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This paper studies numerical solutions for parameterized partial differential equations 
(PDEs) with deep learning. Parametrized PDEs arise in many important application areas, 
including design optimization, uncertainty analysis, optimal control, and inverse problems. 
The computational cost associated with these applications using traditional numerical 
schemes can be exorbitant, especially when the parameters fall into a particular range, 
and the underlying PDE model is required to be solved with high accuracy using a 
fine spatial-temporal mesh. Recently, solving PDEs with deep learning has become an 
emerging field in scientific computing. Existing works demonstrate great potentials of 
the deep learning-based approach in speeding up numerical solutions of various types of 
PDEs. However, there is still limited research on the deep learning approach for solving 
parameterized PDEs. If we directly apply existing deep supervised learning models to 
solving parameterized PDEs, the models need to be constantly fine-tuned or retrained 
when the parameters of the PDE change. This limits the applicability and utility of these 
models in practice. To resolve this issue, we propose a meta-learning based method 
that can efficiently solve parameterized PDEs with a wide range of parameters without 
retraining. Our key observation is to regard training a solver for the parameterized 
PDE with a given set of parameters as a learning task. Then, training a solver for 
the parameterized PDEs with varied parameters can be viewed as a multi-task learning 
problem, to which meta-learning is one of the most effective approaches. This new 
perspective can be applied to many existing PDE solvers to make them suitable for solving 
parameterized PDEs. As an example, we adopt the Multigrid Network (MgNet) [21] as 
the base solver. To achieve multi-task learning, we introduce a new hypernetwork, called 
Meta-NN, in MgNet and refer to the entire network as the Meta-MgNet. Meta-NN takes 
the differential operators and the right-hand-side of the underlying parameterized PDEs as 
inputs and generates appropriate smoothers for MgNet, which are essential ingredients for 
multigrid methods and can significantly affect the convergent speed. The proposed Meta-
NN is carefully designed so that Meta-MgNet has guaranteed convergence for Poisson’s 
equation. Finally, extensive numerical experiments demonstrate that Meta-MgNet is more 
efficient in solving parameterized PDEs than the MG methods and MgNet trained by 
supervised learning.
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1. Introduction

Partial differential equations are essential tools in many areas, such as physics, chemistry, biology, and economics. Most 
PDEs we encounter in practice contain parameters representing the system’s physical or geometric properties, e.g., kinetic 
characteristics, material properties, the shape of the domain, etc. In practice, we often found ourselves in multi-query 
scenarios where the PDEs need to be solved for numerous different parameters with high accuracy and efficiency. Such sce-
narios include design optimization, optimal control, uncertainty quantification, inverse problems, etc. Therefore, a uniformly 
efficient solver for all parameters is urgently needed.

In this paper, we consider the following parameterized steady-state PDEs⎧⎨⎩A˜η u˜= f˜, in �,

u˜= u˜b, on ∂�,
(1)

where � ⊂ Rd, d, n ∈ N+ , U, F are two function spaces on �, and Ub is a function space on ∂�, u˜ = (u1, u2, ..., un) ∈ Un , 
f˜ = ( f 1, f 2, ..., f n) ∈ Fn , u˜b = (u1

b, u
2
b, ..., u

n
b) ∈ Un

b . And A˜η : Un → Fn is a linear differential operator with parameter η =
(η1, . . . , ηm). For convenience, we will omit η when there is not any confusion. In this paper, the specific PDEs we choose 
for our numerical experiments are 2D/3D steady-state anisotropic diffusion equations and Ossen equations. The steady-state 
diffusion equations are widely used in fluid mechanics, electronic science, image processing, etc. The Ossen equations play 
an important role in fluid mechanics. We recall these PDEs as follows:

(1) 2D anisotropic diffusion equations:{−∇ · (C∇u) = f , in �,

u = 0, on ∂�,

where C = C(ε, θ) =
(
cos θ − sin θ

sin θ cos θ

)(
1 0
0 ε

)(
cos θ sin θ

− sin θ cos θ

)
is a 2 × 2 matrix, ε < 1, θ ∈ [0, π ].

(2) 3D anisotropic diffusion equations:{−∇ · (C∇u) = f , in �,

u = 0, on ∂�,

on domain � = [0, 1]3. In this paper, we only concern the case with

C =
⎛⎝ε0

ε1
ε2

⎞⎠ , ε0, ε1, ε2 > 0.

(3) Ossen equations:⎧⎪⎪⎨⎪⎪⎩
−μ�u˜+ (a˜· ∇)u˜+ ∇p = f˜, in �,

−divu˜= 0˜, in �,

u˜= 0˜, on ∂�.

where μ = 1

Re
and Re is Reynold number, and a˜= (ax, ay)

� .

When discretized, equation (1) becomes a linear system of equations

Aηu = f. (2)

Linear system (2) is usually of a very large scale in practice, and iterative methods are often used to solve it. The multi-
grid (MG) method [49,50,19] is one of the most compelling classical methods. The computational complexity of the MG 
method for the Poisson’s equation is only O (n), where n is the size of the matrix; as compared to another popular high-
performance numerical method, the spectral method, whose complexity is O (nlogn). However, the MG method still has 
trouble solving PDEs (1) with η falling into a specified range. Taking the 2D anisotropic diffusion equation as an example 
[52], the computational cost of the MG method grows rapidly with ε → 0 (see Fig. 1).

Therefore, people try to adjust the parameters and components in the MG method (such as smoothers, prolongations, 
and restrictions) to improve its performance according to η. Although decades of continuing researches are devoted to 
the convergence theory of the MG method to find the theoretically best parameters, the computational cost of finding 
such optimal parameters for a given η can be much higher than solving the linear system (2) itself. For example, [51]
2
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Fig. 1. The wall times of convergence grows rapidly with ε → 0.

derives the theoretically optimal prolongation for a given smoother. However, it requires solving an eigenvalue problem. 
Crucial parameters such as the damped coefficient of damped Jacobi smoother and the prolongations and restrictions of the 
algebraic MG method are mostly designed by human experts. However, these manually designed parameters can be rather 
complicated and have limited improvements for MG methods in practice.

Before the rise of deep learning, machine learning had a similar challenge as MG methods. Classical machine learning 
heavily relies on feature engineering, where people tried to manually design various types of features that are later fed into 
a classification or regression model. However, the quality of the features depends on the data set, the downstream task, and 
also the choice of the classification and regression model. It is extremely difficult to design fully adaptive and good feature 
extractors purely based on the human experience. This is where deep learning has been proven tremendously effective. After 
the advent of deep learning, feature extractors can be learned directly from data [28] in an end-to-end fashion. This often 
leads to feature extractors significantly surpass the previous ones designed by human experts in performance. This enables 
deep learning to achieve enormous success in many areas of artificial intelligence, such as natural language processing [23]
and games [43].

The success of deep learning motivated us to resort to a data-driven approach to determine MG methods’ parameters. 
Among all deep learning approaches, deep supervised learning has become one of the most popular data-driven approaches 
in scientific computing. Therefore, using deep supervised learning to determine the parameters of the MG method is a 
natural choice. Since classical MG methods do not work well for certain η, we can learn the parameters in the MG method 
to make it uniformly efficient for all η.

Deep supervised learning can be easily applied to the MG method if we cast the MG method into a similar formula-
tion as deep neural networks. As first observed in [21], the MG method is an iterative method which can be viewed as a 
feedforward network. Furthermore, the prolongations, restrictions, and some special smoothers can all be written as convo-
lutions. Therefore, the MG method has a natural connection with the convolutional neural network (CNN). With that, [21]
introduced the Multigrid Network (MgNet).

The original MgNet in [21] was proposed for image classification. In this paper, we convert it into a form suitable to 
solve PDEs and refer to it as PDE-MgNet. PDE-MgNet takes the right-hand-side function f˜ as input and the approximated 
solution u˜ as output. PDE-MgNet performs very well when it is trained on a data set generated by η ∼ P in PDEs (1) and 
tested on some other η generated from the same distribution P . However, it may generalize poorly (i.e., convergence slows 
down significantly) beyond the training setting, i.e., for η ∼P ′ with P ′ different from P .

This problem is common for deep supervised learning. To resolve it, we need to adopt a more robust learning mechanism. 
In this paper, we regard learning a solver for PDEs (1) with a given η as one learning task. Then learning solvers for PDEs 
(1) for all η can be naturally viewed as a multi-task learning problem. In the area of artificial intelligence, meta-learning is 
an effective approach to solve multi-task learning problems. Thus we propose to use the meta-learning approach to improve 
PDE-MgNet. Note that PDE-MgNet is just an example we choose in this paper. A similar methodology can be applied to 
enhance other numerical solvers for parameterized PDEs.

First, let us briefly review meta-learning. Meta-learning [45,24], also known as learning to learn, is a science of studying 
how different machine learning approaches perform on a wide range of tasks and use these experiences to speed up the 
learning of new tasks. In contrast, supervised learning trains a model Mη for each task Tη separately. Even though all Mη

have the same network structures, we need to retrain the model each time η changes. If there are numerous tasks to 
learn, the computation cost can be unbearable for supervised learning. The meta-learning approach resolves this problem 
3
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by gaining experience over multiple learning episodes - often covering the distribution of related tasks - and uses this 
experience to improve its future learning performance.

There are several strategies in meta-learning. We briefly introduce two strategies that are suitable for our task of interest. 
Suppose the only difference between Mη is the weights of neural networks, namely

Mη = M(x;wη),

where x is the input and wη is the weights of neural networks. The two strategies to quickly find suitable wη for each task 
η are given as follows.

