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1 Introduction

The purpose of this paper is to study the approximation properties of deep convolutional
neural networks, including classic CNNs [22,25], ResNet [15], pre-act ResNet [16], and
MgNet [13]. CNN is a very efficient deep learning model [8,24], which has been widely
used in image processing, computer vision, reinforcement learning, and also scientific
computing [10,19]. However, there is still very little mathematical analysis of CNNs and,
therefore, limited understanding of them, especially for the approximation property of
CNNs, which plays a functional role in their interpretation and development [21,27].

In the last three decades, researchers have produced a large number of studies on the
approximation and representation properties of fully connected neural networks with
a single hidden layer [2,4,5,17,20,26,37,40,43] and deep neural networks (DNNs) with
more than one hidden layer [1,9,11,12,28,29,32,35,36,42,44]. To our knowledge, how-
ever, the literature included very few studies on the approximation property of CNNs
[3,23,31,34,45,46].In [3], the authors consider a type of ReLU CNN with one-dimensional
(1D) input thatis constituted by a sequence of convolution layers and a fully connected out-
put layer. By showing that the identity operator can be realized by an underlying sequence
of convolutional layers, they obtain the approximation property of the CNN directly from
the fully connected layer. In their analysis, the underlying convolutional layers do not
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contribute anything to the approximation power of the overall CNN. Approximation
properties with more standard CNN architecture have been studied in [45,46] in relation
to the kernel decomposition for 1D convolutional operation with periodic padding. This
type of result, however, cannot be extended to CNNs with two-dimensional (2D) inputs,
because essentially it is the polynomial decomposition theory [6] for 1D. In [45,46], the
authors study a standard 1D ReLU CNN architecture consisting of a sequence of convo-
lution layers and a linear layer and obtain approximation properties by showing that any
fully connected layer can be decomposed as a sequence of convolution layers with the
ReLU activation function. In [34], the authors extend the analysis in [45,46] to 2D ReLU
CNNs with periodic padding for a very special function class. This class is in the form
of f(X) = [F(X)]y1 + b in which F : R¥*¢ \» R?*4 satisfies the following translation
invariant property:

F(Sst(X)) = Sy (F(X)), ¥X € R4, 1.1)

where Sy : R4%4 » R4%4d g considered the translation operator defined as [Sg (X)] i =
[X]i—sj—¢ for1 < st < d with periodic padding. Here, [Y'] means taking the element of the
tensor Y. A generalized study of this function class and its application in approximation
properties of CNNs can be found in [23]. In [31], the authors study the approximation
properties of ResNet-type CNNs on 1D for the special function class that can be approx-
imated by sparse NNs.

First, we show a pure algebraic decomposition theorem, which plays a critical role in
establishing the approximation theorem of deep ReLU CNN:g, for 2D convolutional ker-
nels with multi-channel and constant or periodic padding. The core idea in establishing
such a decomposition result is to introduce channels, whereas the decomposition theo-
rem in [3,45,46] incorporates only one channel. By applying a similar argument in [46],
we then establish a connection between one-hidden-layer ReLU NNs and deep ReLU
CNNss without pooling layers. According to this connection, we prove the approximation
theorem of classic deep ReLU CNNs, which shows that this kind of CNN can provide
the same asymptotic approximation rate as one-hidden-layer ReLU NNs. Moreover, we
obtain approximation results for ResNet and pre-act ResNet CNNs by studying con-
nections between classic deep ReLU CNNs and CNNs with ResNet or pre-act ResNet
architecture. Finally, we establish the approximation property of one version of MgNet
[13] based on its connection with pre-act ResNet.

The paper is organized as follows. In Sect. 2, we introduce the 2D convolutional oper-
ation with multi-channel and paddings and then prove the decomposition theorem for
large convolutional kernels. In Sect. 3, we show the approximation results for functions
represented by classic CNNs without pooling operators. In Sect. 5, we provide concluding

remarks.

2 Decomposition theorem of large convolutional kernels in CNNs
In this section, we introduce the decomposition theorem for standard two-dimensional
convolutional kernels with large spatial size.

First, let us follow the setup for the dimensions of the tensors in PyTorch [33] to denote
the data with ¢ channels as

X e Rexdxd (2.1)
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with elements [X],,,, forp = 1: cand m, n = 1 : d. For the convolutional kernel with
input channel ¢, output channel C, and spatial size (2k + 1) x (2k + 1), we have

K e REXCx(2k+1)x(2k+1) (2.2)

with elements [K], s forp =1:¢,g =1: C,and s, t = —k : k. Then, the standard
multi-channel convolution operation in typical 2D CNNs [8] with constant or periodic
padding is defined as K s X € R€*4*4 where

c k

(K *X]q,m,n = Z Z [I(]p,q,s,t[X]p,m+s,n+t (2.3)
p=1lst=—k

forq=1:Candm,n=1:d.Iftheindex m + s or n + ¢ exceeds the range 1 : d in (2.3),
we denote the constant padding and the periodic padding as follows:

Constant padding:

[X]p,m+s,n+t =a, (2.4)

where a € R is an arbitrary constantand m +s ¢ 1:dorn+t ¢ 1:d;
Periodic padding:

Xpmtsntt = [X]pio (2.5)

wherel <kl <d,k=m+s(modd),and!/ =n -+t (mod d).

The convolution with constant or periodic padding defined in (2.3), referred to as convolu-
tion with stride one [8] with padding, is the most commonly used convolutional operation
in practical CNNs [15,16,18,41]. An important feature of this convolution is that the
spatial dimensions of its inputs do not change in the presence of paddings.

Remark 1 For simplicity, we assume the index of the convolution kernel K €
REK+1)x(k+1) gtarts from —k and ends at k, whereas the index of the data or tensor after
convolution starts from 1. In addition, we stress that the convolution operation defined
above follows neither the commutative law nor the associative law. Thus, we mean

Ky Ky % X = Ko * (Kq % X) (2.6)

by default.

Our study begins with the observation that a 5 x 5 kernel can be represented by the
combination of two composed 3 x 3 kernels.

