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Abstract

We study theories of type D4 in class-S, with nonabelian outer-automorphism twists around
various cycles of the punctured Riemann surface C. We propose an extension of previous
formulæ for the superconformal index to cover this case and classify the SCFTs corresponding
to fixtures (3-punctured spheres). We then go on to study families of SCFTs corresponding
to once-punctured tori and 4-punctured spheres. These exhibit new behaviours, not seen
in previous investigations. In particular, the generic theory with 4 punctures on the sphere
from non-commuting Z2 twisted sectors has six distinct weakly-coupled descriptions.
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1. Introduction

Class S theories provide a vast class of examples of four-dimensional N = 2 supercon-
formal field theories obtained by partially-twisted compactifications of the six-dimensional
(2, 0) theory of type j = A,D,E on a possibly punctured Riemann surface [1,2]. The exactly
marginal deformations of the four-dimensional theory are parameterized by the moduli space
of complex structures Mg,n or a branched cover of it. At the intersection of various bound-
ary divisors of Mg,n, the Riemann surface develops nodal curves which are 3-punctured
spheres. In such a degeneration limit, the SCFT is realized as a product of some free vector
multiplets and the SCFTs corresponding to the 3-punctured spheres. Moving to different
points of intersection along the boundary, we get different decompositions and the various
decompositions are said to be S-dual to each other. Thus, one can study systematically the
building blocks of this procedure, i.e. the 3-punctured spheres, and the possible ways to
gauge them in order to study SCFTs associated to arbitrary Riemann surfaces.

It is also possible to allow twists of the outer-automorphism of the Lie algebra j along
various cycles of the surface [3, 4]. This significantly enlarges the zoo of SCFTs obtained
from the six-dimensional origin. A complete classification of the three-punctured spheres in
almost all of the sectors with or without the outer automorphism twists has been carried out
(see [5–7] and the references therein). The only remaining case is the twisted D4 sector where
the twists are allowed to be in the full nonabelian outer automorphism group Out(D4) = S3

— the symmetric group on three letters.1 The nonabelian nature of twists introduces several
new challenges which we address in this paper.

If the twists are constrained to lie in an abelian subgroup of S3, i.e. a Z2 or a Z3

subgroup, the classification of three-punctured spheres has already been carried out in [11]
and [12] respectively. Thus the local data associated to punctures is already known. The
main difficulty appears in understanding the cutting and gluing of surfaces.2 In particular,

• We are forced to study S3-bundles on a surface C, which are classified by elements of
Hom(π1(C − {pi}), S3) up to conjugation. How to consistently glue these surfaces so
that we can build up S3-bundles on arbitrary surfaces presents a challenge.

• Even at the level of three-punctured spheres, a new sector appears where the twists
around the punctures are in non-commuting sectors. The superconformal index [13–16],
which has been studied in [17, 12] in the presence of abelian twists of D-type theories
and is an invaluable tool for the purpose of classification, is not previously known for
this sector.

In this paper we solve these issues. As a consequence, we find new features which were
previously absent in the study of class S (and in fact, in the study of 4d N = 2 SCFTs in

1Some properties of SCFTs in this sector are known. For example, the authors of [8–10] proposed
methods to calculate 1-form symmetry, the global form of 0-form symmetry, and 2-group symmetry groups
of all theories of class S including those of D4 sector with nonabelian twists.

2In the case of Z2 or Z3 twists, the classification of surfaces was relatively straightforward. The twists
on a surface C are classified by H1(C − {pi},Z2) and H1(C − {pi},Z3) respectively (where pi denotes the
location of ith puncture), and there is a Mayer-Vietoris principle for these groups that helps understand the
cutting and gluing of surfaces decorated with twists.
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general). The most interesting of these is the presence of new one-dimensional conformal
manifolds parameterizing the exactly marginal deformations of SCFTs associated to four-
punctured spheres. We find, contrary to all of the previously known examples, that these
conformal manifolds can have more than three and up to six different weakly coupled limits.3

We will study these conformal manifolds in more detail in the upcoming paper [21], but here
we already give two examples in §6.

