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Abstract

This paper focuses on establishing L2 approximation properties for deep ReLU
convolutional neural networks (CNNs) in two-dimensional space. The analysis is based
on a decomposition theorem for convolutional kernels with a large spatial size and
multi-channels. Given the decomposition result, the property of the ReLU activation
function, and a specific structure for channels, a universal approximation theorem of
deep ReLU CNNs with classic structure is obtained by showing its connection with
one-hidden-layer ReLU neural networks (NNs). Furthermore, approximation properties
are obtained for one version of neural networks with ResNet, pre-act ResNet, and
MgNet architecture based on connections between these networks.
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1 Introduction
The purpose of this paper is to study the approximation properties of deep convolutional
neural networks, including classic CNNs [22,25], ResNet [15], pre-act ResNet [16], and
MgNet [13]. CNN is a very efficient deep learning model [8,24], which has been widely
used in image processing, computer vision, reinforcement learning, and also scientific
computing [10,19]. However, there is still very little mathematical analysis of CNNs and,
therefore, limited understanding of them, especially for the approximation property of
CNNs, which plays a functional role in their interpretation and development [21,27].
In the last three decades, researchers have produced a large number of studies on the

approximation and representation properties of fully connected neural networks with
a single hidden layer [2,4,5,17,20,26,37,40,43] and deep neural networks (DNNs) with
more than one hidden layer [1,9,11,12,28,29,32,35,36,42,44]. To our knowledge, how-
ever, the literature included very few studies on the approximation property of CNNs
[3,23,31,34,45,46]. In [3], the authors consider a type of ReLUCNNwith one-dimensional
(1D) input that is constitutedby a sequenceof convolution layers anda fully connectedout-
put layer. By showing that the identity operator can be realized by an underlying sequence
of convolutional layers, they obtain the approximation property of the CNN directly from
the fully connected layer. In their analysis, the underlying convolutional layers do not
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contribute anything to the approximation power of the overall CNN. Approximation
properties with more standard CNN architecture have been studied in [45,46] in relation
to the kernel decomposition for 1D convolutional operation with periodic padding. This
type of result, however, cannot be extended to CNNs with two-dimensional (2D) inputs,
because essentially it is the polynomial decomposition theory [6] for 1D. In [45,46], the
authors study a standard 1D ReLU CNN architecture consisting of a sequence of convo-
lution layers and a linear layer and obtain approximation properties by showing that any
fully connected layer can be decomposed as a sequence of convolution layers with the
ReLU activation function. In [34], the authors extend the analysis in [45,46] to 2D ReLU
CNNs with periodic padding for a very special function class. This class is in the form
of f (X) = [F (X)]1,1 + b in which F : Rd×d �→ R

d×d satisfies the following translation
invariant property:

F (Sst (X)) = Sst (F (X)), ∀X ∈ R
d×d, (1.1)

where Sst : Rd×d �→ R
d×d is considered the translation operator defined as [Sst (X)]i,j =

[X]i−s,j−t for 1 ≤ s, t ≤ d with periodic padding.Here, [Y ]means taking the element of the
tensor Y . A generalized study of this function class and its application in approximation
properties of CNNs can be found in [23]. In [31], the authors study the approximation
properties of ResNet-type CNNs on 1D for the special function class that can be approx-
imated by sparse NNs.
First, we show a pure algebraic decomposition theorem, which plays a critical role in

establishing the approximation theorem of deep ReLU CNNs, for 2D convolutional ker-
nels with multi-channel and constant or periodic padding. The core idea in establishing
such a decomposition result is to introduce channels, whereas the decomposition theo-
rem in [3,45,46] incorporates only one channel. By applying a similar argument in [46],
we then establish a connection between one-hidden-layer ReLU NNs and deep ReLU
CNNs without pooling layers. According to this connection, we prove the approximation
theorem of classic deep ReLU CNNs, which shows that this kind of CNN can provide
the same asymptotic approximation rate as one-hidden-layer ReLU NNs. Moreover, we
obtain approximation results for ResNet and pre-act ResNet CNNs by studying con-
nections between classic deep ReLU CNNs and CNNs with ResNet or pre-act ResNet
architecture. Finally, we establish the approximation property of one version of MgNet
[13] based on its connection with pre-act ResNet.
The paper is organized as follows. In Sect. 2, we introduce the 2D convolutional oper-

ation with multi-channel and paddings and then prove the decomposition theorem for
large convolutional kernels. In Sect. 3, we show the approximation results for functions
represented by classic CNNs without pooling operators. In Sect. 5, we provide concluding
remarks.

2 Decomposition theorem of large convolutional kernels in CNNs
In this section, we introduce the decomposition theorem for standard two-dimensional
convolutional kernels with large spatial size.
First, let us follow the setup for the dimensions of the tensors in PyTorch [33] to denote

the data with c channels as

X ∈ R
c×d×d (2.1)
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with elements [X]p,m,n for p = 1 : c and m, n = 1 : d. For the convolutional kernel with
input channel c, output channel C , and spatial size (2k + 1) × (2k + 1), we have

K ∈ R
c×C×(2k+1)×(2k+1) (2.2)

with elements [K ]p,q,s,t for p = 1 : c, q = 1 : C , and s, t = −k : k . Then, the standard
multi-channel convolution operation in typical 2D CNNs [8] with constant or periodic
padding is defined as K ∗ X ∈ R

C×d×d where

[K ∗ X]q,m,n =
c∑

p=1

k∑

s,t=−k
[K ]p,q,s,t [X]p,m+s,n+t (2.3)

for q = 1 : C andm, n = 1 : d. If the indexm + s or n + t exceeds the range 1 : d in (2.3),
we denote the constant padding and the periodic padding as follows:
Constant padding:

[X]p,m+s,n+t = a, (2.4)

where a ∈ R is an arbitrary constant andm + s /∈ 1 : d or n + t /∈ 1 : d;
Periodic padding:

[X]p,m+s,n+t = [X]p,k,l , (2.5)

where 1 ≤ k, l ≤ d, k ≡ m + s (mod d), and l ≡ n + t (mod d).

The convolutionwith constant or periodic padding defined in (2.3), referred to as convolu-
tion with stride one [8] with padding, is themost commonly used convolutional operation
in practical CNNs [15,16,18,41]. An important feature of this convolution is that the
spatial dimensions of its inputs do not change in the presence of paddings.

Remark 1 For simplicity, we assume the index of the convolution kernel K ∈
R
(2k+1)×(2k+1) starts from −k and ends at k , whereas the index of the data or tensor after

convolution starts from 1. In addition, we stress that the convolution operation defined
above follows neither the commutative law nor the associative law. Thus, we mean

K2 ∗ K1 ∗ X := K2 ∗ (K1 ∗ X) (2.6)

by default.

Our study begins with the observation that a 5 × 5 kernel can be represented by the
combination of two composed 3 × 3 kernels.