(1) Finding a good initialization [13,37]: This strategy makes use of a series of tasks Tη1 , Tη2 , ..., Tηn to obtain a good initial 
weights w0 of the deep neural network M. Then, we can easily get wη for each task η by fine-tuning from w0. For 
example, suppose the task Tη is sampled from distribution P(T), the loss of model M on the task T is LT(M), and 
we use gradient descent with learning rate α to train the model. After one step of gradient descent starting from w0, 
we obtain the updated weights as w′ = w0 − α∇wLTη (Mη(·; w0)). Thus, the initial weights w0 should minimize the 
following expectation

E
Tη∼P(T)

LTη (Mη(·;w′)). (3)

This is the main idea of Model-Agnostic Meta-Learning (MAML) proposed by [32], where an algorithm solving (3) is 
also proposed to estimate w0.

(2) Hypernetwork [17,33,5,54]: This strategy relies on the designs of a network called hypernetwork to infer wη instead of 
direct learning of wη by training. The hypernetwork takes the information on the task η as input and wη as output. 
The hypernetwork are trained to make an accurate prediction on wη for each task η. When the hypernetworks are not 
powerful enough to make accurate predictions on wη , we treat the approximation of wη as a good initial value and 
resort to fine-tuning on each task η to improve the prediction. In particular, if the output of a hypernetwork is the same 
for all η, we can think that the hypernetwork gives a good initialization for all tasks Tη . In this regard, the previous 
strategy can be viewed as a special case of the hypernetwork approach.

By viewing solving the parameterized PDE (1) for a given η as a task Tη , we adopt the hypernetwork based meta-learning 
approach to improve upon the PDE-MgNet. With this, we introduce a new model called Meta-MgNet. Compared to PDE-
MgNet, the Meta-MgNet uses a carefully designed hypernetwork to infer the model parameters of the MgNet, instead of 
learning it directly from data. The hypernetwork grants the Meta-MgNet great ability of in-distribution generalization and 
out-of-distribution transfer. We shall call this hypernetwork Meta-NN. The Meta-NN is used to infer parameters of specific 
components in the MgNet. In this paper, we select two types of smoother as an example and design the corresponding 
meta-smoother (i.e., using Meta-NN to infer parameters of the smoother) for the Meta-MgNet. The two types of smoother 
are the convolution smoother, which is exactly what MgNet uses, and the smoother based on subspace correction. For the 
convolution smoother, the Meta-NN infers its convolution kernels. For the smoother based on subspace correction, the Meta-
NN infers the spanning vectors of the subspace. The parameters of the Meta-NN are first trained on a data set with mixed 
data from different η. Then, we can fine-tune the Meta-NN while solving a specific Tη . However, our numerical experiments 
show that the weights given by Meta-NN without retraining are good enough. Therefore, we shall skip the retraining step 
in the experiments.

1.1. Related work

In the area of solving PDEs by machine learning, especially deep learning, the existing algorithms can be divided into the 
following two categories.

(1) Using neural networks to approximate the function u˜: These algorithms are suitable for a PDE with a fixed differential 
operator A˜ and the right-hand side f˜. The most notable advantage of this approach is that they can: 1) overcome the 
curse of dimensionality and solve high-dimension PDEs; 2) resolve complex geometries in the solution due to the mesh-
less representation of neural networks. Successful examples include the nonlinear convection-diffusion PDEs [39,40], 
Riemann Problem [36], high-dimension PDEs [3,11,20,44], and others [47,53,46,31,42]. Nevertheless, if the parameter η
or the right-hand-side function f˜ is changed, the neural network often needs to be retrained.

(2) Using neural networks to approximate the solution operator A˜−1: The general modeling strategy of methods in this 
category is to replace a portion of the classical numerical method with neural networks to improve its performance. 
For example, [41] uses NN to estimate locations of discontinuous, [9] uses NN to introduce an appropriate amount of 
artificial dissipation in the numerical solver. There are also works using NN to approximate the entire operator A˜−1. For 
example, [25] trains a U-Net as a solver for Poisson’s equations. The most related work to the current one is [12], where 
the authors use a meta-learning approach for parameterized pseudo-differential operators with deep neural networks. 
4
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However, there are two main differences between their work and ours. Firstly, their idea is to find the map η 
→ A˜−1
η

directly. Ours is based on the observation that learning solvers for PDE (1) with different η is a multi-task learning 
problem and then introduce meta-learning to solve it. Secondly, their approach is based on the wavelet method, while 
ours is based on the MgNet.
There are also several studies on improving the MG method by deep-learning. For instance, [27,15,35] proposed a 
series of data-driven approaches to design prolongations and restrictions in MG. However, these methods are based on 
supervised learning while we focus on learning smoothers based on meta-learning.

In addition to the approaches above, the reduced-order modeling (ROM) [1,4] is also a widely used method for solving 
parameterized PDEs. The objective of ROM is to generate reduced models that are cheaper to solve while still well approx-
imate the original PDEs. For example, [29] proposes a novel framework for projecting dynamical systems onto nonlinear 
manifolds using minimum-residual formulations at the time-continuous and time-discrete levels; [14] proposes new deep 
learning-based nonlinear ROM.

The remaining sections are organized as follows. In section 2, we will introduce necessary notations for the rest of the 
paper and discuss how to represent discrete PDEs by convolutions. In section 3, we review the multigrid method and the 
PDE-MgNet. In section 4, we introduce the proposed Meta-MgNet and provide a preliminary convergence analysis of the 
algorithm. In section 5, we present the numerical experiments and comparisons among the classical MG methods, PDE-
MgNet, and Meta-MgNet. Concluding remarks are given in section 6.

2. Convolutions and differential operators

The key to solving PDEs is to discretize the differential operators properly. The main goal of this section is to present a 
theorem that convolutions can express the most meaningful discretizations of differential operators. This theorem plays an 
essential role for us to rewrite traditional numerical solvers as CNNs. The MgNet introduced by [21] is an example, which 
is a reformulation from the MG method. Furthermore, we will introduce the definition of convolution operators and then 
show how to use convolutions to represent discrete forms of differential operators.

2.1. Convolution operators

In this paper, we only consider the convolution of two second-order tensors and the convolution of a fourth-order tensor 
and a third-order tensor. Consider two second order tensors K = (Kj,ı ), with j, ı ∈ Z and v = (v j,i), with i ∈ {0, 1, ..., I}, j ∈
{0, 1, ..., J }, i.e.

K =

⎛⎜⎜⎜⎜⎜⎜⎝

. . .
... . .

.

K−1,−1 K−1,0 K−1,1
· · · K0,−1 K0,0 K0,1 · · ·

K1,−1 K1,0 K1,1

. .
. ...

. . .

⎞⎟⎟⎟⎟⎟⎟⎠ and v =

⎛⎜⎜⎜⎝
v0,0 v0,1 · · · v0,I
v1,0 v1,1 · · · v1,I
...

...
. . .

...

v J ,0 v J ,1 · · · v J ,I

⎞⎟⎟⎟⎠ .

The convolution K � v is also a second-order tensor, and the values of its components are

(K � v) j,i =
∑

j,ı∈Z
Kj,ıv j+j,i+ı ,

where i ∈ {0, 1, ..., I}, j ∈ {0, 1, ..., J }. If i + ı /∈ {0, 1, ..., I} or j + j /∈ {0, 1, ..., J }, we set v j+j,i+ı = 0.
Consider a forth-order tensor K and a third-order tensor v, where K = (Kl,k,j,ı ), with l, k ∈ {1, 2, ..., S}, j, ı ∈ Z and 

v = (vk, j,i), with k ∈ {1, 2, ..., S}, i ∈ {0, 1, ..., I}, j ∈ {0, 1, ..., J }. The definitions of convolution, convolution with stride and 
deconvolution (the transpose of convolution) are listed below

(1) Convolution: The convolution K � v is a third order tensor and the value of its components are

(K � v)l, j,i =
S∑

k=1

∑
j,ı∈Z

Kl,k,j,ıvk, j+j,i+ı .

(2) Convolution with strides: Suppose Is, J s ∈ N+ , and we use � J s,Is to express the convolution with stride= ( J s, Is) and 
the components of K � J s,Is v are

(K � J s,Is v)l, j,i =
S∑

k=1

∑
j,ı∈Z

Kl,k,j,ıvk, j J s+j,i Is+ı .

If Is = J s , we can write � J s,Is briefly as � J s .
5
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(3) Deconvolution: Suppose Is, J s ∈ N∗ , and we use � J s,Is to express deconvolution with strides= ( J s, Is) and the compo-
nents of K � J s,Is v are

(K � J s,Is v)l, j J s+ j′,i Is+i′ =
S∑

k=1

∑
j,ı∈Z

Kl,k,j J s+ j′,ı Is+i′vκ, j+j,i+ı .

If Is = J s , we can write � J s,Is briefly as � J s . We can also regard deconvolution as a convolution after upsampling. For 
example, we have

K � (v ↑) = K �2 v.

2.2. Representing discretized PDEs in convolutions

We discuss how to transform the A˜η to the convolution form. We first write components of (1) in the following matrix 
form ⎛⎜⎜⎜⎝

A1,1 A1,2 · · · A1,n
A2,1 A2,2 · · · A2,n

...
...

. . .
...

An,1 An,2 · · · An,n

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

u1

u2

...

un

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
f 1

f 2

...

f n

⎞⎟⎟⎟⎠ , (4)

where each linear differential operator Ai, j(i, j = 1, 2, ..., n) is a component of A˜η . Thanks to the linear superposition 
property of each component in (4), we only need to consider each component separately, i.e., for given linear differential 
operator K and a functional f in V′ , find v ∈V to satisfy

Kv = f . (5)

Our goal is to find a kernel K, and tensors v and f to represent the discretization of (5) as

K � v = f. (6)

Suppose that the Galerkin method, e.g. the finite difference method (FDM) or finite element method (FEM), is used to 
discretize the PDEs (5). Now, we propose a general way to convert (5) into the convolution form (6). According to the 
Galerkin method, we first convert PDEs (5) to its weak form:

find v ∈V, such that ∀w ∈V, K (v, w) = f (w). (7)

Then, we choose a finite dimensional subspace Vh ⊂ V to discretize (7) and solve the projected problem:

find vh ∈Vh, such that ∀wh ∈Vh, K (vh, wh) = f (wh).

