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1 Introduction

Since Witten’s seminal paper [? ], the connection between topological and supersymmetric
field theories has been fruitful. Beyond the deep insights that it brought into the study of four
manifolds [? ? ? ], see [? ? ? ] and references therein for recent developments, the fact that
supersymmetric theories contain a sub-sector which is topological has brought considerable
progress to our understanding of supersymmetric field theories themselves, see e.g. [? ? ? ?
]. The procedure of projecting onto the topological sector of a supersymmetric field theory is
now standard and known as topological twist. The work presented here represents yet another
instance in which the constrained picture of topological field theories is used to advance our
understanding of the properties of the their non-topological cousins.

Our interest in studying topologically twisted N = 2 theories, and in particular their
partition functions, is motivated by our ambitious classification program of N = 2 supercon-
formal field theories (SCFTs) in four dimensions. This program, see [? ] for a lightning review
and a list of relevant references, is based on a systematic study of Coulomb branches whose
geometry appears to contain enough structure to nearly determine the space of allowed N = 2

SCFTs.1 The results of this paper give further evidence for this fact as we are able to derive
general formulae which allow to straightforwardly compute, directly from Coulomb branch
related quantities, the (a, c) central charges, as well as the flavor levels kf, of any N = 2 SCFT
at arbitrary rank.

It is useful to summarize the main results of this paper right away:

i. We derive explicit formulae which express in terms of Coulomb branch quantities the
(a, c) central charges and the level of any simple flavor factor f, of an arbitrary N = 2

SCFT :

24a = 5r + h+ 6

(︄
r∑︂

ℓ=1

∆uℓ
− r

)︄
+
∑︂
i∈I

∆sing
i

12ci − 2− hi
∆i

, (1.1a)

12c = 2r + h+
∑︂
i∈I

∆sing
i

12ci − 2− hi
∆i

, (1.1b)

kf =
∑︂
i∈If

∆sing
i

di∆i

(︁
ki − T (2hi)

)︁
+ T (2h). (1.1c)

1The qualification “nearly” refers to possible ambiguities which arise if we also allowed for discrete gauging
[? ].
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Here r is the rank of the SCFT, h is the quaternionic dimension of the theory’s extended
Coulomb branch, ∆uℓ

is the scaling dimension of the theory’s ℓ-th Coulomb branch
parameters, ∆sing

i is defined in (??) and all the remaining quantities indexed by i refer
to known quantities of rank-1 theories which are supported on special loci of the Coulomb
branch (see section ?? below). We call these formulae central charge formulae.

The central charge formulae, which systematize and extend the beautiful work by
Shapere and Tachikawa [? ], are derived in section ?? and ?? using the well-known
relation between the (a, c, kf) central charges of an untwisted N = 2 SCFT and the
U(1)R symmetry anomaly of its twisted topological version.

ii. We formulate and prove the N = 2 UV-IR simple flavor condition. This condition states
that all mass deformations of a rank ≥ 2 N = 2 SCFT modify the asymptotics of the CB
and are realized as mass deformations of the same rank-1 theories which appear in their
central charge formulae. This realization de-facto reduces the problem of analyzing mass
deformations of higher rank theories to that of rank-1,2 providing a clear route towards
a systematic understanding of the space of higher rank theories.

The UV-IR simple flavor condition is discussed in section ?? and it is a straightforward
consequence of the structure of the integrand of the partition function of the twisted
version of the N = 2 SCFT.

iii. We determine the relation between the integrand of the partition function of a topologi-
cally twisted N = 2 SCFT and the structure of the singular locus of its Coulomb branch
at arbitrary rank. This precise relation is used copiously to derive the results in i. and
ii. and lead to a sharp definition and understanding of both the quantum and physical
discriminant, see section ?? and ??.

It is, of course, not the first time that the partition function of topologically twisted
N = 2 theories with rank higher than one is studied in detail. The fact that the zeros and the
singularities of the measure of the partition function could only lie along the singular locus,
which is used here as a starting point, was noticed since the early days [? ? ? ? ? ? ]. Here
we point out that the orders of such zeros is subtle to determine but we are able to carry out
this calculation in general. This is not just a mathematical curiosity. In fact our formulae
above, precisely rely on a detailed determination of these exponents.

The paper is organized as follows. In the next section we will give a reminder of the
geometric structure of Coulomb branches of N = 2 theories at arbitrary rank and discuss
the singular locus and the concept of the discriminant in detail. In section ?? we will set up
the study of the partition function of a topologically twisted N = 2 SCFT and derive our
central charge formulae. Section ?? will instead be dedicated to a systematic study of the
flavor structure of N = 2 SCFTs and making many general remarks connecting the behavior
of the flavor symmetry at high and low energies. We end the paper with our conclusions.

2Note that this result only applies to mass deformations, and not to the other class of relevant N = 2
deformations known as chiral deformations.
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2 Discriminant locus, quantum discriminant, and physical discriminant

The central charge formulae (??)-(??) depend on a series quantities indexed by i ∈ I which
are associated to rank-1 theories appearing on special loci of the Coulomb branch (CB). We
define these quantities here and explain our definitions in explicit examples. In doing so we
clarify what we mean by discriminant of the CB a term which is often used in the literature
in different contexts and with different meanings. Specifically we will give our definitions
for three different but related objects: the discriminant locus, the quantum discriminant, or
loosely the discriminant of the Seiberg-Witten (SW) curve, and the physical discriminant
which instead enters the measure factor of the partition function of the twisted N = 2 theory.
These definitions will be needed in the next section. To understand this discussion, it might
be useful to consult appendix ?? where the basics of CB geometry and elements of the special
Kahler stratification are given.

2.1 Structure of the singularity

The low-energy theory on a generic point of the CB C is almost as boring as it gets; a free
N = 2 supersymmetric U(1)r gauge theory with no massless charged states. r is called the
rank of the theory and coincides with the complex dimensionality of C, dimCC = r. C is a
singular space and its singular locus will be at the center of our discussion and denoted as S.
S stands both for “singular” and “stratum”, the reason for the bar is that S is a closed subset
of C and the smooth part of the CB is Creg := C \ S. Thus Creg is an open subset of C.

Henceforth we will only discuss the special case when the N = 2 theory is superconformal
in which case the symmetry group includes an R+ × U(1)R (we are neglecting the SU(2)R
factor as it acts trivially on C) which can be spontaneously broken, and so acts nontrivially
on C, and combines to give a C∗ action on the CB. We will label the C∗ weight or scaling
dimension of a quantity · interchangeably as [·] or ∆(·). The origin of C is the single vacuum
of the entire moduli space which is invariant under such action and for this reason we will call
it the superconformal vacuum. The entire structure of C has to be compatible with the C∗

action and in particular S and Creg have to be closed under it. We will often refer to the set of
constraints arising from the compatibility with the C∗ action as the constraints coming from
scale invariance. In this language we will only consider here scale invariant CB geometries.