Lemma 1 LetK € R>*® andd > 2, then there exist Py, S;j € R3*3 fori,j = —1,0, 1 such
that

K*X= Z Pyj*Sijx X, VX e R¥, (2.7)
ij=—1,0,1

where x means the standard convolution with one channel and constant or periodic padding
as in (2.3).
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Proof Here, we present a constructive proof by taking S;; as

1 s=iandt =}

Siil.. = (2.8)
[ ”]S’t 0 others,
ie.,
100 010 001
S_1,-1=1]1000], S—10=]000], S—11=]000],
000 000 000
000 000 000
So1=1100|, Soo=|010], Sp1=]001]1, (2.9)
000 000 000
000 000 000
S,-1=]000], S10=1000], $1,1=1000],
100 010 001
and P;; as
I<_2,_2 00 K_2,_1 ]<_2,() ]<_2,1 00 I<_2y2
Pya=| 0 00|, Po=| 0 o o |, Pyy=|00 0o |,
0 00 0 0 0 00 O
Po1=1 Ko—2 00), Poo=| Ko-1 Koo Ko1 |, Po1=[00 Koz [,
Kl,—Z 00 ](1,_1 1(1,() 1(1,1 00 1(1,2
0 00 0 0 0 00 O
Poy=[ 0o oo, Poe=| o0 o 0], Py=100 0
Ky 200 Ko _1 Koo Ko 00 Ky
(2.10)
|

Remark 2 S;; and P;; can be collected separately to form two multi-channel convolution
kernels. More precisely, we have

S=(5-1,-1,8-1,0,-- -, S1,1) € RI*9x3x3 (2.11)
and

P=(P_y_1,P 10, P1)" € R3S, (2.12)
That is, the convolution operation defined in (2.7) can be written as

KxX=PxSxX (2.13)
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Then, the most critical step is to extend Lemma 1 to a convolutional kernel K €

REAHDX2k+D) with large spatial size; i.e., k is large. Thus, we introduce the next decom-

position for any K € Rk+1)x(2k+1) 44

K= 2 K (2.14)
ij=—10,1
where
K x O Py 00
1?—1,—1 = 0 R = cl ER(2k+l)x(2k+1),
0 00
0 0 00
0K—k,—k+] e K—k,k—l O OP_LO 0
1?71,0 =10 0 o0l = e R(2k+1)x(2k+1),
0 --- 0 (2.15)
. 00---0
0o ---
~ 00---0
Ka=|:- o |= € REK+Dx(k+1)
0 Kk 0o TH

and P e RZk=Dx2k=1) with

K_j—x O - K_j—gq1 - K gro1
Pya=| o . i, P_19= o . o0 |
-0
0 K_ix
Poi1= o |,
0 -
K oj41,-k 0 -+ Koji1,—k+1 - Koggrh—1
Py 1= : RIS Py = : : ,
Ky-1,-x 0 --- Ki—1,—k+1 ++ Kk—1,k-1
w0 0 Kogyrk
Pop=| 1+ . ,

.. 0 I<k—1,k
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-0
Pra=1 ) P = o . o |
K 0 --- Ki k1 - Kigk—1
0 - :
Poi=1:- 4| (2.16)
- 0 Kik

A more intuitive description of the previous decomposition is

K_j—iet1 -+ Kogr—1

K_pv1,—k || Kek1,—k+1 - Koggrh-1 || Kkt1,k
K= : : : : . (2.17)

K1,k || Ki—t,—k+1 -+ Kr—ph-1 || Kk—pk

Ky —fv1 -+ Kir—1

Thus, we can regard P;; in (2.16) as the generalization of P;; in (2.10). Now, we present

the main theorem for decomposing any large convolutional kernels K € R@k+1)x(2k+1),

Theorem 1 Let K € RPFVXCHD gpd g > k. Then, we can take P;; € RPk—DxCk=1) g5

in (2.16) and S;; € R3*3 as in (2.8) for i,j = —1,0, 1 such that

KxX= Y Py*Sj*X, VXeR" (2.18)
ij=—1,0,1

where x means the standard convolution with one channel and constant or periodic padding
as in (2.3).

Proof Given the definition of I?,; j in (2.15), we need only verify that

Kij*X = Pyj+Sij % X (2.19)
forany i j = —1, 0, 1. For constant or periodic padding, we prove the above claim, respec-
tively.

Periodic padding. For this case, we notice that

[Sij *X]m,,, = Xntintj (2.20)
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foranyij=—1,0,1and 1 < m, n < d. Therefore, we have

[Pi’j * Si’j * X]m,n = Z [Pi’j]p,q [Si»/ * X]m+p,l’l+q
pq=—k+1,--k—1

= Z [Pij] g Klmtptintqts
pq=—k+1,--,k—1

= > [Pi’/']i—i,?j—j XDmspnrs (2.21)
D=—k+1+i--k—1+i,
G=—k4+14j-k—14j

= Z [l?i,j]ﬁq Xmtpn+g

foranyij=—1,0,1land1 <mn <d.
Constant padding. For this case, we split the proof into three cases according to different
values of |i| + |j|.

1. |i| 4+ |j| = 0,ie,i=j=0.Thus, forany 1 < m, n < d, we have

[Poo*So0*X],,, = Do [Pool,,[500 % X],ipia
pg=—k+1,k—1
- Z [K]P’q [X]m+p,n+q (2'22)

pg=—k+1,--,k—-1
= [[?0,0 % X]m,n .

2. il + |j| = 2, for example (i, j)) = (—1, —1) or (1, —1). Without loss of generality, let
us consider the example (i, j) = (1, —1) first. Thus, we have

Z [Plj_l]p,q [Sl’_l * X]m+p,n+q
pa=—k+1k—1 (2.23)

= [K]k,fk [51;—1 >l<‘X]m—o—k—l,n—k+1 :

As there is padding for S;,_1 * X when we calculate P;,_; % S1,_1 * X, it is necessary to
compute [51,—1 * X]
fors,t =1:d,

mtk—1n—k41 carefully. By definition, we first have [51,—1 * X]St

[S X] a, ifs=dort=1, (2.24)
1,—1 % = '
ot [X]s+1,t_1 , others.

We further mention that it is necessary to include padding in S1,—1 * X in (2.23):

a ifm>d—-—k+2orn<k-—1,

Sp,—1xX
[ ] [51,71 *X]

m+k—1n—k+1 — th (2.25)
mtk—1,n—k+1° others.
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By combining the previous two equations and noticing that kK > 2, we can obtain

that
[Sl’—l * X]m+k71,n7k+1
a ifm>d—-—k+1lorn<k (2.26)
(X1skn—k» others, '
= [X]mion—rk -
Therefore, we have
[Pl:—l * 81,1 * X]m,n = Z [Pl'_l]p,q [Sl»—l *X]m+p,n+q
pq=—k+1,-k—1
= [I(]k;*k [SL_I >l<‘X]m+k—l,n—k+1 (2.27)

= [Klg -k XDmskn—xk
= [1?1771 * X]m,n'
A similar derivation can be applied to the other three cases for |i| + |j| = 2.
3. il + Ij| = 1, for example, (i, j) = (—1,0) or (0, 1). Without loss of generality, let us
consider the example (i, /) = (1, —1). Thus, we have

Z [Po’l]p,q [SO,I * X]m+p,n+q
pg=—k+1,--,k—1

(2.28)
= Z []ql’:k [SO’I * X]m+p,n+k71 :
p=—k+1,--,k—1
First, let us take p > 0 and then compute [50,1 x X ]m pntk—1 in the same fashion.
Thus, we have
a, ift=d,
[So1%X],, = (2.29)
’ [X]s¢+1, others,
and
a ifm>d—p+lorn>d—k+2
[So1#X], 4 pmino1 = (2.30)
[S1,—1 * X]m+p,n+k—l’ others.
Furthermore, we can obtain that
[SO,I * X]m+p,n+k—1
a ifm>d—p+lorn>d—k+1,
- =&-p = (2.31)

(X1mspntk> others,

= [X]m+p,n+k .
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For p < 0, we can also go through the previous steps to reach the same conclusion.

