy
satisfies the following inequalities

VA< H N (Z(uy)) < CVA,

where the constants ¢,C' depend on M. This conjecture was proved by
Donnelly and Fefferman in [6] under the assumption that the metric is real
analytic. The lower bound and a polynomial in A upper bound were obtained
recently by the first author in [16] and [I5] respectively.

In this article we consider the case of eigenfunctions of the Euclidean
Laplace operator on a bounded domain with sufficiently regular boundary
and the Dirichlet boundary condition. One of our results is the following.

Theorem 1. Let Q be a bounded domain in R™ with C' boundary and let
uy be an eigenfunction of the Laplace operator with the Dirichlet boundary
condition, Auy + Auy =0 and uy|sgq = 0. Then

(1) H" M (Z(un)) < CVA,
where C' depends only on 2.

The lower bound
H'H(Z(un)) = eV A,
for sufficiently large A, follows from the results of Donnelly and Fefferman
in [6] combined with Lemma [L0| below. We remark that this bound also
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holds for any solution of the equation Auy + Auy = 0 and the boundary
condition plays no role. This follows from the fact that the zero set is CA~1/2
dense and a non-trivial result of [I6]. The inequality was also proved
by Donnelly and Fefferman in [7] for the case of real analytic boundary
0f). Their result was generalized to eigenfunctions of elliptic operators with
real analytic coefficients by Kukavica [9]. Similar estimates were recently
obtained by Lin and Zhu [14] for eigenfunctions of the bi-Laplace operator
with various boundary conditions under the assumption that the boundary
is real analytic. Also, the polynomial (in the eigenvalue) upper bounds for
the area of the zero set of the Dirichlet, Neumann, and Robin eigenfunctions
in smooth bounded domains in R™ were proved by Zhu in [22].

Our proof of Theorem [I] is based on the results of Donnelly and Feffer-
man and the ideas developed in [17, [I5], 16]. In particular, we reduce the
statement of the theorem to an estimate of the size of the nodal set of a
harmonic function with controlled doubling index (the doubling index in
defined in Section [3| below). The novelty of the current work is the treat-
ment of domains with non-analytic boundaries. More precisely, we work
with Lipschitz domains in the Euclidean space and assume that (locally)
the Lipschitz constant is small enough; the precise definition and the formu-
lation of the main result are given in the next section. This class of domains
was recently considered by Tolsa [20] in a different problem.

The rest of the article is organized in the following way. In Section [3]
we first discuss the doubling index of harmonic functions and its (weak)
monotonicity properties near the boundary of Lipschitz domains with small
Lipschitz constant, and then we formulate the main estimate for the size
of the zero set of harmonic functions in terms of the doubling index, see
Theorem [2 below. Two auxiliary results are contained in Section {4, where
the low regularity of the boundary requires some careful considerations.
We prove Theorem [2| for harmonic functions in Section [5, and explain how
Theorem [1] follows from Theorem [2in Section [6l
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2. PRELIMINARIES

2.1. Smoothness of the boundary. Some of the tools used in the current
paper should be compared to those in [20], where the following boundary
uniqueness conjecture is studied.
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Let h be a bounded harmonic function in a Lipschitz domain ). Assume
that h vanishes on a relatively open set U C 9) and Vh vanishes on a subset
of U of positive surface measure. Then h = 0.

Recently Xavier Tolsa verified the conjecture for Lipschitz domains with
small Lipschitz constant, see [20]. We use the following definition.

Definition 1. Let Q be a domain in R, 7 € (0,1), and let B = B(z,7)
be a ball centred on 0N). We say that 0 is T-Lipschitz in B if there is
an isometry T : RY — R? and a function f : B¥1(0,7) — R such that
T(0) =z, f is a Lipschitz function with the Lipschitz constant bounded by
7, f(0) =0, and

QNB =T ({(,y) € BY0,r) CR™! xRiy” > f(y)}).
In this case we write 02N B € Lip(T).

Remark 1. Our considerations are mostly local. When considering the part
of the boundary 0QNB € Lip(7), we choose local coordinates in B = B(z, 1),
x € 011, so that the isometry T in the definition is the identity. We denote by
eq4 the unit vector in the direction of the last coordinate, so that x4+ ceq € 2
forO<e<r.

Remark 2. Note that if 92N B € Lip(7) and B; C B is a ball centred on
08, then 0Q N By € Lip(t). Also, rescaling does not change the Lipschitz
constant. So if 902 N B € Lip(t) and x € 9N is the centre of B, then,
denoting Q. ={r+c(y—z):y€Q}and B.=cB={r+c(y—2x):y € B}
for some ¢ > 0, we have 02, N B. € Lip(T).

Definition 2. We say that Q is a Lipschitz domain with local Lipschitz
constant T if there exists v > 0 such that 0Q N B(x,r) € Lip(t) for any
x € 0f.

Clearly, any bounded C' domain is a domain with local Lipschitz constant
7 for any positive 7. So Theorem [1] follows from the next result.

Theorem 1'. For each n, there exists T, > 0 such that the following state-
ment holds. Let Q) be a bounded Lipschitz domain in R™ with local Lipschitz
constant T, and let uy be an eigenfunction of the Laplace operator in Q with
the Dirichlet boundary condition, Auy + Auy = 0 and uy|pg = 0. Then

H N (Z(uy)) < CVA,
where C depends only on €.

The constant C' depends only on the parameter r for {2 in the definition
of a Lipschitz domain with local Lipschitz constant 7,,, on the diameter of
), and on the dimension n. In what follows we assume that the dimension
of the ambient Euclidean space is fixed so usually we will not emphasize the
dependence of our constants on it.

The rest of the article is devoted to a proof of Theorem 1’. We start with
the following property of Lipschitz domains.
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Lemma 1. Suppose that 0QN B € Lip(t), T < 1/4, where B = B(z,r) and
x € 0N2. We choose coordinates as in Remark . Let zg € QN iB, and let
x1 = x0 + 1req. Then QN B(x1,7/2) is star-shaped with respect to x1.

A version of this lemma can be found in [I0]. We provide a proof for the
convenience of the reader.

Proof. Let x1 = (z},2]). Suppose that xo = (2, 24) € QN B(x1,7/2).
Let now x3 = (z4,2%) be a point on the interval (x1,z9). Clearly x3 €
B(z1,7/2). We want to check that =% > f(a%).

Let 3 = az1 + (1 — a)z, a € (0 1). We have z{ > f(z}) + 7r and
xly > f(af). Therefore, we obtain

azg =ax! + (1 —a)zh > af(z}) +arr+ (1 —a)f()).