Finally, the CB is both a complex space and a metric space, and so C can have singularities
in each of these structures [? ] and the singular locus is the union of the loci of the two types
of singularities, S = Smetr ∪ Scplx. The physics interpretations of the two are remarkably
different. Scplx is the locus of vacua for which the operators generating the corresponding CB
chiral ring satisfy non-trivial relations. This means that the chiral ring is not freely generated
at points in Scplx. In the following we will make the assumption that Scplx = ∅, therefore
S ≡ Smetr. This condition can be equivalently stated as assuming that C admits a set of
globally defined r complex coordinates which have definite weight under the C∗ action and
which we will collectively indicate as u.
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2.2 Discriminant locus

Smetr is the locus of C where extra charged states become massless or, in other words, where
the low-energy physics is not captured solely by a bunch of free N = 2 vector multiplets. The
central charge |ZQ|, see (??), is a lower bound on the mass of a state with charge Q, therefore
ZQ(u) vanishes for any u ∈ Smetr. Assuming away some pathological behavior and carefully
keeping track of the structure of the CB geometry, it is possible to prove that S is an r − 1

complex dimensional algebraic subvariety of C, which is the union of connected, irreducible,
components Si:

S :=
⋃︂
i∈I

Si, Si :=
{︂
u ∈ C

⃓⃓⃓
ZQ (σ(u)) = 0, ∀Q ∈ Λi

}︂
. (2.1)

Each component Si is defined by the vanishing of the central charge for charges corresponding
to the set of BPS states in the theory which become massless there. Since ZQ is linear in
the charges, what defines Si is the sublattice of charges Λi given by the integer linear span of
such charges. By charge conservation, Λi is constant along Si irregardless of walls of marginal
stability. The index i runs over some finite set I which corresponds to the range of the sum
of the equations we have reported in the introduction (??)-(??). We will discuss in the next
section how a rank-1 theory can be associated to each component Si

Since (??) is a complex co-dimension one algebraic subvariety of C it can be cut out by a
single polynomial on the CB, which is a product of polynomials whose zero locus corresponds
to each component Si. If this polynomial is reduced, then it is unique up to an overall constant
factor. We then define the discriminant locus to be the following quantity:

Dx :=
∏︂
i∈I

Pi(u), Si =:
{︂
u ∈ C

⃓⃓⃓
Pi(u) = 0

}︂
(2.2)

with Si as in (??) and the Pi(u) are distinct and irreducible for all i ∈ I. By scale invariance,
the Pi(u) are weighted homogeneous polynomials in the u, and we will call ∆sing

i the weight
of Pi(u) under the C∗ action:

∆sing
i := ∆

(︂
Pi(u)

)︂
. (2.3)

This quantity plays an important role in our central charge formulae (??)-(??).

◦

Example: SCFTs with su(3) gauge algebra It might be useful to immediately follow
this definition with a concrete example. Consider an su(3) gauge theory with hypermulti-
plets in representations for which the beta function for the gauge coupling vanishes. It is a
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straightforward group theory exercise to show that there are three possibilities:

su(3) N = 2 SCFTs :

⎧⎪⎨⎪⎩
1. 6(3)

2. 1(6)⊕ 1(3)

3. 1(8)

(2.4)

entry 3 corresponds to the N = 4 theory with su(3) Lie-algebra3, while entry 1 and 2 corre-
spond to genuinely N = 2 theories. These are all rank-2 theories and we will indicate the two
complex coordinates which parametrize their CBs as (u, v).

To derive the discriminant locus we can take advantage of the fact that the theory is
lagrangian and directly study the values of (u, v) for which extra massless states enter the
theory. To do that it is helpful to write the CB coordinates explicitly in terms of the eigenvalues
of Φ, the scalar component of the su(3) adjoint N = 2 vector multiplet. First imposing F and
D term conditions, constraints Φ to the be gauge equivalent to the following form:

Φ =

⎛⎜⎝ a1 0 0

0 a2 0

0 0 −a1 − a2

⎞⎟⎠ (2.5)

and for a1 ̸= a2, su(3) → U(1)2. A convenient choice for u and v is, explicitly:

u := Tr
[︁
Φ2
]︁
∼ a21 + a22 + a1a2, v := Tr

[︁
Φ3
]︁
∼ −a21a2 − a1a

2
2 (2.6)

where we have neglected inessential numerical coefficients. From (??), it follows straightfor-
wardly that the coordinates of the CB of all three theories in (??) have scaling dimensions
∆u = 2 and ∆v = 3.

When two of the eigenvalues in (??) coincide, one of the two low energy U(1) → su(2)

and the N = 2 vector multiplets of the corresponding gauge bosons become massless giving
rise to singularities on the CB. It is easy for the reader to check that a1 = a2 corresponds to
the following hypersurface in C:

u3 + λv2 = 0, (2.7)

where λ ∈ C∗ depends on the specific normalization of u and v.
Due to superpotential terms, the hypermultiplets are massive on a generic point of C but

extra components of the singular locus might arise if special values of a1 and a2 exist for which
some of the hypermultiplets components become massless. Here the result depends on the
specific representations in (??). Straightforward representation theory shows that components

3It is well known that, for a given gauge algebra, there are multiple N = 4 theories [? ]. Here we are using
the determinative article because we are neglecting all the subtleties connected with the global structure of
the gauge group.
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of the hypermultiplets become massless at:

1.
2.

}︄
a1/a2 = 0 ⇒ v = 0 (2.8)

3. a1 = a2 ⇒ u3 + λv2 = 0. (2.9)

The fact that components of the hypermultiplets for theory 3 become massless at (??) follows
from the fact that for this theory the hypermultiplets transform in the same representation
as the N = 2 vector multiplets.

To improve on this semi-classical analysis and write down the discriminant locus, we notice
that for theories 1. and 2. no hypermultiplets become massless at (??). The low energy effective
theory there is then a N = 2 su(2) Yang-Mills and the well-known results of [? ] imply that
(??) has to “split” in two components accounting for the monopole and dyon singularities.4 No
splitting instead happens for theory 3. because the extra massless hypermultiplets component
make the low-energy theory on (??) superconformal as we will see explicitly below.

Bringing all together we find:

1.
2.

}︄
Dx ∼ v(u3 + λ1v

2)(u3 + λ2v
2) (2.10a)

3. Dx ∼ (u3 + λv2) (2.10b)

and therefore we have the following for theories 1. and 2.:

S1 :
{︂
(u, v) ∈ C

⃓⃓⃓
v = 0

}︂
⇒ ∆sing

1 = 3,

S2 :
{︂
(u, v) ∈ C

⃓⃓⃓
u3 + λ1v

2 = 0
}︂

⇒ ∆sing
2 = 6, (2.11)

S3 :
{︂
(u, v) ∈ C

⃓⃓⃓
u3 + λ2v

2 = 0
}︂

⇒ ∆sing
3 = 6.

while theory 3. only has a single component analogous to either S2 or S3. We will come back
to these examples throughout the manuscript to elucidate the definitions that we make along
the way.

2.3 Low-energy effective theory on the singularity

Let’s see how we can naturally associate a rank-1 theory to each i ∈ I indexing the singular
components in (??). This will provide the missing information which we need to use (??)-(??)
to compute the central charges of any N = 2 SCFT.

Call the rank-r theory at the superconformal vacuum T and call Tu the low-energy ef-
fective description of T at the generic point u of the CB C describing the massless degrees of

4The closing of the singular locus under the C∗ action implies that the separation between these two
components increases as we move towards the asymptotics of the CB. This is consistent with a careful RG
analysis and the original result [? ].
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freedom there. For example we have:

Tu ≡ free N = 2 U(1)r, u ∈ Creg. (2.12)

From what we just discussed, Tu will include charged states if u ∈ S. Each separate component
Si is identified by a lattice of charges Λi which identifies the charges of these states (those
becoming massless there and for which ZQ(u)

⃓⃓
Si

vanishes). To be precise, a given sublattice is
associated to an open subset Si ⊂ Si and we will call Si the stratum associated to Si (which is
indeed the closure of Si). It is then natural to associate to each stratum the theory describing
the massless degrees of freedom on the stratum itself. We will call this theory Ti and since Si

is complex co-dimension one, it can be shown that Ti has to be rank-1. See appendix ?? for
clarification on this and other subtleties, like the difference between Si and Si. In summary:

Ti ≡ Tu, u ∈ Si, i ∈ I. (2.13)

and the quantities indexed by i ∈ I, (ci, ki, hi), which enter the central charge formulae (??)-
(??) refer to those of Ti. We also use ui to label the coordinate parametrizing the one complex
dimensional CB Ci of Ti and define:

∆i := ∆(ui) (2.14)

which defines the last quantity entering the central charge formulae.