Thus, we have

[PO,I * S(),l * X]m,n = Z [Po’l]p,q [SO,I * X]m+p,n+q
pg=—k+1,--,k—1

= Z [K]p,k [SO,I * X]m+p,n+k—1
p=—kt1k—1 (2.32)

= Y Kk Xlpusk
p=—k+1,--, k-1

~ [Ror +X],,,
A similar derivation can be applied to the other three cases for |i| + |j| = 1.

This completes the proof. o

According to the proof, the decomposition in (2.18) does not hold for arbitrary paddings
such as reflection or replication padding [33], because equations (2.20), (2.26), and (2.31)
cannot be true.

By applying the above theorem to decompose P;; recursively, we have the following

corollary.

Corollary 1 Let K € R*+VXCkHN) pe 4 large kernel with one channel and d > k. Then,
there exist P(i, j,),(in o) Gix_vjx) € R and S, € R¥3 for iy, j = —1,0,1 and
m =1:k —1such that

KxX= 3 3 Pl * S * % Stujn) ¥ X (2.33)

k—vjk-1 L1
for any X € R*%, where « means the standard convolution with one channel as in (2.3).

Proof This can be proved by repeatedly applying Theorem 1 for P;; in (2.18) until each
Py i ingo) o lix_1ji_,) DecOmes a 3 x 3 kernel. O

As mentioned in Remark 2, we can collect all P, j,) i, »),-- y into P as a single

(k- 1jk—1
convolution kernel with multi-channels. Therefore, the output channel of P is 9k=1 which
will be huge if k is large. Thanks to the special pattern of zero in P;; in (2.16), we have the

following lemma to further reduce the number of nonzero output channels in P.

Lemma2 Let K € RekAVXQk+Y) 54 d < k. Then, there is an index set

Iy 1 C {((ibjl)x ] (ikflfjkfl)) | by Jm = {(-L01},m=1:k— 1} (2.34)
such that
KxX= Z P(il’fl))"'r(ik—l:fk—1) *Si_jrog ¥ xSy X (2.35)

(Guj)lik—1fk=1)) €l k-1

for any X € R4, where « means a standard convolution with one channel. Moreover, we
have the cardinality of I_; as

#I_; = (2k — 1)% (2.36)



38

Page 10 of 24

He et al. Res Math 5¢i(2022)9:38

Proof This proofis based on the special distribution of zero for each P;; in (2.16). Assume

that

we have applied Theorem 1 to P;; for n — 1-times with # < k and obtained the

following set of kernels:

Py = { P j1)inj) | imojm = =101, m=1:n}. (2.37)

It is easy to see that the cardinality of P, is 9”. Here, we prove that the number of nonzero

items in P, is bounded by (212+1)2. Because of the special form of P; jin (2.16), we conclude

that for nonzero P, jy),....(,,,) there are only three types based on different zero-patterns.

1.

The

Type 1: Nonzero items on the corner. For example, P_;_; and P_;,; for n = 1, or
P(_1,_1),(=1,—1) and P ),1,—1) for n = 2. We denote the number of elements with
this type as Cj,.

Type 2: Nonzero items on the boundary. For example, P_; ¢ and Pg,; for n = 1, or
P,—1),00,—1) and P(o0),1,0) for # = 2. We denote the number of elements with this
type as By,.

Type 3: Full kernel. For example, Py for n = 1, or P ) 0,0) for n = 2. A criti-
cal observation is that there is only one item with this form in P, for any #, ie.,

P,0),..0,0) € P.

following rules describe the connections of the number of nonzero items between

P,_; and P, when we apply Theorem 1 to P,,_; in order to obtain P,,.

1.

Type 1:
Cn=Cu1+2Br1+4 (2.38)

as each element in P,,_; with type 1 can make only one nonzero element in P, with
type 1, each element in P,,_; with type 2 can make two nonzero elements in P,, with
type 1, and each element in P,,_; with type 3 can make four nonzero elements in P,

with type 1.
Type 2:
B, =B,_1+4 (2.39)

as each element in P,_; with type 2 can make one nonzero element in P, with type
2, each element in P,,_; with type 3 can make four nonzero elements in P,, with type
2, but each element in P,_; with type 1 cannot make any nonzero element in P,
with type 2.

Type 3: There is only one nonzero element in P,. First, this nonzero item cannot
be produced from elements in P,_; with either type 1 or type 2. In addition, each
element in P,_; with type 3 can make only one nonzero element in P, with type 3.

According to the decomposition in Theorem 1, we have

Ci=B1=4 (2.40)

as the initial values for (2.38) and (2.39). Thus, we have

C,=4n*> and B, = 4n, (2.41)
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which means that the number of nonzero elements in P, is
Ch+Bi+1=4n+4n+1=(2n+1)>~ (2.42)

Thus, the theorem is proved by taking n = k — 1 and I;_; as the index set of nonzero
elements in Pj_;. O

By representing the previous theorem in terms of convolution with multi-channels
globally, we obtain the following theorem.

Theorem 2 Let K € RV>M*Qk+DXCk+1) g g > k. Then, there is a series of kernels
S e Ro1}enx353 yith mylti-channels and P € ROV xMx3x3 gy cp thay

KxX=PxS1xs24%... 58" %X, VXeR™, (2.43)

where ¢, = (2n+ 1) forn = 1 : k — 1 and * means the standard convolution with
multi-channels and padding as defined in (2.3).

