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Abstract. In this paper, we study a posteriori error estimators which aid multilevel iterative
solvers for linear systems of graph Laplacians. In earlier works such estimates were computed by
solving a perturbed global optimization problem, which could be computationally expensive. We
propose a novel strategy to compute these estimates by constructing a Helmholtz decomposition
on the graph based on a spanning tree and the corresponding cycle space. To compute the error
estimator, we solve a linear system efficiently on the spanning tree and then a least-squares problem
on the cycle space. As we show, such an estimator has a nearly linear computational complexity for
sparse graphs under certain assumptions. Numerical experiments are presented to demonstrate the
efficacy of the proposed method.
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1. Introduction. Graphs are frequently employed to model networks in social
science, energy, and biological applications [6, 18, 29]. In many cases, these applica-
tions require the solution of large-scale linear systems of equations given by the graph
Laplacian matrix [20, 38, 43, 54, 61]. Such linear systems have also been the key
to developing link-based ranking algorithms for web-searching queries [39, 50, 60] or
recommendation systems [25, 41]. Exploiting the properties of graph Laplacians to
achieve dimension reduction in high-dimensional data representation, researchers have
produced fruitful results in image classification [26, 65|, representation learning [27],
and clustering [3, 47]. In the numerical solutions of PDEs, the stiffness matrices aris-
ing from the finite-element or finite-difference method also take the form of graph
Laplacians as discussed in [64]. Therefore, it is important to develop efficient and
robust methods for solving graph Laplacian systems.

To solve large-scale graph Laplacian linear systems, direct methods suffer from
their expensive computational costs [33]. Iterative methods, such as the algebraic
multigrid (AMG) methods originated in [9], are often applied to solve the linear
systems (see also [63] and the references therein for a recent survey on the AMG
methods). In practice, the AMG method achieves optimal computational complex-
ity for many applications, including solving the linear systems with weighted graph
Laplacians [5, 11, 22, 33, 35, 40, 46].

A typical multigrid method traverses a hierarchy of spaces (grids) of different di-
mensions (grid sizes) and solves the corresponding linear system at different resolutions.
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As is well known, an efficient AMG method should damp the algebraic high-frequency
error using relaxations/smoothers (e.g., common iterative solvers like Jacobi and
Gauss—Seidel methods) and eliminate the algebraically smooth (low-frequency) er-
ror via a coarse space (grid) correction [17]. The latter requires the “smooth” er-
ror obtained on the fine grids to be accurately approximated on the coarse spaces.
Many different coarsening strategies have been developed based on good estima-
tions of the error, for example, the classical AMG [9, 14], the smoothed aggrega-
tion AMG [13, 15, 16], the bootstrap AMG [7, 8], and the unsmoothed aggregation
AMG [10, 11, 33, 40, 45, 49, 57]. Thus, an efficient, reliable, and computable estimate
of the error a posteriori, during AMG iterations, is needed for developing robust AMG
methods.

Generally, the a posteriori estimators provide a computable estimation for the
true error locally. Our approach borrows several ideas from the finite-element lit-
erature (equilibrated error estimators [1, 2, 31, 58] and functional a posteriori error
estimators [24, 48, 52, 56]). In [64], the authors derived a posteriori error estimator for
solving graph Laplacian linear systems for the first time based on the functional a pos-
teriori error estimation framework. Such a technique was used to predict the error
of approximation from coarse grids for the multilevel unsmoothed aggregation AMG,
and the estimator is computed by solving a perturbed global optimization problem
(discussed in more details in section 2). Such an approach provides an accurate er-
ror estimator. However, it could be computationally expensive, which affects the
effectiveness of the resulting adaptive AMG method. In this work, we propose a
novel a posteriori error estimator and an efficient algorithm to reduce the computa-
tional cost, which could be used further to construct the efficient multilevel hierarchy
for adaptive AMG. Roughly speaking, this is achieved by taking advantage of the
Helmholtz decomposition [34] on the graph computationally, which splits the error
into a divergence-free component and a curl-free component. The rationale of the
proposed algorithm for computing the approximation to the true error has two main
steps.

1. Solve a linear system on a spanning tree (defined in section 2) of the graph to
get the curl-free component, or equivalently, the gradient component of the
error.

2. Approximately solve a minimization problem in the cycle space to obtain the
divergence-free component of the Helmholtz decomposition of the error.