◦

Example: SCFTs with su(3) gauge algebra To consolidate (??), let’s see explicitly how
this works in the examples (??). We have done most of the work above already. In this
rank-2 case, the strata associated to the various components are straightforwardly obtained
by subtraction of the origin of C:

Si := Si \ {0}. (2.15)

We will clarify momentarily why the rank-1 theories are properly defined on Si and not Si.
Let’s start from S1 in (??). For {v = 0} \ {0}, see (??), the unbroken gauge group is

U(1)2 with massless hypermultiplets corresponding to the weights associated to the vanishing
eigenvalue. It is possible to choose the low-energy U(1)s in such a way that the component
of the massless hypermultiplets are only charged under one of the U(1) factors. Given the
su(3) representations of the hypermultiplets, it is a straightforward group theory exercise to
compute both the number and the U(1) charges, q, of the massless components and we find:

T1 :

{︄
1 → U(1) w/ 6 hypers with q = 1

2 → U(1) w/ 2 hypers with q = 1⊕ 1 hyper with q = 2
⇒ ∆1 = 1, (2.16)

since the CB scaling dimension for N = 2 U(1) gauge theories is one. The remaining com-
ponents in (??) are associated to the monopole/dyon singularities of the N = 2 su(2) super
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Yang-Mills for both theory 1. and 2.. We can separately choose an electromagnetic duality
basis for S2 and S3 which makes the massless degrees of freedom there electrically charged:

T2,3 : → U(1) w/ 1 hypers with q = 1 ⇒ ∆2,3 = 1, (2.17)

This concludes the analysis of theories 1. and 2..
For the N = 4 theory we only have to determine the low energy theory on the one locus

where one of the low-energy U(1) factors enhances U(1) → su(2). Since the hypermultiplet of
this theory transforms in the same representation of the N = 2 vector multiplet, we expect
the massless states coming from the hyper to fill an adjoint representation of su(2) giving in
the low-energy limit a rank-1 N = 4 theory:

TN=4 : → N = 4 su(2) ⇒ ∆N=4 = 2. (2.18)

The last equation follows from the fact that the CB parameter of an su(2) theory is identified
with u ∼ ⟨TrΦ2⟩ and therefore ∆ = 2.

Now that we have identified the rank-1 theories supported on the various complex co-
dimension strata Si, we can use the information (??)-(??) and compute the quantities which
enter the central charge formulae for the su(3) theories in (??) and which will be used in the
next section:

Theory 12ci ∆i fkf hi T (2h)

T1
{︂ 1. 8 1 su(6)2 0 0

2. 5 1 ∅ 0 0

T2,3 3 1 ∅ 0 0

TN=4 9 2 sp(1)3 1 1

(2.19)

Here sp(1) ∼= su(2) and we have only reported the simple flavor factors of the flavor symmetries.
The formula for computing 12c for lagrangian theories is standard but it is also recalled below,
see (??). Finally hi here is the quaternionic dimension of the ECB of the theory, that is the
number of free hypermultiplets at the generic point of the theory’s CB.

Let’s conclude with a clarification of why rank-1 theories are associated to the Si \ {0}.
Setting both u = v = 0 fully restores the su(3) gauge algebra. The superconformal vacuum
is then associated to a rank-2 theory (the origin is also the only complex co-dimension higher
than 1 stratum in this case, see appendix ??). Therefore a non-trivial rank-1 factor is only
defined away from {0}, that is strictly on Si.

◦

2.4 Quantum discriminant

The discriminant locus (??) provides a nice algebraic description of S but tells no information
about the low-energy theory Ti supported on its strata, as we saw in the various examples. If
a rank r N = 2 SCFT admits a formulation of special Kahler geometry of its CB in terms

– 8 –



of a family of hyperelliptic curves, the Seiberg-Witten (SW) curve Σ, and one forms, the SW
one-form λSW, we can improve on the discriminant locus and define the quantum discriminant.
Even though we will not review here this formulation of SW theory,5 we will still require some
technical definitions to arrive at the formulation of the quantum discriminant. The content of
this subsection is important to understand the subtleties of how the geometry of the CB can
be leveraged to understand the singular locus but will not be needed to understand the rest
of the paper.

Bring the curve Σ in the following form:

Σ : y2 = P(x,u) (2.20)

where P(x,u) is a polynomial of degree, at most, 2r + 2 in x with coefficients which in
general depend on u. Therefore for fixed value u ∈ C, (??) defines a hyper-elliptic curve
Σu which degenerates if some of the 2r + 2 roots of P(x,u) coincide. The loci u for which
Σu degenerates corresponds to the singular locus S and is therefore reasonable to define the
quantum discriminant as the x discriminant of the RHS of (??):

DΛ
x := DiscxP(x,u). (2.21)

The zeros of the quantum discriminant should coincide with the discriminant locus but (??)
will be in general no longer reduced:

DΛ
x ∼

∏︂
i∈I

[︂
Pi(u)

]︂ℓi
, Si =:

{︂
u ∈ C

⃓⃓⃓
Pi(u) = 0

}︂
(2.22)

The ℓi ∈ Z are then the order of vanishing of DΛ
x near the zeros of Pi(u).

In a rank-1 theory the curve Σ is elliptic and it can always be brought in its Weierstrass
form before taking its x discriminant. This is how we define the quantum discriminant of a
rank-1 theory. Since the singular locus in this case is just the origin, the quantum discriminant
will be proportional to uℓ, u being the global coordinate describing the CB of the rank-1 SCFT.
It is known that in this case the order of vanishing ℓ strongly constrains the scaling dimension
∆(u) as can be seen looking at the third column of table ??. For instance, if ℓ = 1 then the
CB geometry has to be an I1 and ∆(u) = 1. If ℓ = 10 there are instead three possibilities II∗,
I∗4 or I10, which correspond to ∆(u) = 6, 2, 1, respectively. There is a natural generalization
of this fact for the quantum discriminant of higher rank theories and the ℓi in (??) can be
identified with the order of vanishing of the quantum discriminant of the rank-1 theory Ti
supported on Si and therefore strongly constrains the ∆i in (??).

◦

Example: SCFTs with su(3) gauge algebra Let’s go back to our su(3) theories and
consider first theories 1 and 2. The SW curve for the two theories in terms of a two-parameter

5Good references are the original papers [? ? ] or some of the reviews of SW geometry e.g. [? ? ? ].
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Scaling behaviors near rank 1 singularities
Name planar SW curve ord0(D

Λ
x ) ∆(u)

II∗ y2 = x3 + u5 10 6
III∗ y2 = x3 + u3x 9 4
IV ∗ y2 = x3 + u4 8 3

I∗0 y2 =
∏︁3

i=1 (x− ei(τ)u) 6 2
IV y2 = x3 + u2 4 3/2
III y2 = x3 + ux 3 4/3
II y2 = x3 + u 2 6/5

I∗n (n>0) y2 = x3 + ux2 + Λ−2nun+3 n+ 6 2
In (n>0) y2 = (x− 1)(x2 + Λ−nun) n 1

Table 1. Scaling forms of rank 1 planar special Kahler singularities, labeled by their Kodaira type
(column 1), a representative family of elliptic curves with singularity at u = 0 (column 2), order of
vanishing of the discriminant of the curve at u = 0 (column 3), mass dimension of u (column 4), a
representative of the SL(2,Z) conjugacy class of the monodromy around u = 0 (column 5), the deficit
angle of the associated conical geometry (column 6), and the value of the low energy U(1) coupling
at the singularity (column 7). The first seven rows are scale invariant. The last two rows give infinite
series of singularities which have a further dimensionful parameter Λ so are not scale invariant; they
can be interpreted as IR free theories since τ0 = i∞.

family of hyperelliptic curve was derived in [? ? ]. When the masses are turned off the two
curves coincide:

y2 = x6 + (v + ux)2 + x3(v + ux)τ (2.23)

where τ is the su(3) holomorphic gauge coupling. Taking the x discriminant of the RHS of
(??) we can then readily compute its quantum discriminant:

1.
2.