Proof First, we follow the proof in Theorem 1 and notice that the index set I, is inde-
pendent from the kernel K and has this important feature:

(1) (G2 j2)s -+ 5 (o ) € I = (i1, /1), (2o j2)s -+ =5 (ims Jm)) € Doy (2.44)
if m < n. Thus, we can define the following operator t,, : I), — I, as

T (G 1) G2 j2)s -+ o5 (i ) = (i1, 1) (B2 J2)s <+ o5 (=15 jn—1)).- (2.45)
Then, for each I,,, we fix a bijection

Ta:{L2 o, 2n+ 1)) > I, (2.46)

to give a unique position for each element in I,,. For example, alphabetical order can be
used. Thus, we construct §” € R¢-1%*3x3 by taking

Simjn’ ifﬂn(Q) = ((il»jl); ) (in:jn)) and 7Tn—1(19) = Tn(nn(q));
0, others,

[S”]M = (2.47)

forall » = 1: k — 1. Therefore, we can check that

Cn—1

[$7#8" xSt X] =D [S"Tpg # 18" %81 % X],
p=1
—_— . . n_l ... 1
- Sln’/n * [S * S x X]ﬂ;jl (tn(mn(q))

-2 1
= Siju * Sipyjur ¥ ST H ST X1 @)

= Sin:jn * Sin—l»jnfl koooox Sil)jl * ‘X’
(2.48)
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where

(GG j1), (@2 J2)s -+ =5 (i jin)) = tn(q) € I, (2.49)

forall1 < g < (2n41)%. According to Theorem 1, for each channel [K],, € R2k+1)x(2k+1)

ink e RIXMX(2k+l)><(2k+l)’ we have

Kl %X = Z P e * Sikvjs * -+ % Sy ¥ X (2.50)
(G lik—vjk-1)) €lx—1

Finally, we finish the proof by constructing P € Rk —1)*xMx3x3 5

_ pm
Plpm =Pt 0 (2.51)
where P | _is defined in (2.50). O
TP

3 Universal approximation theorem for classic CNNs
In this section, we show the universal approximation theorem for classic CNNs with 2D
image inputs and standard multi-channel convolutions.

First, let us introduce CNN architecture with input data x € R?*? and ReLU [30]
activation function(o (¢) = ReLU(¢) := max{0, t} for any ¢ € R):

flx) =oKExfrlx)+b1) £=1:1, a1
f@)  =a- V(L)
where fO(x) = x € Ridxd gt g Ree-1xeex3x3 pt o Re, ft e Reexdxd g ¢ RCLdz, and
V(fL(x)) denotes the vectorization of fX(x) € ReLxdxd by taking

[V (fL(x))](c—l)d2+(s—1)d+t = [fL(x)]c,s,t (32)

foralls,t = 1:dandc = 1 : ¢. For simplicity, we extend the definition of V(-) for
the general tensor in RAxd Reexdxd otc Here, K¢ * f E_l(x) follows the definition of
convolution with multi-channel and constant or periodic padding as in (2.3). In addition,
we consider the special form of bias in CNNs,

b1 = ([bf]ll, (b1, - -, [bZ]C£I> e Revxdxd, (3.3)

where I € R?*4 with [I];; = 1 for all s, = 1 : d. Moreover, we notice that there
is no pooling, subsampling, or coarsening operator (layer) to apply in the above CNN
architecture. Furthermore, to investigate the approximation properties of CNNs on R¥*4,
we consider R?*% as a d?-dimensional vector space with Frobenius norm.

Before we prove the main approximation theorem, let us introduce the next two lemmas,
which reveal the connection between deep ReLU CNNs and one-hidden-layer ReLU NNs.
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Lemma3 For any W € RN *d* and o, B € RN, there is a convolutional kernel K e
RIXN*QLA/2J+D)>QLd/214Y) | pigs b € RN, and weight a € RN sych that

a-0c (WVkx)+8)=a-V (o (K *x+ bl)) (3.4)

for any x € R*4,
Proof For simplicity, let us first assume that d is odd. Then, we haved = 2|d /2] + 1 and

Ld/2]

(K * X)), ra/21,1d/21 = Z (Knst[®]1a/21 45 1d/214¢ = V(KR - V(x). (3.5)
st=—1d/2]

Thus, this proof is completed by taking b = 8,

: _ _ 2 2
V(Ks) = W and  [aly = | @0 K= (= DdZ /215 (3.6)
0, others,

forallm =1:N.Ifd is even, we have 2|d/2| + 1 = d + 1. Thus, we can construct a and
b as before and then take V([K1,,—a/2.d/2—1,—d/2:d/2-1) = [Wln: and [K1,,a/2—a/2d/2 =
(K1y,—a/2:d4/2,4/2 = 0. Thus, we have

a2

(K *X]q/241,d/241 = Z (Knst[*]d/24145d/24+14
st=—d/2 (37)

= V([K]y—d/2:d/2-1,—d/2:d/2-1) - V),
which finishes the proof. O

Basically, the above lemma shows that a ReLU NN function with one hidden layer can be
represented by a one-layer CNN with a large kernel.

Lemma 4 For any bounded set 2 C R?*%, kernel K € RVN*CLA/21+D)xQLd/2J+1) | g4
bias vector b € RN, there is a series of kernels K¢ € R¢-1*¢>3%3 gqpud bigs vectors b* € R

such that
K b1 = | K/2] y pld/21-1 pld/2 ,Vx € 2,
(K *x + b1],, 14/, 1d/21 [ *f (%) + ]n,rd/%rdm €
(3.8)
where fO(x) = x, cp = (20 +1)2 for £ =1: |d/2] — 1, Clds2) =N, and
flo) =0 (K‘ f () + b‘1) . (3.9)

Proof According to Theorem 2, we know there is P € R@LA/2-1?xNx3x3 anq st ¢
Reét-1x¢ex3%3 with ¢y = (20 4+ 1)2 for £ = 1: |d/2] — 1 such that

Kxx=PxSW21 4 xSl xx (3.10)
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for any x € £2. Thus, we can take
K‘=S8' ¢=1:1d/2]—1 and K92 =p (3.11)

Then, we can prove (3.8) by taking ° in an appropriate way. From £ = 1to |d/2] — 1, we
define b* consecutively as

[b[]q: max sup
1<st<d xe

[K‘f *f‘f—l(x)] , g=1:ce (3.12)

gst
As 2 C R4 js bounded and o = ReLU is continuous, we know that

by <00, Ve=1:|d/2] -1 q=1:c. (3.13)
Therefore, we have

flw) =o (K‘f s« f ) + bﬁ) — K¢ w) + b1 (3.14)

because of the definition of o (x) and b%. Thus, we have

K2 4 fld21=1 ) — py S2=1 4 Sl s x + B=K % x+ B, (3.15)
where
ld/2]-1
B= Y PxSKH a5t (b71) 4 Pk (b19271) e RV (3.16)
=2

which is constant in respect to x. Finally, we take

(642} = 161 = [Blfayon,rayon (3.17)
which finishes the proof. m]

Lemma 4 shows that a one-layer ReLU CNN with a large kernel can be represented by a
deep ReLU CNN with multi-channel 3 x 3 kernels.

To obtain our final theorem (Theorem 4), let us first recall the following approximation
result for one-hidden-layer ReLU NNss.