Then, since f(z)) > f(xh) — 7|z} — ab| > f(z}) — 7r/2, we have

aTtr

arr
g>f(95/2)+a77°—7:f(95/2>+7 > f(z3),

where the last inequality holds since |25 — 25| = a|z} — 25| < ar/2 and f is

7-Lipschitz. O

2.2. Some observations. In this section we recall some results about har-
monic functions.

Suppose that h is a harmonic function in Q, h € C(Q), and h = 0 on
0Q N B, where B = B(x,r) and x € Q. We define the function v in B by
v=~h%2in QN B, and v =0 in B\ Q. Then v is subharmonic in B and the
mean-value theorem implies that for any y € B(z,r/2) N,

2 [
O IO B ayen S BT Dann™

where |E| is the d-dimensional Lebesgue measure of the set E.
Another known fact that we use is the following quantitative version of
the Cauchy uniqueness theorem.

Lemma 2. Let By be the half-ball,
By ={(2',2") € R xR : |/ 4+ () < 1,2" > 0}.

There exist v € (0,1) and C > 0 such that if h is harmonic in By, h €
CY(B.) and satisfies the inequalities |h| < 1,|Vh| < 1 in By and |h| < ¢,
|0gh| <€ onT = {(2/,2") € By,2" =0}, e <1, then

1 1
|h(z)] < Ce? when z € §B+ = {(x’,a}”) P+ (1) < §,a:" > O} :

The reader can find a proof of a similar statement in [I3] and a general
result on second order elliptic PDEs in Lipschitz domains in [5]. A simple
proof is also given in Section [A-3] for the convenience of the reader.
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3. THE DOUBLING INDEX

3.1. The doubling index inside the domain. Let h € C(Q)) be a non-
zero harmonic function in a domain Q C R%. For each z € Q and r > 0, we
define

Hh(xa 2T)

3 Hy(x,r :/ h? and Np(z,r) =log ———""2,
( ) h( ) B(z,r)NQ h( ) Hh(.’L’,T)

and, with some abuse of language, we call N (z,r) the doubling index of h
in B = B(z,r).
Assume first that B(z,2R) C €, then

(4) Np(z,r) < Np(z,R), when 7r < R.

An elementary proof can be obtained by decomposing h into spherical har-
monics, see, e.g., [19]. This is a simple and useful result, its various versions
go back to the works of Landis [11], 12], Agmon [I], and Almgren [2].

Suppose that B(z,4r) C Q. Then we rewrite the inequality Np(x,r) <
Np(z,2r) as

2
(5) (/ h2> g/ h2/ 2,
B(z,2r) B(z,r) B(z,4r)

Similarly to (2)), for any y € B(x, 3r/2), we have

1 1
h2<y)s/ h2§/ W2,
‘B(y,T/Q)‘ B(y,r/2) ‘B(y,T/Q)‘ B(xz,2r)
Finally, applying and using the trivial bound of the L? norms by the L>
norms, we obtain

(6) sup |h| <2 sup |h])/*( sup [h])"/>.
B(z,3r/2) B(z,r) B(z,4r)

3.2. The doubling index on the boundary. We need a version of the
monotonicity formula and the three ball inequality @ near a part of
the boundary on which the harmonic function vanishes. First, we recall a
lemma that is proven in [I0].

Lemma 3 (Kukavica, Nystrom). Let Q be a domain in R? and let By be a
ball centred on O such that 92N By is C° smooth. Let also x € Q be such
that Q0N B(x, R) is star-shaped with respect to x, B(z,R) C Bi. Suppose

that h € C(2) is a non-zero harmonic function in Q and h =0 on 0QN By.
Then

Hp(z,72) < log(ra/r1) log Hy(z,r3)
Hh(x,rl) - log(rg/rg) Hh(x,TQ),

when 0 <rp <rg <13 < R.

(7) log
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The assumption that the boundary of Q is C® smooth implies that h €
C?(Q2N By), so every integration by parts in [I0] can be easily justified.

Now we prove the following almost monotonicity property of the doubling
index in Lipschitz domains.

Lemma 4. Let Q be a domain in R%. For any € > 0, there exists 7. > 0
such that if 7 < 7., 0Q N B € Lip(t), where B = B(x,R), z € 09, and
h € C(2) is a non-zero harmonic function in Q, h =0 on QN B, then

(8) Nh(xo,r) < (1 + €)Nh($0,27’),
for any o € QN %B and r < R/16.

We remark that a stronger result holds when the boundary of the domain
is smooth. For example for the case of a C"P™ domain the inequality
can_be replaced by Np(2o,7m1) < (14 €)N(zo,72) when r1 <12 < R/8, see
[10 H Thus for CHP" domains, we know that the doubling index over balls
centred on 02 N B stays uniformly bounded. We do not know if this is still
true for Lipschitz domains. For the case of the domains with small Lipschitz
constant, we can conclude only that the doubling index N, (zo,r) does not
grow faster than r~% with some small positive a as r — 0, which is sufficient
for our purposes.

Proof. First we assume that 0QN B is a graph of a C3-smooth function. Let
eq be as in Remark [If and let 1 = 29 + 167rey. We assume that 7 < 1/16.
Then by Lemma (1| we see that B(x1,8r) N is star-shaped with respect to
x1. We apply and obtain

o Hp(xo,2r) 0 Hp(z1, (2 + 167)r)
Ni(wo,r) =log o =5 S los e 0 = 16r)n)
log((2 +167)/(1 ~ 167)) .~ Hy(an, (4~ 167)1)
= log((4 — 167)/(2 + 167)) 2 Hy(x1, (2 + 167)7)
< (1+0(r))log g:gg;‘:; (1+ &) Ny (0, 21),

when 7 is small enough.

We want to drop the assumption that QN B is C? smooth. We fix the
ball B and assume that QN B is given by the graph of a Lipschitz function
f : B¥1(0,R) — R with the Lipschitz constant bounded by 7. In this
coordinate system the ball B is identified with B¢(0, R)

Let ¢ be a mollifier supported in the unit ball of R4~ and let, as usual,
os(z) = 64Dy (%). We define f, = f* g/, +7R/n. Then {f,} is a
sequence of C? smooth functions such that

fa: BTHO,(1=1/n)R) = R, f(y) < fuly) < f(y) +27R/n,

IWe refer the reader also to the preceding works [] and [3] for related results.
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and the Lipschitz constant of f, is also bounded by 7. We also define
O ={y=("y") € BY,(1-1/n)R) CR" xR:y" > fu(y))}.
Clearly, 2, ¢ B4(0,(1 —1/n)R) N . Let

In={y=y")€BY0,(1-1/n)R):y" = fu(y)}.

First, we see that 0, = supr_|h| converge to zero as n — oo since h is
uniformly continuous on QN B, h = 0 on 05, and dist(y,9Q) < 27R/n
when y € [',,.