}︄
: DΛ

x ∼ v6(u3 + λ1v
2)(u3 + λ2v

2) (2.24)

where λi ∈ C∗ and we left out inessential numerical coefficients. As expected, the zeros of the
quantum discriminant coincide with the discriminant locus, see (??), but now we can extract
extra information from the order of such zeros:

ℓ1 = 6, ℓ2,3 = 1. (2.25)

Before interpreting these numbers it is useful to remind the physical interpretation of the In
and I∗n geometry in table ?? which are associated, respectively, to the CB of a U(1) and a
su(2) N = 2 gauge theory. The n in both cases refers to the coefficient of the gauge coupling
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beta function which is:

U(1) : bg =
∑︂
i

q2i (2.26)

su(2) : bg =
∑︂
i

(︂
T
(︁
Ri

hypers

)︁
− 4
)︂

(2.27)

where the qi are the electric charges of the hypermultiplets and T
(︁
Ri

hypers

)︁
is the quadratic

index of the su(2) representation of the i-th hypermultiplet.6 Using (??) and (??) we can
straightforwardly apply these formula to conclude that for both theory 1. and 2. we expect
the CB of T1 to be an I6 while that of T2,3 to be an I1. We leave it as an exercise for the
reader to check the matching of the values in (??) from the corresponding entry in table ??.

For theory 3. no SW curve is known in the form that we need for the computation of the
quantum discriminant. Yet above we have determined the theory supported on the singular
locus and could use this information to infer the expected quantum discriminant:

3. DΛ
x ∼ (u3 + λv2)6 (2.28)

where we used (??) and the fact that T (3) = 4 and therefore the CB of the theory supported
on the singular locus is a I∗0 .

◦

As we saw from the examples, the quantum discriminant improves on the discriminant
locus and provides considerable extra information about the low-energy limit of the super-
conformal theory. A big shortcoming of this nice story is that the value of the ℓi’s, which
should be an invariant of the special Kahler geometry, is instead not invariant under coordi-
nate reparametrization of the curve (??). In defining (??) we have secretly dealt with this
ambiguity by assuming that the curve in (??) is in some sort of higher rank generalization of
the Weierstrass form. This is obtained by extending the C∗ action on C to Σu

∼= Cr, fixing
the [x] and [y] in terms of [u] via the definition of the SW differential:

∂λSW

∂ui
=

xi−1dx

y2
:= ωi, u = (u1, ..., ur) (2.29)

where the ωi, i = 1, ..., r is a basis of H0(Cr,Ω
1
Cr
), the space of globally defined holomorphic

one-forms on Σu. Once we appropriately extend the C∗ action, we can harvest the power
of scale invariance. It in fact follows that P(x,u) in (??) must be a weighted homogeneous
polynomial of weight: [︁

P(x,u)
]︁
= 2[y] (2.30)

6We choose a normalization for which T (3) = 4.
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which immediately fixes the degree d of the highest term in x. We can fix the remaining
reparametrization invariance setting to zero the term of degree d−1 in x though the quantum
discriminant does not depend on this last step.

The quantum discriminant is certainly a useful object to consider, yet our definition seems
too convoluted for an object whose physical interpretation is instead sharp and appears to
be intrinsic to the special Kahler geometry of C. Furthermore hyper-elliptic curves are a set
of measure zero in the space of complex curves of genus g > 2. Therefore the special Kahler
geometry of a generic N = 2 SCFT with rank ≥ 3 will not have a formulation in these terms
and we don’t know how to replace the definition of the quantum discriminant in a useful way.
Finding an intrinsic algebraic definition of the quantum discriminant which does not make
use of the explicit realization of special Kahler geometry in terms of a family of hyperelliptic
curves will bring significant progress in the study of scale invariant CBs of arbitrary ranks.
Most importantly, the quantum discriminant is not the natural quantity which enters the
twisted partition function.

2.5 Physical discriminant

In this subsection we introduce an important definition for the discussion of the next section
where we analyze the partition function of topologically twisted N = 2 SCFTs at arbitrary
rank. The partition function of a topologically twisted N = 2 SCFT reduces to an integral
over the CB parameter u. The non trivial dependence of the integrand can be fixed by
carefully analyzing its dependence near the singular locus S. The physical discriminant arises
precisely in this context.

As we will review below, the B and Ca factors of the measure of the integrand of the
partition can only vanish or diverge at the zeros of (??). In particular by the general consid-
eration of [? ? ? ? ], the B factor should be proportional to a close cousin of the quantum
discriminant which was called physical discriminant in [? ]:

B = β
(︂
Dphys

x

)︂1/8
(2.31)

where β is a constant. Dphys
x is a close cousin of (??) in the sense that we expect Dphys

x

to share the same zeros as the quantum discriminant and to also be non-reduced. We will
parametrize our ignorance in the following way:

Dphys
x ∼

∏︂
i∈I

[︂
Pi(u)

]︂bi
, Si =:

{︂
u ∈ C

⃓⃓⃓
Pi(u) = 0

}︂
(2.32)

which is indeed very resembling of (??)]. Determining the form of the bis will be one of the
goals of the next section. It will be the determination of these exponents that leads to our
central charge formulae (??)-(??).
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3 Twisted partition function and central charge

N = 2 supersymmetric gauge theories are related via a well-known twisting procedure to
topological field theories [? ], see [? ? ] for a pedagogical presentation of this subject. The
starting point is the Euclidean version of N = 2 supersymmetric theories with total symmetry
group:

G = K × SU(2)R ×U(1)R (3.1)

where the K = SU(2)+×SU(2)− is the rotation group and SU(2)R×U(1)R the R-symmetry.
Under this symmetry the supercharges transform as:

Q : (1,2,2)−1 (3.2a)

Q̃ : (2,1,2)1 (3.2b)

The topological twisting procedure consists in modifying the coupling to gravity by re-
defining the spin of the fields. To do this we introduce an external SU(2)R gauge potential
setting it equal to the self-dual part of the spin connection. Or, in other words, re-define the
rotation group as K′ = SU(2)′+ × SU(2)− where SU(2)′+ =

[︁
SU(2)+ × SU(2)R

]︁
diag

is the
diagonal combination of the two remaining SU(2)’s. It is easy to see that under K′ × U(1)R
the supercharges transform:

Q : (2,2)−1 (3.3)

Q̃ : (3⊕ 1,1)1 (3.4)

therefore there is one supercharge which is a singlet under the rotation group. We call it
QBRST and it is with respect to this supercharge that the supersymmetry preserved on a
curve background (see below) is defined. The topological sector of the twisted theory is then
obtained by projecting into the cohomology of the singlet supercharge. The resulting theory
has many remarkable properties including the fact that its partition function, discussed in
more detail momentarily, does not depend on the metric [? ]. This is the sense in which the
theory is topologically invariant.