Lemma 1 Let K ∈ R
5×5 and d > 2, then there exist Pi,j , Si,j ∈ R

3×3 for i, j = −1, 0, 1 such
that

K ∗ X =
∑

i,j=−1,0,1
Pi,j ∗ Si,j ∗ X, ∀X ∈ R

d×d, (2.7)

where∗means the standard convolutionwith one channel and constant or periodic padding
as in (2.3).
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Proof Here, we present a constructive proof by taking Si,j as

[
Si,j
]
s,t =

⎧
⎨

⎩
1 s = i and t = j,

0 others,
(2.8)

i.e.,

S−1,−1 =
⎛

⎜⎝
1 0 0
0 0 0
0 0 0

⎞

⎟⎠ , S−1,0 =
⎛

⎜⎝
0 1 0
0 0 0
0 0 0

⎞

⎟⎠ , S−1,1 =
⎛

⎜⎝
0 0 1
0 0 0
0 0 0

⎞

⎟⎠ ,

S0,−1 =
⎛

⎜⎝
0 0 0
1 0 0
0 0 0

⎞

⎟⎠ , S0,0 =
⎛

⎜⎝
0 0 0
0 1 0
0 0 0

⎞

⎟⎠ , S0,1 =
⎛

⎜⎝
0 0 0
0 0 1
0 0 0

⎞

⎟⎠ ,

S1,−1 =
⎛

⎜⎝
0 0 0
0 0 0
1 0 0

⎞

⎟⎠ , S1,0 =
⎛

⎜⎝
0 0 0
0 0 0
0 1 0

⎞

⎟⎠ , S1,1 =
⎛

⎜⎝
0 0 0
0 0 0
0 0 1

⎞

⎟⎠ ,

(2.9)

and Pi,j as

P−1,−1 =
⎛

⎝
K−2,−2 0 0

0 0 0
0 0 0

⎞

⎠ , P−1,0 =
⎛

⎝
K−2,−1 K−2,0 K−2,1

0 0 0
0 0 0

⎞

⎠ , P−1,1 =
⎛

⎝
0 0 K−2,2
0 0 0
0 0 0

⎞

⎠ ,

P0,−1 =
⎛

⎝
K−1,−2 0 0
K0,−2 0 0
K1,−2 0 0

⎞

⎠ , P0,0 =
⎛

⎝
K−1,−1 K−1,0 K−1,1
K0,−1 K0,0 K0,1
K1,−1 K1,0 K1,1

⎞

⎠ , P0,1 =
⎛

⎝
0 0 K−1,2
0 0 K0,2
0 0 K1,2

⎞

⎠ ,

P1,−1 =
⎛

⎝
0 0 0
0 0 0

K2,−2 0 0

⎞

⎠ , P1,0 =
⎛

⎝
0 0 0
0 0 0

K2,−1 K2,0 K2,1

⎞

⎠ , P1,1 =
⎛

⎝
0 0 0
0 0 0
0 0 K2,2

⎞

⎠ .

(2.10)

	


Remark 2 Si,j and Pi,j can be collected separately to form two multi-channel convolution
kernels. More precisely, we have

S = (S−1,−1, S−1,0, · · · , S1,1) ∈ R
1×9×3×3 (2.11)

and

P = (P−1,−1, P−1,0, · · · , P1,1)T ∈ R
9×1×3×3. (2.12)

That is, the convolution operation defined in (2.7) can be written as

K ∗ X = P ∗ S ∗ X. (2.13)
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Then, the most critical step is to extend Lemma 1 to a convolutional kernel K ∈
R
(2k+1)×(2k+1) with large spatial size; i.e., k is large. Thus, we introduce the next decom-

position for any K ∈ R
(2k+1)×(2k+1) as

K =
∑

i,j=−1,0,1
K̃i,j , (2.14)

where

K̃−1,−1 =

⎛

⎜⎜⎜⎝

K−k,−k 0 · · ·
0

. . .
...

... · · · 0

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎜⎝

P−1,−1
0 0
...
...

0 · · ·
0 · · ·

0 0
0 0

⎞

⎟⎟⎟⎟⎠
∈ R

(2k+1)×(2k+1),

K̃−1,0 =

⎛

⎜⎜⎜⎝

0 K−k,−k+1 · · · K−k,k−1 0

0
. . . 0

. . . 0
... · · · ... · · · ...

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎝

0 P−1,0 0
...

...
0 · · · 0

⎞

⎟⎟⎠ ∈ R
(2k+1)×(2k+1),

...

K̃1,1 =

⎛

⎜⎜⎜⎝

0 · · · ...
...

. . . 0
· · · 0 Kk,k

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎜⎝

0 0
0 0

· · · 0
· · · 0

...
...

0 0
P1,1

⎞

⎟⎟⎟⎟⎠
∈ R

(2k+1)×(2k+1),

(2.15)

and Pi,j ∈ R
(2k−1)×(2k−1) with

P−1,−1 =

⎛

⎜⎜⎜⎝

K−k,−k 0 · · ·
0

. . .
...

... · · · 0

⎞

⎟⎟⎟⎠ , P−1,0 =

⎛

⎜⎜⎜⎝

K−k,−k+1 · · · K−k,k−1

0
. . . 0

... · · · ...

⎞

⎟⎟⎟⎠ ,

P−1,1 =

⎛

⎜⎜⎜⎝

· · · 0 K−k,k
...

. . . 0

0 · · · ...

⎞

⎟⎟⎟⎠ ,

P0,−1 =

⎛

⎜⎜⎝

K−k+1,−k 0 · · ·
...

. . .
...

Kk−1,−k 0 · · ·

⎞

⎟⎟⎠ , P0,0 =

⎛

⎜⎜⎝

K−k+1,−k+1 · · · K−k+1,k−1
...

. . .
...

Kk−1,−k+1 · · · Kk−1,k−1

⎞

⎟⎟⎠ ,

P0,1 =

⎛

⎜⎜⎝

· · · 0 K−k+1,k
...

. . .
...

· · · 0 Kk−1,k

⎞

⎟⎟⎠ ,
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P1,−1 =

⎛

⎜⎜⎜⎝

... · · · 0

0
. . .

...
Kk,−k 0 · · ·

⎞

⎟⎟⎟⎠ , P1,0 =

⎛

⎜⎜⎜⎝

... · · · ...

0
. . . 0

Kk,−k+1 · · · Kk,k−1

⎞

⎟⎟⎟⎠ ,

P1,1 =

⎛

⎜⎜⎜⎝

0 · · · ...
...

. . . 0
· · · 0 Kk,k

⎞

⎟⎟⎟⎠ . (2.16)

A more intuitive description of the previous decomposition is

K =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K−k,−k K−k,−k+1 · · · K−k,k−1 K−k,k

K−k+1,−k
...

Kk−1,−k

K−k+1,−k+1 · · · K−k+1,k−1
...

. . .
...

Kk−1,−k+1 · · · Kk−1,k−1

K−k+1,k
...

Kk−1,k

Kk,−k Kk,−k+1 · · · Kk,k−1 Kk,k

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.17)

Thus, we can regard Pi,j in (2.16) as the generalization of Pi,j in (2.10). Now, we present
the main theorem for decomposing any large convolutional kernels K ∈ R

(2k+1)×(2k+1).

Theorem 1 Let K ∈ R
(2k+1)×(2k+1) and d > k. Then, we can take Pi,j ∈ R

(2k−1)×(2k−1) as
in (2.16) and Si,j ∈ R

3×3 as in (2.8) for i, j = −1, 0, 1 such that

K ∗ X =
∑

i,j=−1,0,1
Pi,j ∗ Si,j ∗ X, ∀X ∈ R

d×d, (2.18)

where∗means the standard convolutionwith one channel and constant or periodic padding
as in (2.3).