Let 
 be a set of basis of Vh and assume that it satisfies the following assumptions.

Assumption 2.1. Suppose 
 can be divided into S groups 
1, ..., 
S , where 
k = {φk, j,i |i = 0, 1, 2..., Ik, j = 0, 1, 2, ..., Jk} and 
each 
k can be generated by translations along the grid-lines from a compact support function ϕk, i.e. ∃ϕk ∀i ∈ {0, 1, 2, ..., Ik}, j ∈
{0, 1, 2, ..., Jk} such that

φk, j,i(x, y) = ϕk(x− ih, y − jh).

Then, we have the following theorem stating that the PDE (5) discretized by FDM or FEM can be expressed in convolution 
form.

Theorem 1. If a discretized scheme in FDM or FEM satisfies Assumption 2.1, the discretized PDE Kv = f can be written in the form 
K � v = f with K and f given as follows

K = (Kl,k, j,i) = K (ϕk(x− ih, y − jh),ϕl(x, y)) and f = (fl, j,i) = f (φl, j,i). (8)

Proof. With Assumption 2.1, we can write vh as

vh =
S∑ Jk∑ Ik∑

vk,j,ıφk,j,ı .
k=1 j=0 ı=0

6
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Fig. 2. Different case of point-wise discretion.

According to Galerkin method, we have

K (vh, φl, j,i) = K (

S∑
k=1

Jk∑
j=0

Ik∑
ı=0

vk,j,ıφk,j,ı , φl, j,i) =
S∑

k=1

Jk∑
j=0

Ik∑
ı=0

vk,j,ıK (φk,j,ı , φl, j,i)

=
S∑

k=1

Jk∑
j=0

Ik∑
ı=0

vk,j,ıK (ϕk(x− ıh, y − jh),ϕl(x− ih, y − jh))

=
S∑

k=1

Jk− j∑
j=− j

Ik−i∑
ı=−i

vk,j+ j,ı+i K (ϕk(x− (ı + i)h, y − (j + j)h),ϕl(x− ih, y − jh))

=
S∑

k=1

Jk− j∑
j=− j

Ik−i∑
ı=−i

vk,j+ j,ı+i K (ϕk(x− ıh, y − jh),ϕl(x, y)).

Let K = (Kl,k, j,i), where

Kl,k, j,i = K (ϕk(x− ih, y − jh),ϕl(x, y)). (9)

While i /∈ {0, 1, ..., Ik} or j /∈ {0, 1, ..., Jk}, we set vk, j,i = 0, Kl,k, j,i = 0. Then, we have

K (vh, φl, j,i) =
S∑

k=1

Jk− j∑
j=− j

Ik−i∑
ı=−i

vk,j+ j,ı+iKl,k,j,ı =
S∑

k=1

∑
j∈Z

∑
ı∈Z

vk,j+ j,ı+iKl,k,j,ı = (K � v)l, j,i .

Let f = (fl, j,i) with fl, j,i = f (φl, j,i). We obtain

K (vh, φl, j,i) = f (φl, j,i), ∀l = 1,2, ..., S,

which is the same as (6). �
Although we have demonstrated a generic method to convert PDEs (5) into the convolution form, it is sometimes incon-

venient to use. We can calculate K in an easier way for most discretization schemes, as will be described in the remaining 
part of this subsection. For both FDM and FEM discretization, we assume that the mesh T is N × N uniform triangular or 

rectangular mesh, and let h = 1

N
.

2.2.1. Finite difference methods (FDM)
FDM is one of the most popular discretizations used for solving PDEs by approximating them with difference equations. 

The basis functions of FDM are Legendre polynomials. Thus, it is not convenient to use (8) to calculate K and f. Fortunately, 
we can use Taylor’s expansion to compute entries of K and f. Furthermore, the functions v and f can be easily discretized 
by using their values restricted on the mesh T . As examples, we present four commonly seen cases as follows (see Fig. 2).

(1) Vertex of an element: set v j,i = v(ih, jh), i, j = 0, 1, ..., N;
(2) Midpoint of a horizontal edge: set v j,i = v((i − 0.5)h, jh), i = 1, 2, ..., N, j = 0, 1, ..., N;
(3) Midpoint of a vertical edge: set v j,i = v(ih, ( j − 0.5)h), i = 0, 1, ..., N, j = 1, 2, ..., N;
(4) Center of an element, set v j,i = v((i − 0.5)h, ( j − 0.5)h), i, j = 1, 2, ..., N .

After choosing a discretization for v and f , we use Taylor expansion to discretize K. Suppose p ∈ N, α = (α1, α2), |α| =
α1 + α2, ∂α = ∂α1+α2

(∂x)α1 (∂ y)α2
and K = ∑

|α|�p aα∂α . Then, we can obtain the kernel K from a difference scheme. If ∀α

such that α � p, we have a finite difference approximation of ∂α as ∂αv j,i ≈ ∑
j,ı q

α
j,ıv j+j,i+ı and the expression of each 
h

7
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Table 1
Some common finite difference schemes and its corresponding kernels K.

K Difference scheme Kernel K

∂x

1
h (vi, j − vi−1, j)

1
h

(
−1 1 0

)
1
h (vi+1, j − vi, j)

1
h

(
0 −1 1

)

∂y

1
h (vi, j − vi, j−1)

1

h

⎛⎜⎜⎝
−1

1

0

⎞⎟⎟⎠
1
h (vi, j+1 − vi, j)

1

h

⎛⎜⎜⎝
0

−1

1

⎞⎟⎟⎠
∂xx

1
h2

(vi−1, j + vi+1, j − 2vi, j)
1
h2

(
1 −2 1

)

∂xy
1

4h2
(vi−1, j−1 + vi+1, j+1 − vi+1, j−1 − vi−1, j+1)

1

4h2

⎛⎜⎜⎝
1 0 −1

0 0 0

−1 0 1

⎞⎟⎟⎠

∂yy
1
h2

(vi, j−1 + vi, j+1 − 2vi, j)
1

h2

⎛⎜⎜⎝
1

−2

1

⎞⎟⎟⎠

� 1
h2

(vi−1, j + vi+1, j + vi, j−1 + vi, j+1 − 4vi, j)
1

h2

⎛⎜⎜⎝
0 1 0

1 −4 1

0 1 0

⎞⎟⎟⎠

Fig. 3. Some usual support of base function in FEM on rectangular mesh.

component of K is Kj,ı = ∑
|α|�p

∑
j,ı aαqα

j,ı . Common finite difference approximations of partial derivatives and their cor-
responding convolution kernels are listed in Table 1.

2.2.2. Finite element methods (FEM)
FEM is more complicated than FDM because a variable v usually contains several types of basis functions. Each type 

of basis functions is a channel of the tensor v. For most FEM methods on the rectangle mesh, we can divide each basis 
functions into the following 4 cases based on the support of the functions, i.e. 2 × 2, 2 × 1, 1 × 2, and 1 × 1 elements (see
Fig. 3). These four cases can be reduced to the case for FDM.

On the triangular mesh, each basis function can be divided into 6 cases, which are shown in Fig. 4 according to the 
shape of the support of the function. For case (1)∼(4), they can also be reduced to the case of FDM, while for case (5) or 
(6), we may have to apply Theorem 1 to calculate K and f.

3. The multigrid method and PDE-MgNet

In this section, we briefly describe the geometric MG method and PDE-MgNet. MG method is one of the most high-
efficiency methods for solving PDEs. We consider the discrete form of the parameterized PDEs (2).

3.1. Multigrid method

Iterative method is one of the basic numerical methods for solving the linear system (2). Given an initial guess u0 and 
an update scheme represented by H, we can write the iterative method generically as

ut+1 = ut +H(ut), t = 0,1 . . . , T . (10)
8
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Fig. 4. Some usual support of base function in FEM on triangular mesh.

Note that we can regard (10) as a dynamical system or a feed-forward network. Such perspective is the key to connect deep 
neural networks (e.g. ResNet [22]) with dynamic systems, PDEs and optimal control [16,8,10,18,34,7].

In addition to the iterative scheme (10), the residual correction scheme

ut+1 = ut +H(f− Aut), t = 0,1 . . . , T , (11)

is one of most important types of iterative method. The MG method is one of such iterative methods, which is written as:

ut+1 = ut +Mg(f− Aut), t = 0,1 . . . , T , (12)

where the Mg operator in (12) is given by Algorithm 1.
The MG operator can be divided into two steps, i.e. smoothing and coarse grid correction. The smoothing step is to use 

a smoother to eliminate high-frequency errors. A smoother B (or its matrix form B) is often an iterative scheme by itself 
taking the form

u+ = u0 + B(f − Au0).

Popular choices of the smoother in MG include the Jacobi and Gauss-Seidel (GS) smoother, which are listed below

B =
{
diag(A)−1 Jacobi

tril(A)−1 GS
. (13)

The Jacobi or GS smoother can efficiently eliminate high-frequency approximation errors. However, they are ineffective 
for low-frequency errors, which is where the coarse grid correction is needed. The MG methods utilize the solution on a 
coarse grid to approximate the low-frequency error. As a simple example, we illustrate the steps of coarse grid correction 
in a two-level MG in Fig. 5.

For the multi-level MG method, if we have a sequence of grids T 1(= T ), T 2, ..., T J and assume that the prolongation 
and restriction between T � and T �+1 are P�

�+1 and R�+1
� . Let A�+1 = R�+1

� A�P�
�+1. The Algorithm 1 presents the algorithm 

of multi-level MG.

3.2. PDE-MgNet

The original MgNet proposed by [21] is a new CNN model for image classification, which is inspired by the connection 
between CNNs and the MG method. As observed by [21] that the smoothers, prolongations, and restrictions can be repre-
sented by convolutions. Thus, we can write the corresponding kernels as B, P, and R. Therefore, the MG method can be 
naturally reformulated as a CNN model, which was called the MgNet by [21].