Next, we consider the harmonic function h,, in £, such that on 02,

h(z) — O, if h(x) > 0y,
hn(x) =<0, if |h(z)] < dp,
h(z) + 6p, if h(x) < —0p.
Clearly we have h,, € C(2,), hp, = 0 on T',,, and, by the maximum principle,
|h — hy| < 6, in Q. Thus h, — h uniformly on compact subsets of B N .
We fix 29 € QN 1B and r € (0, R/16). Then 2 € Q,NB(0, (1—1/n)R/4)
and r < (1 —1/n)R/16 for n large enough. Also, |h,| < maxg 5 |h| and
(2N B(z,R))\ 2,] — 0 as n — oco. Then we have

fB(z 2r)NQ h? fB(a: 2r)NQ h%
Nip(zo,7) = = = lim —>2"—"— = lim Ny, (zo,7).
fB(x,r)ﬂQ h? oo fB(xo,r)ﬂQn h% nree

The inequality is now obtained as the limit of the corresponding inequal-
ities for h,. Finally the required inequality for g € 02N %B follows by
taking the limit as € — 0+ of the corresponding inequalities for xg+ceq. [

Corollary 1. Let 00N B € Lip(t), 7 < 7z, B = B(x,R), z € 09, and
let x1,32 € QN 1B with |v1 — 22| < r/4 and r < R/8. Ifh € C(Q) is a
non-zero harmonic function in Q such that h =0 on 0Q N B, then

Nu(x1,7/2) < 3(1 + )2 Ny(x2, 7).
Proof. Note that B(z1,7) C B(xz2,2r) and B(x1,7/2) D B(x2,r/4). Thus

we obtain

fB(xz ,2r)NQ h?

Np(x1,7/2) <log 72

= Np(x2,7/4) + Np(x2,7/2) + Np(x2,7).
fB(z2,r/4)ﬂQ

Now Lemma [4 implies the required estimate. O
3.3. Three ball inequality. We apply the monotonicity lemma a number

of times. First, we claim that it implies a version of the three ball theorem
for harmonic functions vanishing on some part of the boundary.
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Lemma 5. Let Q be a domain in R% and let B be a ball centred on OS).
We assume that Q2 N B € Lip(t), where T is small enough. Then for any

function h € C(2) harmonic in Q and vanishing on 0Q N B, we have

sup |h| < 3%(sup |1])"/*( sup [n])*?,
%BOQQ BonN 4BoNS

for any ball By with the centre in QN %B and such that 16By C B.

Proof. Assume that 7 < 7 given by Lemma [] for the case ¢ = 1. Let
By = B(xg,7). We apply Lemma 4] Taking the exponentials, we obtain

1/3 2/3
fura®= o) o)
2BoNQ BoN2 4BoN

Then and the trivial bound of the L?-norm by the L>-norm imply that
for any y € %Bo N,

, 1 , . 2/3 4/3
h(y) < ——m— / he < 8 < sup |h > ( sup |h > .
(@) |B(y,7/2)| Japyno BomQ| | 4BoﬂQ| |

O

3.4. The maximal doubling index. Let  be a domain in R? and let
JQ N B € Lip(t) where B is centred on 0f). We consider a closed cube
QC 3—128 such that Q NQ # @. Assume that a non-zero function h € C(Q)
is harmonic in © and vanishes on 9Q N B and let ¢ = diam(Q). We define
the maximal doubling index of h in @ by
9) Ny (Q) = sup Np(z,7).
xEQFKi%STSZ

Clearly the function (x,7) — Ny(z,7) is continuous on (Q N Q) x [¢/2,4].
Therefore the supremum above is finite.

Lemma 4] on the monotonicity of the doubling index implies that if € > 0
and T < 7., then for any cube Q1 C Q C 3%3 and @1 NQ # &, we have

2e
mi@ < (28) wi)

where s(Q) is the side length of the cube @Q; we have used the inequality
logy(1 +¢) < 2e.

3.5. A version of the main result for harmonic functions. Let {2 be
a domain in R? and let h € C(Q) be a non-zero harmonic function in Q.
We assume that h = 0 on the part 9 N B of the boundary, where B is
a ball centred on 92 and 92 N B € Lip(7). Our aim is to estimate the
(d — 1)-dimensional measure of the zero set of h using the doubling index of
h. We define the zero set of h by

Z(h) ={z € Q: h(x) =0},

so that the boundary points are not included into the zero set.
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Theorem 2. Let Q C R?, let x € 0Q and let v > 0 be such that O N
B(z,128r) € Lip(t), where T is small enough. Then there exists C = C(d)
such that

HIY(Z(h) N B(x,r)) < C(Np(z,4r) + 1)r? 1,

for any non-zero function h € C(Q) that is harmonic in Q and satisfies
h =0 on 0Q N B(x,128r).

Theorem |2 is proved in Section We then deduce Theorem in
Section [6.2] where we consider the harmonic extension of the eigenfunction
and use Lemma [L0] below to estimate the doubling index of the extension
by a multiple of the square root of the eigenvalue.

Theorem [ allows us to estimate the area of the zero set of a harmonic
function near the part of the boundary where the function vanishes. We
remark also that the estimate for the zero set inside the domain was proved
by Donnelly and Fefferman in [6].

Lemma 6 (Donnelly, Fefferman). Let h be a non-zero harmonic function
in Q C RY. There exists C such that

HIY(Z(h) N B) < O(Ny(z,4r) +1)rd=1,
for any ball B = B(z,r) that satisfies B(x,8r) C Q.

The proof follows from the argument in [6], some versions of this result
can be also found in [I3] and [8]. We outline some steps of the proof for the
interested reader in the Appendix, see

4. TWO AUXILIARY LEMMAS

4.1. A standard construction. In this section we give two versions of
the Hyperplane Lemma. We suggest that the reader compares the state-
ments to the one of [I5, Lemma 4.1]. Both statements refer to the following
construction.

Assume that Q € R? and 9Q N B € Lip(t), where B is a ball centred on
9 and 7 € (0, (16v/d)~!). We fix a coordinate system as in Remark |1} Let
@ be a cube centred at xg = (x’Q, x’é) € 092 N B whose sides are parallel to
the axes of this coordinate system and such that Q C B. As above, the side
length of @ is denoted by s(Q). Our choice of 7 implies that 9 does not
intersect the two faces of the cube @) which are orthogonal to e4, moreover,
99N Q is contained in the middle part {(z’,2") € @ : [2" — z7)| < s(Q)/4}
of Q.

Let k& > 3. We partition the projection 7(Q) of @ to the hyperplane
R%1 x {0} into 25(¢=1) small equal cubes w with the side length s(w) =
27%5(Q) in the usual way so that any two distinct small cubes have no
common inner points. For each small cube w, there is a uniquely defined
d-dimensional cube g such that 7(q) = w and the centre of ¢ lies on 02N Q.
Furthermore, we cover (7~ (w) N (2N Q)) \ ¢ by at most 2 cubes p such
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Q
p
/\ | |
1 | = ! 1 1 1 1
Q

FI1GURE 1. The standard construction

that p C @, p, 7(p) = w, p has no common inner points with ¢, and
s(p) = s(q) = 27%5(Q), cubes p may overlap. See Figure

We denote the set of all boundary cubes g by Bi(Q) and the set of all
inner cubes p by Z;(Q). Note that for each p € Zy(Q), we have dist(p, 02) >
cs(p) for some absolute constant c¢. We call the triple (Q, Br(Q),Zr(Q))
the standard construction. After we fix a coordinate system, our standard
construction depends on the choice of the cube ) and the parameter k, the
family By (Q) of the boundary cubes is defined uniquely and we may fix some
choice for the inner cubes Zy(Q).