Proof Given the definition of K̃i,j in (2.15), we need only verify that

K̃i,j ∗ X = Pi,j ∗ Si,j ∗ X (2.19)

for any i, j = −1, 0, 1. For constant or periodic padding, we prove the above claim, respec-
tively.
Periodic padding. For this case, we notice that

[
Si,j ∗ X

]
m,n = Xm+i,n+j (2.20)
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for any i, j = −1, 0, 1 and 1 ≤ m, n ≤ d. Therefore, we have

[
Pi,j ∗ Si,j ∗ X

]
m,n =

∑

p,q=−k+1,···,k−1

[
Pi,j
]
p,q
[
Si,j ∗ X

]
m+p,n+q

=
∑

p,q=−k+1,···,k−1

[
Pi,j
]
p,q [X]m+p+i,n+q+j

=
∑

p̃=−k+1+i,···k−1+i,
q̃=−k+1+j,···k−1+j

[
Pi,j
]
p̃−i,̃q−j [X]m+p̃,n+q̃ ,

=
∑

p̃,̃q=−k,···,k

[
K̃i,j
]
p̃,̃q [X]m+p̃,n+q̃

= [K̃i,j ∗ X
]
m,n

(2.21)

for any i, j = −1, 0, 1 and 1 ≤ m, n ≤ d.
Constant padding. For this case, we split the proof into three cases according to different
values of |i| + |j|.
1. |i| + |j| = 0, i.e., i = j = 0. Thus, for any 1 ≤ m, n ≤ d, we have

[
P0,0 ∗ S0,0 ∗ X

]
m,n =

∑

p,q=−k+1,···,k−1

[
P0,0
]
p,q
[
S0,0 ∗ X

]
m+p,n+q

=
∑

p,q=−k+1,···,k−1
[K ]p,q [X]m+p,n+q

= [K̃0,0 ∗ X
]
m,n .

(2.22)

2. |i| + |j| = 2, for example (i, j) = (−1,−1) or (1,−1). Without loss of generality, let
us consider the example (i, j) = (1,−1) first. Thus, we have

∑

p,q=−k+1,···,k−1

[
P1,−1

]
p,q
[
S1,−1 ∗ X

]
m+p,n+q

= [K ]k,−k
[
S1,−1 ∗ X

]
m+k−1,n−k+1 .

(2.23)

As there is padding for S1,−1 ∗X when we calculate P1,−1 ∗S1,−1 ∗X , it is necessary to
compute

[
S1,−1 ∗ X

]
m+k−1,n−k+1 carefully. By definition, we first have

[
S1,−1 ∗ X

]
s,t

for s, t = 1 : d,

[
S1,−1 ∗ X

]
s,t =

⎧
⎨

⎩
a, if s = d or t = 1,

[X]s+1,t−1 , others.
(2.24)

We further mention that it is necessary to include padding in S1,−1 ∗ X in (2.23):

[
S1,−1 ∗ X

]
m+k−1,n−k+1 =

⎧
⎨

⎩
a, ifm ≥ d − k + 2 or n ≤ k − 1,
[
S1,−1 ∗ X

]
m+k−1,n−k+1 , others.

(2.25)
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By combining the previous two equations and noticing that k ≥ 2, we can obtain
that

[
S1,−1 ∗ X

]
m+k−1,n−k+1

=
⎧
⎨

⎩
a, ifm ≥ d − k + 1 or n ≤ k,

[X]m+k,n−k , others,

= [X]m+k,n−k .

(2.26)

Therefore, we have

[
P1,−1 ∗ S1,−1 ∗ X

]
m,n =

∑

p,q=−k+1,···,k−1

[
P1,−1

]
p,q
[
S1,−1 ∗ X

]
m+p,n+q

= [K ]k,−k
[
S1,−1 ∗ X

]
m+k−1,n−k+1

= [K ]k,−k [X]m+k,n−k

= [K̃1,−1 ∗ X
]
m,n .

(2.27)

A similar derivation can be applied to the other three cases for |i| + |j| = 2.
3. |i| + |j| = 1, for example, (i, j) = (−1, 0) or (0, 1). Without loss of generality, let us

consider the example (i, j) = (1,−1). Thus, we have

∑

p,q=−k+1,···,k−1

[
P0,1
]
p,q
[
S0,1 ∗ X

]
m+p,n+q

=
∑

p=−k+1,···,k−1
[K ]p,k

[
S0,1 ∗ X

]
m+p,n+k−1 .

(2.28)

First, let us take p > 0 and then compute
[
S0,1 ∗ X

]
m+p,n+k−1 in the same fashion.

Thus, we have

[
S0,1 ∗ X

]
s,t =

⎧
⎨

⎩
a, if t = d,

[X]s,t+1 , others,
(2.29)

and

[
S0,1 ∗ X

]
m+p,n+k−1 =

⎧
⎨

⎩
a, ifm ≥ d − p + 1 or n ≥ d − k + 2,
[
S1,−1 ∗ X

]
m+p,n+k−1 , others.

(2.30)

Furthermore, we can obtain that

[
S0,1 ∗ X

]
m+p,n+k−1

=
⎧
⎨

⎩
a, ifm ≥ d − p + 1 or n ≥ d − k + 1,

[X]m+p,n+k , others,

= [X]m+p,n+k .

(2.31)
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For p < 0, we can also go through the previous steps to reach the same conclusion.
Thus, we have

[
P0,1 ∗ S0,1 ∗ X

]
m,n =

∑

p,q=−k+1,···,k−1

[
P0,1
]
p,q
[
S0,1 ∗ X

]
m+p,n+q

=
∑

p=−k+1,···,k−1
[K ]p,k

[
S0,1 ∗ X

]
m+p,n+k−1

=
∑

p=−k+1,···,k−1
[K ]p,k [X]m+p,n+k

= [K̃0,1 ∗ X
]
m,n .

(2.32)

A similar derivation can be applied to the other three cases for |i| + |j| = 1.

This completes the proof. 	

According to the proof, the decomposition in (2.18) does not hold for arbitrary paddings
such as reflection or replication padding [33], because equations (2.20), (2.26), and (2.31)
cannot be true.
By applying the above theorem to decompose Pi,j recursively, we have the following

corollary.

Corollary 1 Let K ∈ R
(2k+1)×(2k+1) be a large kernel with one channel and d > k. Then,

there exist P(i1 ,j1),(i2 ,j2),···,(ik−1 ,jk−1) ∈ R
3×3 and Sim,jm ∈ R

3×3 for im, jm = −1, 0, 1 and
m = 1 : k − 1 such that

K ∗ X =
∑

ik−1 ,jk−1

· · ·
∑

i1 ,j1

P(i1 ,j1),···,(ik−1 ,jk−1) ∗ S(ik−1 ,jk−1) ∗ · · · ∗ S(i1 ,j1) ∗ X (2.33)

for any X ∈ R
d×d, where ∗ means the standard convolution with one channel as in (2.3).

Proof This can be proved by repeatedly applying Theorem 1 for Pi,j in (2.18) until each
P(i1 ,j1),(i2 ,j2),···,(ik−1 ,jk−1) becomes a 3 × 3 kernel. 	