This paper is organized as follows. In §2, we provide a description of S3 bundles on three-
punctured spheres that is suitable to cutting and gluing in the class S program. In §3, we
give superconformal indices of fixtures in various nonabelian twisted D4 sectors. §4 contains
a discussion of once-punctured tori in these sectors. In §5, we present a classification of
fixtures in the new sector that we mentioned above. We turn to 4-punctured spheres in §6,
presenting the general setup for 4 punctures in (non-commuting) Z2-twisted sectors. In §6.1,
we study atypical punctures in the Z3-twisted sector which resolve to a pair of punctures in
non-commuting Z2-twisted sectors. In §6.2, we give an example of a family of N = 2 SCFTs
with 6 distinct weak-coupling limits, whose conformal manifold is (the compactification of)
UHP/Γ(4). More details, and the general story for other sectors, will be discussed in [21].

2. Nonabelian twists of the D4 theory and S3 bundles

The twisted compactifications of the (2, 0) theory of type-j on a (punctured) Riemann surface,
C, involve the following data.

• A choice of principal Γ-bundle, P , on C, where Γ ⊂ Out(j). Let γi ∈ Γ be the group
element singled out by restricting P to the circle surrounding the ith puncture (with
the choice of a basepoint).

• For each i, a choice of nilpotent orbit in g, the Langlands dual of g∨ ⊂ j, the subalgebra
invariant under the action of γi.

Note that above, we required the choice of an actual bundle on C, and not just its
isomorphism class. This is because in the tinkertoy program, we build up more complicated
surfaces, C, by gluing together 3-punctured spheres (“fixtures”). In order to glue, we need
to glue actual bundles, rather than isomorphism classes thereof. More precisely, we need (at
least) an actual bundle on each boundary circle (since these circles are the loci along which
we glue)4.

3All previously known one-dimensional N = 2 conformal manifolds are known to have at most 3 distinct
weakly coupled limits. This is true for the conformal manifolds that parametrize the space of exactly marginal
couplings of Lagrangian field theories as well as the ones that have gaugings of isolated interacting SCFTs
as their only weakly coupled limits. A familiar example of the former case is SU(N) gauge theory with 2N
hypermultiplets. The conformal manifold has 1 or 2 distinct weakly coupled limits depending on whether
N = 2 or N ≥ 3 respectively [18–20,1].

4In the examples we study in this paper (the once-punctured torus and the four-punctured sphere),
the isomorphism class of the bundle on the sewn surface is simply related to the data on the 3-punctured
sphere(s) that we sew together along a single circle. We can always choose the basepoint (in our description
of isomorphism classes of bundles) to lie on that circle. (For the 4-punctured sphere, there are three distinct
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To this end, we choose a CW-decomposition of the 3-punctured sphere. For the 0-
skeleton, pick a point on each of the three boundaries of the 3-punctured sphere. Let the
six 1-cells be the three boundary circles (connecting each 0-cell with itself) and three arcs
connecting pairs of 0-cells. The 2-cells are then a triangle and a hexagon.

(1)

P can be trivialized over each 0-cell. We then assign an element of Γ to each 1-cell, which
tells us how the two trivializations at the endpoints compare. (N.b.: the choice of γ ∈ Γ
associated to a 1-cell depends on the orientation; if we reverse the orientation of the 1-cell,
γ is replaced by γ−1.) Physicists can think of this as the holonomy of the (unique and flat,
since Γ is discrete) connection on P .

The Γ-bundle on each boundary circle is uniquely specified by its holonomy. We will
refer to these three group elements, γ1, γ2, γ3, as the “external twists”. They determine
the restriction of P to a principal Γ-bundle on each boundary circle. The group elements,
γ4, γ5, γ6, associated to the open arcs obey two compatibility conditions. Since the boundary
of each 2-cell is a contractible path on C, the holonomy around it must be 1.