Upon flowing to the IR on the CB, the partition function of the twisted theory is given
by the path integral of the low-energy lagrangian after integrating out massive degrees of
freedom. Since the twisted theory is topological, the contributions of the massive states can
only result in terms which are proportional to topological densities [? ? ]:

Ltwisted ∼ LIR[V,H] +
(︁
logA

)︁
trR ∧ R̃+

(︁
logB

)︁
trR ∧R+

∑︂
a

(︁
log Ca

)︁
trFfa ∧ Ffa (3.5)

R is the Riemann tensor of the four manifold and Ffa is an external gauge field coupled to the
simple factor fa of the twisted theory flavor algebra f = ⊕afa. LIR[V,H] is the sum of a BRST
exact term and a contribution which depends on the coupling of the low-energy Abelian theory
on a generic point of the CB. The details of LIR[V,H] will not play any role below so we will
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not write its dependence explicitly and refer to the literature for details [? ? ]. The factors
(A,B, Ca) depend holomorphically on the globally defined CB coordinates u and we will spend
a considerable part of this section to determine their detailed form. We will henceforth not
discuss possible U(1) flavor factor as in that case equation (??) becomes considerable more
subtle and non-holomorphic terms might arise.7

Bringing all together we have the following expression for the twisted partition function
[? ? ]

Z =

ˆ
[dV ][dH] Aχ Bσ ∏︁

aCna
a eSlR[V,H]. (3.6)

where σ and χ are the signature and Euler characteristics of the four manifold and na is the
instanton number for the fa factor. The path integral is over the nV (IR free) massless neutral
vector multiplet fields and nH massless neutral hypermultiplet fields (if any) on the generic
point of the CB C. When there are free hypers on the generic point of C, by giving a vev to
them, it is possible to see C as a part of a larger branch of the moduli space usually called the
extended CB (ECB). nH is then naturally interpreted as the quaternionic dimension of the
ECB h. nV is instead naturally identified with the rank r of the theories. Therefore we have:

nH = h, nV = r. (3.7)

The integral (??) includes an ordinary integral over the 0-modes (constant modes) of the
vector multiplet scalars, u.

The expression for the A factor was determined in full generality to be [? ? ? ]:

A = α

[︃
det

(︃
∂ui

∂aj

)︃]︃1/2
(3.8)

where α is a constant and for a theory of rank-r the indices i, j run up to r. The expression for
the B and Ca factor are instead more involved. They can only vanish along the singular locus
of the CB and therefore both B and Ca are somewhat related to the discriminant locus (??).
In order to clarify this dependence we need to take a detour and remind the reader about the
relationship between the U(1)R anomaly of the topologically twisted N = 2 supersymmetric
theory and the value of the (a, c, kf) of the untwisted version. This relationship will also allow
us to finally derive our central charge formulae.

3.1 U(1) anomaly and central charges

The a and c central charges of the 4d conformal algebra are certain coefficients in OPEs of
energy-momentum tensors, and the k central charges appear in the OPEs of flavor currents.
We will assume throughout that the flavor algebra f = ⊕afa is a sum of simple factors and each
factor will have a separate ka central charge. The fact that these quantities appear in the ∆R

7We thank G. Moore for clarifying this point and sharing some unpublished results [? ].
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anomaly follows from the fact that (a, c, ka) appear in the scale anomaly in the presence of a
background metric and background gauge fields for f. Then N = 2 superconformal symmetry
relates the scale anomaly to ’t Hooft anomalies for the U(1)R⊕SU(2)R⊕a fa global symmetry,
with the result that in the presence of a background metric and background gauge fields for
the global symmetries, the conservation of the U(1)R current is broken by terms proportional
to the central charges times topological densities formed from the background fields. Notice
that background metric and gauge fields describing an arbitrary smooth oriented 4-fold M

with F -bundle (where F is the flavor symmetry group with Lie algebra f) generally break
N = 2 supersymmetry. However, as we reviewed above, the twisted topological version of it
is still protected by a supersymmetry [? ], despite a curve background, and therefore we can
still talk about a U(1)R. The result [? ? ] is that the partition function of the twisted theory
on M with an F -bundle carries U(1)R charge8

∆R = (2a− c) · χ+
3

2
c · σ − 1

2

∑︂
a

ka · na, (3.9)

where χ and σ are the Euler characteristics and signature of M and na are the instanton
numbers of the F -bundle. Here we have again assumed that the flavor symmetry of the SCFT
is a semi-simple Lie algebra f = ⊕afa and ka is the level of flavor currents of the simple factor
fa.

(??) corresponds to the standard normalizations of the central charges where for nV free
vector multiplets and nH free hypermultiplets

24a = 5nV + nH , 12c = 2nV + nH , ka = Ta(2h). (3.10)

Thus, in this case

∆Rfree =
1

4
nV · χ+

(︃
1

4
nV +

1

8
nH

)︃
· σ − 1

2

∑︂
a

Ta(2h) · na. (3.11)

Here 2h is the (reducible) representation of f under which the 2nH half-hypermultiplets trans-
form. Ta(2h) is the quadratic index of 2h with respect to the fa factor.9 In case nH = 0, there
is no contribution from the last term in (??), so we adopt the convention that T (“0”) := 0.

From the explicit expression of the partition function (??) its total U(1)R charge can be
8Here we are using a normalization of the U(1)R charge such that R(u) = ∆(u). This differs from that

used in [? ] by a factor of two.
9If 2h decomposes into irreps of ⊕L

a=1fa according to 2h = ⊕α(rα1 ⊗ rα2 ⊗ · · · ⊗ rαL), then Ta(2h) =∑︁
α

(︂∏︁
b ̸=a rαb

)︂
T (rαa). The quadratic index for a simple factor is proportional to the sum of the squared-

lengths of weights in 2h, T (2h) := (1/rankf)
∑︁

λ(λ, λ), where the weights are normalized so that the long
roots of f have length-squared 2. This is the normalization for which T (n) = 1 for SU(n).
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evaluated at a generic (i.e., non-singular) point on the CB to be

∆R =

(︃
R(A) +

1

4
nV

)︃
· χ+

(︃
R(B) + 1

4
nV +

1

8
nH

)︃
· σ +

∑︂
a

(︃
R(Ca)−

1

2
Ta(2h)

)︃
· na,

(3.12)

where we have used (??) to evaluate the contribution from the [dV ][dH] measure and have left
the R-charge of the (A,B, Ca) factors to be determined. Comparing this to (??) for arbitrary
(χ, σ, na) and using (??) gives [? ]:

24a = 5r + h+ 12R(A) + 8R(B), (3.13a)

12c = 2r + h+ 8R(B), (3.13b)

ka = Ta(2h)− 2R(Ca). (3.13c)

Let’s stress again that the twisting procedure is a purely calculational tool for us, the (a, c, ka)

above refer to the corresponding quantities of the untwisted, non-topological N = 2 SCFT in
flat space.

Computing R(A), from (??), is a straightforward task. Indeed aj , j = 1, ..., r, are the
special coordinates on the CB (see appendix ??) which have scaling dimension one, and thus,
in our conventions, U(1)R charge one. The prefactor α is u-independent. In the conformal
case it can only depend on constants which are all dimensionless, so R(α) = 0. We therefore
have

R(A) =

∑︁r
i=1∆ui − r

2
(3.14)

where ∆ui is the scaling dimension of the i-th entry of the vector of r globally defined complex
coordinates on the CB u. We turn now to a detailed discussion of the B factor.