As mentioned in Remark 2, we can collect all P(i1 ,j1),(i2 ,j2),···,(ik−1 ,jk−1) into P as a single

convolution kernel withmulti-channels. Therefore, the output channel of P is 9k−1, which
will be huge if k is large. Thanks to the special pattern of zero in Pi,j in (2.16), we have the
following lemma to further reduce the number of nonzero output channels in P.

Lemma 2 Let K ∈ R
(2k+1)×(2k+1) and d > k. Then, there is an index set

Ik−1 ⊂ { ((i1, j1), · · · , (ik−1, jk−1))
∣∣ im, jm = {−1, 0, 1}, m = 1 : k − 1

}
(2.34)

such that

K ∗ X =
∑

((i1 ,j1),···,(ik−1 ,jk−1))∈Ik−1

P(i1 ,j1),···,(ik−1 ,jk−1) ∗ Sik−1 ,jk−1 ∗ · · · ∗ Si1 ,j1 ∗ X (2.35)

for any X ∈ R
d×d, where ∗ means a standard convolution with one channel. Moreover, we

have the cardinality of Ik−1 as

#Ik−1 = (2k − 1)2. (2.36)
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Proof This proof is based on the special distribution of zero for each Pi,j in (2.16). Assume
that we have applied Theorem 1 to Pi,j for n − 1-times with n < k and obtained the
following set of kernels:

Pn := {P(i1 ,j1),···,(in,jn)
∣∣ im, jm = −1, 0, 1, m = 1 : n

}
. (2.37)

It is easy to see that the cardinality of Pn is 9n. Here, we prove that the number of nonzero
items inPn is boundedby (2n+1)2. Because of the special formofPi,j in (2.16), we conclude
that for nonzero P(i1 ,j1),···,(in,jn) there are only three types based on different zero-patterns.

1. Type 1: Nonzero items on the corner. For example, P−1,−1 and P−1,1 for n = 1, or
P(−1,−1),(−1,−1) and P(0,0),(1,−1) for n = 2. We denote the number of elements with
this type as Cn.

2. Type 2: Nonzero items on the boundary. For example, P−1,0 and P0,1 for n = 1, or
P(0,−1),(0,−1) and P(0,0),(1,0) for n = 2. We denote the number of elements with this
type as Bn.

3. Type 3: Full kernel. For example, P0,0 for n = 1, or P(0,0),(0,0) for n = 2. A criti-
cal observation is that there is only one item with this form in Pn for any n, i.e.,
P(0,0),···,(0,0) ∈ Pn.

The following rules describe the connections of the number of nonzero items between
Pn−1 and Pn when we apply Theorem 1 to Pn−1 in order to obtain Pn.

1. Type 1:

Cn = Cn−1 + 2Bn−1 + 4, (2.38)

as each element in Pn−1 with type 1 can make only one nonzero element in Pn with
type 1, each element in Pn−1 with type 2 can make two nonzero elements in Pn with
type 1, and each element in Pn−1 with type 3 can make four nonzero elements in Pn
with type 1.

2. Type 2:

Bn = Bn−1 + 4, (2.39)

as each element in Pn−1 with type 2 can make one nonzero element in Pn with type
2, each element in Pn−1 with type 3 can make four nonzero elements in Pn with type
2, but each element in Pn−1 with type 1 cannot make any nonzero element in Pn
with type 2.

3. Type 3: There is only one nonzero element in Pn. First, this nonzero item cannot
be produced from elements in Pn−1 with either type 1 or type 2. In addition, each
element in Pn−1 with type 3 can make only one nonzero element in Pn with type 3.

According to the decomposition in Theorem 1, we have

C1 = B1 = 4 (2.40)

as the initial values for (2.38) and (2.39). Thus, we have

Cn = 4n2 and Bn = 4n, (2.41)
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which means that the number of nonzero elements in Pn is

Cn + Bn + 1 = 4n2 + 4n + 1 = (2n + 1)2. (2.42)

Thus, the theorem is proved by taking n = k − 1 and Ik−1 as the index set of nonzero
elements in Pk−1. 	


By representing the previous theorem in terms of convolution with multi-channels
globally, we obtain the following theorem.

Theorem 2 Let K ∈ R
1×M×(2k+1)×(2k+1) and d > k. Then, there is a series of kernels

Sn ∈ R
cn−1×cn×3×3 with multi-channels and P ∈ R

(2k−1)2×M×3×3 such that

K ∗ X = P ∗ Sk−1 ∗ Sk−2 ∗ · · · ∗ S1 ∗ X, ∀X ∈ R
d×d, (2.43)

where cn = (2n + 1)2 for n = 1 : k − 1 and ∗ means the standard convolution with
multi-channels and padding as defined in (2.3).

Proof First, we follow the proof in Theorem 1 and notice that the index set In is inde-
pendent from the kernel K and has this important feature:

((i1, j1), (i2, j2), · · · , (in, jn)) ∈ In ⇒ ((i1, j1), (i2, j2), · · · , (im, jm)) ∈ Im, (2.44)

ifm ≤ n. Thus, we can define the following operator τn : In �→ In−1 as

τn (((i1, j1), (i2, j2), · · · , (in, jn))) = ((i1, j1), (i2, j2), · · · , (in−1, jn−1)) . (2.45)

Then, for each In, we fix a bijection

πn : {1, 2, · · · , (2n + 1)n} �→ In (2.46)

to give a unique position for each element in In. For example, alphabetical order can be
used. Thus, we construct Sn ∈ R

c�−1×cn×3×3 by taking

[
Sn
]
p,q =

⎧
⎨

⎩
Sin,jn , if πn(q) = ((i1, j1), · · · , (in, jn)) and πn−1(p) = τn(πn(q)),

0, others,
(2.47)

for all n = 1 : k − 1. Therefore, we can check that

[
Sn ∗ Sn−1 ∗ · · · S1 ∗ X

]
q =

cn−1∑

p=1
[Sn]p,q ∗ [Sn−1 ∗ · · · S1 ∗ X]p

= Sin,jn ∗ [Sn−1 ∗ · · · S1 ∗ X]
π−1
n−1(τn(πn(q)))

= Sin,jn ∗ Sin−1 ,jn−1 ∗ [Sn−2 ∗ · · · S1 ∗ X]
π−1
n−2(τn−1(τn(πn(q))))

= · · ·
= Sin,jn ∗ Sin−1 ,jn−1 ∗ · · · ∗ Si1 ,j1 ∗ X,

(2.48)
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where

((i1, j1), (i2, j2), · · · , (in, jn)) = πn(q) ∈ In (2.49)

for all 1 ≤ q ≤ (2n+1)2. According toTheorem1, for each channel [K ]m ∈ R
(2k+1)×(2k+1)

in K ∈ R
1×M×(2k+1)×(2k+1), we have

[K ]m ∗ X =
∑

((i1 ,j1),···,(ik−1 ,jk−1))∈Ik−1

Pm
(i1 ,j1),···,(ik−1 ,jk−1) ∗ Sik−1 ,jk−1 ∗ · · · ∗ Si1 ,j1 ∗ X. (2.50)

Finally, we finish the proof by constructing P ∈ R
(2k−1)2×M×3×3 as

[P]p,m = Pm
π−1
k−1(p)

, (2.51)

where Pm
π−1
k−1(p)

is defined in (2.50). 	