In this paper, we focus on solving PDEs. Thus, we need to modify the original MgNet in [21] to be suitable for solving 
PDEs. We shall call the modified MgNet the PDE-MgNet. We formulate every component of PDE-MgNet in the convolution 
form. For that, we consider the convolution form of PDEs (1):

Aη � u = f. (14)

PDE-MgNet replaces the smoother B� , the prolongation P , the restriction R and A� in the MG methods described in
Algorithm 1 with trainable convolution operators. Figure 6 shows the architecture of a two-level \-Cycle PDE-MgNet and 
the multi-level case of PDE-MgNet is presented in Algorithm 2.
9
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Fig. 5. Two level \-Cycle MG.

Algorithm 1 u = Mg(f; J , ν1, · · · , ν J ).
Hyper-parameters: number of grids J , times of smooth in each grid: ν1, · · · , ν J

Input: right hand side f
Output: approximate solution u
Initialization:

f1 ← f, u1,0 ← 0, r1,0 ← f.

Smoothing and restriction from fine to coarse level (nested)
for � = 1 : J do

Smoothing
if � = J then

u�,1 ← (A�)−1r�,0

else
for i = 1 : ν� do

u�,i ← u�,i−1 + B�r�,i−1

r�,i ← f� − A�u�,i .

end for
end if
Form restricted residual

f�+1 ← R�+1
� r�,ν� , u�+1,0 ← 0, r�+1,0 ← f�+1.

end for
Prolongation and restriction from coarse to fine level
for � = J − 1 : 1 do

Coarse grid correction

u�,ν� ← u�,ν� + P�
�+1u

�+1,ν� .

end for
return u = u1,ν1 .

With Algorithm 2, we obtain the iterative PDE-MgNet for solving (14):

ut+1 = ut + PDE-MgNet(f − A � ut), t = 0,1 . . . , T , (16)

with u0 = 0. For convenience, we shall refer to the iterative PDE-MgNet (16) simply as the PDE-MgNet. Note that the PDE-
MgNet (16) is precisely the MG method (12) with A, B, P and R replaced by convolutions, and it reduces to the original 
MgNet proposed by [21] when the prolongation step is replaced by a classifier.
10
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Fig. 6. Two level \-Cycle PDE-MgNet.

Algorithm 2 u = PDE-MgNet(f; J , ν1, · · · , ν J ).
Hyper-parameters: number of grids J , times of smooth in each grid: ν1, · · · , ν J

Input: right-hand side f
Output: approximate solution u
Initialization

f1 ← f, u1,0 ← 0, r1,0 ← f.

Smoothing and restriction from fine to coarse level
for � = 1 : J do

Smoothing:
if � = J then
Convert r�,0 into vector form r�,0 and A� into matrix form A� .

u�,1 ← (A�)−1r�,0.

Convert u�,1 into tensor form u�,1.
else

for i = 1 : ν� do

u�,i ← u�,i−1 + B�,i−1 � r�,i−1, (15)

r�,i ← f� − A��u�,i .

end for
end if
Form restricted residual

f�+1 ← R�+1
� �2 r�,ν� , u�+1,0 ← 0, f�+1,0 ← f�+1.

end for
Prolongation from coarse to fine level
for � = J − 1 : 1 do

Coarse grid correction

u�,ν� ← u�,ν� + P�
�+1 �2 u�+1,ν� .

end for
return u = u1,ν1 .

The values of the convolution kernels of PDE-MgNet are learned from data by minimizing a loss function defined similarly 
as in [30]. Suppose the distribution of the right-and-side function f is F . If we sample the distribution F by Mtrain times 
and denote the training data set as XF , then the empirical loss is given by
11
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Fig. 7. Comparison between PDE-MgNet and Meta-MgNet in smoothing step. The red rectangle shows the major difference. (For interpretation of the colors 
in the figure(s), the reader is referred to the web version of this article.)

Loss ≈ 1

Mtrain

∑
f∈XF

||f − A � uT ||2
||f||2 . (17)

In our experiments, we choose T = 1 following [27].

4. Meta-MgNet

The PDE-MgNet suffers from poor generalization when tested on a data set generated from the distribution far away from 
that of the training set, which significantly limits the practicality and utility of PDE-MgNet. This motivates us to improve 
PDE-MgNet with meta-learning by introducing a properly designed hypernetwork which infers specific components of the 
PDE-MgNet according to the parameters η of the parameterized PDE to achieve uniformly fast convergence. In this paper, 
the hypernetwork is introduced to make the smoother B in PDE-MgNet PDE-dependent. Now, we shall describe details of 
the design of such hypernetwork and the architecture of the entire Meta-MgNet.

4.1. Architecture of Meta-MgNet

The hypernetwork we introduce to the PDE-MgNet is called Meta-NN. The Meta-MgNet uses Meta-NN to infer an appro-
priate smoother (called meta-smoother) for each parameter η. The architecture of the meta-smoother in comparison with 
the smoother of the PDE-MgNet is presented in Fig. 7. The advantage of Meta-MgNet over PDE-MgNet is that the smoother 
of Meta-MgNet changes according to Aη and r, or we can write B = BAη,r which is realized by the Meta-NN. The entire 
architecture of the (iterative) Meta-MgNet solving (14) is given by

ut+1 = ut +Meta-MgNet(f − Aη � ut,Aη), (18)

where the Meta-MgNet(·) is computed using Algorithm 2 with (15) replaced by the meta-smoothing:

u�,i ← u�,i−1 + B�,i−1
Aη,r (r�,i−1).

In this paper, we consider two different methods to realize the meta-smoother BAη ,r . The first one is based on the 
convolutional smoother, and its kernels are inferred from a convolutional hypernetwork. Thus, we call it the direct method, 
which is natural but mediocre. The second one is based on subspace correction smoother. Using subspace correction as 
a smoother is not as common as other smoothers such as Gauss-Seidel, but the numerical experiments show it performs 
better than direct methods.
12
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4.1.1. Direct method
In the basic structure of PDE-MgNet, the smoothers are convolutions. Therefore, the direct method is to use Meta-NN to 

infer the value of these convolution kernels. We can use a vanilla DNN as the Meta-NN. Algorithm 3 presents the details 
of this method. As for the structure of Meta-NN, we use a fully connect neural network with two hidden layers with 100 

Algorithm 3 B = Bd(r, Aη; G).
Hyper-parameters: G
Inputs: r, Aη ,
Outputs: B
1. Calculate subspace:

B ← G(
r

||r|| ,Aη).

2. Define the effect of B as

B(r) := B � r.

return B.

neurons in each layer.

4.1.2. Subspace correction method
The subspace correction (SC) method is a classical numerical method for solving linear equations. The SC smoother has 

more flexible parameters than the convolutional smoother in PDE-MgNet. For a linear system Au = f, a subspace correction 
B is determined by a subspace G which is usually represented by the range of a matrix G, i.e.

G = span{g1,g2, ...,gL} = range(G),

where G = (g1, ..., gL).
Notice that gi has the same dimension as f and u. Thus, we let Meta-NN export multi-channel tensors with the same 

shape as f and then reshape each channel to form gi . Details are given by Algorithm 4. The architecture of Meta-NN G in

Algorithm 4 B = Bsc(r, Aη; G).
Hyper-parameters: Meta-NN G
Inputs: r, Aη

Output: B
1. Calculate subspace:

G ← G(r,Aη),

where G is a tensor with shape L × K × J × I .
2. Reshape the tensor G to L × K J I matrix, and write its transpose as G, which is a K J I × L matrix.
3. Do subspace correction with the subspace G = range(G):

Sη ← AηG.

e = G(G�Sη)−1G�r.

4. Define the effect of B as

B(r,Aη;G) := Reshape(e).

where Reshape(·) means to reshape e to the same shape as tensor r.
return B.

Algorithm 4 needs a more careful design than the one in Algorithm 3. To select an appropriate subspace for traditional 
SC method is also difficult. The most popular choice is the Krylov subspace, i.e. GK = {r, Ar, ..., Akr}. If we write GK =
{f0(A)r, f1(A)r, ..., fk(A)r}, and fi(A) = Ai . Inspired by such formulation, we design the Meta-NN in Algorithm 4 as

Gθ (r,Aη) = NFCθ (Aη)(r). (19)

Here, Nγ is a CNN used to convert r into a multi-channel tensor, and each channel of the output plays the role as a fi(A)

in GK. The weights γ of Nγ are the output of the neural network FCθ . In this paper, the CNN Nγ is a 3-layer Dense-Net 
block [26] and FCθ is a 2-layer fully connected neural network. For the Dense-Net block, we use l to represent the channel 
number. An illustration of this Meta-NN is given in Fig. 8.
13
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Fig. 8. The architecture of Meta-NN with 3 output channels as an example.

4.2. Training of Meta-MgNet

Suppose the distribution of η is Z and for each given η the distribution of f is Fη . Let the number of samples of η be 
Mp. For each η, we sample f for Mm-train times and generate the data set XF ,η . Similar as the loss (17), we consider the 
following loss function

Loss = Eη∼Z ,f∼Fη

||f − Aη � uT ||2
||f||2 ≈ 1

MpMm-train

∑
η∈Z

∑
f∈XF ,η

||f − Aη � uT ||2
||f||2 .

In our experiments, we choose T = 1 following [27].

Remark 1. We can fine-tune the trained model when we are given a PDE with a new η, just like what meta-learning usually 
does. However, as shown in Appendix I, it brings little benefit and thus we shall omit fine-tuning.