4.2. The first hyperplane lemma. In the first lemma we assume that
the maximal doubling index N;(Q) is large enough.

Lemma 7. There exist constants kg > 3 and Ng > 1 such that for any
integer k > ko, there exists T(k) > 0 for which the following statement
holds. Suppose that  is a domain in R?, 90N B € Lip(r), 7 < 7(k), and
QC 6—143 is a cube as above centred on OY. Then for any function h € C(£2)
harmonic in Q, with h = 0 on BNOKY, and Nj(Q) > Ny, there exists a cube
q € Bi(Q) such that N} (q) < Ny (Q)/2.

Proof. Let xg be the centre of the cube @ and let By = B(zq,{), where
¢ = diam(Q). We have B; C B and define M* = [ ., h*.

Denote N = N;(Q) and suppose that the inequality Ny (q) > N/2 holds
for each cube ¢ € Bi(Q). Then for each such ¢, there exist y, € ¢ N and
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4 € (27%71¢,27%¢) such that Ny (y4,74) > N/2. Suppose that
(10) <7, and (14+¢)f <2

where we use the notation of Lemma 4 Then the almost monotonicity of
the doubling index, Lemma 4] implies Nj, (yq, 2™r¢) > N/4 when 0 < m < k.

Assuming that k£ > 20, we apply the estimate of the doubling index k — 4
times and use that B(y,,¢/2) C B; to obtain

/ h2 </ h2 < €_N(k_4)/4/ h2
B(yg.2=F+20nQ  JB(yg8r)NQ B(yq,2k~1rg)NQ

< e—N(k—4)/4/ B2 < e~ Nk 2,
B(yg,t/2)NQ

Next, we note that the integral estimate above implies a pointwise estimate
in a smaller ball by . We have

(11) sup h? < C’2dk€d/ h? < c2dkg=de=NE/S pp2)
B(yq,2~kt10)nQ B(yq,2~kt20)nQ
where C' = C(d).

As above, we assume also that 7 < (164/d)~!. For each cube q € Bi(Q),
denote by ¢ its upper quarter, where "up” is in the direction of e;. Then
qT C Q and dist(qt,00Q) > 27%5(Q)/10. For y € ¢*, the standard Cauchy
estimate implies

IVh(y)| < C25¢~"  sup  |hl.
B(y,27%5(Q)/10)
We note that B(y,27%s(Q)/10) C B(y,,27%1¢) N Q. Then combining the
above inequality with , we obtain

(12) sup|Vh| < C2k¢~1 sup |h| < C2Md+2)/2p=(d+2)/2=Nk/10 pp
qt B(yq,2~*+10)NQ

Let By = B(xg +3-27%35(Q)eq, s(Q)/2) and let
Boy = {a=(a"a") € By:a" > ey +3-2595(Q))

be the upper half of Byg. We denote by I'g the flat part of the boundary
of Byy+. We note that 2By C B;. Assuming that 7 < 27k=3_ we have
dist(Bo 4, 09) > 27%725(Q). Then using and the Cauchy estimate, we
get

sup |h| < CC™Y2M,  sup |Vh| < C2F¢=27

BoN Bo,+

Also, by and , we have

sup |h| < C2kd/2€7d/2€7Nk/10M, sup |Vh’ < C2kd/2+k€fd/27167Nk/10M7
Fo F0

since o C Uyep,(0) €
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Applying Lemma [2| to By 4, we get

sup |h| < C2'ykd/2+k€fd/2e—»yNk/10M'
3Bo.+

Let yo = 2g+5(Q)eq/12 and let m be the least integer such that 2™ > 16v/d.
Then By = B(yg,27 ™) C %30,4— when k is large enough (we remark that
By + depends on k). Integrating the last inequality over By and using that
vol(By) < Cl%, we obtain

h2 < C27kd+2k€_’yNk/5M2.
By
Finally, we compare the last integral to fBlﬂQ h? = M?. Note that B; C

B(yg,2¢) = 2™ B,. By the almost monotonicity of the doubling index,
recalling that 7 < 7. < 71, we have

“ JBto20n0
2m+1N 2= £ — 1 (sz )
h yQa Z yQ’ f32 12

fBlﬂQ

Jg, h?

Since Ni(yg,f) < Nj(Q) = N, we get 2" TN > yNk/5 — vkd — 2k — C.
Taking k large enough we may achieve vk/5 > 2"+2. Then the inequality
above implies

> log >yNk/5 —~vkd — 2k — C.

10(vkd + 2k + C)
vk
Taking No = 10 (d + (2+ C)y~ '), we obtain a contradiction for N > Np.
We also choose ¢ = (k) such that (1 + ¢)¥ < 2 and finally choose 7(k) =

min{7., 27573, (16v/d)~'}.

N <

<10(d+(@2+Cn71).

O

4.3. The second hyperplane lemma: cubes without zeros. For cubes
with the maximal doubling index bounded by Ny, we use the following
version of the above statement. The reader may compare it to Corollary in
Section 3.4 of [18].

Lemma 8. For any N > 0 there exist T(IN) and k(N) such that the following
statement holds. Suppose that Q is a domain in R?, 0Q N B € Lip(t),
T < 7(N), and Q C ;B is a cube centred on 9. Let also h € C(Q) be a
non-zero function harmonic in Q, with h =0 on BN O and N;(Q) < N.
Then for any k > k(N), there exists q € Bi(Q) such that Z(h)Nqg =@

We remark that in this version both 7 and k depend on N. First, we
prove the following version of the lemma for a half ball.
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Lemma 9. Let B be the unit ball in R% and let B be the half ball,
By ={y=(y,y") eR"' xR: |y/|> +y"* < 1,4 > 0}.

Let g be a function harmonic in By, g € C(By), g =0 on By N{y" = 0},
and

sup |g| = 1.

1B+
For any N > 0, there exist p = p(N) € (0,1/16) and co = co(N) > 0 such
that if Ny(0,1/4) < N, then there is ' € R¥~1 with |2/| < 1/16 such that

l9(W)| = coy”, forany y=(y',y") € B((«',0),p) N B

Proof. Let B_ be the reflexion of the half-ball B, with respect to the hy-
perplane 3/ = 0. Then g can be extended to a harmonic function in B
by g(v',y") = —g(¥/, —y") when (v',y") € B_. We denote this extension
by g as well. The normalization sup ip, lg| = 1 and the standard Cauchy

estimate imply that every partial derivative of g is uniformly bounded in
B(0,1/8).
Let § = max,/cpa-1 |,1<1/16 | V9(2',0)]. Lemma applied to the half ball
l%BJr implies that
sup |g| < Cd7.
B(0,5;)

Then fB(O,é)QQ < C6% and fB(Oé)gQ > CSUPB(O,%)L‘F = c¢. On the other
hand,

a0, 9 1
log 13(()’72)2 < 5Ny (0,—) <5N.
fB(O,&)g 4

We have used that the doubling index of g in B4 and of the extension are
the same for balls centred at the origin and that the doubling index inside
the domain is monotone by . We conclude that § > ce™3N7".