The first step can be done in linear time with Gaussian elimination using lexicograph-
ical ordering as shown in [53, 59]. Solving exactly the minimization in the cycle space
of the graph is computationally expensive as it is equivalent to solving a constrained
minimization problem, which is as difficult as the original linear system (often even
more difficult). Our algorithm solves the minimization approximately by applying
several steps of a relaxation scheme, the one-level Schwarz method [19, 55]. This
crucial improvement reduces the computational cost and gives an accurate a poste-
riori estimate of the true error in nearly optimal time for sparse graphs, which is
further verified by our numerical experiments. Clearly, such an error estimator can
be incorporated to construct multilevel hierarchies since it provides accurate estimate
of the true error, which is important for constructing coarse levels adaptively. The
corresponding adaptive coarsening scheme will preserve the smooth error accurately
on the coarse levels and ensure the robustness of the resulting adaptive AMG method.

The rest of this paper is organized as follows. In section 2 we review backgrounds
on graphs and graph Laplacians, along with some previous results in [64]. The main
algorithm to compute a posteriori error estimates is stated in section 3. We present
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and analyze some numerical experiments in section 4. Finally, in section 5 we sum-
marize the main contribution and list some future work.

2. Preliminaries. In this section, we define the necessary notations and recall
some fundamental results for the computation of an a posteriori error estimator for
solving graph Laplacians as presented in [64].

2.1. Graphs and graph Laplacians. Consider an undirected weighted graph
G=V,Ew), where V = {1,2,...,71} is the vertex set, £ = {{i,j}7 ,j €V, i> j}
is the edge set, and w = {we}ecce is the set of edge weights. Here, the weights are
assumed to be positive, i.e., w. > 0, and we take all the edge weights to be 1 for
unweighted graphs. We only consider undirected graphs here, and that is why we
have fixed 7 > j for every e = {i,j} € &. Thus {1, 2} cannot be an edge in our graph,
while {2,1} could be in £.

Denote n = |V| and m = |€]. Let ¥ = R"™ and # = R™ be the vertex space
and edge space, respectively. The inner product on vertex space and edge space are
defined as

(u,v) =vTu Yu,ve?,

(r,9)=¢"T VT,00€W.
The weighted graph Laplacian matrix L € R™*™ can be defined via the bilinear form
(Lu,v) :=v"Lu = Z we(u; — uj)(v; —vj), Yu,ver.
e={i,j} €€

Associated with the graph is the discrete gradient operator (or edge-node incidence
matrix) G € R™*" : ¥ — # and the edge weight matrix D € R™*™ : % — ¥,
They are defined as the following: for each edge e = {i, j} eé,

(Gv)e=vi—v; Yve,

2.1
(2.1) (DT)e =wete VT EW.

The adjoint of G, denoted by GT : # — ¥, is the divergence operator (represented
by the node-edge incidence matrix) on the graph
(2.2) (Gu,7)=(u,G"T) Yue¥, Vre¥.

By direct computation, the following identity holds true:

(Lu,v) = (DGu, Gv).
Thus, we can write L := GTDG. Based on this definition of the graph Laplacian L,
it is straightforward to verify that,
|DGu — DGv||3,-1 = |lu —v|} Yu,ve?,

where||7||3,_, = (7,7)p-1 = (D7 'r,7) V1T € ¥, and ||v||} = (v,v), := (Lv,v)
YoveV?.

In addition to the vertex space ¥ and edge space #', another important space of
a graph G is the so-called cycle space (see [4] for more details), denoted by ¢, which
is defined as

(2.3) ¢:={ce¥|Gc=0}.
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(a) original graph (b) spanning tree (c) adding edge ez to (d) add edge es to get
get cycle 1. cycle 2.

Fic. 1. Fundamental cycle basis.

Each cycle on the graph G corresponds to an element ¢ in the cycle space €. To be
more specific, if {i1,142,..., 1k, ix+1 = 91} is a cycle G, that is,