γ6γ5γ4 = 1

γ6γ3γ5γ2γ4γ1 = 1
(2)

When Γ is abelian, this simplifies to

γ6γ5γ4 = 1

γ3γ2γ1 = 1

We will refer to γ4, γ5, γ6 as “internal twists”.
We shall see in §3 that the physics of a fixture may depend on this more refined data

(i.e. the choice of Γ-bundles on three boundary circles, and the data of how these Γ-bundles
compare). In particular, when the restriction of P on all boundary circles is trivial (γ1 =
γ2 = γ3 = 1), the only principle Γ-bundle is the trivial bundle. However, the physics depends
on the internal twists (γ4, γ5, γ6) defined above (cf. §3.5).

ways to decompose the surface into 3-punctured spheres and we can choose the three circles to intersect
at the basepoint.) For higher genus or more punctures, we necessarily have to sew along disjoint circles so
in [21] we really will find the more complicated formalism, that we introduce here, useful.
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It is also useful to adopt this parametrization as the internal twists play a crucial role in
determining the Γ-bundles that result when we start sewing together 3-punctured spheres
to form more complicated Riemann surfaces. As a simple example, consider A2N−1 theory
with one simple puncture (at p1) and two full punctures (at p2 and p3). In this case, Γ = Z2

(which we denote multiplicatively). When γ1 = γ2 = γ3 = 1, the fixture is (2N)2 free
hypermultiplets for any choice of γ4,5,6. But now consider sewing together punctures 2,3
to form a once-punctured torus. When γ5 = 1, this is an SU(2N) gauge theory with
hypermultiplets in the (2N) ⊗ (2N) = adjoint ⊕ (1). When γ5 = −1, the hypermultiplets

transform as the (2N)⊗ (2N) = ( )⊕
(︂ )︂

.

Different choices of data defined in (1) may be related by some simple operations. For
example, conjugation

Ch1,h2,h3 : (γ1, γ2, γ3, γ4, γ5, γ6) ↦→ (h1γ1h
−1
1 , h2γ2h

−1
2 , h3γ3h

−1
3 , h2γ4h

−1
1 , h3γ5h

−1
2 , h1γ6h

−1
3 )

(3)
for hi ∈ Γ yields, in general, a different solution to (2). The set of all conjugations is a
group under composition, and it acts transitively on the set of all solutions to (2) with fixed
([γ1], [γ2], [γ3]). We will see that this action is useful in understanding the physics of fixtures
with the same ([γ1], [γ2], [γ3]) but different values of external and internal twists.

2.1. Γ = S3

Let us turn now to the case of interest Γ = S3,

Γ = ⟨α, β|α2 = (αβ)2 = β3 = 1⟩.

For later convenience, let us tabulate the solutions to (2). There are two selection rules on
the external twists (γ1, γ2, γ3):

• If two of the external twists are trivial, then so is the third one.

• The total parity must be be even

σ(γ1)σ(γ2)σ(γ3) = 1

where σ is the sign representation (σ(β) = 1, σ(α) = −1).

For brevity, we will order the punctures so that σ(γ1) = 1 and use the conjugation (3) to
pick a representative of each conjugacy class for the external twists

(γ1, γ2, γ3) Solutions to (2)
(1,1,1) γ4 = any, γ5 = any
(1, α, α) γ4 = any, γ5 = 1, α
(1, β, β2) γ4 = any, γ5 = βl

(β, α, αβ)
γ4 = βj, γ5 = 1, αβ

γ4 = αβj, γ5 = α, β2
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(γ1, γ2, γ3) Solutions to (2)
(β, β, β) γ4 = βj, γ5 = βl

where, of course, γ6 = γ−1
4 γ−1

5 . These are all of the cases where (γ4, γ5, γ6) = (1,1,1)
is contained in the set of solutions. All of the other cases may be obtained by cyclically
permuting the punctures and/or applying (3). For instance,