Let z/, € R91, |2%| < 1/16, be such that |Vg(x”,0)| = §. Clearly we have
|Vg(2,0)| = |0ag(z),0)| and we may assume that dgg(x},0) = J, otherwise
we consider the function —g. Then Jgg(x) > 6/2 when dist(z, (2,0)) <
p = min{cyd, 1/16}, where ¢y depends on the constant upper bound for the
second derivatives of g in B(0,1/8). Therefore

gly) > 6y" /2 > ce 3Ny,
when y = (v',y") € B((},0), p). O

Proof of Lemma[8 Now we deduce Lemma [§] from Lemma[9] By rescaling,
see Remark 2] we can achieve that s(Q) = 4. We may also assume that

(13) sup |h| =1
B(IQ,?))PIQ

Let 1 = zg — 37eq, B1 = B(x1,1), and let By 4 be the upper half of Bj.
Let also By = 2B;. First, we consider the harmonic function gy such that
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go = 1 on the upper half of the sphere 9By and gg = —1 on the lower half
of 9By. We denote as usual zf = 1 - e4. Clearly go = 0 on

o= {z=(2,2") € By: 2" =2f
and go > 0 on By . We note that I'g does not intersect Q. Then |h] < go on
QN By C By 4 by the maximum principle. We also have go(z) < C1 (2" — )
when z = (2/,2") € By 4, since go = 0 on I'g and go has bounded derivatives
in B;. Therefore |h(z)| < go(z) < Cy(2” — 2Y) when z = (2/,2") € QN By.

Let now g be the harmonic function in By 4 such that g = h on 0B + NS
and g = 0 on 0B 4+ \ . We have [g(z)| < Ci(2” —2!) in B; 4 by the above
estimate on h and the maximum principle. We consider the difference g — h.
We have g = h on QN OB; and |g — h| = |g| < 4C17 on 9Q N B;. Then, by
the maximum principle, |g — h| < 4Ci7 in QN B;. We extend h by zero
to B1 4+ \ Q. Then |g — h| < 4Cy7 in By 4.

Let m be the integer such that 2V/d < 2M < 4\/&, clearly m > 1. Then
the estimate N} (Q) < N implies Nj(zg,2™) < N. We choose ¢ such that
(1 + &)™t < 2 and assume that 7 < 7. using the notation of Lemma
Then Nh(xQ,Qj) < 2N when —3 < j < m. We use and to conclude

that
/ B2 > 6—101\// B2 > 10N
B(zg,l)n B(zg4)NQ

Suppose that 7 < ﬁ. Then B(zq, %) NnQC iBl,Jr and we have
1/2

1/2 1/2
(/ 92) > (/ h2> — CoT > (/ h2) — Coyr.
1B+ 1B 4 B(zq,§)NQ

Assuming that 7(N) is small enough, we conclude that

(14) / > > cre 1OV,
1B+
We also have sup1p, , |g] < supp,qq k] <1 by (13). Then
2 )

1 leH g’

Ng(xl’l) = log 2 < C(N +1).

We note that implies supipg, lg| > ce=®N. Then, by Lemma|§|, there
exist 2, € o N 15 By, c2 = c2(N) >0, and p = p(C(N + 1)) such that
9@ > e — o) for x=(2',2") € Blaerp) N Bus.

We may assume that g > 0 in B(zy, p) N By 4, otherwise we consider —h in
place of h. Then we obtain

h(z) > g(z) — 4017 > co(a” — o) —4C17 in B(xzy,p) N Q.

We note that p does not depend on 7 and for 7 small enough we have
Bz, §) N 0N # @. We also have B(z., §) C Q.
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Our goal is to show that h > 0 on B(z.,5) N Q. Let y, = (yi,9%) €
B(zy,5) N 0Q. We note that

(15) h(z) > co(a” —y) —est in B(xs,p) N,
where c3 = 4C + 4co. We consider the harmonic function
1

ha() = PP ((d=1)(=" —y2)? = |2" = oi]?) |

where z = (2/,2”). We claim that h(z) > cahs(z), when z € B (y4,5) N Q
and 7 is small enough.

First, we note that h.(z) < 0 if |2 — ¢/| < (d — 1)"?|2' — 4| and
therefore hy, < 0 on 9Q N B(ysx, g) when 7 is small enough, while h = 0 on
ONN B(yx, 5). On 0B(ys, §) N Q we have

"o 2
ho(z) = YT P
p 4d
Comparing to the last identity and denoting ¢t = 2" — ¢/, we reduce the
inequality h > cah, on OB(y«, 5) N Q to the following one:

t2
cot — c37 > c2 <_,0>’
p

4d
when t € (—7p/2,p/2) and 7 is small enough. It suffices to check the
inequality for t = —7p/2 and t = p/2. For t = —7p/2 we obtain the
inequality

C2p (C2P CaTp )

LN el

=T\ T )

which holds when 7 is small enough. On the other hand, for t = p/2, the

inequality is reduced to

1 1 S
Cop <4 + 4d> = C3T.
This one is also satisfied for small 7.

Thus, by the maximum principle, h > ¢ahy in B(ys, p/2)NQ. In particular,
h(yl,y") > cahe(yl,y”) > 0 when vy < v < p/2. Therefore h > 0 on
Bz, 5) N Q.

Finally, since B(xy, p/2) contains a ball of radius p/4 centred on 0f, if
k is large enough, there is ¢ € By(Q) such that ¢ C B(zs,5) and then
Z(h)Nng=2. O

5. PROOF OF THEOREM [2]

Let No be as in Lemmal7]and let Q, B = B(xz,r), and h be as in the state-
ment of Theorem 2| We remind that the maximal doubling index N;(Q)
of h in a cube () was defined by @ For the rest of the proof we mod-
ify the maximal doubling index and write N;*(Q) = max{N;(Q), No/2}.
Then Lemmas [7] and [§ imply that there is k& such that for 7 small enough,
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if @ C 2B and (Q, Br(Q),Zr(Q)) is a standard construction, then there is a
cube qp € B(Q) such that

(16) either (i) N;"(q0) < N;*(Q)/2 or (ii) Z(h)Ngo = 2.
5.1. Reduction to one cube. Let () be a cube as above. We claim that
(17) HNZ(h) N Q) < N (Q)s(@)™ .