3 Universal approximation theorem for classic CNNs
In this section, we show the universal approximation theorem for classic CNNs with 2D
image inputs and standard multi-channel convolutions.
First, let us introduce CNN architecture with input data x ∈ R

d×d and ReLU [30]
activation function(σ (t) = ReLU(t) := max{0, t} for any t ∈ R):

⎧
⎨

⎩
f �(x) = σ (K � ∗ f �−1(x) + b�1) � = 1 : L,

f (x) = a · V (f L(x)) ,
(3.1)

where f 0(x) = x ∈ R
d×d , K � ∈ R

c�−1×c�×3×3, b� ∈ R
c� , f � ∈ R

c�×d×d , a ∈ R
cLd2 , and

V(f L(x)) denotes the vectorization of f L(x) ∈ R
cL×d×d by taking

[V (f L(x))](c−1)d2+(s−1)d+t = [f L(x)]c,s,t (3.2)

for all s, t = 1 : d and c = 1 : cL. For simplicity, we extend the definition of V(·) for
the general tensor in R

d×d , Rc�×d×d , etc. Here, K � ∗ f �−1(x) follows the definition of
convolution with multi-channel and constant or periodic padding as in (2.3). In addition,
we consider the special form of bias in CNNs,

b�1 :=
(
[b�]1I, [b�]2I, · · · , [b�]c�I

)
∈ R

c�×d×d, (3.3)

where I ∈ R
d×d with [I]s,t = 1 for all s, t = 1 : d. Moreover, we notice that there

is no pooling, subsampling, or coarsening operator (layer) to apply in the above CNN
architecture. Furthermore, to investigate the approximation properties of CNNs onRd×d ,
we consider Rd×d as a d2-dimensional vector space with Frobenius norm.
Beforeweprove themain approximation theorem, let us introduce the next two lemmas,

which reveal the connection between deep ReLUCNNs and one-hidden-layer ReLUNNs.
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Lemma 3 For any W ∈ R
N×d2 and α,β ∈ R

N , there is a convolutional kernel K ∈
R
1×N×(2�d/2�+1)×(2�d/2�+1), bias b ∈ R

N , and weight a ∈ R
Nd2 such that

α · σ (WV(x) + β) = a · V (σ (K ∗ x + b1)) (3.4)

for any x ∈ R
d×d.

Proof For simplicity, let us first assume that d is odd. Then, we have d = 2�d/2�+ 1 and

[K ∗ x]n,�d/2�,�d/2� =
�d/2�∑

s,t=−�d/2�
[K ]n,s,t [x]�d/2�+s,�d/2�+t = V([K ]n) · V(x). (3.5)

Thus, this proof is completed by taking b = β ,

V([K ]n,:,:) = [W ]n,:, and [a]k =
⎧
⎨

⎩
[α]n, if k = (n − 1)d2 + �d/2�2,
0, others,

(3.6)

for all n = 1 : N . If d is even, we have 2�d/2� + 1 = d + 1. Thus, we can construct a and
b as before and then take V([K ]n,−d/2:d/2−1,−d/2:d/2−1) = [W ]n,: and [K ]n,d/2,−d/2:d/2 =
[K ]n,−d/2:d/2,d/2 = 0. Thus, we have

[K ∗ x]n,d/2+1,d/2+1 =
d/2∑

s,t=−d/2
[K ]n,s,t [x]d/2+1+s,d/2+1+t

= V([K ]n,−d/2:d/2−1,−d/2:d/2−1) · V(x),
(3.7)

which finishes the proof. 	


Basically, the above lemma shows that a ReLU NN function with one hidden layer can be
represented by a one-layer CNN with a large kernel.

Lemma 4 For any bounded set Ω ⊂ R
d×d, kernel K ∈ R

1×N×(2�d/2�+1)×(2�d/2�+1), and
bias vector b ∈ R

N , there is a series of kernels K � ∈ R
c�−1×c�×3×3 and bias vectors b� ∈ R

c�

such that

[K ∗ x + b1]n,�d/2�,�d/2� =
[
K �d/2� ∗ f �d/2�−1(x) + b�d/2�1

]

n,�d/2�,�d/2� , ∀x ∈ Ω ,

(3.8)

where f 0(x) = x, c� = (2� + 1)2 for � = 1 : �d/2� − 1, c�d/2� = N, and

f �(x) = σ
(
K � ∗ f �−1(x) + b�1

)
. (3.9)

Proof According to Theorem 2, we know there is P ∈ R
(2�d/2�−1)2×N×3×3 and S� ∈

R
c�−1×c�×3×3 with c� = (2� + 1)2 for � = 1 : �d/2� − 1 such that

K ∗ x = P ∗ S�d/2�−1 ∗ · · · ∗ S1 ∗ x (3.10)
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for any x ∈ Ω . Thus, we can take

K � = S�, � = 1 : �d/2� − 1 and K �d/2� = P. (3.11)

Then, we can prove (3.8) by taking b� in an appropriate way. From � = 1 to �d/2� − 1, we
define b� consecutively as

[b�]q = max
1≤s,t≤d

sup
x∈Ω

∣∣∣∣
[
K � ∗ f �−1(x)

]

q,s,t

∣∣∣∣ , q = 1 : c�. (3.12)

As Ω ⊂ R
d×d is bounded and σ = ReLU is continuous, we know that

[b�]q < ∞, ∀� = 1 : �d/2� − 1, q = 1 : c�. (3.13)

Therefore, we have

f �(x) = σ
(
K � ∗ f �−1(x) + b�1

)
= K � ∗ f �−1(x) + b�1 (3.14)

because of the definition of σ (x) and b�. Thus, we have

K �d/2� ∗ f �d/2�−1(x) = P ∗ S�d/2�−1 ∗ · · · ∗ S1 ∗ x + B = K ∗ x + B, (3.15)

where

B =
�d/2�−1∑

�=2
P ∗ S�d/2�−1 ∗ · · · ∗ S� ∗ (b�−11) + P ∗ (b�d/2�−11) ∈ R

N×d×d, (3.16)

which is constant in respect to x. Finally, we take

[b�d/2�]n = [b]n − [B]n,�d/2�,�d/2�, (3.17)

which finishes the proof. 	


Lemma 4 shows that a one-layer ReLU CNN with a large kernel can be represented by a
deep ReLU CNN with multi-channel 3 × 3 kernels.
To obtain our final theorem (Theorem 4), let us first recall the following approximation

result for one-hidden-layer ReLU NNs.

Theorem 3 ([2,39]) Assume that f : Ω ⊂ R
D �→ R and that Ω is bounded. Then, there

is a ReLU NN with one hidden layer fN (x) = α · σ (Wx + β) where W ∈ R
N×D and

α,β ∈ R
N , such that

‖f − fN‖L2(Ω) � N− 1
2− 3

2D ‖f ‖K1(D). (3.18)

Here, a � b means a ≤ Cb where C depends only on dimension D and domain Ω . In
addition, ‖f ‖K1(D) is the norm defined by the gauge of B1(D),

‖f ‖K1(D) = inf{c > 0 : f ∈ cB1(D)}, (3.19)
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where B1(D) is given by

B1(D) =
⎧
⎨

⎩

n∑

j=1
ajhj : n ∈ N, hj ∈ D,

n∑

j=1
|aj| ≤ 1

⎫
⎬

⎭, (3.20)

and

D = {σ (ω · x + b) : ω ∈ R
D, b ∈ R} (3.21)

is the dictionary generated by the activation function σ (t) = ReLU(t). More details about
the ‖f ‖K1(D) norm, its approximation properties, and its connections with what is known
as Barron norm can be found in [7,38,39]. Generally, the underlying model for image
classification is a piecewise constant function for which it is impossible to have a finite
K1(D) norm. However, the ReLU CNN functions that we discuss in this paper are the
feature extraction parts of ReLU CNN models for image classification. Thus, f (x) may
have a finiteK1(D) norm as a feature extraction function not a classification model.
By combiningLemma3, Lemma4, andTheorem3,wehave the following approximation

theorem of deep CNNs with multi-channel 3 × 3 kernels.