(γ1, γ2, γ3) Solutions to (2)
(1, α, αβ) γ4 = any, γ5 = β, αβ2

(β, α, α)
γ4 = βj, γ5 = β2, αβ2

γ4 = αβj, γ5 = β, αβ
(β, β, β2) γ4 = βj, γ5 = αβl

3. Superconformal index for nonabelian twisted D4 theories

In this section, we propose formulas for the superconformal index of SCFTs associated to the
three-punctured spheres in the presence of external and internal twists. Our general philos-
ophy is that the conjugation operation Ch1,h2,h3 in (3) acts at the level of the superconformal
index in a simple way, namely, it acts on the weights associated to the ith puncture by the
outer-automorphism hi. It follows that the action of conjugation on the twisted punctures
is trivial as the Lie algebras sp(3) and g2 have trivial outer automorphism groups.

We will organize our formulae in terms of the conjugacy classes of the external twists,
([γ1], [γ2], [γ3]). The action of conjugation helps us determine the dependence of the super-
conformal index on actual representatives of the conjugacy classes [γi] as well as any internal
twists on the fixture. For example, an immediate consequence of our proposal is that the
superconformal index of fixtures in the ([β], [β], [β]) and ([β], [α], [α]) sectors are completely
independent of these choices.

3.1. ([β], [β], [β]) sector

The superconformal index in the (β, β, β) sector was studied in [12]. As mentioned above,
the same formula holds if we replace any or all of the β-twisted punctures by β2 and/or
introduce any internal twists on the fixture.

3.2. ([β], [α], [α]) sector

The superconformal index of a fixture in the ([β], [α], [α]) sector has not been studied previ-
ously in the literature. Here we will propose a formula and provide some consistency checks
for it. The same formula holds for any fixture in this sector regardless of the choice of internal
twists and/or actual representatives of conjugacy classes of external twists.

A fixture in the ([β], [α], [α]) sector is labeled by a g2 nilpotent orbit, O1, and two sp(3)
nilpotent orbits O2,3. For each of the punctures, the nilpotent orbit determines an embedding
ρ : su(2) → g where g∨ is the invariant subalgebra of so(8) under the outer automorphism
around the puncture. The flavor symmetry f for the puncture is given by the centralizer of
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the image of ρ in g. We label the fugacities of the embedding su(2) as τ and the fugacities
associated to the flavor symmetry of the three punctures as a, b, and c respectively.

We will focus on the Schur limit of the superconformal index in this paper because it is
easier to compute and counts precisely the multiplets that we use to classify our fixtures. Any
other limit of the superconformal index [16] can be computed after replacing the characters
with the corresponding polynomials and using the appropriate K-factors in the formula
below. Our proposal for the Schur index is

I
([β],[α],[α])
Schur (τ) =

K(a(O1), τ)K(b(O2), τ)K(c(O3), τ)

K([7, 1], τ)

×
∑︂

(n1,n2)

χ
(n1,n2)
G2

(a(O1), τ)χ
(n2,n1,n2)
Sp(3) (b(O2), τ)χ

(n2,n1,n2)
Sp(3) (c(O3), τ)

χ
(n2,n1,n2,n2)
SO(8) ([7, 1], τ)

.

(4)

Here, (n1, n2), (n2, n1, n2) and (n2, n1, n2, n2) are the Dynkin labels of finite dimensional

representations of g2, sp(3) and so(8) respectively. The polynomials χ
(n1,n2)
G2

, χ
(n2,n1,n2)
Sp(3) and

χ
(n2,n1,n2,n2)
SO(8) are the characters for these representations with the corresponding Dynkin la-

bels. The flavor fugacities a(O) associated to the nilpotent orbit O of the corresponding Lie
algebra g labeling a puncture are determined by decomposing the fundamental representa-
tion of g as a representation of ρ(su(2)) ⊕ f. The K-factor for each puncture is determined
by decomposing the adjoint representation of g into the representations of ρ(su(2))⊕ f,

adg =
⨁︂
n

Vn ⊗Rn.