Assume first that holds. We show that Theorem [2f follows. We need
to switch from cubes to balls and from the maximal doubling index to the
doubling index at a single point.

To this end, we cover the ball B(z,r) with cubes Q; C B(x, 2r) such that
diam(Q;) = r/10 and either dist(Q;,0Q) > s(Q;)/10 (inner cubes) or Q;
satisfies the assumptions in the main construction (boundary cubes). We
may assume that there are not more than C' = C(d) of such cubes.

First, for each cube = @; in this cover, we have QNB(z,r) # &, and we
compare N;(Q) to Np(z,4r). There exists y € QN Q and ry € [r/20,r/10]
such that N;(Q) = Nu(y,ry). Assuming that 7 < 71 in the notation of
Lemma we get Np(y,32r,) > 27°N;(Q). We have dist(z,y) < %r and

2

h
fB(x,Sr)ﬂQ . < 16Nh(l‘,47‘)

h

h2
fB(y,64ry)ﬁQ ~ <10g

fB(y,32ry)ﬁQ fB(w,r/Q)ﬂQ
by Lemma Hence, N;(Q) < 29Ny (z,4r) and N;*(Q) < C(Ny(z,4r)+1).

Each inner cube QQ C €) can be covered by at most C balls b with centres in
Q and with radii s(Q)/100. Then 8b C €. Moreover, if b = B(y, s(Q)/100),
we have Ny (y, s(Q)/25) < CN;:(Q) by Lemma[d] again. Then we use Lemma
[Bl to estimate the area of the zero set of h in each of the balls b and obtain

HH(Z(h) Nb) < C(Ni(y, s(Q)/25) + 1)rt!
< C'(NH Q) + 1)r?t < (N (x, 4r) + 1)r® L,

For the boundary cubes, we use the inequality . Thus for every @),
we obtain

Np(y,32r,) = log

HITN(Z(h) N Q;) < C(Np(w,4r) + 1)s(Q;)* .
Summing these inequalities over all cubes, we obtain the required estimate.
It remains to prove (|17)).

5.2. Proof of . We fix a compact set K C 2 and prove that
(18) HIHZ(h) NQN K) < CoN;H(Q)s(@),

where () C 2B is a cube as in the standard construction and Cj is indepen-
dent of K. Then (17)) follows.

First, note that (18] holds for all cubes @) small enough, since QN K = &
for such cubes. We prove by induction on the size of @, going from
small cubes to larger ones. Assume that it holds for cubes with s(Q) < s,
we want to prove it for cubes with s(Q) < 2*s, where k is as in (I6).
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We consider the standard construction (Q,Bx(Q),Zx(Q)). Each inner
cube q € Z;(Q) can be covered by balls b centred in ¢ with radii s(¢q)/100 and
such that 8b C , so that the number of balls is bounded by a dimensional
constant. For each such ball b = B(y, s(¢)/100), applying Lemma {4 we get
Ni(y,s(q)/25) < C(k)Nj;(Q) when 7 is small enough. Then by Lemma [6]
we have

(19) Y HTH(Z(h)Ng) < C(NFQ)+1)s(Q)* T < CIN;H(Q)s(Q)
9€Zk(Q)

where C and C} depend on k.

For all other boundary cubes g, we have N;*(q) < (1 +¢)*N;*(Q). Also
implies that there is a cube go € Bi(Q) such that either N;*(qo) <
N;*(Q)/2 or Z(h) N qo = @. We apply the induction assumption to each
boundary cube and obtain

HHZ(h) N K N0 (Uge@)9)
< Y HTNZM)NKNg) +HTHZ(h) N K N g)
q€B(Q),q7#90

< > CoNE(g)s(@) ' +
q€B,(Q),9790

Qk(d_l) -1 k 1 1 *k d—1
< <2k(d1)(1+€) Ta ok(@-1) ColN,L™(Q)s(Q)* .

Co

SN (Qslo) !

Finally, we choose ¢ small and Cj large enough so that

ok(d=1) _ 1 P |

Note that Cy does not depend on K. Then, assuming that 7 is small enough
and taking into account , we obtain

HHZ(M) N K NQ) < CoNZH(@Q)s(@)7 .
This concludes the induction step and the proof of .

6. DIRICHLET LAPLACE EIGENFUNCTIONS

6.1. Harmonic extension and an estimate of the doubling index.
Let Q9 C R™ be a bounded Lipschitz domain. Let u) be an eigenfunction
of the Dirichlet Laplace operator, uy € Wol’z(Qo), Auy + Auy = 0. Then
uy € C(Qp). This fact is well-known, we provide a proof in the Appendix
below, see Section

We consider the harmonic extension of uy to the domain 2 = Qg x R C
R+ given by

h(z,t) = uA(x)eﬁt.
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Then h € C(Q2) and, clearly, Z(h) = Z(uy) x R, where the zero sets are sets
inside the domains €2 and €y respectively. We need the following estimate
of the doubling index of this harmonic extension.

Lemma 10. Let Qg be a bounded domain in R™ with a sufficiently small local
Lipschitz constant 7. Let rg > 0 be such that 0QoNB(x, 1) € Lip(T) for any
x € 0Qy. Then for any r € (0,79/16), there exists C = C(r,Q) > 0 such
that for any Dirichlet Laplace eigenfunction uy, the corresponding harmonic
extension h(x,t) = u,\(m)eﬁt satisfies Ny, (y,7) < CV\ wheny = (x,t) € Q.

This result is similar to the results of Donnelly and Fefferman, [6] [7],
who considered eigenfunctions on compact manifolds and on domains with
C*>-smooth boundaries and obtained the above estimate of the doubling
index for eigenfunctions. However, in contrast to the previous results, the
doubling index is allowed to blow up as » — 0 in the above lemma. The
statement of the lemma follows by application of Lemma [5| and inequality
(6) to a chain of balls, the argument is similar to the one in [I8, Section 2.4].
For the convenience of the reader, we provide the details below.

Proof. We consider any y = (z,t) € Q and let yo = (x,0). Since h(z,t+s) =
eﬁth(az,s), we have Np(y,r) = Np(yo,r). So it is enough to estimate the
doubling index of h in the balls centred on €y x {0}.

We fix r € (0,79/16) and let S € € be a finite 7/8-net for €y, i.e.,
Qo C Upes B(p:7r/8). Let B, = B(y,r) be a ball of radius r centred at
Yy = (y+,0) € Qo x {0}. Assume that maxq, |uy| = |ur(zo)] = 1. We
consider a path « : [0,1] — Qg from y, to zg such that v((0,1)) C Qp. Now
we construct a chain of balls {B; }3.]:0. Let By = B(y«,7/2). Assuming that
B; = B(yj;,7/2) is constructed, we define

s; =sup{s € [0,1] : |y(s) —y;| < r/8}.