i; €V, and {max{ij, i1}, min{i;,i;41}} €&, j=1,...,k,

we define the components of ¢ € € as

(€)e =sign(i; —ijq1), if e={max{i;, i1}, min{i;,i;41}},

with (¢). extended as zero for all edges that are not on the cycle. Besides its def-
inition (2.3), we can also characterize the cycle space € by its basis. As discussed
in [30], the cycle space of a connected simple graph has dimension m —n + 1 (by sim-
ple graphs we mean the graphs that contains neither self-loops nor duplicate edges).
Note there is more than one way to find the basis of the cycle space (see the survey
paper [30]). For general graphs, a commonly used set of basis for the cycle space
is the basis of fundamental cycles. Such basis is not unique, but each such basis is
induced by a spanning tree. In a connected graph G with n vertices, a spanning tree
is any subgraph of G that connects all the vertices and has no cycles or, equivalently,
has exactly (n —1) edges. To construct the basis of fundamental cycles corresponding
to a spanning tree T = (V,E7,wr) of a graph G, we proceed as follows. For each
edge that does not belong to the tree, i.e., e = {i,j} € &\ &7, we can find a cycle
{i,j} Up(i,j) where p(i, 7) is the path from vertex i to vertex j on the tree 7. Since
the spanning tree 7 has exactly (n — 1) edges, there are (m — n + 1) such cycles. It
can be shown that they are linearly independent [30] and, therefore, form a basis for
the cycle space €.

In Figure 1, we give a simple example of the fundamental cycle basis. The tree
in Figure 1(b) is a spanning tree of the graph in Figure 1(a). First, the edge e
is added back (see Figure 1(c)) which results in the first cycle {2,1,3,2} consisting
of edges e1,es, and e3. The vector representation of the cycle induced by adding
back edge es is given by ¢®2 = [1,—-1,1,0,0]T. Similarly, by adding edge e5 back, we
have the second cycle {2,3,4,2} formed by edges es, e4, and es, which is represented
by ¢ =[0,0,—1,—1,1]T. €2 and ¢ form a cycle basis.

2.2. Previous results on a posteriori error estimators. We are interested
in solving the following linear system of graph Laplacians

(2.4) Lu=f,
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by some iterative methods. Equation (2.4) simulates a rich spectrum of weighted
graph Laplacians problems [29, 38, 43, 54]. For example, in computational physics,
the solution uw € R™ models the potentials of an electrical flow where the resistance
of each edge on the graph (electrical circuit) is the reciprocal of the edge weight,
and f = [f1, f2,..., fa]T € R™ denotes the current supplied to each node 4. After
k iterations we get an approximated solution u*. If we can somehow construct the
current error e® = u—u”, then the true solution will be easily obtained by u = u*+e*.
In practice the true error e* is not computable because u is unknown, so alternatively
we seek to find €¥, an accurate estimation of e*, and use € to improve the current
approximation. Furthermore, an accurate estimation of the error gives an insight into
the performance of the iterative methods. For example, in AMG methods, such an
estimation approximates the so-called smooth error, which is responsible for the slow
convergence of the AMG methods, and can be used to improve the AMG algorithm
adaptively. This leads to the adaptive AMG methods [12, 14, 22, 42, 44] which has
been actively researched over the past two decades.

Since our a posteriori estimator is motivated by the a posteriori error estimator
developed in [64], we recall the main results and algorithms presented in [64] and
start with the following fundamental lemma which relates the error and computed
approximate solution. The proof of the lemma, as stated here, is found in [64].

LEMMA 2.1. Let u be the solution to (2.4). Then for arbitrary ™ € W, the fol-
lowing inequality holds for allv € ¥:

(2.5) lu =]z < [DGv = 7|p-1 + CHGTT = £l

where C, is Poincaré’s constant of the graph Laplacian L.
For a fixed v, denote the right-hand side of (2.5) by

() = |DGv — 7| p-1 + C; M |GTr — f

¥.

This naturally provides the a posteriori error estimator for estimating the error u — v
if v is an approximate solution; i.e., v = uF. Moreover, by minimizing the right-
hand side of (2.5) with respect to T, we can obtain an accurate estimator. To solve
the minimization problem efficiently, in [64], an upper bound E(S,7) of n(7) was

introduced as follows:

n*(r) < B(B,7),

where

B(8,7) = (L4 B)IDGo -l + (14 5 ) 6T - £15
An accurate estimator can be obtained by computing ming r E(8, 7). In [64], an
alternating process is applied to minimize E(8,7) with respect to S (with the tech-
niques proposed in [36]) and T iteratively, as summarized in Algorithm 2.1 (see [64]
for details).

Although the approach developed in [64] provides a reliable error estimator, the
corresponding computational cost might be expensive due to the iterative minimiza-
tion of E(8,7) in step 3 and 4 in Algorithm 2.1. One iteration of step 4 can be as
difficult as solving the original system, which makes this approach expensive com-
putationally. In order to improve the accuracy of the a posteriori error estimator,
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Algorithm 2.1 Alternating Process for Solving ming - E(5, 7).