Theorem 3 ([2,39]) Assume that f : 2 C RP + R and that 2 is bounded. Then, there
is a ReLU NN with one hidden layer fxy(x) = a - o (Wx + B) where W € RN*P and
o, B e RN, such that

13
If —Nll2e) S N“272||f gy ) (3.18)

Here, a < b means a < Cb where C depends only on dimension D and domain £2. In
addition, ||f || ;@) is the norm defined by the gauge of B1(ID),

Ifll¢;) = inf{c > 0 : f € cB1(D)}, (3.19)
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where B; (D) is given by
n n
BiD)=1{Y ahj : neNleD, > |aj| <1¢, (3.20)
j=1 j=1
and
D={o(w x+b) : wecRP,beR} (3.21)

is the dictionary generated by the activation function o (£) = ReLU(¢). More details about
the ||f || #, ) norm, its approximation properties, and its connections with what is known
as Barron norm can be found in [7,38,39]. Generally, the underlying model for image
classification is a piecewise constant function for which it is impossible to have a finite
(D) norm. However, the ReLU CNN functions that we discuss in this paper are the
feature extraction parts of ReLU CNN models for image classification. Thus, f(x) may
have a finite 7] (D) norm as a feature extraction function not a classification model.

By combining Lemma 3, Lemma 4, and Theorem 3, we have the following approximation
theorem of deep CNNs with multi-channel 3 x 3 kernels.

Theorem 4 Let 2 C R**% be bounded. Assume that f : 2 +— R and |fll o < oo
Then, there is a CNN function f : R**? + R as defined in (3.1) with multi-channel 3 x 3
kernels, where

depth (number of convolutional layers): L=1d/2], (3.22)
width (number of channels at each layer): co = (20 +1)% '
fort =1:L —1andcy = N, such that
~ _1_ .3
If =l SN 2 22 |If ey ) (3.23)

Proof First, we assume that fi;(V(x)) is the approximation of f (x) using a one-hidden-layer
ReLU NN, as shown in Theorem 3. According to Lemma 3 and Lemma 4, there is a CNN
7(96) as defined in (3.1) with the hyperparameters listed above such thatf(x) = fn(Vx))
for any x € £2. This completes the proof. O

Here, we notice that the total number of free parameters in fy(V(x)), as shown in
Theorem 3, is N = N(d? + 2) if x € R?*?, We also note that the total number of free
parameters of the CNN function f(x) as in (3.1) with hyperparameters in Theorem 4 is

ld/2]-1
Ne= Y |9@2+12@2e—1)+ (20 +1)*
N e’
=1 Kt 2 ( )
e ) 3.24
+N(21d/2] —1)* + 1)+ Nd
Kld/2] & pld/2] 4

< 2(d® + Nd>?).
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A comparison of Nr and N¢ shows that the convolutional neural networks with hyperpa-
rameters (depth L and width ¢,) in Theorem 4 can achieve the same asymptotic approxi-

1 3
mation order of one-hidden-layer ReLU NNs as O (N _Q_W) That is, there is an upper

bound for the approximation error as CN “3a0 where C depends only on dimension d
and domain £2.

In addition, in Theorem 4, to achieve the approximation power for ReLU CNNs, it is
necessary for the depth to exceed d /2 and for the number of layers in £th layer to be at least
(2¢ 4 1)2. However, it is by no means common for practical CNN models to meet both of
these conditions. Here, we may interpret these conditions from other perspectives. For the
depth (number of layers) of CNN models for image classification, we usually apply ResNet
[15] CNNs with 18 or 34 layers for CIFAR-10 and CIFAR-100 with input images in R32*32,
Furthermore, we prefer deeper ResNet CNNSs, for example, ResNet [16] with 50, 101, or
more than 1,000 layers for ImageNet, which has input images in R?24*224_ In all these
examples, depth L is greater than d/2 for input images in R?*“, For the width (number
of channels) of CNN models for image classification, we notice that every practical CNN
model increases the input channel to a relatively large number and retains this width for
several layers. These two observations indicate that it is necessary to include more layers
and channels in practical CNN models.

Moreover, Theorem 4 requires a huge number of channels in the last layer to achieve
a small approximate error. However, the number of channels in the last layer in practical
CNN s is not very large in general. For example, one may take 512, 1,024, or 2,048 channels
in the output layer for CIFAR and ImageNet classification problems. To understand this,
we recall that the target function in this approximation result is the feature extraction
function not the piecewise constant classification function. Thus, the ||f ||, @) norm may
be very small such that a relatively small N may be enough to achieve sufficient approx-
imation power. This implies that the feature extraction functions in image classification
may lie in a special function class which is much smaller than J#; (D).

Furthermore, Theorem 4 does not tell us why CNNs are much better than DNNs for
image classification in terms of approximation power. However, Theorem 4 does indicate
that CNNs with certain structures are no worse than DNNs in terms of approximation.
This is important when CNNs are applied in fields in which approximation accuracy is a
critical metric, such as numerical solutions of PDEs [19]. On the other hand, Theorem 4
shows that deep ReLU CNNs with certain structures can represent ReLU NNs with one
hidden layer. This implies that the function class of ReLU CNNs is much larger than the
function class of one-hidden-layer ReLU NNs. More precisely, the function class of ReLU
CNNs may include or can efficiently approximate some very special functions that cannot
be approximated directly using ReLU DNNs.

4 Approximation properties of ResNet and MgNet
In this section, we show the approximation properties for one version of ResNet [15],
pre-act ResNet [16], and MgNet [13].

Approximation properties of ResNet and pre-act ResNet. First, let us introduce some
mathematical formulas to define these two network functions:
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ResNet:

flx) =0 (Re #flx) + B s o (A‘Z * 1 (x) + azl) + bel),

(4.1)
f@x) =a-V(ftx),

for ¢ =1: L, wherefO(x) = x € Rixd At g Ree-1xCex3x3 Bt ¢ RCexcex3x3,
2
RY € Ree-xeexIxl gt c RCe pee and g € RL4”,
Pre-act ResNet:

f((x) =Rt *fgfl(x) +o (Be * 0 (Ae *fe’l(x) + agl) + bzl),

(4.2)
f(x) =a-V (fL(x)))

for¢ =1: L, wheref'(x) = x € RAxd At ¢ Ree-1xCex3x3 Bt o RCexcex3x3,
2
R e Ree1xeexIxl gt = RCe pee and g € R4,

Each iteration from f =1(x) to f ¢(x) is called a basic block of ResNet or pre-act ResNet.
Note here that we add an extra 1 x 1 kernel in front of f¢~1(x) in each block, introduced
in [15] originally, to adjust to the change of channels from f —1(x) to f ¢(x). In addition, we
notice that ResNet and pre-act ResNet can degenerate into a classical CNN as in (3.1), if
we take R® = 0. In this sense, ResNet and pre-act ResNet have approximation properties
if we assume that R’ is not given a priori but set as a trainable parameter. However, a key
reason for the success of ResNet is that we set R’ a priori, especially when taking R® as
the identity operator when f*~!(x) and f (x) have the same number of channels [15,16].
Thus, we consider ResNet and pre-act ResNet networks with an arbitrarily given value for
Rt