If s; < 1, we have |y(s;) — yj| = r/8 and we choose y;+1 € S such that
lyj+1 — v(s5)| < r/8. If s; = 1, we define y;11 = y;j = xo and stop the
chain. We have |y; — y;j+1| < r/4 and define Bj11 = B(yj4+1,7/2). We note
that s;41 > s; when 0 < j < J —1 and that y;41 € S\ {v0,...,y;} when
0<j<J—1 Wealso have B 1 C %Bj. The resulting chain is finite,
moreover, the number of balls in the chain is bounded by the number of
elements in S plus two.

Let now B; = B((y;,0),7/2) be the corresponding ball in R"*!. Then

Sup, 5, o || < V7. T 4B; C Q, then (§) gives
sup || < 2" (sup [1])"/2(sup |h) /2
%E]. Ej 4§j

< 3n+1(sup ]h\)l/?’(sup ‘h‘)2/3 < 3n+1€4ﬁr/3(sup ‘h|)1/3
Bj 4B, B;
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Otherwise we have dist(y;,090) < 2r < 79/8. In this case, there is a ball B
of radius ro centred on 9 x {0} such that (y;,0) € QN 3B and 16B; C B.
Then Lemma |5 applied to the ball Bj, implies that

sup [h| < 3" (sup [B)'/3( sup [B))2/P < 3HNVN(sup [n])!/3,
3B;nQ B;nQ 48,00 B;nQ
Therefore, we obtain for each 7,

sup |h| > 3—3(n+1)( sup ’h’)36—4ﬁr > 3—3(n+1)(~sup ’h’)3€—4ﬁr.

B;nQ 2B;nQ Bj11nQ
_ — V)2 . . "
We also have sup B0 |h| = eVA"/2. Combining the above inequalities, we
get
sup |h| > cle_czﬁ,
EoﬂQ

where ¢; and Cy depend on r and J but not on A. We can choose the r/8-
net S so that the number of points in S depends only on diam(€), r, and
the dimension. Thus we conclude that the constants in the last inequality
depend only on 7, the diameter of €y, and n.

Finally, applying , we obtain

f4§0m9 h? SUP,4 BN ‘h‘2
Np(y,r) = log 7= < log —————5+C < (4r4+2Co)VAHC < CVA,
fzéomﬂ h SUP B N |hl
where C = C(Qg,r). We remark that A > A\;(€9) > 0, where \1(£) is the
first Dirichlet Laplace eigenvalue in 5. Moreover, if B* is a ball of radius
diam(€2g) then A1(€Q) > A1(B*). Thus the constant C' in the conclusion of
this Lemma depends only on r, diam(£), and n. O

6.2. Proof of Theorem [i]. Let Qy C R™ be a bounded domain with
a sufficiently small local Lipschitz constant 7. Let also rg > 0 be such
that 9Qy N B(x,rg) € Lip(t) for every x € 0€y. We consider the domain
QO =Q¢xRcCR"! and let Q; = Qy x [~1,1]. For each z € 92 x [~1,1]
we consider a ball centred at z of radius 279ry. These balls cover the closed
27107g-neighborhood of the set 9Q x [—1,1]. We can choose a disjoint col-
lection of these balls b; such that the balls B; = 4b; cover the same closed
neighborhood of 02 x [—1,1]. Then for each point of € \ U;B;, we choose
a ball b centred at the point of radius 27 1°rg, so that 32b C . Once again,
we find a finite sub-collection of disjoint balls b} such that B; = 4b}. cover
1\ U;B;. We note that 8B,’€ C . We fix this covering of €21 and remark
that radii of all balls depend only on 7y and the number of balls depends on
79, the diameter of €y, and n.

Let now u) be a Dirichlet Laplace eigenfunction in Qy: Auy + Auy = 0
in Qp and uy = 0 on 0€Qy. We consider its harmonic extension h(z,t) =

eﬁtu,\(:v). Then h € C(f2) is non-zero, and h = 0 on 0. Let Cyp =
max{C (2779, ), C(27 17, Qo) }, where C(r, ) is as in Lemma Then
for B(z,r) € {B;} U {B,}, we have Ny (z,4r) < Cov/A. Finally, we apply
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Theorem [2| to each of the balls B; and Lemma |§| to each of the inner balls
B;.. We conclude that

H'(Z(h) ) <> H (Z(h)N By)+ Y _H (Z(h) N By)
J k

<C(CoVA+1) [ D r(B)"+ ) r(B)" | < CiVA.

J k

Then H" 1 (Z(uy) N Q) < C1V/A, which finishes the proof of Theorem .

APPENDIX: PROOFS OF SOME AUXILIARY RESULTS

A.1. Estimates for the zero set of harmonic functions inside the
domain. We outline some steps of the proof of Lemma [6 First the har-
monic function h is extended to a holomorphic function H on a domain in
CY, see Lemma 7.2 in [6]. Our situation is particularly simple, since we only
consider the standard Laplace operator on Euclidean domains. For this case
the holomorphic extension is given by the complexification of the Poisson
kernel. The Poisson kernel in a ball B(z,r) C R? is given by

r? — |z — xz|?

Pr(z,y):cd ’ |Z_:C|<T7 |y—l‘|:’l“.

7|z —yld

For any y € 0B(z,r), the function 2 = (21,...,za) = >_;(2 — y;)? maps
the complex ball B¢ (z,7/v/2) C C? of radius 7/+/2 centred at » € R? ¢ C¢

to the half-plane ¢ > 0. Then the Poisson kernel has the holomorphic
extension to Be(x,r/v/2). Moreover, for any a < 1/v/2,

|Pr(2,y)‘ < C(a)?“_(d_l), S B(C(ZL',?"()), To <ar.

We consider a ball B = B(z,8r) such that B C Q. Then there exists a
holomorphic extension H(z) of h defined on a ball Be(x,3r),

H(z) = / Por (5, ) h(y)do (),
OB (z,6r)

x,6r

1/2
sup |H(z)| < C'r~9/2 / h? .
Be(z,3r) B(z,87)

Now we can cover the set Z(h) N B(z,r) by a finite number of balls with
centrs in B(z,r) of radii /20 so that the number of the balls is bounded
by a constant depending on the dimension only. Let B(y,r/20) be one of
such balls. By a version of Corollary [1| for the doubling index inside the

such that |H(z)| < C'maxg, g, [h]. Then
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domain, we have Np(y,2r) < 3N, where N = Np(z,4r), and, therefore,
Np(y,m1) <3N when r1 < 2r. Thus

sup h? > cr_d/ h? > cr_de_15N/ h? > cr_de_15N/ h2.
B(y,15) B(y,7g) B(y,2r) B(z,r)

Therefore,

1/2
sup |H|> sup |h| > cr#2e 75N (/ h2> .
B(y,15) B(y,75) B(z,r)

Combining the inequalities above, we obtain

1/2
SupB@(y,2T) |H‘ < SupBC(x,Sr) |H‘ < C€7'5N fB(:p,Br) h2 < CBQN
SUPB(y,r/10) [H| ~ SuPpyr10) [HI ~ fg(w) h?