Theorem 4 Let Ω ⊂ R
d×d be bounded. Assume that f : Ω �→ R and ‖f ‖K1(D) < ∞.

Then, there is a CNN function f̃ : Rd×d �→ R as defined in (3.1) with multi-channel 3 × 3
kernels, where

depth (number of convolutional layers): L = �d/2�,
width (number of channels at each layer): c� = (2� + 1)2,

(3.22)

for � = 1 : L − 1 and cL = N, such that

‖f − f̃ ‖L2(Ω) � N− 1
2− 3

2d2 ‖f ‖K1(D). (3.23)

Proof First, we assume that fN (V(x)) is the approximationof f (x) using a one-hidden-layer
ReLU NN, as shown in Theorem 3. According to Lemma 3 and Lemma 4, there is a CNN
f̃ (x) as defined in (3.1) with the hyperparameters listed above such that f̃ (x) = fN (V(x))
for any x ∈ Ω . This completes the proof. 	


Here, we notice that the total number of free parameters in fN (V(x)), as shown in
Theorem 3, is NF = N (d2 + 2) if x ∈ R

d×d . We also note that the total number of free
parameters of the CNN function f̃ (x) as in (3.1) with hyperparameters in Theorem 4 is

NC =
�d/2�−1∑

�=1

⎛

⎜⎝9(2� + 1)2(2� − 1)2︸ ︷︷ ︸
K �

+ (2� + 1)2︸ ︷︷ ︸
b�

⎞

⎟⎠

+ N
(
(2�d/2� − 1)2 + 1

)
︸ ︷︷ ︸

K �d/2� & b�d/2�

+Nd2︸︷︷︸
a

≤ 2(d5 + Nd2).

(3.24)
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A comparison ofNF andNC shows that the convolutional neural networks with hyperpa-
rameters (depth L and width c�) in Theorem 4 can achieve the same asymptotic approxi-
mation order of one-hidden-layer ReLU NNs asO

(
N− 1

2− 3
2d2
)
. That is, there is an upper

bound for the approximation error as CN− 1
2− 3

2d2 where C depends only on dimension d
and domain Ω .
In addition, in Theorem 4, to achieve the approximation power for ReLU CNNs, it is

necessary for the depth to exceed d/2 and for the number of layers in �th layer to be at least
(2� + 1)2. However, it is by no means common for practical CNNmodels to meet both of
these conditions.Here, wemay interpret these conditions fromother perspectives. For the
depth (number of layers) of CNNmodels for image classification, we usually apply ResNet
[15] CNNswith 18 or 34 layers for CIFAR-10 andCIFAR-100with input images inR32×32.
Furthermore, we prefer deeper ResNet CNNs, for example, ResNet [16] with 50, 101, or
more than 1,000 layers for ImageNet, which has input images in R

224×224. In all these
examples, depth L is greater than d/2 for input images in R

d×d . For the width (number
of channels) of CNN models for image classification, we notice that every practical CNN
model increases the input channel to a relatively large number and retains this width for
several layers. These two observations indicate that it is necessary to include more layers
and channels in practical CNN models.
Moreover, Theorem 4 requires a huge number of channels in the last layer to achieve

a small approximate error. However, the number of channels in the last layer in practical
CNNs is not very large in general. For example, onemay take 512, 1,024, or 2,048 channels
in the output layer for CIFAR and ImageNet classification problems. To understand this,
we recall that the target function in this approximation result is the feature extraction
function not the piecewise constant classification function. Thus, the ‖f ‖K1(D) normmay
be very small such that a relatively small N may be enough to achieve sufficient approx-
imation power. This implies that the feature extraction functions in image classification
may lie in a special function class which is much smaller thanK1(D).
Furthermore, Theorem 4 does not tell us why CNNs are much better than DNNs for

image classification in terms of approximation power. However, Theorem 4 does indicate
that CNNs with certain structures are no worse than DNNs in terms of approximation.
This is important when CNNs are applied in fields in which approximation accuracy is a
critical metric, such as numerical solutions of PDEs [19]. On the other hand, Theorem 4
shows that deep ReLU CNNs with certain structures can represent ReLU NNs with one
hidden layer. This implies that the function class of ReLU CNNs is much larger than the
function class of one-hidden-layer ReLU NNs. More precisely, the function class of ReLU
CNNsmay include or can efficiently approximate some very special functions that cannot
be approximated directly using ReLU DNNs.

4 Approximation properties of ResNet andMgNet
In this section, we show the approximation properties for one version of ResNet [15],
pre-act ResNet [16], and MgNet [13].
Approximation properties of ResNet and pre-act ResNet. First, let us introduce some

mathematical formulas to define these two network functions:
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ResNet:
⎧
⎨

⎩
f �(x) = σ

(
R� ∗ f �−1(x) + B� ∗ σ

(
A� ∗ f �−1(x) + a�1

)+ b�1
)
,

f (x) = a · V (f L(x)) ,
(4.1)

for � = 1 : L, where f 0(x) = x ∈ R
d×d ,A� ∈ R

c�−1×C�×3×3, B� ∈ R
C�×c�×3×3,

R� ∈ R
c�−1×c�×1×1, a� ∈ R

C� , bc� , and a ∈ R
cLd2 .

Pre-act ResNet:
⎧
⎨

⎩
f �(x) = R� ∗ f �−1(x) + σ

(
B� ∗ σ

(
A� ∗ f �−1(x) + a�1

)+ b�1
)
,

f (x) = a · V (f L(x)) ,
(4.2)

for � = 1 : L, where f 0(x) = x ∈ R
d×d ,A� ∈ R

c�−1×C�×3×3, B� ∈ R
C�×c�×3×3,

R� ∈ R
c�−1×c�×1×1, a� ∈ R

C� , bc� , and a ∈ R
cLd2 .

Each iteration from f �−1(x) to f �(x) is called a basic block of ResNet or pre-act ResNet.
Note here that we add an extra 1 × 1 kernel in front of f �−1(x) in each block, introduced
in [15] originally, to adjust to the change of channels from f �−1(x) to f �(x). In addition, we
notice that ResNet and pre-act ResNet can degenerate into a classical CNN as in (3.1), if
we take R� = 0. In this sense, ResNet and pre-act ResNet have approximation properties
if we assume that R� is not given a priori but set as a trainable parameter. However, a key
reason for the success of ResNet is that we set R� a priori, especially when taking R� as
the identity operator when f �−1(x) and f �(x) have the same number of channels [15,16].
Thus, we consider ResNet and pre-act ResNet networks with an arbitrarily given value for
R�.