4.3. Convergence analysis

This section analyzes the convergence of the proposed Meta-MgNet (16) with SC for Poisson’s equation. We assume that 
the discretization schemes are either FDM with 7-point (or 9-point) stencil or FEM with P1 or Q1 elements. Now suppose 
the approximation of u is ut , then the two-grid MG iteration can be written as

rt+ 1
2

= f− Aut = A(u− ut)

ut+ 1
2

= ut + PA−1
c P�rt+ 1

2

rt+1 = f− Aut+ 1
2

= A(u− ut+ 1
2
)

ut+1 = ut+ 1
2

+ Brt+1rt+1.

Then we have the recurrence relation of the error from t to t + 1:

||u− ut+1||A = ||(I− Brt+1A)(u− ut+ 1
2
)||A = ||(I− Brt+1A)(I− C)(u − ut)||A,

where C = PA−1
c P�A.

By [19], if the prolongation P is given by 7-point stencil or 9-point stencil, it is obviously that

||(I− C)v||2A ≤ ||v||2A, ∀v ∈ Vh, (20)

and there is a constant ca > 0 s.t. ∀v ∈ Vh ,

||(I− C)v||2A ≤ caρA
−1||v||2A2 , (21)

where ρA is the spectral radius of A.
Now, we introduce the following assumptions (see also [48,49]).

Assumption 4.1. For a given r, we assume that the associated Br satisfies:

1. Br is semi-symmetric positive defined (SSPD) and BrABr = Br ,
14
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2. There is a constant cs > 0 independent with r, s.t.

||r||2 ≤ csρAr
�Brr. (22)

Then, we have the following convergence theorem for Meta-MgNet (see also [2]).

Theorem 2. Let {ut} be the sequence generated by the Meta-MgNet (16). Then, we have the convergence estimation

||u− ut ||A ≤ δ
t
2 ||u− u0||A, with δ = 1− 1

cacs
.

Proof. It suffices to show that

||u− ut+1||A ≤ δ
1
2 ||u− ut ||A. (23)

If Br satisfies Assumption 4.1, we have

||u− ut+1||2A = ||(I− Brt+1A)(u − ut+ 1
2
)||2A

= (u− ut+ 1
2
)�(I− ABrt+1)A(I− Brt+1A)(u− ut+ 1

2
) (by Brt+1 is SSPD)

= (u− ut+ 1
2
)�(A− 2ABrt+1A+ ABrt+1ABrt+1A)(u− ut+ 1

2
)

= (u− ut+ 1
2
)�(A− ABrt+1A)(u− ut+ 1

2
) (by Brt+1ABrt+1 = Brt+1)

= ||u− ut+ 1
2
||2A − (u− ut+ 1

2
)�ABrt+1A(u − ut+ 1

2
)

= ||u− ut+ 1
2
||2A − r�t+1Brt+1rt+1

≤ ||u− ut+ 1
2
||2A − c−1

s ρ−1
A r�t+1rt+1 (by (22))

= ||u− ut+ 1
2
||2A − c−1

s ρ−1
A (u− ut+ 1

2
)�A2(u− ut+ 1

2
)

= ||u− ut+ 1
2
||2A − c−1

s ρ−1
A ||(u− ut+ 1

2
)||2A2

Write wt = u − ut+ 1
2

= (I − C)(u − ut), with (20) and (21), we have

||u− ut+1||2A ≤ ||w||2A − c−1
s ρ−1

A ||w||A2 ≤ ||u− ut ||2A − c−1
s c−1

a ||u− ut ||2A = δ||u− ut ||2A.

Thus, (23) is derived.
Now, we only need to verify that G = G(r) given in Algorithm 4 stratifies Assumption 4.1. Indeed, we have

Br = G(G�AG)−1G�.

For the first assumption,

A is SPD ⇒ G�AG is SPD ⇒ (G�AG)−1 is SPD ⇒ Br = G(G�AG)−1G� is SSPD.

And

BrABr = G(G�AG)−1G�AG(G�AG)−1G� = G(G�AG)−1G� = Br.

For the second assumption, without loss of generality, we assume ||r|| = 1, then we have ||r||2A ≤ ρA||r||2 = ρA .

Write G = [g1, ..., gL], and gi, i = 1, 2, ..., L satisfy g�
i Ag j = δi j . Choose g1 = r

||r||A . Then, we obtain

r�Brr ≥ (r�g1)
2 = 1

||r||2A
≥ 1

ρA
.

This means that (22) is satisfied if r ∈ range(G), which is obvious from the design of the Meta-NN for Bsc. �
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5. Numerical experiments

In this section, we evaluate the performance of Meta-MgNet through a series of numerical experiments. In Section 5.1
and 5.2, we apply Meta-MgNet to 2D and 3D anisotropic diffusion equations on domain � = [0, 1]d, d = 2, 3. In Section 5.3, 
we demonstrate why it is challenging to train a PDE-MgNet that generalizes well for all η. In Section 5.4, we include more 
practical examples.

In the experiments, we compare Meta-MgNet with PDE-MgNet and MG method. Both Meta-MgNet and PDE-MgNet are 
trained on a data set created by a set of η, which will be later described in detail. Furthermore, we also train PDE-MgNet 
for each individual η and denote the trained model as PDE-MgNet-η. During testing, we only apply PDE-MgNet-η on the 
test data generated by the same η as during training. Thus, PDE-MgNet-η demonstrates the best accuracy of PDE-MgNet 
may achieve while it is impractical since it requires retraining of PDE-MgNet for each individual η. For the classical MG 
method, we choose the Krylov subspace smoother, GS smoother, line-Jacobi smoother, and damped Jacobi smoother. Since 
the GS and line-Jacobi smoother are challenging to implement efficiently with GPU, we use Matlab on CPU instead. All other 
algorithms are implemented in PyTorch on GPU.

5.1. 2D anisotropic diffusion equations

We consider the anisotropic diffusion equation{−∇ · (C∇u) = f , in �,

u = 0, on ∂�,
(24)

where C = C(ε, θ) =
(
cos θ − sin θ

sin θ cos θ

)(
1 0
0 ε

)(
cos θ sin θ

− sin θ cos θ

)
is a 2 × 2 matrix, ε < 1, θ ∈ [0, π ].

5.1.1. Settings: training, testing and hyperparameter selection
(1) For the training set, we randomly sample Mp = 20 different sets of parameters η from an interval Itrain. The interval 

Itrain is different for different PDEs. Thus, we will specify it later for each experiment. For each given η, we randomly 
sample Mm-train = 100 right-hand-side function, and each entry of f is sampled from the Gaussian distribution N(0, 1). 
We use ADAM method and the unsupervised learning loss (17) to train PDE-MgNet for 50 epochs and Meta-MgNet for 
20 epochs. Since no matter if Meta-MgNet is fine-tuned, the result is almost the same, we skip the fine-tuning stage of 
Meta-MgNet. (See Appendix I for an ablation study on fine-tuning.) The learning rate for ADAM is 0.02 and the batch 
size is 64.

(2) For the test set, we choose some specific η from a set Itest, and for each η we randomly sample Mm-test = 10 right-
hand-side function. The stopping criterion for all compared algorithms is chosen as

||f− Aηut ||2
||f||2 < 10−6.

Number of iterations and wall time are used as metrics to compare the performance of different algorithms. Further-
more, we use “mean±std” to show the average and standard deviation of the number of iteration and wall time over 
the Mm-test samples.

(3) We use N × N rectangular mesh and Q 1-element to discretize the PDEs. We select N = 256 and the number of layers 
J = 5. The prolongations P and restrictions R are given by the traditional 9-point stencil, i.e. the kernel of P and R is

P = R =
⎛⎝ 1

4
1
2

1
4

1
2 1 1

2
1
4

1
2

1
4

⎞⎠ .

The A� on coarse grid is also given by the geometric multigrid method, and it is easy to verify that each A� is equal 
for Q 1-element. We chose \-Cycle structure for all algorithms with ν1 = 2, ν2 = · · · = ν J = 1. (We tried several different 
settings of νl and found that ν1 = 2, ν2 = · · · = ν J = 1 is the best option. See Appendix II for the corresponding ablation 
study.)

(4) For PDE-MgNet, the kernel size of smoother at each layer is 7 × 7. For Meta-MgNet, we choose SC method Bsc in
Algorithm 4 and use the Meta-NN in (19). The kernel size of the output is 7 × 7 and the increase channel number 
of Meta-NN is l = 3. The size of the hidden layer of the fully connected neural network FCθ is 200. The number of 
the parameters of one single Meta-NN is 122.2K. The Meta-MgNet in this numerical experiment contains 5 Meta-NNs, 
which means the total number of the parameters of Meta-MgNet is around 611K. Note that a comparison between Bd
and Bsc is given in Appendix III, it shows that Bsc is the better option. Thus, we only present the numerical result of 
Bsc in the main body of this paper.
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Table 2
The number of iterations (when the stopping criteria is met) and the wall time of Meta-MgNet, PDE-MgNet and MG method. “-” means the algorithm does 
not converge within 104 iterations.