Finally an estimate for the size of the zero set of a holomorphic function,
Proposition 6.7 in [6], implies that

HIY(Z(h) N B(y,r/20)) < C(Np(x,4r) + 1).

We sum these inequalities over all balls B(y,r/20) to obtain the required
estimate for H?~1(Z(h) N B(z,7)).

A.2. Continuity of eigenfunctions in Lipschitz domains. First we
prove the following regularity result.

Lemma 11. Let Q be a domain in R? and let h be a harmonic function in
Q. Suppose that B is a ball centred on ) and that there exists a sequence
of functions {hy}, hy, € C§°(RY) with the support of hy, contained in Q, such
that hy, — h and Vh,, — Vh in L*(BNQY). Assume also that 9QNB € Lip(t)
and define h =0 on 02N B. Then h € C(QNiB).

Proof. We define the function
_ Jr*in QN B,
~10in B\ Q.
Then v € LY(B). Let ¢ € C§°(B). We have

(20) /UA(,D: lim [ h2Ag
B

n—o0 B

= —2 lim hnVhy - Vo = —2/ hVh - V.
n—oo Jp BNQ

On the other hand, since A is harmonic in 2 , we obtain

0—/Vh-V(h,L(p)—/thh-ch+/g0Vh-th.
Q Q Q

Taking the limit as n — oo, we get

/th-chz—/ ©|Vh[2
Q Q



22 A. LOGUNOV, E. MALINNIKOVA, N. NADIRASHVILI, AND F. NAZAROV

Combining the last identity and gives

/vmp:2/ |Vh|%e.
B BN

In particular, v is subharmonic in B in the weak sense: If ¢ > 0, ¢ € C§°(B),
then [5vAp > 0. If a is a standard mollifier, as(z) = 6 %a(6'z), and
Vs = VU * Qiep, where 7 is the radius of B. Then v, is subharmonic in (1 —¢)B
and v. — v in L!'(B) and almost everywhere. In particular, v satisfies the
mean value inequality at each of its Lebesgue points. Clearly any y € QN B
is a Lebesgue point of v as v = h? in QN B and h € C(Q). So for any
y € QN B and any ball By C B centred at y we have

1

< — V.
|Bl, By

v(y)
In particular,
d
sup h? < Ll h? < .
%Bmﬂ ‘B| BNQ

Suppose that 1 € 002N %B. There exists a cone C with the vertex at xy
such that C N (2N B) = @ and the aperture of C does not depend on x;
(it depends on 7 only). We use the following simple fact. If 31 € R? and
p > 2dist(z1,y1), then

‘B(ylap) r_)C| Z a‘B(ylap)L

for some a = a(1) € (0,1).
Let my = supp(,, 3-#)n0 |h| for & > 2. We know that mj < oco. Let
y € B(z1,37Fr)NQ, k > 3. By the mean value inequality applied to v, we
obtain
1
vy < 555 v< (1—a)mi_,.
( ) |B(y723 kr)| B(y,2-:37kr) ( ) kot

Thus supg(,, 3-+r)na bl < (1 - o) (k=2)/2 SUp2 pnq |h|. We conclude that
li h(y) = 0.
sityen"V)

O

We remark that the argument above implies that h is Holder continuous
in QN B and there exist C > 0 and 8 € (0, 1) such that

1
\h(y)| < Cdist(y, dQ)°r=? sup |h|, y€QnN=B.
Q2B 2
3

Corollary 2. Let Qg C R"™ be a bounded Lipschitz domain. Let uy be
Laplace Dirichlet eigenfunction in Q. Then uy extended by zero to 9 is
continuous on €.
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Proof. We have uy € W&’Q(Qo) N C>®(Qp) and Auy + Auy = 0 in Qp. We

consider the harmonic function h(z,t) = eﬁtuk(x) in Q =QpxR. We
note that for any B centred on 9, h satisfies the assumptions of Lemma
Then h is continuous in Q and vanishes on 9. This implies that
uy € C(Qp) and uy = 0 on 9. O

A.3. Quantitative Cauchy uniqueness. We give an elementary proof of
Lemma [2] in this section for the convenience of the reader.

Let G(z,y) = —cq|lr — y|>~? be the fundamental solution of the Laplace
equation in R? when d > 3 (similar computations can be done with G (z,y) =
colog |z — y| for d = 2). We write 0By = I' UX, where I is the flat part of
the boundary and ¥ = B4 \ I'. We denote by n the outer normal to 0B.
Then for z € B, the Green formula implies

)= [ |Gt - G G|

= /F [gi(aj,y)h(y)—G(%y)gZ(y)} dy

oG oh
+ [ |G i - G et | ay
= hl(l‘) + hg(l‘)

The functions hy and ho are defined in the complements of I' and X re-
spectively and are harmonic in the corresponding domains. Moreover, for
r ¢ By, applying the Green formula to the functions h and G(z,-) in By,
we obtain hq(z) + ha(z) = 0.

First, we estimate the value of hy at some point z = (2/,2") € B\T C
R~1 x R. We divide the integral into two

oG Oh
m@) = [ G2y — [ GGy = 1) + Bio).
T on T on
Since |0h/dn| < € on I, the second integral is bounded by
|I2(z)| < cds/ |z’ — o[>~ 4dy’ < Ce.
Bd—1(z',2)

To estimate the first term, we note that for y € T,

0G _
%(ﬂj7y) = C&ZE”’.T - y’ d7

and thereby

/|2 2"
I

< I //.
an (w,y)‘dy = Cd/Rd_l (22 + ‘l,/_y/|2)d/2dy “d

Using that |h(y)| < € on I', we conclude that |I;(z)] < Ce in B\ I
Therefore |hq(x)| < Ce in B\T. Since hi(z)+ ha(z) = 0 when x € R?\ By,
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and |hy + he| = |h| < 1 in B, we obtain that ho(x) satisfies
|ha(z)] < Ce in BL =B\ By and |ha(z)] <1+ Ce in B;.

Now we apply the three sphere inequality @ We note that ho is harmonic
in B. First we take z = (0, —1/5) and r = 1/5 and obtain

sup |ho| < sup |ho| < 2% sup |hof)/?( sup |ho|)'/? < CEV/2,
B(0,1/10) B(2,3/10) B(z,1/5) B(w,4/5)

Next, we apply inequality @ to the balls centred at the origin with
r = 1/10. We obtain

sup |hg| < CeV/4
B(0,3/20)

Iterating two more times, by applying the same inequality to the balls cen-
tred at the origin and » = 3/20 and, finally, » = 9/40, and noticing that
27/80 > 1/3, while 9/10 < 1, we conclude that

sup |ha| < Ce'/16.
iB
3

Finally, combining the last inequality with the bound |hi| < Ce in By, we
get the required estimate |h| < Ce7 in 1B,
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