3.2 Final form of the partition function and central charge formulae

We already anticipated, as it has been argued for many years, that the B factors has to have
the following form:

B = β
(︂
Dphys

x

)︂1/8
(3.15)

and the form of Dphys
x was written explicitly in (??). We will turn now to the computation of

the bi.
When the twisted theory is put on a smooth spin 4-manifold, Bσ has to be single-valued

functions on the CB.10 Since for smooth spin 4-manifolds σ ∈ 16Z [? ? ], we see that B16

10For non-spin 4-manifolds the Bσ measure factor may be multi-valued on the CB [? ].
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must be a single-valued holomorphic function of (u, v). This immediately implies that

bi ∈
Z
2
. (3.16)

Recall that the ℓi in (??) are instead integers. To determine the quantities bi explicitly, we will
zoom in on the various complex co-dimension one strata of the singular locus Si. There, we
can exploit the fact that the U(1)R of Ti (the rank-1 theory supported on the singular stratum
Si) provides an accidental low-energy U(1)R symmetry which constraints the integrand of the
partition function in (??) by its anomaly ∆R. Since this anomaly depends on the physical
properties of the low-energy effective theory Ti, we will be able to relate the bi to properties
of rank-1 theories. This strategy is very resembling of that followed in [? ].

To do that, consider probing Si away from the origin. We can choose a set of coordinates
(u∥, u⊥) on C which are “adapted” to Si. u⊥ is a coordinate transverse to Si while u∥ are an
r − 1 dimensional vector of coordinates along Si in the following sense:11

Pi(u∥, u⊥) = 0, for {u⊥ = 0,u∥ ∈ Cr−1}. (3.17)

The CB parameter of the rank-1 theory Ti, which we indicated as ui, is a natural choice, at
least locally, for u⊥ and therefore we will pick u⊥ ≡ ui, this point is explained in more detail
in appendix ??. We can expand (??) around ui = 0 finding:

Dphys
x ∼ ubii · P(ui,u∥) (3.18)

where P(u∥, ui), as long as u∥ ̸= 0, does not vanish as ui → 0.
As it is explained in appendix ??, only the ui is charged under the U(1)R symmetry arising

near Si and the U(1)R charge of the ui is determined by its scaling dimension ∆i defined in
(??):

R(ui) = ∆i, R(u∥) = 0. (3.19)

Bringing (??), (??) and (??) together we conclude that

bi∆i

8
= R(B)

⃓⃓
i

(3.20)

where R(B)
⃓⃓
i

indicates the condition that the B R-charge has to satisfy near Si. From (??)
we can solve for R(B)

⃓⃓
i
and get:

R(B)
⃓⃓
i
=

12ci − 2− hi
8

(3.21)

where the i subscript indicates that the given quantity refers to the rank-1 theory Ti, see for
11Zeros of a polynomial form a closed set, therefore Pi(u) = 0 defines Si not Si. Here we focus on Si because

we are interested in the set which supports a well-defined Ti. Therefore, to be precise and a bit pedantic, we
should restrict to those values of u∥ such that Pi(u∥, u⊥) = 0 spans Si.
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example the quantities calculated in (??).12 We then finally get an expression for bi:

bi =
12ci − 2− hi

∆i
(3.22)

The quantity in (??) has already appeared in [? ]13 and has a clear physical significance of
being linked to the deformation pattern of the rank-1 theory Ti supported on the particular
stratum of the singular locus. In other words the value of bi is related to the way in which Ti
behaves under relevant deformations. The most promising consequence of this observation is
that the study of the mass deformations of higher rank scale invariant CBs might ultimately
reduce to a clever application of techniques which were thoroughly analyzed and understood
in the context of rank-1. What we are going to learn next studying Ca, will further support
this picture.

Before turning to Ca, let us write explicitly R(B). From (??) and apply the analysis above
to all co-dimension one components we obtain:

8R(B) =
∑︂
i∈I

∆sing
i bi =

∑︂
i∈I

∆sing
i

12ci − 2− h

∆i
. (3.23)

where ∆sing
i is defined in (??). Notice that the fact that the (??) must be semi-integers, can

be converted in non-trivial constraints on the rank-1 theories Ti which have been discussed in
detail in [? ].

We have now determined R(A) and R(B) and we can finally use (??)-(??) to derive the
first two central charge formulae which relate the (a, c) of a SCFT of arbitrary rank r to known
quantities of the rank-1 theories supported on its CB singular locus:

24a = 5r + h+ 6
(︂ r∑︂

ℓ=1

∆uℓ
− 1
)︂
+
∑︂
i∈I

∆sing
i

12ci − 2− hi
∆i

, (3.24a)

12c = 2r + h+
∑︂
i∈I

∆sing
i

12ci − 2− hi
∆i

, (3.24b)

where i ∈ I labels the complex co-dimension one strata of C. We will discuss the flavor level,
and in general the flavor structure of N = 2 SCFTs in the next section.

◦

Example: SCFTs with su(3) gauge algebra Let’s apply the formulae that we just derived
to our su(3) examples. In particular we will see that while theories 1. and 2. shared the same
quantum discriminant they will have a different physical discriminant. The calculation here

12Notice that to obtain the formula above we used nV = 1 in plugging the value from (??) since the theory
Ti is a rank-1 theory.

13The bi in (??) and those defined in [? ] differ by an inessential factor of 2 due to a different definition of
the physical discriminant.
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is for pedagogical purposes only since we won’t learn anything new on these very well studied
lagrangian theories. We will leverage the power of our central charge formulae in [? ] where
we compute many new properties of N = 2 SCFTs of rank-2 theories and their moduli space.

Let’s start reminding the reader of the properties of these theories:

24a 12c fkf

Nf = 6 58 34 su(6)6
1(6)⊕ 1(3) 49 25 ∅

N = 4 48 24 sp(1)8

(3.25)

These can be straightforwardly computed using (??) and counting the number of hypermul-
tiplets and vector multiplets. We will reproduce these values from the structure of the CB, in
particular using the quantities in (??). It will be a rewarding exercise. Here we will focus on
the values for (a, c) while the flavor part will be discussed in the next section.

Following (??), we can parametrize the physical discriminants of the three theories as:

1.
2.

}︄
: Dphys

x ∼ vb
1,2
1 (u2 + λ1v

3)b
1,2
2 (u2 + λ2v

3)b
1,2
3 (3.26)

3. : Dphys
x ∼ (u2 + λv3)b

N=4
. (3.27)

We have already determined the low-energy theory along each component of the singularity,
see (??), (??) and (??), therefore we can directly use (??) and equation (??) to find the
following result:

b11 = 6, b21 = 3,

b1,22 = b1,23 = 1, (3.28)

bN=4 = 3.

From (??), this immediately gives the expression for the physical discriminant of three theories:

1. Dphys
x ∼ v6(u3 + λ1v

2)(u3 + λ2v
2) (3.29)

2. Dphys
x ∼ v3(u3 + λ1v

2)(u3 + λ2v
2) (3.30)

3. Dphys
x ∼ (u3 + λv2)3 (3.31)

A quick comparison with (??) shows that the quantum and physical discriminants coincide
only in one of the three cases.14.

Now let’s tackle the central charges of these theories. In this, su(3), case, ∆u=2 and
14There is a clear generalization of this fact, physical and quantum discriminant coincides iff the CB of all

rank-1 theories supported on all Si’s deform, turning on all relevant deformations, into I1 singularities [? ? ?
? ].
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∆v = 3 and r = 2 so (??) and (??) reduce to:

24a = 10 + h+ 18 +
∑︂
i∈I

∆sing
i

12ci − 2− hi
∆i

= 28 + h+
∑︂
i∈I

∆sing
i bi, (3.32a)

12c = 4 + h+
∑︂
i∈I

∆sing
i

12ci − 2− hi
∆i

= 4 + h+
∑︂
i∈I

∆sing
i bi, (3.32b)

Starting from theory 3., the singular locus has only one component (see (??)) and the sum
will reduce to a single term. This is a rank-2 N = 4 theory, therefore there it has h = 2:

24aN=4 = 30 +∆sing bN=4 (3.33)

12cN=4 = 6 +∆sing bN=4 (3.34)

From (??), ∆sing = 6 and we beautifully reproduce the value for a and c in (??). A very
similar calculation can be performed for theory 1. and 2., but now the sum in the central
charge formulae includes three factors. We leave it up to the reader to check that things work
neatly.