1: procedure [3, 7] =MiNIMIZEBOUND(Y, 70)
2 for k=1,2,..., max_iter do

3 compute 7% = argmin, F (371, ).

4: compute f* = argming £(f3, k).

5 end for

6: end procedure

and, more importantly, to improve the efficiency of computing it, we develop a novel
technique for estimating the error based on (2.5), which we present next.

3. Efficient algorithm for computing a posteriori error estimator. As
we have pointed out, the derivation of the a posteriori error estimator is based on
approximating the Helmholtz decomposition of the error. This provides a tighter
error bound than the one proposed in [64] and can be implemented efficiently.

3.1. Hypercircle identity and error estimation on graphs. Our design of
an a posteriori error estimator is motivated by (2.5). For a given f € ¥, we define
the space # (f) = {T € #' | GTr = f}. If we choose T € # (f), then the second
term on the right-hand side of (2.5) vanishes and we only have the first term left. If
we minimize this term with respect to 7 € #/(f), we can immediately get an accurate
estimation. We summarize this in the following theorem.

THEOREM 3.1. Let u be the solution to (2.4). Then for any v € ¥, we have

3.1 u—vly = min ||DGv— 7| p-1.
() Ju=vl=_min |DGo—

To prove Theorem 3.1, we will make use of the next lemma, also known as hyper-
circle identity (see [51]).

LEMMA 3.2. Let w be the solution to (2.4). Then for any v € ¥ and any T €
W (f) the following identity holds:

lw—v|Z + |DGu — T[[h-1 = | DGv — 7|5
Now we are ready to prove Theorem 3.1.

Proof. (Theorem 3.1) We first show |lu — v||p < min;cy (5 [|DGV — 7| p-1. It
follows from Lemma 3.2 that

lu— |7 = |DGv — 7|[h-1 — [|IDGu — 7|1 < |DGv — 7|31
Since the inequality holds for any 7 € #/(f), we have
Ju=vl} <_min_ Do~ 7]},

To show the other direction, note that
lu =]} = (L(u —v),u —v) = (GTDG(u — v),u —v) = (DG(u — v),G(u — v))
(DG(u —v), DG(u —v))p-1 = |DG(u — v)||%-: = ||[DGv — DGul%,-,

> min [|[DGv — T|3,-..
TeW (f)
This completes the proof. 0
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From Theorem 3.1, we observe that

lu =L <[[DGv —7|p-1
for any 7 € #(f). This motivates us to define the following computable quantity:
(3.2) (1) :=||DGv — 7||p-1, VYT eW(f).

If v is the approximate solution to (2.4), ¥(7) gives an a posteriori estimator for the
true error w — v for any choice of 7 € #(f). If 7* is the minimizer of the right-
hand side of (3.1), then ¢(7*) = ||lu — v||r. Of course, computing the minimizer
7* exactly would be expensive. As an alternative we propose a Schwarz method for
approximating 7*. As our numerical tests show, we can obtain a reasonably good
approximation 7 € #'(f), T ~ 7.

3.2. Efficient evaluation of the error estimator. Our approach is to solve
the minimization problem
3.3 min ||[DGv — 7||p-
(33) min | -t
based on the Helmholtz decomposition of 7 on the graph, i.e., 7 = 7y + 7§, where
T € W(f) and " € € such that (14, 75) = 0. Here 7y is curl-free and 7§ is
divergence-free. In particular, we first find a 7y € #'(f) by solving a graph Laplacian

on a spanning tree of the graph. Then for a given 7y € #/(f), the minimization
problem (3.3) becomes

Inin, |DGv — ¢ — 70| p-1.

Solving this constrained minimization problem exactly will give the exact minimizer
75 and thus theoretically give the true error, which is an overkill in terms of finding
the a posteriori error estimator. In practice, we only need to solve it approximately
since as long as 7 € #(f), ¥(7) will provide an upper bound of the error, which
can be used as an error estimator. Note that this approximation is (always) subject
to a trade-off: the error estimator will approximate the true error very accurately
if we solve the optimization problem at unacceptable computation cost, or we can
approximate and obtain a not-so-tight error estimator at an optimal computational
cost.

3.2.1. Computing the curl-free component of the error. In this subsec-
tion, we discuss how to compute 7y € #/(f) with optimal computational complexity
for a given graph. For any 7; € #'(f), we have

(3.4) GTTf = f

Since GT is the discrete divergence operator on the graph, the solution to the above
equation is not unique and difficult to compute in general. However, we just need to
find one 7¢. Here, based on a spanning tree 7 of the graph G, we present an approach
with optimal complexity, i.e., O(n) computational cost.