Here Vn is the n-dimensional representation of su(2), and Rn is a (possibly reducible) rep-
resentation of f. Based on this decomposition, the K-factor [16, 17, 22, 23] is the plethystic
exponential [24]

K(a(O)) = PE

[︄∑︂
n

τn+1χf
Rn

(a(O))

1− τ 2

]︄
.

We have checked this proposal by identifying the rank-0 and rank-1 theories among our fix-
tures, and comparing their (already known) indices with the formula (4). These fixtures can
be identified by computing the (a, c) anomaly coefficients (equivalently the effective number
of hyper and vector multiplets (nh, nv)) of the fixtures and the dimensions of Coulomb branch
operators using formulas in [25]. For rank-0 theories, i.e. free-field fixtures, nh determines
the SCFT fully, while for rank-1 theories, the knowledge of anomaly coefficients (a, c) along
with the dimension of the single generator of the Coulomb branch chiral ring determines the
SCFT uniquely [26–28].

As an example, consider the fixture labeled by (0β, [1
6]α, [6]αβ). It has one Coulomb

branch operator of scaling dimension 4 and (nh, nv) = (24, 7) (or (a, c) = (59
24
, 19

6
)). This

fixture must be the rank-1 (E7)8 Minahan-Nemeschansky theory [29] whose index is already
known [30, 16]. We have checked the unrefined index (4) against the known index for the
(E7)8 Minahan-Nemeschansky theory (up to order τ 10), and found perfect agreement.
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3.3. (1, [β], [β]) sector

The superconformal index of (1, β, β2) sector was studied in [12]. There, this index was writ-
ten as a sum over Dynkin labels of so(8) representations that are invariant under the action
of outer automorphism group S3. It follows that the action of Ch1,h2,h3 leaves the supercon-
formal index invariant, and hence, the choice of internal twists and/or the representatives of
[β] conjugacy class does not affect the physics of the fixture.

3.4. (1, [α], [α]) sector

The superconformal index of a fixture in the (1, α, α) sector with trivial internal twists was
studied in [17]. The Schur limit of this index is

I
(1,α,α,1,1,1)
Schur (τ) =

K(a(O1), τ)K(b(O2), τ)K(c(O3), τ)

K([7, 1], τ)

×
∑︂

(n1,n2,n3)

χ
(n1,n2,n3,n3)
SO(8) (a(O1), τ)χ

(n1,n2,n3)
Sp(3) (b(O2), τ)χ

(n1,n2,n3)
Sp(3) (c(O3), τ)

χ
(n1,n2,n3,n3)
SO(8) ([7, 1], τ)

(5a)

The Dynkin labels of so(8) representations appearing in this formula are of the form (n1, n2, n3, n3),
i.e. the index gets contribution only from the α-invariant highest weights in the so(8) weight
space.

The indices in the two other sectors with trivial internal twists and γ2 = γ3 = αβj are
related to (5a) by the obvious so(8) triality,

I
(1,αβ,αβ,1,1,1)
Schur (τ) =

K(a(O1), τ)K(b(O2), τ)K(c(O3), τ)

K([7, 1], τ)

×
∑︂

(n1,n2,n3)

χ
(n3,n2,n1,n3)
SO(8) (a(O1), τ)χ

(n1,n2,n3)
Sp(3) (b(O2), τ)χ

(n1,n2,n3)
Sp(3) (c(O3), τ)

χ
(n3,n2,n1,n3)
SO(8) ([7, 1], τ)

(5b)

and

I
(1,αβ2,αβ2,1,1,1)
Schur (τ) =

K(a(O1), τ)K(b(O2), τ)K(c(O3), τ)

K([7, 1], τ)

×
∑︂

(n1,n2,n3)

χ
(n3,n2,n3,n1)
SO(8) (a(O1), τ)χ

(n1,n2,n3)
Sp(3) (b(O2), τ)χ

(n1,n2,n3)
Sp(3) (c(O3), τ)

χ
(n3,n2,n3,n1)
SO(8) ([7, 1], τ)

.

