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Abstract

In [1], Weinberg made a conjecture about the little-group representations of massless particles
that can be created out of the vacuum by the action of a local operator in d dimensions,
generalizing his old result [2] in d = 4. In this note, I prove his conjecture and extend it to
arbitrary irreps of so(1,d — 1).
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In [I], Steven Weinberg posed the following question. Consider a local operator, O(z),
transforming in some irreducible (infinite-dimensional) representation of the Poincaré algebra
iso(1,d —1). Assume that O(z) has a nonzero matrix element between a massless 1-particle
state and the vacuum

0 # (0[0(x)|k, R')

By translational invariance, this matrix element is nonvanishing if and only if
0 # (0]O(0) |k, R') (1)

We may therefore assume that O(0) transforms as some (nonunitary) finite-dimensional
irreducible representation, R, of the Lorentz algebra so(1,d — 1) which leaves the point
x = 0 fixed. Weinberg’s question is:

e Given R, what representation, R, of so(d—2) C iso(d—2) is compatible with a nonzero
matrix element ([1))?

Weinberg computed some examples, and conjectured an answer for (tensorial) represen-
tations R, given by Young Tableaux. Here I prove his conjecture and extend it to all
finite-dimensional irreps, R.

The problem reduces to one in Lie theory. As an irrep of so(1,d — 1), R is a fortiori a
representation of the little algebra, iso(d—2) C so(1,d—1). As a representation of iso(d—2),
R is reducible but indecomposable.

We can write iso(d — 2) = so(d — 2) x K, where K is the (d — 2)-dimensional abelian
subalgebra of so(1,d — 1) which (along with so(d — 2)) leaves fixed a particular null momen-
tum. The irreducible subrepresentation, R’ C R is such thatE] K restricts to zero on R'. An
alternative characterization of R’ is that it is simultaneously an irrep of iso(d — 2) and of
so(1,1) x so(d — 2), where the so(d — 2) is the common subalgebra of these two maximal
subalgebras of so(1,d — 1).

With this reformulation, we can ask, “If R" is an irrep of so(1, 1) x so(d — 2), which irrep
is it?”

To answer that, we note that the highest-weight of R is contained in R'.

Proof: Since K raisef] the so(1, 1) weight, it necessarily annihilates the highest weight of R.
Acting with so(d —2) does not change the so(1, 1) weight and the commutator of an element
of so(d — 2) with K lies in K. Hence, acting on the highest weight of R with the generators
of iso(d — 2), we get an irrep R’ of iso(d — 2) with K represented by 0. By construction, R’
is also an irrep of so(1,1) x so(d — 2).

With that in mind, let us decompose R under so(1,1) x so(d — 2)

R = EB(/\Z) ® R; (2)

1 As Wigner pointed out in 1939 [3], the restriction to K = 0 is necessary to avoid a continuous infinity
of particle species.
2For our conventions for the so(1,1) weights, see (3.



where R; is an irrep of so(d — 2) and \; is the so(1,1) weight labeling the corresponding
1-dimensional irrep of so(1,1). Without loss of generality, we can order

/\1>)\22)\3Z...

The embedding so(1,1) x so(d —2) < so(1,d — 1) is the one obtained by omitting the
left-most node of the Dynkin diagram.

The remaining nodes are the simple roots of so(d — 2). The highest weight of R under
so(1,d — 1) is also the highest weight under the so(1,1) x so(d — 2) subalgebra. That is, R’
is the representation (A1) ® Ry in (2)).

To be more explicit, we need some notation. Highest weight representations, with highest

weight A, will be denoted by their Dynkin labels,
9 .

- (A, )

(Oéi, ai)

where the a; are the simple roots. Our convention for the so(1,1) weights will be that the
adjoint representation of so(1,d — 1) decomposes as

0,1,0,0,...,0] = (2) ®[1,0,0,...,0] & (0)®0,1,0,...,0]

& (0)®1[0,0,0,...,0] & (—2)®[1,0,0,...,0] (3)

Here

e K =(2)®][1,0,0,...,0]. Le., the generators of K transform as a vector of so(d — 2)
and with weight +2 under so(1, 1).

e (0)®10,1,0,...,0] is the adjoint of so(d — 2) and
e (0)®10,0,0,...,0] is the generator of so(1,1).

The normalization of the so(1,1) weights (\) is such that tensorial representations have A
even and spinorial representations have A odd.
Let
R =[n,ni,ng,...,n, (4)

be our chosen highest weight representation of so(1,d—1). The simple roots of so(d—2) were
obtained by omitting the first simple root. The corresponding Dynkin labels are obtained
by omitting the first Dynkin label of R. The highest-weight of the so(1,d — 1) irrep R,

with Dynkin labels (4)), is the highest weight of the so(d — 2) irrep with Dynkin labels
[n1,n9,...,n,]. That is, our sought-after representation of so(d — 2) is

Rlz [nl,n2,...,nT] (5)
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Though we don’t need it, the so(1, 1) weight is also determined:
r—1
2n+m+22m d=2r+3
AL = = r—2 (6)
2n+nr+nr_1+22ni d=2r+2
i=1

Finally, let us translate Weinberg’s Young diagrams into the corresponding Dynkin labels of
irreps. Consider a Young diagram, whose rows have lengths I > [y > --- > [, > 0, where
r = (d—2)/2 for d even and (d — 3)/2 for d odd.

For d odd, the corresponding Dynkin labels for R are

n:lo—l1

ni:li—l“_l, izl,...,T—l
n, = 21,
For d even,
n:lo—l1
ni:li—liﬂ, i:17...,T—2

Np—1 + Ny = 2l7‘—1

|nr71 - nr| = 2lr

Note that (of course) we only get tensorial representations this way (n, = even for d odd
or n,_1 + n, = even for d even). Moreover, when d is even and [, > 0, the Young diagram
corresponds to a reducible representation, decomposing into two irreps whose Dynkin labels
differ by exchanging n,_; <> n,.

For tensorial representations, dropping the first Dynkin label in passing from R to R; is
precisely the same as Weinberg’s conjectured “decapitation” procedure: removing the first
row of the Young diagram. But it extends naturally to spinorial representations as well.
And, for d even, it takes care of the reducibility of Young diagrams with [, > 0. Finally, it
gives an interpretation of the so(1,1) weight in @: A1 = 2ly, where [y is the length of the
row that he removes.
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