For a given spanning tree 7 = (V, &7, w), we look for a 7y satisfying (3.4) but
only has nonzero entries on the edges that belong to the spanning tree 7. In this
case, we can rewrite (3.4) as:

(3.5) f=Grry = (G} GLy) (TJST) ’
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where G- is the discrete divergence operator that acts on edges in the tree 7, and
G;\T is the discrete divergence operator on edges that are only in the graph G but

not in the tree 7. From (3.5), we have
(3'6) G;—Tfﬂ’ = f

Therefore, once we solve (3.6), we can assemble 7 by adding back the edges that are
in the graph G but not in the tree 7. Note that (3.6) is defined only on the spanning
tree 7. We can first solve

(37) Lrxz = f7

L7 being the graph Laplacian of the tree 7. With the fact that Ly = GT-D7Gr,
where D and G are the discrete diagonal edge weight matrix and discrete gradient
operator on tree T, respectively, (3.7) can be rewritten as follows:

(3.8) G;—DTGT:E = f
Comparing (3.6) and (3.8), we naturally have

TFT = DTGT:E

and can thereafter assemble the full 7y = (77.7,0)7. The procedure for computing 7
is summarized in Algorithm 3.1.

Algorithm 3.1 Computation of 7¢.

1: procedure |15, 7] =COMPUTET}(G, f)

2 Build the spanning tree 7 from G.

3 Solve Lyx = f, where L+ = G-D1G7 .
4: Compute 777 + DrGre.

5 Assemble 77 as 77 + (747 ).

6: end procedure

Identifying a spanning tree via the classic breadth-first search algorithm (BFS
tree) takes O(m+n) computational complexity for general graphs [21]. If we consider
sparse graphs in which m = O(n) or O(nlog n), this step costs at most O(nlogn).
The main computational cost of Algorithm 3.1 comes from step 3, i.e., solving the
linear system (3.7). As discussed in [53, 59], it takes linear time to solve (3.7). Ad-
ditionally, the matrix-vector multiplication in step 4 has O(n) complexity for sparse
graphs. Therefore, the overall complexity of Algorithm 3.1 is at most O(nlogn).

3.2.2. Computing the the divergence-free component of the error. For
a given Tf, we need to solve the following constrained minimization problem:
(3.9) T, = argmin | DGv — 15 — To||p-1.

TOEE

The difficulty here is that we need to satisfy the constraint exactly when we compute
an approximate 7 to get the estimated value of the error. Our approach is to explic-
itly build the (m — n 4+ 1) basis {c°} of the cycle space € as discussed in section 2
and transform the constrained minimization problem (3.9) into a unconstrained mini-
mization problem. Denote by  the index set of the cycle basis. Then for any 79 € €
we can write Ty as a linear combination of the cycle basis: 79 = Zeeﬂ a.cf. Denote
a € Rt (a), = a.. Thus, the minimization problem (3.9) becomes
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(310) min [ DGv — 7y = olp-+ = minth(er) = min [|DGv -7y - %:2 aec®||p-1.
€

This is an unconstrained least-squares problem, and we can solve it with usual ap-
proaches. Moreover, the approximate solution is guaranteed to belong to the cycle
space. Solving (3.10) exactly will eventually give us the exact error ||u — v||5. This
step, however, has a computational complexity comparable to solving the original
problem (2.4). Therefore, we solve it approximately via a few steps of the one-level
overlapping Schwarz method (see [55, 19]). To describe such a method, we first de-
compose the cycle space € into the following subspaces:

(3.11) C=C1+%C+---+%C;.

Note that &; N %; is not necessarily empty. Then, each step of the Schwarz method
corresponds to a loop over all subspaces and solves the minimization problem (3.10)
in each of the subspace %;. That is, for i = 1,2,...,.J, compute

(3.12) Agrel%ﬂ |IDGv — ¢ — (15 + AT)||p-1,

where 7¢ is the approximation to 7 after solving (3.12) in the first i subspaces,
and 17§ = argmin, .o ||[DGv — Ty — Tol[p-1. The step of this relaxation method
is completed after the approximation in % is computed. The solution obtained
by iteratively solving (3.12) converges to the solution of the original minimization
problem (3.9) since this can be interpreted as a subspace optimization method whose
convergence property was discussed in [62].