#iterations Meta-MgNet PDE-MgNet PDE-MgNet-η MG (Krylov) MG (GS) MG (line-Jacobi) MG (Jacobi)

ε = 1 4.0± 0.00 – 7.0± 0.00 4.0± 0.00 10.0± 0.00 14.0 ± 0.00 15.0 ± 0.00

ε = 10−1 7.5± 0.50 19.2± 0.40 21.2± 0.60 7.9± 0.30 33.7± 0.48 13.0 ± 0.00 90.2± 0.98

ε = 10−2 35.1± 1.04 178.9 ± 2.74 149.7 ± 3.44 52.5± 0.81 253.6 ± 4.19 13.0 ± 0.00 752.8 ± 12.23

ε = 10−3 171.6± 6.34 1.2e3± 12.85 910.9± 15.64 345.9± 3.88 1.9e3± 25.56 13.0 ± 0.00 5.6e3± 119.42

ε = 10−4 375.2± 5.88 – 3.1e3± 35.70 2.2e3± 27.94 – 11.0 ± 0.00 –

ε = 10−5 797.8± 12.76 – 9.9e3± 40.81 7.6e3± 81.96 – 11.0 ± 0.00 –

wall time

ε = 1 0.03± 0.00 – 0.02 ± 0.00 0.02± 0.00 0.14± 0.01 0.34± 0.01 0.04± 0.00

ε = 10−1 0.05± 0.00 0.05± 0.00 0.06± 0.00 0.04± 0.00 0.48± 0.02 0.32± 0.01 0.23± 0.00

ε = 10−2 0.22± 0.01 0.44± 0.01 0.37± 0.01 0.25± 0.00 3.47± 0.15 0.32± 0.01 1.85± 0.03

ε = 10−3 1.06± 0.04 3.04± 0.03 2.28± 0.05 1.64± 0.02 27.33 ± 0.68 0.32 ± 0.01 13.95 ± 0.29

ε = 10−4 2.31± 0.03 – 7.69± 0.13 10.56± 0.14 – 0.27 ± 0.01 –

ε = 10−5 4.91± 0.08 – 24.49 ± 0.14 35.67± 0.40 – 0.27 ± 0.02 –

Fig. 9. Wall time of Meta-MgNet, PDE-MgNet, and the MG methods while θ = 0 and ε varies.

We compare number of iterations and wall time of Meta-MgNet, PDE-MgNet and MG method. We consider two different 
generalization scenarios that will be called “in-distribution generalization” and “out-of-distribution (OoD) transfer”. For in-
distribution generalization, we have Itest ⊂ Itrain, while for OoD transfer, the parameter η of the test data is entirely outside 
the interval of the training data, i.e. Itest ⊂ Ictrain.

5.1.2. In-distribution generalization
In this group of experiments, the training set of PDE-MgNet and Meta-MgNet is generated by fixing θ = 0 in Table 2

and θ = 0.1π in Table 3 and randomly sampling ε with distribution lg 1
ε ∼ U [0, 5]. The Table 2, Table 3 and Fig. 9 show 

Meta-MgNet has overall better performance than PDE-MgNet and MG methods, while the advantage is significant when ε
is small. It is worth mentioning that the line-Jacobi smoother can only be applied to several specific θ , such as 0, 

π

4
, 
π

2
, 

thus line-Jacobi smoother is limited in practical applications.

5.1.3. Out-of-distribution (OoD) transfer
The first group of experiments are with the fixed θ = 0. The training set is generated with lg 1

ε ∼ U [2, 3] and the test 
set is generated with ε = 1, 10−1, 10−4, 10−5 (i.e. a test for OoD transfer with respect to ε). For the second group of 
17
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Table 3
The number of iterations (when the stopping criteria is met) and the wall time of Meta-MgNet, PDE-MgNet and MG method. “-” means the algorithm does 
not converge within 104 iterations.

#iterations Meta-MgNet PDE-MgNet PDE-MgNet-η MG (Krylov) MG (GS) MG (line-Jacobi) MG (Jacobi)

ε = 1 4.0± 0.00 – 17.00 ± 0.00 4.0± 0.00 10.0± 0.00 – 15.0± 0.00

ε = 10−1 5.4± 0.49 136.7 ± 1.95 68.30 ± 2.69 8.0± 0.30 27.3± 0.48 – 64.70 ± 0.64

ε = 10−2 28.5± 0.50 1.0e3± 25.39 861.40 ± 24.53 45.4± 0.49 187.0 ± 2.53 – 476.30 ± 4.78

ε = 10−3 94.2± 1.33 3.8e3± 183.22 1.9e3± 60.41 142.8± 1.89 707.6± 15.24 – 1.8e3± 44.47

ε = 10−4 129.4 ± 2.42 5.3e3± 180.33 3.8e3± 94.79 187.8± 3.79 990.2± 19.03 – 2.5e3± 62.01

ε = 10−5 134.8 ± 2.86 5.6e3± 168.51 4.1e3± 110.96 195.9± 2.43 1.0e3± 37.45 – 2.6e3± 79.24

wall time

ε = 1 0.04± 0.00 – 0.05± 0.00 0.03± 0.00 0.14± 0.01 – 0.04± 0.00

ε = 10−1 0.05 ± 0.00 0.36± 0.01 0.18± 0.01 0.05± 0.00 0.29± 0.02 – 0.17± 0.00

ε = 10−2 0.21 ± 0.00 2.64± 0.06 2.23 ± 0.06 0.24± 0.00 2.05± 0.08 – 1.26± 0.01

ε = 10−3 0.69 ± 0.01 9.89± 0.53 4.90 ± 0.17 0.75± 0.01 7.78± 0.21 – 4.79± 0.11

ε = 10−4 0.94 ± 0.02 13.87 ± 0.48 9.90 ± 0.24 0.98± 0.02 10.76± 0.25 – 6.66± 0.15

ε = 10−5 0.98 ± 0.02 14.56 ± 0.44 10.69± 0.30 1.02± 0.01 11.36± 0.51 – 7.03± 0.21

Table 4
The mean and std of the number of iterations (when the stopping criteria is met) and the wall time of Meta-MgNet, PDE-MgNet and MG method on the 
testing set. “-” means the algorithm does not converge within 104 iterations.

#iterations Meta-MgNet PDE-MgNet PDE-MgNet-η MG (Krylov) MG (GS) MG (line-Jacobi) MG (Jacobi)

ε = 1 7.0± 0.00 – 7.0± 0.00 4.0± 0.00 10.0± 0.00 14.0± 0.00 15.0 ± 0.00

ε = 10−1 10.0± 0.00 23.0± 0.00 21.2± 0.60 7.9± 0.30 33.7± 0.48 13.0± 0.00 90.2± 0.98

ε = 10−4 340.7± 3.52 5.8e3± 121.90 3.1e3± 35.70 2.2e3± 27.94 – 11.0± 0.00 –

ε = 10−5 817.2± 97.97 – 9.9e3± 40.81 7.6e3± 81.96 – 11.0± 0.00 –

wall time

ε = 1 0.05± 0.00 – 0.02± 0.00 0.02± 0.00 0.14± 0.01 0.24± 0.01 0.04± 0.00

ε = 10−1 0.07± 0.00 0.06± 0.00 0.06± 0.00 0.04± 0.00 0.48± 0.02 0.32± 0.01 0.23± 0.00

ε = 10−4 2.08± 0.02 14.38 ± 0.32 7.69± 0.13 10.56± 0.14 – 0.27± 0.01 –

ε = 10−5 4.99± 0.59 – 24.49 ± 0.14 35.67± 0.40 – 0.27± 0.02 –

experiments, the training set is generated with θ ∼ U [0.125π, 0.375π ] and lg 1
ε ∼ U [0, 5], while the test set is generated 

with θ = 0.05π, 0.12π, 0.4π and 0.5π (i.e. a test for OoD transfer with respect to θ ).
Table 4 shows that Meta-MgNet has superior ability of OoD transfer with respect to ε in comparison with PDE-MgNet, 

while Table 5 shows that Meta-MgNet is noticeably superior in OoD transfer with respect to θ in comparison with PDE-
MgNet. Note that classical methods are not learning-based, and hence they do not have the issue of OoD transfer. Thus, the 
results of MG methods in Table 4 are copied from Table 2.

5.1.4. Further discussions
It is also worth noting that, for both the scenarios of in-distribution generalization and OoD transfer, Meta-MgNet even 

outperforms PDE-MgNet-η which uses the exact same η for both training and testing. This shows the benefit of treating 
the problem of solving parameterized PDEs as a multi-task learning problem. From what it seems, the hypernetwork, i.e. 
Meta-NN, is able to extract certain common structure hidden within the tasks which helps with solving each individual 
task.

The training time of Meta-MgNet is around 45 minutes, while it is around 10 minutes for PDE-MgNet-η for each η. 
Although training Meta-MgNet takes more times than PDE-MgNet-η for each η. In practical application, especially multi-
query scenarios, the utility of PDE-MgNet-η can be significantly reduced due to the constant retraining. Therefore, Meta-
MgNet has a clear overall advantage.

5.2. 3D anisotropic diffusion equations

Consider the following 3D anisotropic diffusion equation{−∇ · (C∇u) = f , in �,

u = 0, on ∂�,
and C =

⎛⎝ε0
ε1

ε

⎞⎠ ,
2
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Table 5
The mean and std of the number of iterations (when the stopping criteria is met) and the wall time of Meta-MgNet, PDE-MgNet and MG method on the 
testing set. “-” means the algorithm does not converge within 104 iterations.

#iterations Meta-MgNet, θ = 0.05π PDE-MgNet, θ = 0.05π Meta-MgNet, θ = 0.12π PDE-MgNet, θ = 0.12π

ε = 1 3.0± 0.00 – 3.0± 0.00 –

ε = 10−1 10.6± 0.49 – 10.1± 0.30 132.6 ± 3.10

ε = 10−2 71.5± 1.57 – 72.0± 1.61 566.3 ± 11.36

ε = 10−3 322.4 ± 7.03 – 233.2± 7.49 2.1e3± 55.09

ε = 10−4 526.7 ± 14.64 – 306.0± 7.78 2.8e3± 150.40

ε = 10−5 557.4 ± 14.72 – 314.0± 4.86 2.8e3± 33.31

wall time

ε = 1 0.03± 0.00 – 0.03± 0.00 –

ε = 10−1 0.07± 0.00 – 0.07± 0.00 0.35± 0.01

ε = 10−2 0.46± 0.01 – 0.46± 0.01 1.49 ± 0.04

ε = 10−3 2.05± 0.04 – 1.48± 0.05 5.42 ± 0.18

ε = 10−4 3.34± 0.09 – 1.95± 0.05 7.49 ± 0.45

ε = 10−5 3.54± 0.09 – 1.99± 0.03 7.49 ± 0.15

#iterations Meta-MgNet, θ = 0.4π PDE-MgNet, θ = 0.4π Meta-MgNet, θ = 0.5π PDE-MgNet, θ = 0.5π

ε = 1 3.0± 0.00 – 3.0± 0.0 –

ε = 10−1 9.0± 0.00 51.7± 1.27 8.9± 0.30 49.3 ± 1.42

ε = 10−2 65.2± 1.54 434.5 ± 7.75 53.5± 1.12 428.8 ± 12.83

ε = 10−3 240.3± 3.41 1.7e3± 50.92 262.9± 5.96 2.8e3± 16.81

ε = 10−4 327.5 ± 5.33 2.4e3± 67.84 526.4± 25.51 –

ε = 10−5 339.5 ± 6.92 2.5e3± 85.99 908.7± 27.43 –

wall time

ε = 1 0.03± 0.00 – 0.03± 0.00 –

ε = 10−1 0.06± 0.00 0.14± 0.00 0.06± 0.00 0.13± 0.01

ε = 10−2 0.42± 0.01 1.15± 0.03 0.35± 0.01 1.13 ± 0.03

ε = 10−3 1.53± 0.02 4.48± 0.12 1.67± 0.04 7.34 ± 0.11

ε = 10−4 2.09± 0.03 6.38± 0.22 3.35± 0.16 –

ε = 10−5 2.15± 0.04 6.61± 0.31 5.76± 0.18 –

with � = [0, 1]3 and ε0, ε1, ε2 > 0. Without loss of generality, we set ε0 = 1.