Theorem 5 Let 2 C R*? be bounded, and assume thatf : 2 — Rwith ||f || »,m) < o0
For any given R e Re-1xeex1X1 there js g ResNet network f(x) as in (4.1), where the

hyperparameters satisfy

depth (number of blocks): L = ||d/2]/2],

(4.3)
width (number of channels): ¢y = (40 + 1)% Cp = 2(44 — 1)?
fort =1:L—1,Cy =24L —1)% and c; = N, such that
~ _1_ 3
If =fll2e) SN 2 22 ||f Ly ) (4.4)

Proof Without loss of generality, let us assume that % is an integer. If not, some zero
boundary layers can be added to enlarge the dimension of the original data to satisfy this
condition. First, we assume a CNN functionf(x) =fnV(x) =a- -0 (WV(x) + B) defined
in (3.1), which approximates f(x), as described in Theorem 4:

- _1_3_
If —fllize) SN 2 2 |f e o)
Then, we can constructf(x) using kernels K Cfort=1:d/ 2,3‘” 2 andﬁinf(x). We define

I(ZZ—I

Al = I , [az]q = max sup
0 MR xe2

[AZ ¥ f“—l(x)] L 0=1:1, (4.5)

q,mn
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where I is the identity kernel and 0 is used to pad the output channel to be C,. That is,

[(2271 *fifl
o (A‘Z w1 ) 4+ at 1) = f1 +a‘l. (4.6)
0
Moreover, we define
Bl = (1(24’, —R, 0), e=1:1 4.7)

and

[bz]qz max sup
1<st<d xeg

[Re s 71 (x) + B « (A"] s O w) + az(l)]

g8t

for ¢ = 1: L — 1. Given the definition of ¢, it follows that
[R‘Z *flx)+ B x o (A‘z * f1(x) + agl) + bt l]qst > 0. Given the definition of o (¢) =
ReLU(t) := max{0, t}, we have

fla)=o (Re #flx) + Bl x o (A‘z 1) + a‘fl) n bfl)
=R %" (x) + B % (A‘z w fC 1 (x) + azl) + b1
=R" *fz_l(x) + K2 x K21 *f[_l(x) — R *fz_l(x) +B s a1+ b1

= K2« K27 s 57N x) + B % a1 + b1
(4.9)

for £ =1:L — 1. By taking £ = L, we have

FE@) = RE s 17 ) + B v o (AL % f17 () + al1) + P11
= K2 s« K271y f17 ) + K2 ak1 4+ bl (4.10)
=K« K>y xK'xx+B

where B is a constant tensor, which is similar to the case presented in Lemma 4. This
suggests b’ defined as

[b"]s = [Bln — [Bluasas (4.11)

where 8 € RN proceeds fromf(x) =fwVx) =a -0 (WV(x)+ B) for any x € £2. Thus,
it follows that

L) =L @), (4.12)

and we complete the proof by taking a = 4. ]
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Theorem 6 Let 2 C R*? be bounded, and assume thatf : 2 — R with |f|l o). For
any given Rt € Ré-1x¢X1x1 there is q pre-act ResNet network f (x) as in (4.2), where the
hyperparameters satisfy

depth (number of blocks): L=1d/2]/2], (4.19)
width (number of channels): co = (@4l +1)% Co=2(4L —1)? '
fort =1:L—-1,C; =2(4L — 12 and ¢; = N + 2, such that
~ _1_.3_
If =fllzee) SN 2 22 ||f ey (4.14)

Proof We still assume that % is an integer. Then, we construct pre-act ResNet as in (4.2)
with a similar structure as that described in Theorem 5. According to Lemma 3 and
Lemma 4, we notice that kernels K¢ for £ = 1: |d/2] — 1 as described in Theorem 4 are
independent from f (x). More precisely, these kernels can be defined by using S* presented
in Theorem 2. Thus, we take

KZZ—I
Al = I , [az]q = max sup [Ae *fe_l(x)] (4.15)
0 A qmn

for £ = 1: L where [ is the identity kernel and 0 is used to pad the output channel to be

Cy. That is,
I(Z@fl *fifl
o (A‘f w7 x) + ael) = s +a'l (4.16)
0
Moreover, we define
B' = (KN, _R, o), ¢=1:1L-1 (4.17)

and

, ¢=1:L-1 (4.18)

[be]qz max sup
1<st<d xe

[Be * (Ae *fzfl(x) + ael)]
q,8,t
This means that

Flw) =R # f () + o (B‘ oy (Af 1) + a‘l) n b‘fl)
=R s () + B % (A( O () + aél) +'1
=Rs ) + K26 K271 s 97 () — RO 5 f 7 () + B % a1 + b1

=KX« K7V fN ) + B x a1+ b1
(4.19)

fore =1:L—1.
Next, we show how to define B~. First, let us denote fy(V(x)) = « - o (Wx + B) as the
fully connected neural network approximation for f(x) as in Theorem 3. In addition, we
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- —d
denote f(x) = a - f /Z(x) = fn(x) as the CNN approximation of f(x) as in Theorem 4.
Now, we can take

[E]n: lfﬂ S Ndz;
[al, = § -1, ifn=Nd?>+ (d/2)* or (N + 1)d? + (d/2)? (4.20)
0, others.

Recalling that f2~1(x) in the pre-act ResNet now is a linear function, we have
a-V(R-+fF'w])=h- V@) +¢ (4.21)

where 1 € R4 and ¢ € R. Then, we can redefine a new fully connected neural network
function

Ny i=a-0 (WVw)+B8)+oh-Vx)+c)+o(—h-Vx)—c). (4.22)

According to Lemma 4, we have a CNN functionf(x) such that

~ o o (WV() + B)
FPCasare = [oRP3FPILBY] = o v@ +o | @23)
o(=h- Vi) —c)

As noticed before, K¢ for £ = 1 : d/2 — 1 have the same structure in Lemma 4. As a result,
we have

FAR () =fd/2_1(x), Vx € 2. (4.24)

Then, we take

Kt =K9?, (4.25)
which implies that
fL(x) =Rl *fL_l(x) +o (BL *0 (AL *fL_l(x) + aLl) + bLl)
=Rl s fl )+ o (KZL x« K271y f171(x) + B+ bLl) (4.26)
= RE *fL_l(x)+a (1?‘1/2 *« K421y x K1 *x+B+bL1>,

where B is a constant tensor similar to the case described in Theorem 5. Thus, we can
take

(Bln — [Blnajpdap  ifn <N
(b= e~ [Bln4i,djodap  ifn=N+1, (4.27)
—c — [Blnt2d/2d/p ifn=N+2,
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which leads to