To keep low computational cost in computing the error estimator, we only run
O(1) iterations of the Schwarz method to approximately solve (3.12) for 7. Later
in section 4 we show that the error estimator computed with such an approximation
is indeed accurate enough to capture the true error. The steps to compute 75 € €
approximately are summarized in Algorithm 3.2, and we denote the approximation of
75 by 70.

Algorithm 3.2 Computing an Approximation to 7.

1: procedure 79 =COMPUTET,(G, T, Tf)

2 Build the cycle basis {ce}

3 Given initial guess 7§ = 0,

4 for i =1,2,..., max_iter do

5: for k=1,2,...,J do > iterate over each subdomain
6 AT* = argmin, ., [|[DGv — 75 + Tézfl)‘uk*l +7llp-1.

. Téifl)J+k _ Téif1)J+k71 AT

8 end for
9 end for

10: return 7 max-iter,
11: end procedure

In Algorithm 3.2, the cost of one step of the Schwarz method depends on the
number of subspaces J and the cost of solving (3.12) in each subspace. Here, we
choose the following overlapping subspace decomposition: the i-th subspace is the
span of the basis for the cycles incident with the vertex i. Thus, we have J = n, and

(3.13) %; = span{c’| cycle j incidents with vertex i}, i=1,...,J.
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Since there are n vertices we have J = n subspaces. For sparse graphs using the special
data structure proposed in [32], the solution of the minimization problem (3.12) on
each subspace %; will be obtained with computational complexity at most O(log n).
This holds even in the rare cases when the dimension of € is large (e.g. ~n). As a
consequence the overall computational cost of each iteration of the Schwarz method
is O(nlog n) for this choice of subspace decomposition (3.13), and this assures a low
computational cost in computing the proposed estimator.

3.2.3. An algorithm for a posteriori error estimation with Helmholtz
decomposition. Now we are ready to present the overall Algorithm 3.3 to (ap-
proximately) solve the minimization problem (3.10) and compute a posteriori error
estimation for solving the graph Laplacian (2.4).

Algorithm 3.3 Computation of the Error Estimator min e« || DGv — 7y — 79| p-1-

1: procedure ¥y =ERRORESTIMATES(G, v, f)

2 [T¢, T] = Computets(G, f).

3 79 = Computery(G, T, T¢).

4: ¥+ ||DGv — 1 — 70| p-1- > Compute the value of the estimator
5 return .

6: end procedure

In Algorithm 3.3, step 2 to compute 7y takes O(nlog n) for any sparse graphs.
Step 3 to compute 7 has complexity O(nlog n) for sparse graphs since the mini-
mization problem (3.10) is solved approximately with O(1) iterations of the Schwarz
method. As a result, the overall computational complexity of Algorithm 3.3 is
O(nlog n) for sparse graph G.

To make the a posteriori error estimator more useful, especially for developing the
adaptive AMG methods for solving graph Laplacians [64, 37, 40], we need to localize
the a posteriori error estimator. Since

v4(r) = [DGv = 7|1 = (DGv —7)" D™ (DGv — 7)
— Z %((DGU — 7)6)2,

ecg ¢

we can localize the error estimator on each edge e as follows:
1
(3.14) Ve (T) = we 2[(DGV — T)e|-

We comment that the above localized error estimator is obtained for free in practice,
since we have (DGv—T), available from the computation of the global error estimator
¥(7) (see step 4 in Algorithm 3.3).

This localized error estimator (3.14) then can be used to design adaptive AMG
methods. For example, it can be utilized in generating coarser aggregations that
approximate the fine aggregates (vertices) accurately [64] or generate approximations
to the level sets of the error for the path cover adaptive AMG method [28].

4. Numerical results. In this section, we present results of some numerical
experiments demonstrating the efficiency of the a posteriori error estimator.

4.1. Tests on two-dimensional uniform grids. We first test the performance
of the algorithm on the unweighted graph Laplacian L of two-dimensional (2D) uni-
form triangle grids, which corresponds to solving a Poisson equation on a 2D square
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TABLE 1
Efficiency of the error estimator on graph Laplacian systems on uniform triangle grids of
different sizes. The value of the estimator ¥ (7) is computed by solving (3.10) approzimately with 1,
3, and 5 iterations of the overlapping Schwarz method. The CPU time (in seconds) is also shown
in the table.