5.2.1. Settings: training, testing and hyperparameter selection
(1) The settings of training and testing are the same as the 2D case.
(2) We use N × N × N rectangular mesh and use Q 1-element to discretize the PDE. Let N = 64 and the number of layers 

J = 4. The prolongations P and restrictions R are given by the traditional 9-point stencil. The A� on the coarse grid is 
given by the geometry MG method. It is easy to verify that each A� is equal for Q 1-element. We chose \-Cycle structure 
of all algorithms with ν1 = 2, ν2 = · · · = ν J = 1.

(3) For PDE-MgNet, the size of the kernel for the convolution smoother is 3 × 3 × 3. For Meta-MgNet, we choose the SC 
method Bsc in Algorithm 4 and use the Meta-NN in (19). We simply set the convolution smoother to be one layer CNN 
without activation, and the size of the kernel for the output is 7 × 7 × 7. We set the number of channels of Meta-NN 
to l = 3.

5.2.2. In-distribution generalization

In this group of experiments, the training data set is generated by sampling ε1 and ε2 from distribution lg
1

ε1
∼ U [0, 5]

and lg
1

ε2
∼ U [0, 5] respectively. Table 6 shows that Meta-MgNet is more efficient than classic MG methods.

5.2.3. Out-of-distribution (OoD) transfer

In this group of experiments, the training data set is generated by sampling ε1 and ε2 from distribution lg
1

ε1
∼ U [3, 4]

and lg
1

ε2
∼ U [3, 4] respectively. Table 7 shows that Meta-MgNet has an overall best performance, and PDE-MgNet has 

trouble in OoD transfer with respect to ε1 and ε2.
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Table 6
The mean and std of the number of iterations (when the stopping criteria is met) and the wall time of Meta-MgNet, PDE-MgNet and MG method on the 
testing set. “-” means the algorithm does not converge within 104 iterations.

#iterations Meta-MgNet PDE-MgNet PDE-MgNet-η MG (Krylov) MG (GS) MG (Jacobi)

(ε1, ε2) = (10−1,10−1) 5.0 ± 0.00 11.0± 0.00 11.0± 0.00 7.0± 0.00 53.0± 1.05 –

(ε1, ε2) = (10−1,10−2) 13.0 ± 0.00 91.4± 1.20 46.6± 1.69 38.3± 1.00 159.9 ± 5.27 –

(ε1, ε2) = (10−1,10−5) 156.2 ± 3.57 3.2e3± 73.59 475.0 ± 8.00 606.8± 30.08 – –

(ε1, ε2) = (10−2,10−2) 10.3± 0.46 116.4± 0.49 54.3± 0.78 45.7± 0.78 178.4 ± 2.54 291.52 ± 9.14

(ε1, ε2) = (10−2,10−5) 73.4 ± 0.80 3.5e3± 77.82 771.5± 9.39 631.70 ± 16.64 – –

(ε1, ε2) = (10−5,10−5) 111.6 ± 0.92 8.3e3± 65.18 5.5e3± 99.85 1.8e3± 20.23 – –

wall time

(ε1, ε2) = (10−1,10−1) 0.13± 0.00 0.09± 0.00 0.09± 0.00 0.07± 0.00 4.29± 0.10 - –

(ε1, ε2) = (10−1,10−2) 0.30 ± 0.00 0.65± 0.01 0.34± 0.02 0.32± 0.01 14.2± 0.64 –

(ε1, ε2) = (10−1,10−5) 3.40 ± 0.08 22.53± 0.51 3.34± 0.06 4.93± 0.25 – –

(ε1, ε2) = (10−2,10−2) 0.25 ± 0.01 0.82± 0.00 0.39± 0.01 0.38± 0.01 14.67 ± 0.61 6.00± 0.00

(ε1, ε2) = (10−2,10−5) 1.62 ± 0.02 24.73± 0.55 5.42± 0.06 5.12± 0.13 – –

(ε1, ε2) = (10−5,10−5) 2.45 ± 0.02 58.87± 0.47 38.93± 0.71 14.90± 0.16 – –

Table 7
The mean and std of the number of iterations (when the stopping criteria is met) and the wall time of Meta-MgNet, PDE-MgNet and MG method on the 
testing set. “-” means the algorithm does not converge within 104 iterations.

#iterations Meta-MgNet PDE-MgNet PDE-MgNet-η MG (Krylov) MG (GS) MG (Jacobi)

(ε1, ε2) = (10−1,10−1) 10.0± 0.00 – 11.0 ± 0.00 7.0± 0.00 53.0± 1.05 –

(ε1, ε2) = (10−1,10−2) 43.1 ± 0.54 – 46.6 ± 1.69 38.3 ± 1.00 159.9 ± 5.27 –

(ε1, ε2) = (10−1,10−5) 755.4 ± 55.88 – 475.0 ± 8.00 606.8± 30.08 – –

(ε1, ε2) = (10−2,10−2) 11.0 ± 0.00 – 54.3 ± 0.78 45.7 ± 0.78 178.4 ± 2.54 291.52 ± 9.14

(ε1, ε2) = (10−2,10−5) 106.7± 1.35 – 771.5 ± 9.39 631.7 ± 16.64 – –

(ε1, ε2) = (10−5,10−5) 125.7 ± 2.19 – 5.5e3± 99.85 1.8e3± 20.23 – –

wall time

(ε1, ε2) = (10−1,10−1) 0.24± 0.01 – 0.09± 0.00 0.07 ± 0.00 4.29± 0.10 - –

(ε1, ε2) = (10−1,10−2) 0.95± 0.01 – 0.34± 0.02 0.32 ± 0.01 14.2± 0.64 –

(ε1, ε2) = (10−1,10−5) 16.37 ± 1.22 – 3.34 ± 0.06 4.93 ± 0.25 – –

(ε1, ε2) = (10−2,10−2) 0.26 ± 0.00 – 0.39± 0.01 0.38± 0.01 14.67 ± 0.61 6.00± 0.00

(ε1, ε2) = (10−2,10−5) 2.34 ± 0.03 – 5.42 ± 0.06 5.12 ± 0.13 – –

(ε1, ε2) = (10−5,10−5) 2.76 ± 0.05 – 38.93 ± 0.71 14.90 ± 0.16 – –

5.3. Why is it challenging to train a convergent PDE-MgNet for all η?

For both the 2D and 3D anisotropic diffusion equations, we found it challenging to train appropriate weights for PDE-
MgNet that can generalize beyond its training setting. This is, in fact, the motivation of viewing solving parameterized PDEs 
as multi-task learning and introducing Meta-MgNet. In this subsection, we conduct a simple experiment to demonstrate this 
issue with PDE-MgNet.

Consider the 3D anisotropic diffusion equation. We choose two different distributions for the parameters D1: lg2 ε1 ∼
U [−2, −1], lg2 ε2 ∼ U [1, 2] and D2: lg2 ε1 ∼ U [1, 2], lg2 ε2 ∼ U [−2, −1] to train two PDE-MgNet. We present the weights of 
the convolution smoothers at the finest level (� = 1), namely K1 in (25) and K2 in (26):

K1 =
⎡⎣⎡⎣−0.0170 −0.0503 −0.0169

0.0051 −0.2370 0.0051
−0.0171 −0.0504 −0.0170

⎤⎦⎡⎣ 0.0389 0.2431 0.0389
−0.0696 1.1127 −0.0695
0.0388 0.2431 0.0389

⎤⎦⎡⎣−0.0171 −0.0503 −0.0170
0.0050 −0.2370 0.0051

−0.0170 −0.0503 −0.0169

⎤⎦⎤⎦ ,

(25)

K2 =
⎡⎣⎡⎣−0.0127 −0.0331 −0.0126

0.0339 0.2175 0.0340
−0.0126 −0.0332 −0.0127

⎤⎦⎡⎣ 0.0113 −0.2041 0.0114
−0.0766 1.0647 −0.0765
0.0113 −0.2041 0.0113

⎤⎦
×

⎡⎣−0.0126 −0.0332 −0.0126
0.0340 0.2175 0.0340

−0.0127 −0.0331 −0.0127

⎤⎦⎤⎦ . (26)
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Fig. 10. The three pictures on the top row are the numerical solutions and the three at the bottom row are the error of u, v and p with (ax, ay) = (0, 0)� . 
The number of iterations is 367 and the wall time is 17.57 s for Meta-MgNet.