[fL (x)]:,d/z,d/z

= [RL *fLil(x) +o (I?d/2 * K271 gk K1Y *x+B+bL1)]
5d/2,d/2

— [RL 4 fL-1 ([?d/z K421 4 4 KL 21 ]
[ *f 7 x) o * x--x K xx+f8 ) d/2d)2 (4.28)

o (WV(x) + B)
= [RE T W] g+ | oV +0) |
o(—=h-V(ix)—c)

where ,’3 = (B, ¢, —¢). Noticing that o (x) + o (—x) = x, finally we check that

f@) =a-V(hw
o (WV(x) + B)
=a-V(REsfF ) + (-1 -1)- | o(h-V(x) +c)
o(—=h-V(ix)—c)
= I(x) +fn(V(x)) = (0 (Ix)) + o (—I(x)))
=fn(V(x), Vxe

(4.29)

where [(x) = h - V(x) + ¢. This completes the proof. O

The approximation property of MgNet. First, we introduce a typical MgNet [13,14]
network used in image classification.

Algorithm 1/ = MgNet(f)

1: Input: number of grids ], number of smoothing iterations v, for £ = 1 : J, number of channels ¢, for f ¢
and ¢, ¢ for u® on £th grid.

2: Initialization: f1 = fin(f), u*® = 0

3:for{=1:]do

4: fori=1:v,do

5: Feature extraction (smoothing):
S S (fe _ Al uz,ia) € ROt xnexmy. (4.30)

6: end for
7:  Note: u® = ub"
8: Interpolation and restriction:

L0 — nf-%—l *3 ul € ROwt+1Xnep1Xme1 (4.31)

S =R sy (= AT(uh)) + AT s T € RO e, (4.32)
9: end for

Here, IT fH*Z and Rﬁ“*z in (4.31) and (4.32), respectively, which work as the coarsening
operation, are defined as convolutions with stride two [8]. As we do not include coarsening
(subsampling or pooling ) layers in this study, we propose the following version of the
feature extraction (smoothing) iteration in MgNet to study its approximation property.
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MgNet:

flx) =R xf N (w) + o (Be *0 (95 xx— AL % N x) + aél) + bel),
f&) =a-V({tx),
(4.33)

for £ = 1: L, where fO(x) = x € RAxd Al ¢ Ree-1xCex3x3 Bt o RCexcex3x3)
2
RZ c Rcl_lxclxbd, aZ e RCZ’ 9(3 c RGCngxB, bcl, and a € ]Rch .

As discussed in relation to ResNet and pre-act ResNet, we add extra 1 x 1 convolutional
kernels R and 6° in case of a change of channel. Given that we can recover pre-act ResNet
by taking 8¢ = 0in (4.33), we have the following theorem pertaining to the approximation
property of MgNet.

Theorem 7 Let 2 C R?*? e bounded, and assume thatf : 2 — Rwith ||f ||l ) <
oo. Consider f(x) as an MgNet in (4.33) with any R® € Ré-1**1X1 given g prior, and
hyperparameters that satisfy

depth (number of blocks): L= ld/2]/2], (4.30)
width (number of channels): co = (40 +1)% Cp =2(4L —1)%, ‘
for& =1:L—1,C, =2(4L — 1)%, and c; = N + 2, such that
~ _1_3_
If =fllzee) SN 2 22 |f ey (4.35)

5 Conclusion

By carefully studying the decomposition theorem for convolutional kernels with large
spatial size, we obtained the universal approximation property for a typical deep ReLU
CNN structure. In general, we proved that deep multi-channel ReLU CNNs can represent
one-hidden-layer ReLU NNs. Consequently, this representation result provides the same
asymptotic approximation rate for deep ReLU CNNs as for one-hidden-layer ReLU NNs.
Moreover, we established approximation results for one version of ResNet, pre-act ResNet,
and MgNet, based on the connections between these commonly used CNN models. This
study provides new evidence of the theoretical foundation of classical CNNs and popular
architecture, such as ResNet, pre-act ResNet, and MgNet.

Although the approximation properties do not show that CNNs should work better than
DNN:ss in terms of approximation power, this study furthers the fields in understanding of
CNNss in a significant way. For example, the success of CNNs may imply that the ||f|| », )
norm is very small for the target feature extraction function f in image classification
or that f belongs to a very special function class that can be efficiently represented or
approximated by CNNs efficiently. In addition, we anticipate that it will be possible to
apply this kind of approximation results in designing new CNN structures, especially in
the context of scientific computing [19]. Furthermore, as the pooling operation plays a key
role in practical CNNSs, a natural future direction proceeding from this study is to derive
approximation results for CNNs involving pooling layers.



He et al. Res Math Sci (2022)9:38 Page 23 0of24 38

Acknowledgements

All the authors were partially supported by the Center for Computational Mathematics and Applications (CCMA) at The
Pennsylvania State University. The first author was also supported by the RH. Bing Fellowship from The University of
Texas at Austin. In addition, the third author was supported by the Verne M. William Professorship Fund from The
Pennsylvania State University and by the National Science Foundation (Grant No. DMS-1819157 and DMS-2111387).

Data availability
No datasets were generated or analyzed during the current study.

Author details

'Department of Mathematics, The University of Texas at Austin, Austin, TX 78712, USA, ?Beijing International Center for
Mathematical Research, Peking University, Beijing 100871, China, *Department of Mathematics, The Pennsylvania State
University, University Park, PA 16802, USA.

Received: 31 August 2021 Accepted: 25 May 2022
Published online: 30 June 2022

References

1. Arora, R, Basu, A, Mianjy, P, Mukherjee, A.: Understanding deep neural networks with rectified linear units. In:
International Conference on Learning Representations (2018)

2. Bach, F.:Breaking the curse of dimensionality with convex neural networks. J. Mach. Learn. Res. 18(1), 629-681 (2017)

3. Bao,C,Li,Q,Shen, Z,Tai, C, Wu, L, Xiang, X.: Approximation analysis of convolutional neural networks. Work 65, 871
(2014)

4. Barron, AR.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inf. Theor. 39(3),
930-945 (1993)

5. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control, Signals Syst. 2(4), 303-314
(1989)

6. Daubechies, I.: Ten lectures on wavelets. SIAM (1992)

7. Ma, C, Wu, L: The barron space and the flow-induced function spaces for neural network models. Construct. Approx.
87, 1-38 (2021)

8. Goodfellow, I, Bengio, Y., Courville, A: Deep learning. MIT Press, Cambridge (2016)

9. Guhring, I, Kutyniok, G, Petersen, P.: Error bounds for approximations with deep relu neural networks in w*? norms.
Anal. Appl. 18(05), 803-859 (2020)