1 iter 3 iters 5 iters
V| lu —v|lr | ¥(T) | ey | time | (T) | ey | time | (1) | ey | time
1089 1.73 225 | 1.30 | 0.03 | 1.99 | 1.15 | 0.04 | 1.91 | 1.10 | 0.06
4225 1.73 2.67 | 1.55 | 0.05 | 2.28 | 1.32 | 0.11 | 2.16 | 1.25 | 0.16
16641 1.73 3.36 | 1.95 | 0.14 | 2.76 | 1.60 | 0.37 | 2.56 | 1.48 | 0.62
66049 1.72 443 | 2.57 | 0.53 | 3.51 | 2.03 | 1.40 | 3.20 | 1.86 | 2.31
263169 1.72 6.01 | 349 | 1.92 | 466 | 2.71 | 5.64 | 4.19 | 2.43 | 9.53

domain with the Neumann boundary condition. The uniform triangle grid with grid
size h =271 1 =5,6,7,8,9 is used, and we take u = sin(Fx)sin(5y). We set the
approximate solution v = 0 and obtain the a posteriori error estimator (7) with Al-
gorithm 3.3, in which the minimization problem (3.10) is solved approximately with
several iterations of the overlapping Schwarz method. We use the face cycle bases
that correspond to the small triangles in the grid (cycle length is 3). With this choice
of cycle basis, each of the decomposed subspaces in (3.13) have dimension O(1) since
there are at most six cycles incident with a given vertex i. The low dimension of the
subspaces assures that solving (3.12) costs no more than O(1) computation, and thus
the computation cost of one iteration of the Schwarz method remains O(n).

In Table 1, we report the true error and the a posteriori error estimator ()
H;/’_(:L is also reported to
show the efficiency of the error estimator. From Table 1, we observe that the CPU
time for one iteration of the Schwarz method grows linearly as the size of the graph
Laplacian systems increases. The error estimator ¢(7) gradually approaches the true
error |[u — v||; when we increase the steps of Schwarz iteration.

More importantly, we would like to know whether the localized error estima-
tor (3.14) approximates the true error on each edge accurately, since the localized
estimation is the key to an effective coarsening scheme in adaptive AMG. Take
L as the weighted graph Laplacian of the uniform grid with grid size h = 272,
u = sin(5x)sin(Fy), and v obtained by three iterations of Gauss-Seidel method
with random initial guess. We compute the error estimator using three iterations of
the Schwarz method to solve the minimization problem in Algorithm 3.3.

In Figure 2, we plot the difference between the true error and the error estimator
on each edge. On most of the edges the error estimator captures the true error well
since the difference ¥ (7) — ||u — v|| is no larger than 0.02.

on graph Laplacian systems of different scales. eg :=

4.2. Tests on “real-world” graphs. In this section we test the proposed error
estimator on some real-world graphs from the SuiteSparse Matrix Collection [23]. We
preprocess the undirected graphs by extracting the largest connected component of
each graph and deleting self-loops. For each of these graphs, if the original edge weight
is negative, we take its absolute value.

In Table 2, we summarize the basic information of the graphs and the perfor-
mance of the error estimator. In our setting w is the exact solution for a problem
with an arbitrarily chosen right-hand side f. The approximate solution v is obtained
as a result of three iterations of the Gauss—Seidel method with this right-hand side.
To compute the error estimator, we first use the BFS algorithm to find a spanning
tree and then construct the spanning-tree-induced fundamental cycle basis. Then
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-0.04 4

Difference between ||[u — v||, and (1)

-0.05 1

-0.06 - ’ -
0 500 1000 1500 2000 2500 3000 3500

Edges

F1c. 2. Difference between the true error ||u — v||r and error estimator |DGv — T||p-1 on
each edge e.

TABLE 2
Efficiency of error estimator on graph Laplacian systems arising from real-world applications.
The value of the estimator ¥ (7) is computed by solving (3.10) approzimately with 3 iterations of the
Schwarz method. The graph types tested are unweighted (u) and weighted (w).