Theorem 5 LetΩ ⊂ R
d×d be bounded, and assume that f : Ω �→ Rwith ‖f ‖K1(D) < ∞.

For any given R� ∈ R
c�−1×c�×1×1, there is a ResNet network f̃ (x) as in (4.1), where the

hyperparameters satisfy

depth (number of blocks): L = ��d/2�/2�,
width (number of channels): c� = (4� + 1)2, C� = 2(4� − 1)2

(4.3)

for � = 1 : L − 1, CL = 2(4L − 1)2, and cL = N, such that

‖f − f̃ ‖L2(Ω) � N− 1
2− 3

2d2 ‖f ‖K1(D). (4.4)

Proof Without loss of generality, let us assume that d
4 is an integer. If not, some zero

boundary layers can be added to enlarge the dimension of the original data to satisfy this
condition. First, we assume a CNN function f̂ (x) = fN (V(x)) = α ·σ (WV(x) + β) defined
in (3.1), which approximates f (x), as described in Theorem 4:

‖f − f̂ ‖L2(Ω) � N− 1
2− 3

2d2 ‖f ‖K1(D).

Then, we can construct f̃ (x) using kernelsK � for � = 1 : d/2, b̂d/2 and â in f̂ (x).We define

A� =
⎛

⎜⎝
K 2�−1

I
0

⎞

⎟⎠ , [a�]q = max
m,n

sup
x∈Ω

∣∣∣∣
[
A� ∗ f �−1(x)

]

q,m,n

∣∣∣∣ , � = 1 : L, (4.5)
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where I is the identity kernel and 0 is used to pad the output channel to be C�. That is,

σ
(
A� ∗ f �−1(x) + a�1

)
=
⎛

⎜⎝
K 2�−1 ∗ f �−1

f �−1

0

⎞

⎟⎠+ a�1. (4.6)

Moreover, we define

B� =
(
K 2�,−R�, 0

)
, � = 1 : L (4.7)

and

[b�]q = max
1≤s,t≤d

sup
x∈Ω

∣∣∣∣
[
R� ∗ f �−1(x) + B� ∗

(
A� ∗ f �−1(x) + a�1

)]

q,s,t

∣∣∣∣ (4.8)

for � = 1 : L − 1. Given the definition of b�, it follows that[
R� ∗ f �−1(x) + B� ∗ σ

(
A� ∗ f �−1(x) + a�1

)+ b�1
]
q,s,t ≥ 0.Given the definition ofσ (t) =

ReLU(t) := max{0, t}, we have

f �(x) = σ
(
R� ∗ f �−1(x) + B� ∗ σ

(
A� ∗ f �−1(x) + a�1

)
+ b�1

)

= R� ∗ f �−1(x) + B� ∗
(
A� ∗ f �−1(x) + a�1

)
+ b�1

= R� ∗ f �−1(x) + K 2� ∗ K 2�−1 ∗ f �−1(x) − R� ∗ f �−1(x) + B� ∗ a�1 + b�1

= K 2� ∗ K 2�−1 ∗ f �−1(x) + B� ∗ a�1 + b�1
(4.9)

for � = 1 : L − 1. By taking � = L, we have

f L(x) = RL ∗ f L−1(x) + BL ∗ σ
(
AL ∗ f L−1(x) + aL1

)+ bL1

= K 2L ∗ K 2L−1 ∗ f L−1(x) + K 2L ∗ aL1 + bL1

= Kd/2 ∗ Kd/2−1 ∗ · · · ∗ K 1 ∗ x + B,

(4.10)

where B is a constant tensor, which is similar to the case presented in Lemma 4. This
suggests bL defined as

[bL]n = [β]n − [B]n,d/2,d/2, (4.11)

where β ∈ R
N proceeds from f̂ (x) = fN (V(x)) = α · σ (WV(x) + β) for any x ∈ Ω . Thus,

it follows that

f L(x) = f̂ L(x), (4.12)

and we complete the proof by taking a = â. 	
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Theorem 6 Let Ω ⊂ R
d×d be bounded, and assume that f : Ω �→ R with ‖f ‖K1(D). For

any given R� ∈ R
c�−1×c�×1×1, there is a pre-act ResNet network f̃ (x) as in (4.2), where the

hyperparameters satisfy

depth (number of blocks): L = ��d/2�/2�,
width (number of channels): c� = (4� + 1)2, C� = 2(4� − 1)2

(4.13)

for � = 1 : L − 1, CL = 2(4L − 1)2 and cL = N + 2, such that

‖f − f̃ ‖L2(Ω) � N− 1
2− 3

2d2 ‖f ‖K1(D). (4.14)

Proof We still assume that d
4 is an integer. Then, we construct pre-act ResNet as in (4.2)

with a similar structure as that described in Theorem 5. According to Lemma 3 and
Lemma 4, we notice that kernels K � for � = 1 : �d/2� − 1 as described in Theorem 4 are
independent from f (x). More precisely, these kernels can be defined by using S� presented
in Theorem 2. Thus, we take

A� =
⎛

⎜⎝
K 2�−1

I
0

⎞

⎟⎠ , [a�]q = max
m,n

sup
x∈Ω

∣∣∣∣
[
A� ∗ f �−1(x)

]

q,m,n

∣∣∣∣ (4.15)

for � = 1 : L where I is the identity kernel and 0 is used to pad the output channel to be
C�. That is,

σ
(
A� ∗ f �−1(x) + a�1

)
=
⎛

⎜⎝
K 2�−1 ∗ f �−1

f �−1

0

⎞

⎟⎠+ a�1. (4.16)

Moreover, we define

B� =
(
K 2�,−R�, 0

)
, � = 1 : L − 1 (4.17)

and

[b�]q = max
1≤s,t≤d

sup
x∈Ω

∣∣∣∣
[
B� ∗

(
A� ∗ f �−1(x) + a�1

)]

q,s,t

∣∣∣∣ , � = 1 : L − 1. (4.18)

This means that

f �(x) = R� ∗ f �−1(x) + σ
(
B� ∗ σ

(
A� ∗ f �−1(x) + a�1

)
+ b�1

)

= R� ∗ f �−1(x) + B� ∗
(
A� ∗ f �−1(x) + a�1

)
+ b�1

= R� ∗ f �−1(x) + K 2� ∗ K 2�−1 ∗ f �−1(x) − R� ∗ f �−1(x) + B� ∗ a�1 + b�1

= K 2� ∗ K 2�−1 ∗ f �−1(x) + B� ∗ a�1 + b�1
(4.19)

for � = 1 : L − 1.
Next, we show how to define BL. First, let us denote fN (V(x)) = α · σ (Wx + β) as the

fully connected neural network approximation for f (x) as in Theorem 3. In addition, we
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denote f (x) = a · f d/2(x) = fN (x) as the CNN approximation of f (x) as in Theorem 4.
Now, we can take

[a]n =

⎧
⎪⎪⎨

⎪⎪⎩

[a]n, if n ≤ Nd2,

−1, if n = Nd2 + (d/2)2 or (N + 1)d2 + (d/2)2,

0, others.