10. Guo, X, Li, W, lorio, F.: Convolutional neural networks for steady flow approximation. In: Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data mining, pp. 481-490 (2016)

11. He, J, Li, L, Xu, J: Relu deep neural networks from the hierarchical basis perspective. arXiv preprint http://arxiv.org/

abs/2105.04156 (2021)

12. He, J, Li, L, Xy, J,, Zheng, C.: Relu deep neural networks and linear finite elements. J. Comput. Math. 38(3), 502-527
(2020)

13. He, J, Xu, J. Mgnet: a unified framework of multigrid and convolutional neural network. Sci. China Math. 65, 1-24
(2019)

14. He, J, Xu, J, Zhang, L, Zhu, J.: An interpretive constrained linear model for resnet and mgnet. http://arxiv.org/abs/
2112.07441 (2021)

15. He, K, Zhang, X, Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 770-778 (2016)

16. He, K, Zhang, X, Ren, S, Sun, J.: Identity mappings in deep residual networks. In: European conference on computer
vision, pp. 630-645. Springer (2016)

17. Hornik, K, Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw.
2(5), 359-366 (1989)

18. Huang, G, Liu, Z, Van Der Maaten, L., Weinberger, KQ.: Densely connected convolutional networks. In: Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 4700-4708 (2017)

19. Karniadakis, G.E, Kevrekidis, |.G, Lu, L., Perdikaris, P., Wang, S., Yang, L.: Physics-informed machine learning. Nature Rev.
Phys. 3(6), 422-440 (2021)

20. Klusowski, J.M., Barron, AR Approximation by combinations of relu and squared relu ridge functions with £' and ¢°
controls. [EEE Trans. Inf. Theory 64(12), 7649-7656 (2018)

21. Kohler, M, Langer, S.: Statistical theory for image classification using deep convolutional neural networks with cross-
entropy loss. http://arxiv.org/abs/2011.13602 (2020)

22. Krizhevsky, A, Sutskever, I, Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural
Inf. Process. Syst. 25, 1097-1105 (2012)

23. Kumagai, W, Sannai, A: Universal approximation theorem for equivariant maps by group cnns. http://arxiv.org/abs/
2012.13882 (2020)

24. LeCun, Y, Bengio, Y, Hinton, G.: Deep learning. Nature 521(7553), 436-444 (2015)

25. LeCun, Y., Bottou, L, Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE
86(11),2278-2324 (1998)

26. Leshno, M, Lin, V.Y, Pinkus, A, Schocken, S.: Multilayer feedforward networks with a nonpolynomial activation function
can approximate any function. Neural Netw. 6(6), 861-867 (1993)

27. Lin, SB,Wang, K, Wang, Y., Zhou, D.X.: Universal consistency of deep convolutional neural networks. http://arxiv.org/
abs/2106.12498 (2021)

28. Lu, Z,Pu, H,Wang, F, Hu, Z, Wang, L. The expressive power of neural networks: a view from the width. Adv. Neural
Inf. Process. Syst. 36, 6231-6239 (2017)


http://arxiv.org/abs/2105.04156
http://arxiv.org/abs/2105.04156
http://arxiv.org/abs/2112.07441
http://arxiv.org/abs/2112.07441
http://arxiv.org/abs/2011.13602
http://arxiv.org/abs/2012.13882
http://arxiv.org/abs/2012.13882
http://arxiv.org/abs/2106.12498
http://arxiv.org/abs/2106.12498

38

Page 24 of 24 He et al. Res Math 5ci(2022)9:38

29. Montufar, GF,, Pascanu, R, Cho, K, Bengio, Y.: On the number of linear regions of deep neural networks. Adv. Neural
Inf. Process. Syst. 587, 2924-2932 (2014)

30. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th
International Conference on International Conference on Machine Learning, pp. 807-814 (2010)

31. Oono, K, Suzuki, T.: Approximation and non-parametric estimation of resnet-type convolutional neural networks. In:
International Conference on Machine Learning, pp. 4922-4931. PMLR (2019)

32. Opschoor, JA, Petersen, P.C, Schwab, C.: Deep relu networks and high-order finite element methods. Anal. Appl. 45,
1-56 (2020)

33. Paszke, A, Gross, S, Massa, F., Lerer, A, Bradbury, J, Chanan, G, Killeen, T, Lin, Z, Gimelshein, N., Antiga, L, et al.
Pytorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32, 8026-8037
(2019)

34, Petersen, P., Voigtlaender, F.: Equivalence of approximation by convolutional neural networks and fully-connected
networks. Proc. Am. Math. Soc. 148(4), 1567-1581 (2020)

35. Poggio, T, Mhaskar, H., Rosasco, L., Miranda, B, Liao, Q.: Why and when can deep-but not shallow-networks avoid the
curse of dimensionality: a review. Int. J. Autom. Comput. 14(5), 503-519 (2017)

36. Shen, Z, Yang, H., Zhang, S.: Nonlinear approximation via compositions. Neural Netw. 119, 74-84 (2019)

37. Siegel, JW., Xu, J.. Approximation rates for neural networks with general activation functions. Neural Netw. 128,
313-321(2020)

38. Siegel, JW, Xu, J.: Characterization of the variation spaces corresponding to shallow neural networks. http://arxiv.
org/abs/2106.15002 (2021)

39. Siegel, JW., Xu, J.: Improved approximation properties of dictionaries and applications to neural networks. http://
arxiv.org/abs/2101.12365 (2021)

40. Siegel, JW., Xu, J.: High-order approximation rates for shallow neural networks with cosine and reluk activation
functions. Appl. Comput. Harmonic Anal. 58, 1-26 (2022)

41. Tan, M, Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In: International Conference
on Machine Learning, pp. 6105-6114. PMLR (2019)

42. Telgarsky, M.: Benefits of depth in neural networks. J. Mach. Learn. Res. 49, 1517-1539 (2016)

43. Xu, J: Finite neuron method and convergence analysis. Commun. Comput. Phys. 28(5), 1707-1745 (2020)

44, Yarotsky, D.: Error bounds for approximations with deep relu networks. Neural Netw. 94, 103-114 (2017)

45. Zhou, D.X.: Deep distributed convolutional neural networks: Universality. Anal. Appl. 16, 895-919 (2018)

46. Zhou, D.X.: Universality of deep convolutional neural networks. Appl. Comput. Harmonic Anal. 48(2), 787-794 (2020)

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


http://arxiv.org/abs/2106.15002
http://arxiv.org/abs/2106.15002
http://arxiv.org/abs/2101.12365
http://arxiv.org/abs/2101.12365

	Approximation properties of deep ReLU CNNs
	Abstract
	1 Introduction
	2 Decomposition theorem of large convolutional kernels in CNNs
	3 Universal approximation theorem for classic CNNs
	4 Approximation properties of ResNet and MgNet
	5 Conclusion
	References