1D V| €] Problem type Type | |lu -l | ¥(T) | em
8 292 958 | Least-squares problem u 1.74 1.75 1.00
1196 | 1879 5525 | Circuit simulation w 2.71 2.71 1.00
22 | 5300 8271 | Power network u 5.82 5.82 1.00
1614 | 2048 4034 | Electromagnetic problem W 0.47 0.50 | 1.07
33 | 1423 | 16342 | Structural problem w 14.5 19.7 | 1.36
791 | 8205 | 58681 | Acoustic problem W 23.8 37.7 | 1.58
2777 | 1857 | 13762 | Social network u 52.9 76.3 | 1.44
1533 | 2361 | 13828 | Protein network u 4.61 4.70 1.01
800 ‘ 800 80
g600 ‘ gsoo geo
;')_400 ‘ ;.;400 ;')_40
= 200 * 200 T20
0 -} ‘ J - ‘ 0 - . 0 L
10 20 30 0 100 200 2 4 6 8 10 12 14
vertex degree vertex degree vertex degree

FiG. 3. Representative degree distribution of networks studied in Table 2. Left: Network ID 33.
Middle: Network ID: 2777 (power law distribution). Right: Network ID 8 (normal distribution).

we apply three steps of Schwarz iterations to solve the minimization problem in Al-
gorithm 3.3 to compute the overall error estimator. In Figure 3 we plot the degree
distribution of selected networks. The differences in these degree distributions suggest
that these networks have distinctive structural and dynamical properties. As we can
see from the results, for real-world graphs with different sizes, structures, and densi-
ties, the error estimators approximate the true errors well in all cases, which demon-
strates the effectiveness of our proposed algorithm for computing the a posteriori error
estimator.
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(a) True error of the current (b) Path cover aggrega- (c) Difference between the
solution. tion based on the known smooth error and the error af-
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on true error.
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A posteriori error estimates of (e) Path cover aggrega- (f) Difference between the
the current solution. tion based on a posteriori smooth error and the error af-
error estimator. ter restriction and prolonga-
tion with aggregation based

on error estimates.

Fi1G. 4. Path-cover aggregation generated with the exact error and the a posteriori error esti-
mates and the difference between the smooth error and the error after restriction and prolongation.
The aggregation based on the error estimator assembles the one based on the exact error, but the
formal one is computable at a modest cost.

4.3. Tests on building aggregations for AMG. Designing an effective coars-
ening scheme that projects the smooth error onto coarse levels accurately is the key
to the AMG methods. One example is the path-cover adaptive AMG (PC-aAMG)
proposed in [28] for solving weighted graph Laplacian linear systems. Provided an
accurate estimation of the current error, PC-aAMG first forms A vertex-disjoint path
cover where paths approximate the level sets of the smooth error, then aggregates
vertices to form aggregations.

While an accurate error estimate makes PC-aAMG highly efficient, the step to
compute estimation of the true error in the original PC-aAMG appears to be expen-
sive in [28]. Our a posteriori error estimator offers an ideal replacement which gives
an accurate approximation in an efficient manner.

Here, we present the resulting path-cover aggregation obtained by using the pro-
posed a posteriori error estimator for solving the unweighted graph Laplacian on the
2D uniform grid. We solve the corresponding linear system approximately with sev-
eral iterations of the relaxation scheme and curated the exact true error of the current
solution (plotted in Figure 4(a)). Note that in practice this exact error is not directly
accessible, and we approximate it with the proposed a posteriori error estimator plot-
ted in Figure 4(d). In Figure 4(b) and 4(e) we compare the path-cover aggregation
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generated with the true error and the a posteriori error estimator (computed approx-
imately with 3 iterations of the Schwarz method). The aggregation patterns are very
similar.

To check whether the smooth error is transferred and represented accurately on
the coarse level, we restrict the smooth error to the coarse level and then prolongate it
back. We plot the differences between the smooth error and the error after restriction
and prolongation in Figure 4(c) for the case where the coarse level is constructed
based on the exact smooth error and in Figure 4(f) for the case where the coarse
level is constructed based on the a posteriori error estimator, respectively. As we can
see, although the shapes of differences in the two cases are different, the magnitudes
of both cases are 0.045, which indicates that the aggregation built with the error
estimator is effective in capturing the true smooth error.

5. Conclusions. In this paper we proposed an a posteriori error estimator for
solving linear systems of graph Laplacians. A novel approach is devised to reduce
the computation cost of computing such an estimator in comparison to existing ap-
proaches. For sparse graphs this novel estimator can be calculated in nearly linear
time. Our approach is based on the Helmholtz decomposition on the graphs. It
includes solving a linear system on a spanning tree and solving (approximately) a
minimization problem in the cycle space of the graph.

In the future, we plan to incorporate this error estimator in the adaptive AMG
coarsening schemes. For example, as briefly discussed in subsection 4.3, the proposed
estimator can be used in the path-cover adaptive AMG proposed in [28].
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