(4.20)

Recalling that f L−1(x) in the pre-act ResNet now is a linear function, we have

a · V ([RL ∗ f L−1(x)
]) = h · V(x) + c, (4.21)

where h ∈ R
d2 and c ∈ R. Then, we can redefine a new fully connected neural network

function

fN+2 := α · σ (WV(x) + β) + σ (h · V(x) + c) + σ (−h · V(x) − c). (4.22)

According to Lemma 4, we have a CNN function f̂ (x) such that

[̂f d/2(x)]:,d/2,d/2 =
[
σ (K̂ d/2 ∗ f̂ d/2−1 + b̂�)

]

:,d/2,d/2
=
⎛

⎜⎝
σ (WV(x) + β)
σ (h · V(x) + c)

σ (−h · V(x) − c)

⎞

⎟⎠ . (4.23)

As noticed before, K � for � = 1 : d/2−1 have the same structure in Lemma 4. As a result,
we have

f̂ d/2−1(x) = f d/2−1(x), ∀x ∈ Ω . (4.24)

Then, we take

KL = K̂ d/2, (4.25)

which implies that

f L(x) = RL ∗ f L−1(x) + σ
(
BL ∗ σ

(
AL ∗ f L−1(x) + aL1

)+ bL1
)

= RL ∗ f L−1(x) + σ
(
K 2L ∗ K 2L−1 ∗ f L−1(x) + B + bL1

)

= RL ∗ f L−1(x) + σ
(
K̂ d/2 ∗ Kd/2−1 ∗ · · · ∗ K 1 ∗ x + B + bL1

)
,

(4.26)

where B is a constant tensor similar to the case described in Theorem 5. Thus, we can
take

[bL]n =

⎧
⎪⎪⎨

⎪⎪⎩

[β]n − [B]n,d/2,d/2, if n ≤ N,

c − [B]N+1,d/2,d/2, if n = N + 1,

−c − [B]N+2,d/2,d/2, if n = N + 2,

(4.27)
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which leads to

[
f L(x)

]
:,d/2,d/2

=
[
RL ∗ f L−1(x) + σ

(
K̂ d/2 ∗ Kd/2−1 ∗ · · · ∗ K 1 ∗ x + B + bL1

)]

:,d/2,d/2

=
[
RL ∗ f L−1(x) + σ

(
K̂ d/2 ∗ Kd/2−1 ∗ · · · ∗ K 1 ∗ x + β̂1

)]

:,d/2,d/2

= [RL ∗ f L−1(x)
]
:,d/2,d/2 +

⎛

⎜⎝
σ (WV(x) + β)
σ (h · V(x) + c)

σ (−h · V(x) − c)

⎞

⎟⎠ ,

(4.28)

where β̂ = (β , c,−c). Noticing that σ (x) + σ (−x) = x, finally we check that

f̃ (x) = a · V(f L)(x)

= a · V (RL ∗ f L−1(x)
)+ (α,−1,−1) ·

⎛

⎜⎝
σ (WV(x) + β)
σ (h · V(x) + c)

σ (−h · V(x) − c)

⎞

⎟⎠

= l(x) + fN (V(x)) − (σ (l(x)) + σ (−l(x)))

= fN (V(x)), ∀x ∈ Ω ,

(4.29)

where l(x) = h · V(x) + c. This completes the proof. 	


The approximation property of MgNet. First, we introduce a typical MgNet [13,14]
network used in image classification.

Algorithm 1 uJ = MgNet(f )
1: Input: number of grids J, number of smoothing iterations ν� for � = 1 : J , number of channels cf,� for f �

and cu,� for u�,i on �th grid.
2: Initialization: f 1 = fin(f ), u1,0 = 0
3: for � = 1 : J do
4: for i = 1 : ν� do
5: Feature extraction (smoothing):

u�,i = u�,i−1 + σ ◦ B�,i ∗ σ
(
f � − A� ∗ u�,i−1

)
∈ R

cu,�×n�×m� . (4.30)

6: end for
7: Note: u� = u�,ν�

8: Interpolation and restriction:

u�+1,0 = Π�+1
� ∗2 u� ∈ R

cu,�+1×n�+1×m�+1 . (4.31)

f �+1 = R�+1
� ∗2 (f � − A�(u�)) + A�+1 ∗ u�+1,0 ∈ R

cf,�+1×n�+1×m�+1 . (4.32)
9: end for

Here, Π�+1
� ∗2 and R�+1

� ∗2 in (4.31) and (4.32), respectively, which work as the coarsening
operation, are defined as convolutionswith stride two [8]. Aswe do not include coarsening
(subsampling or pooling ) layers in this study, we propose the following version of the
feature extraction (smoothing) iteration in MgNet to study its approximation property.
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MgNet:

⎧
⎨

⎩
f �(x) = R� ∗ f �−1(x) + σ

(
B� ∗ σ

(
θ� ∗ x − A� ∗ f �−1(x) + a�1

)+ b�1
)
,

f (x) = a · V(f L(x)),
(4.33)

for � = 1 : L, where f 0(x) = x ∈ R
d×d , A� ∈ R

c�−1×C�×3×3, B� ∈ R
C�×c�×3×3,

R� ∈ R
c�−1×c�×1×1, a� ∈ R

C� , θ� ∈ R
1×C�×3×3, bc� , and a ∈ R

cLd2 .

As discussed in relation to ResNet and pre-act ResNet, we add extra 1×1 convolutional
kernels R� and θ� in case of a change of channel. Given that we can recover pre-act ResNet
by taking θ� = 0 in (4.33), we have the following theorem pertaining to the approximation
property of MgNet.

Theorem 7 Let Ω ⊂ R
d×d be bounded, and assume that f : Ω �→ R with ‖f ‖K1(D) <

∞. Consider f̃ (x) as an MgNet in (4.33) with any R� ∈ R
c�−1×c�×1×1 given a prior, and

hyperparameters that satisfy

depth (number of blocks): L = ��d/2�/2�,
width (number of channels): c� = (4� + 1)2, C� = 2(4� − 1)2,

(4.34)

for � = 1 : L − 1, CL = 2(4L − 1)2, and cL = N + 2, such that

‖f − f̃ ‖L2(Ω) � N− 1
2− 3

2d2 ‖f ‖K1(D). (4.35)

5 Conclusion
By carefully studying the decomposition theorem for convolutional kernels with large
spatial size, we obtained the universal approximation property for a typical deep ReLU
CNN structure. In general, we proved that deep multi-channel ReLUCNNs can represent
one-hidden-layer ReLU NNs. Consequently, this representation result provides the same
asymptotic approximation rate for deep ReLU CNNs as for one-hidden-layer ReLU NNs.
Moreover,we established approximation results for one versionofResNet, pre-actResNet,
and MgNet, based on the connections between these commonly used CNNmodels. This
study provides new evidence of the theoretical foundation of classical CNNs and popular
architecture, such as ResNet, pre-act ResNet, and MgNet.
Although the approximation properties do not show that CNNs shouldwork better than

DNNs in terms of approximation power, this study furthers the fields in understanding of
CNNs in a significant way. For example, the success of CNNsmay imply that the ‖f ‖K1(D)
norm is very small for the target feature extraction function f in image classification
or that f belongs to a very special function class that can be efficiently represented or
approximated by CNNs efficiently. In addition, we anticipate that it will be possible to
apply this kind of approximation results in designing new CNN structures, especially in
the context of scientific computing [19]. Furthermore, as the pooling operation plays a key
role in practical CNNs, a natural future direction proceeding from this study is to derive
approximation results for CNNs involving pooling layers.
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