4 Flavor structure of general N = 2 SCFTs

Recall that in a SCFT with flavor symmetry f = ⊕afa, where we restrict to fa simple, the
term Ca arises from the contribution to the low-energy lagrangian (??) proportional to the
topological density:

TrFfa ∧ Ffa (4.1)

and Ffa is an external gauge field coupled to the global symmetry factor fa. As discussed
above, Ca is holomorphic in u by topological invariance but, to determine the form of Ca,
we have to understand how the flavor symmetry fa acts on the theory at a generic point of
the CB. Notice that all CB operators are uncharged under the flavor symmetry therefore no
spontaneous breaking takes place anywhere on C. As a consequence, the full spectrum at any
point of CB, including massive and massless states, should be organized in representations
of the full flavor symmetry f. But each simple factor fa might or might not act on the light
states. Determining this is particularly relevant as the zeros of Ca can only lie along those
components of S where the massless states are charged under fa.

This is an important point so let’s elaborate on it further. From the definition of the
Ca factor (??), the zeros of Ca correspond to loci where the contribution to the low-energy
Lagrangian, proportional to the topological density (??), diverges. This can only happen
at the zeros of the discriminant locus (??). But, more specifically, a diverging contribution
proportional to the topological quantity (??) can only be generated if the states becoming
massless are charged under fa, thus the previous statement. We label the special strata where
this happens as Si with i ∈ Ifa . Notice that for i ∈ Ifa , the rank-1 theory Ti, describing the
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massless excitations on Si, is strongly constrained by the fact that its flavor symmetry should
contain a fa factor.

From these considerations and the fact that all the components of the singular locus can
be algebraically parametrized using the polynomial Pi(u) in (??), it then follows that Ca
should have the general form:

Ca ∼
∏︂
i∈Ifa

[︁
Pi(u)

]︂eai
, (4.2)

where the eai are for the moment arbitrary. One might wonder whether it is possible that
only a subalgebra f̃a ⊂ fa is realized on the massless spectrum. But fa is simple and since we
argued that it is nowhere spontaneously broken, this possibility is forbidden. An IR flavor
symmetry enhancement is instead possible.

Let’s now study the zeros of Ca. First let’s indicate the cardinality of Ifa as na ≥ 0. Ca is
a holomorphic function of u and C is a connected complex manifold (Scplx = ∅). This implies
that the zeros of Ca have to be in complex co-dimension one. fa acts on the massless spectrum
at the superconformal vacuum by assumption, therefore Ca vanishes at u = 0. This is enough
to conclude that Ca has to have a non trivial dependence on at least one of the Pi(u) and, for
any simple factor fa ⊂ f of the flavor symmetry, na ̸= 0 . In other words we have just proven
the following remarkable fact:

Fact 1. The Coulomb branch of any N = 2 SCFT with a semi-simple global symmetry
f = ⊕afa has, for each factor fa, one or multiple connected co-dimension one strata Si

where the charged massless spectrum is organized in non-trivial irreducible representa-
tions of fa.

Since mass deformations of N = 2 theories can be interpreted as background field config-
urations of the scalar component of a vector multiplet of a weakly gauged complexified flavor
algebra f, the above facts proves the following general condition:

UV-IR simple flavor condition

All mass deformations of a rank-r N = 2 SCFT deform the CB asymptotically and are
realized, in the low-energy limit, as mass deformations of rank-1 theories supported on
special complex co-dimension one loci.

We are now in a position to finally complete our discussion on the structure of the partition
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function. First, using (??) and (??), we can immediately obtain an expression for ka:

ka = Ta(2h)− 2
∑︂
i∈Ifa

∆sing
i eai , (4.3)

where ∆sing
i is again defined in (??) and the sum is restricted to Ifa . To determine the eai we

notice that for (??) to be well defined on the CB, Cna
a has to be a single valued function of

u. Since the instanton numbers na ∈ Z (at least for simply-connected flavor groups), Ca itself
must be a single-valued holomorphic function of u and therefore eai ∈ Z.

To determine the value of individual eai we can again zoom-in on the individual complex co-
dimension one strata Si, as we did for the bi, and apply (??) to the rank-1 theory Ti supported
there. In doing so, here we restrict to i ∈ Ifa since we are computing the level corresponding
to the fa factor. Following precisely the same steps which led us to the determination of the
bis we obtain:

eai =
Ta(2hi)− kia

2dai∆i
∈ Z, i ∈ Ifa . (4.4)

Here kia is the level of the fa flavor factor of the rank-1 theory Ti, ∆i is the scaling dimension
of its CB parameter, and Ta(2hi) is the quadratic index of its ECB. To account for a possible
enhancement of the flavor symmetry in the IR, (??) also depends on dai , the index of embedding
of fa into the appropriate simple factor of the flavor symmetry of Ti.

Putting all together we obtain the last of our central charge formula which determines the
level of the higher rank N = 2 SCFT in terms of the levels of the rank-1 theories supported
on the complex co-dimension one strata of its singular locus:

ka =
∑︂
i∈Ifa

∆sing
i

dai∆i

(︁
kia − Ta(2hi)

)︁
+ Ta(2h). (4.5)

Notice that the fact that the (??) must be integers, can be converted into non-trivial con-
straints which have been discussed in detail in [? ].

◦

Example: SCFTs with su(3) gauge algebra As we did throughout the manuscript, let’s
apply what we just learned to the su(3) examples. In particular we will:

i. Check that the N = 2 UV-IR simple flavor condition is indeed respected.

ii. Compute the flavor level in (??) directly from CB quantities.

To do the calculation of the flavor level we will analyze theory 1., that is su(3) with
Nf = 6 which has an su(6) flavor symmetry at level 6, see (??). This result can be obtained
using (??) and observing that the hypermultiplet fileds transform in the fundamental of su(3)
and both the N = 1 chiral and anti-chiral part contribute a T (6) = 1 to (??). From our
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previous CB analysis, two of three strata support a U(1) with a single hypermultiplet which
carries no-simple flavor factor. The third stratum supports instead a U(1) gauge theory with
six massless hypermultiplets which carries a su(6) flavor symmetry, see (??). This checks that
the N = 2 UV-IR simple flavor condition is indeed satisfied.

To compute the level of the su(6) flavor symmetry of the su(3) with Nf = 6, notice
that (??) has an explicit dependence on ∆sing

i . Therefore to reproduce the proper flavor level
we need more information about the stratum where massless states carrying a su(6) appear.
From our previous analysis we know that the U(1) theory carrying an su(6) is supported on
the first entry of (??), implying ∆sing

1 = 3. Finally, from (??), the level of the su(6) of this
U(1) theory is two, k1 = 2 (the factor of three difference between the level of the su(6) in the
su(3) theory and this case arises because now the hypers are no longer in a three dimensional
representation but in a one-dimensional one). It is a matter of elementary algebra to obtain:

ksu(6) =
3

1
2 = 6. (4.6)

Theory 2. carries no simple flavor symmetry, but a similar calculation can be carried out
successfully for the N = 4 su(3).

5 Conclusions

In this paper we have thoroughly analyzed the dependence on the singularity structure of the
Coulomb branch of the integrand of the partition function for an arbitrary topologically twisted
N = 2 superconformal field theory. This exercise allowed us to derive general formulae, (??),
(??) and (??), relating the (a, c, kf) conformal central charges of untwisted N = 2 SCFTs to
analogous quantities of rank-1 theories appearing in the low-energy description of the SCFTs
at special loci of the their Coulomb branches. These formulae are valid for SCFTs of arbitrary
rank and extend and generalize the work of Shapere and Tachikawa [? ]. The main input which
allowed this generalization is our improved understanding of the structure of the stratification
of the singular locus of the Coulomb branch [? ].