Noting the red numbers in K1 and K2, we can see that K1−1,0,0, K
1
1,0,0 < 0 while K2−1,0,0, K

2
1,0,0 > 0; and K1

0,−1,0, K
1
0,1,0 > 0

while K2
0,−1,0, K

2
0,1,0 < 0. Furthermore, if we use K1 to smooth the PDEs with parameters generated from D2, the error will 

increase, which means the convolution smoother with kernel K1 is not fit for D2. We have the same issue with K2 and 
D1. This phenomenon indicates that different distribution of parameters of the parameterized PDE may lead to weights of 
PDE-MgNet of contradictory effects. This is not only for PDE-MgNet, but rather an issue often occurs for supervised learning 
models. In contrast, Meta-MgNet handles this issue gracefully by adjusting the weights according to η in an adaptive fashion.

5.4. Ossen equations

The right-hand-side function f˜ in previous numerical experiments is randomly generated from the normal distribution. 
In this section, we include practical numerical examples to show the performance of Meta-MgNet. We adopt Ossen equations 
as an example:⎧⎪⎪⎨⎪⎪⎩

−μ�u˜+ (a˜· ∇)u˜+ ∇p = f˜, in �,

−divu˜= 0˜, in �,

u˜= 0˜, on ∂�,

where u˜ = (u, v)� , μ = 1

Re
, Re is the Reynold number, and a˜= (ax, ay)

� . Without loss of generality, we let μ = 1. We 

choose u˜=
(−2xy2(1− x)(1 − 2x)(1 − y)2

2x2 y(1− y)(1− 2y)(1− x)2

)
and p = x2 − y2 as the solution and calculate the analytic form of the corre-

sponding right-hand-side function f˜. The training data set is construct from sampling ax ∼ U [0, 200] and ay ∼ U [0, 200]. 
We use the MAC scheme [38,6] to discretize Ossen equations and the mesh size is 512 × 512. Except for the settings men-
tioned above, other settings are the same as Section 5.1. Numerical solutions and error maps for a few different a˜ are 
presented in Fig. 10–13 with the number of iterations and the wall time of Meta-MgNet recorded in the captions.

6. Conclusions and future work

Solving parameterized PDEs is an essential and yet challenging task. In this paper, we provided a new perspective on the 
problem by viewing it as multi-task learning. With this, we proposed a new meta-learning based solver called Meta-MgNet 
by introducing a carefully designed hypernetwork (called Meta-NN) to the PDE-MgNet. Numerical experiments on 2D and 
3D anisotropic diffusion equations showed that Meta-MgNet significantly outperforms the supervised learning-based PDE-
MgNet and classical MG methods. Furthermore, Meta-MgNet manifested a clear advantage in training and generalization 
over PDE-MgNet, which demonstrated the feasibility of the proposed multi-task perspective and meta-learning approach to 
solving parameterized PDEs.

This paper only discussed using meta-learning to improve smoothers because the prolongations and restrictions in classic 
MG methods are efficient enough to solve the three PDEs considered in this paper. As for some other PDEs such as Helmholtz 
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Fig. 11. The three pictures on the top row are the numerical solutions and the three at the bottom row are the error of u, v and p with (ax, ay) = (50, 100)� . 
The number of iterations is 281 and the wall time is 13.6 s for Meta-MgNet.

Fig. 12. The three pictures on the top row are the numerical solutions and the three at the bottom row are the error of u, v and p with (ax, ay) = (100, 50)� . 
The number of iterations is 275 and the wall time is 13.38 s for Meta-MgNet.

equations, the convolutional prolongations and restrictions may not work well. Therefore, it is worth exploring a data-driven 
approach to improve prolongations and restrictions as well. Furthermore, we only considered uniform mesh in this paper. 
We may consider generalizing MgNet or Meta-MgNet to nonuniform meshes, such as the triangular mesh, by exploiting 
tools from geometric deep learning, such as graph (convolutional) neural networks.
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Fig. 13. The three pictures on the top row are the numerical solutions and the three at the bottom row are the error of u, v and p with (ax, ay) =
(100, 100)� . The number of iterations is 235 and the wall time is 11.52 for Meta-MgNet.

Table 8
The mean and std of the number of iterations and the wall time of Meta-MgNet. 
No matter if Meta-MgNet is fine-tuned or not, the results are almost the same.

#iterations Meta-MgNet fine-tuning Meta-MgNet

ε = 1 3.0± 0.00 4.0 ± 0.00

ε = 10−1 7.0± 0.00 7.5± 0.50

ε = 10−2 32.7 ± 0.90 35.1 ± 1.04

ε = 10−3 192.7 ± 4.29 171.6 ± 6.34

ε = 10−4 352.2 ± 7.60 375.2 ± 5.88

wall time

ε = 1 0.03± 0.00 0.03± 0.00

ε = 10−1 0.05± 0.00 0.05± 0.00

ε = 10−2 0.21± 0.00 0.22± 0.01

ε = 10−3 1.18 ± 0.03 1.06± 0.04

ε = 10−4 2.16 ± 0.05 2.31 ± 0.03

Acknowledgement

Yuyan Chen was supported in part by the PSU-PKU Joint Center for Computational Mathematics and Applications, Bin 
Dong by the National Natural Science Foundation of China (grant No. 11831002), Beijing Natural Science Foundation (grant 
No. 180001), and Beijing Academy of Artificial Intelligence (BAAI), and Jinchao Xu by the Verne M. William Professorship 
Fund from the Pennsylvania State University and the National Science Foundation (grant No. DMS-1819157).

Appendix A

In the appendix, we add more numerical experiments to support some of our hyper-parameter choices. We use interpo-
lation of 2D anisotropic diffusion equations as an example, and the setting of these experiments is the same as section 5.1.

A.1. Appendix I

The Table 8 shows the efficiency of fine-tuning for Meta-MgNet. We can find that the parameters inferred by meta 
smoother Bsc are good enough so that the result is almost the same after fine-tuning. Therefore, we can skip the fine-
tuning stage.
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Table 9
The mean and std of the numbers of iteration and the wall time of different choices of ν1, ..., ν J . The parameters of the 2D 
anisotropic diffusion equation are ε = 10−2, θ = 0.

#iterations Meta-MgNet PDE-MgNet PDE-MgNet-η

(ν1, ..., ν J ) = (1,1,1,1,1) 42.1± 1.58 356.6± 1.36 230.60± 6.99

(ν1, ..., ν J ) = (2,1,1,1,1) 35.1± 1.04 178.9± 2.74 149.7± 3.44

(ν1, ..., ν J ) = (3,1,1,1,1) 21.9± 1.81 210.90± 4.23 198.60 ± 6.89

(ν1, ..., ν J ) = (2,2,1,1,1) 22.90 ± 0.70 214.50 ± 2.42 199.00± 4.75

wall time

(ν1, ..., ν J ) = (1,1,1,1,1) 0.23± 0.01 0.91± 0.01 0.59± 0.02

(ν1, ..., ν J ) = (2,1,1,1,1) 0.22± 0.01 0.44± 0.01 0.37± 0.01

(ν1, ..., ν J ) = (3,1,1,1,1) 0.16± 0.01 0.56± 0.01 0.52± 0.02

(ν1, ..., ν J ) = (2,2,1,1,1) 0.17± 0.00 0.56± 0.01 0.53± 0.01

Table 10
The mean and std of the number of iterations and the wall time of different choices of ν1, ..., ν J . The parameters of the 2D 
anisotropic diffusion equation are ε = 10−4, θ = 0.

#iterations Meta-MgNet PDE-MgNet PDE-MgNet-η

(ν1, ..., ν J ) = (1,1,1,1,1) 1.2e3± 22.51 – 6.9e3± 140.05

(ν1, ..., ν J ) = (2,1,1,1,1) 375.2± 5.88 – 3.1e3± 35.70

(ν1, ..., ν J ) = (3,1,1,1,1) 355.30 ± 10.51 – 3.6e3± 40.44

(ν1, ..., ν J ) = (2,2,1,1,1) 339.00± 12.70 – 2.8e3± 33.22

wall time

(ν1, ..., ν J ) = (1,1,1,1,1) 6.36± 0.11 – 17.52± 0.34

(ν1, ..., ν J ) = (2,1,1,1,1) 2.31± 0.03 – 7.69± 0.13

(ν1, ..., ν J ) = (3,1,1,1,1) 2.50± 0.07 – 9.42± 0.11

(ν1, ..., ν J ) = (2,2,1,1,1) 2.34± 0.09 – 8.45± 0.10

Table 11
The mean and std of the number of iterations and the wall time for the convolu-
tional smoother Bd and the SC method Bsc.

#iterations Bd Bsc

ε = 1 – 4.0 ± 0.00

ε = 10−1 58.9± 0.30 7.5± 0.50

ε = 10−2 597.8± 8.08 35.1 ± 1.04

ε = 10−3 5.5e3± 60.89 171.6 ± 6.34

ε = 10−4 – 375.2 ± 5.88

wall time

ε = 1 – 0.03± 0.00

ε = 10−1 0.21± 0.00 0.05± 0.00

ε = 10−2 2.07± 0.03 0.22± 0.01

ε = 10−3 19.04± 0.20 1.06± 0.04

ε = 10−4 – 2.31 ± 0.03

A.2. Appendix II

In section 5.1, we choose (ν1, ..., ν J ) = (2, 1, 1, 1, 1). Now, we compare the result of several groups of ν1, ..., ν J . Since it 
is easier to estimate error on coarse grid, to set νi > 1, i = 3, 4, 5 is not necessary. Thus, we only test some pair of ν1 and 
ν2, and set νi = 1 for i = 3, 4, 5. The numerical experiments in Tables 9 and 10 show (ν1, ..., ν J ) = (2, 1, 1, 1, 1) is a better 
choice.

A.3. Appendix III

We compare the efficiency between Bd in Algorithm 3 and Bsc in Table 11. As we can see, Bsc is much better than Bd. 
Therefore, we choose Bsc as the meta smoother in other numerical experiments in this paper.
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