In performing our analysis we sharpen the definition of the discriminant of the Coulomb
branch and its relevance for understanding the low-energy limit of N = 2 SCFTs. We are also
able to derive general lessons about the flavor structure of N = 2 SCFTs and, in particular,
on how the simple factors of their flavor symmetry are realized in the low-energy. Our main
result in this regard is summarized in the N = 2 UV-IR simple flavor condition.

The work described here as well as in a companion paper [? ], is motivated by the
classification program of four dimensional N = 2 superconformal field theories [? ] based
on the systematic analysis of their Coulomb branch geometries. Particularly with the goal
of extending the success story of rank-1 [? ? ? ? ] to arbitrary rank. At rank-r, this
classification program involves two broad steps:

1. The characterization of all scale invariant CBs of complex dimension r.

– 23 –



2. The analysis of mass deformations of the entries in item 1.

The result described in this paper represent a, somewhat unexpected, progress on both of
these fronts. The N = 2 UV/IR simple flavor condition de-facto reduces the analysis of
mass deformations of higher rank theories to a, perhaps involved, implementation of known
rank-1 techniques. This therefore identifies a strategy to tackle item 2. for arbitrary ranks.
Major progress in tackling item 1. is represented by the central charge formulae (??), (??) and
(??). Even more so, our detailed understanding of the stratification of the CB singular locus
presented in [? ] lays the foundation for organizing a search of scale invariant special Kahler
geometries of arbitrary complex dimensions. In [? ] we will also present a more thorough
report on the status of our classification program and the prospects to extend the work beyond
rank-1.
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A Coulomb branch generalities

Because of the unbroken low energy U(1)r gauge invariance on C, states in the low-energy
theory are labeled by a set of 2r integral electric and magnetic charges, Q ∈ Z2r = Λ, the
charge lattice. The Qs satisfy the standard Dirac-Zwanziger-Schwinger quantization condition

⟨Q,Q′⟩ ∈ Z (A.1)

where the Dirac pairing ⟨·, ·⟩ gives the charge lattice an integral symplectic structure.15 The
matrix of low-energy holomorphic gauge couplings τij of the r U(1) factors at a generic point of
C can be extracted by writing the Kahler metric on Creg in a special basis ds2 = Im(daDj da

j) =

Im(τij)da
idaj , where:

τij :=
∂aDi
∂aj

= τji, and Im(τij) is positive definite. (A.3)

15The situation is slightly more subtle as in general ⟨Q,Q′⟩ := QTDQ′ where D is an integer non-degenerate
skew-symmetric 2r × 2r matrix which is called the polarization of the charge lattice. Here we will always
assume it to have its canonical form:

D =

(︃
0 1r

−1r 0

)︃
(A.2)

The choice of D in (??) is also called principal. The physical meaning of alternative choices of D remains
largely unclear.
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aD and a are separately good holomorphic coordinates on Creg and are the celebrated special
coordinates:

σ :=

(︄
aD

a

)︄
, with aD :=

⎛⎜⎝aD1
...
aDr

⎞⎟⎠ , and a :=

⎛⎜⎝a1

...
ar

⎞⎟⎠ . (A.4)

A central fact about CB geometry is that there is no globally defined lagrangian descrip-
tion of the low energy N = 2 U(1)r gauge theory, and non-trivial monodromies have to be
considered to describe the physics on Creg. While the charge lattice remains the same over all
points in Creg, upon dragging a given Q ∈ Λ along a closed path γ ⊂ Creg, Q in general suffers a
monodromy Q

γ
⇝ Q′ = MQ, where M ∈ sp(2r,Z). σ also suffers monodromies around closed

loops and it is therefore a holomorphic section of a rank-2r complex sp(2r,Z) vector bundle
over Creg. This structure makes C a special Kahler variety. There are other formulation of
special Kahler geometry, some of which will be discussed below, for a systematic account see
[? ].

Finally the complex central charge, ZQ, of the low energy N = 2 supersymmetry algebra
of a vacuum in Creg acting on the superselection sector of states with charge Q ∈ Λ:

ZQ := QTσ, (A.5)

where T indicates transposition. It follows from the N = 2 supersymmetry algebra that |ZQ|
is a lower bound on the mass of any state with charge Q.

A.1 Special Kahler stratification

The singular locus S plays a central role in our analysis, here we will provide a quick summary
of its rich structure, for a more detailed discussion see [? ]. It is well-known that the singular
locus S is a stratified space with closed subsets of increasingly higher complex co-dimensions.
But a careful analysis shows that S inherits an even more constraining structure from the
ambient space C, this is called special Kahler stratification in [? ]. The main idea behind
the special Kahler stratification, is that each component of the singular locus Si, starting at
complex co-dimension one, inherits a special Kahler structure from C and can be therefore
seen as a scale invariant CB geometry in its own right with its own set of metric singularities.
As it is the case for Creg, the set of regular points of Si will be an open set which we will
indicate simply as Si and which we will constitute the strata of the stratification. Iterating
this procedure we can identify components and corresponding strata of higher complex co-
dimensions.

As we discussed throughout the paper, each strata naturally supports a theory which in
the text we called Ti. The direction transverse to each Si into C are naturally identified, at
least locally, with the CB moduli of the low-energy theory Ti supported on the stratum. It
therefore follows that the rank of Ti coincides with the complex co-dimension of the strata.
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Restricted in particular, as we did in the text, to complex co-dimension one strata, we only
encounter rank-1 theories. Our notation in this section is a bit sloppy and maybe confusing
at times since we are not keeping track of the increasing complex co-dimension of the strata
and the rank of the corresponding theories. We chose to avoid setting up the proper, lengthy,
notation since here we don’t really use the properties of higher complex co-dimension strata,
for a proper discussion see [? ].

The C∗ action acts by restriction on all strata which are all separately scale invariant and
therefore are all closed under it. Since the stratification works inductively, all properties that
apply to complex co-dimension one strata extend to the higher complex co-dimension ones.
This stratification is very reminiscent of the stratification of symplectic singularities [? ? ]
which applies to Higgs branches of N = 2 SCFTs in four dimensions. The special Kahler
stratification is both more constrained and richer. It is more constrained because the complex
dimension of the strata jump precisely by one at each step and a full list of allowed elementary
slices is known, while an analogous list remains an open question for symplectic singularities.
And it is richer because strata supporting U(1) gauge theories with massless hypers and trivial
Higgs branch are not necessarily special Kahler and a weaker condition applies [? ].

A.2 Accidental U(1)R near strata

The U(1)R component of the R-symmetry of the theory at the superconformal vacuum, acts
non-trivially on C and for a generic CB vacuum u it will be spontaneously broken. An
accidental U(1)R symmetry arises instead along any strata Si (and along strata of higher
co-dimensions), where this low-energy U(1)R is identified with the appropriate component of
the global symmetry of Ti. Because of that, near each stratum, we can define a scaling action
which is different from the globally defined one and which does not act globally on C. This
new scaling action scales into the stratum and it only really acts on the transverse slice. The
global scaling action scales instead into the origin of the moduli space.

The accidental U(1)R symmetry combines with the R+ of Ti giving rise to a C∗
i action

which scales away from the stratum Si. Notice that we did not label this new scaling action
as C∗|i because C∗

i is not the restriction of C∗. For example C∗
i is not globally defined and

the weight of the coordinates u under the C∗ and C∗
i are in general radically different. The

scaling dimension ∆sing
i in (??) is defined with respect to the global C∗ action while the scaling

dimension of the CB of the low-energy theories Ti, ∆i see (??), is defined with respect to C∗
i .
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