(5c)

We think of these sectors as being obtained from (5a) by acting with the conjugation Ch,h,h.
h = αβ2 or β maps (1, α, α,1,1, 1) to (1, αβ, αβ,1,1,1), i.e. takes (5a) to (5b). Similarly,
h = αβ or β2 takes (5a) to (5c).

C1,h2,h3 does not act on the SO(8) weights at the first puncture and acts trivially on the
Sp(3) weights at the other punctures. So it leaves the RHS of (5a), (5b), (5c) invariant, while
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changing the twists. For instance, acting on (5a) with C1,1,β, C1,1,αβ2 , C1,α,β and C1,α,αβ2 ,
respectively, we learn that

I
(1,α,αβ,1,β,β2)
Schur (τ) = I

(1,α,αβ,1,αβ2,β2)
Schur (τ) = I

(1,α,αβ,α,αβ2,β2)
Schur (τ)

= I
(1,α,αβ,α,β,αβ2)
Schur (τ) = I

(1,α,α,1,1,1)
Schur (τ).

If, instead, we act on (5b) with C1,β2,1, C1,αβ2,1, C1,β2,αβ or C1,αβ2,αβ, we find

I
(1,α,αβ,β2,β,1)
Schur (τ) = I

(1,α,αβ,αβ2,αβ2,1)
Schur (τ) = I

(1,α,αβ,β2,αβ2,αβ)
Schur (τ)

= I
(1,α,αβ,αβ2,β,αβ)
Schur (τ) = I

(1,αβ,αβ,1,1,1)
Schur (τ).

In fact, the index depends only on the isomorphism class of the S3 bundle. Hence there is
an easy invariant that determines which of the formulae (5a), (5b) or (5c) to use. For any
fixture in this sector, consider a loop based at the untwisted puncture that encloses one of
the two twisted punctures. It takes values γ−1

4 γ2γ4 = γ6γ3γ
−1
6 = αβj for some j ∈ 0, 1, 2.

j = 0 corresponds to (5a), j = 1 corresponds to (5b) and j = 2 corresponds to (5c). The
value of j is invariant under the action of C1,h2,h3 for arbitrary h2 and h3, so we can simply
use the value of j to distinguish these formulae.

3.5. (1,1,1) sector

The superconformal index of this sector has been studied in [17] in the special case where
all the internal twists are trivial. In Schur limit, it reads

I
(1,1,1,1,1,1)
Schur (τ) =

K(a(O1), τ)K(b(O2), τ)K(c(O3), τ)

K([7, 1], τ)

×
∑︂

(n1,n2,n3,n4)

χ
(n1,n2,n3,n4)
SO(8) (a(O1), τ)χ

(n1,n2,n3,n4)
SO(8) (b(O2), τ)χ

(n1,n2,n3,n4)
SO(8) (c(O3), τ)

χ
(n1,n2,n3,n4)
SO(8) ([7, 1], τ)

.

(6)

Here (n1, n2, n3, n4) are the Dynkin labels of irreducible representations of so(8) and a(Oi)
denote flavor fugacities of an so(8) nilpotent orbit Oi. These are to be expressed in terms of
τ and the fugacities for fi, the manifest flavor symmetry of the puncture.

The index in the presence of internal twists (γ4, γ5, γ6) = (h2h
−1
1 , h3h

−1
2 , h1h

−1
3 ) is related

to this formula by the action of conjugation operator Ch1,h2,h3 .

I
(1,1,1,h2h

−1
1 ,h3h

−1
2 ,h1h

−1
3 )

Schur (τ) =
K(a(O1), τ)K(b(O2), τ)K(c(O3), τ)

K([7, 1], τ)

×
∑︂

(n1,n2,n3,n4)

χ
h1·(n1,n2,n3,n4)
SO(8) (a(O1), τ)χ

h2·(n1,n2,n3,n4)
SO(8) (b(O2), τ)χ

h3·(n1,n2,n3,n4)
SO(8) (c(O3), τ)

χ
(n1,n2,n3,n4)
SO(8) ([7, 1], τ)

(7)

Here hi · (n1, n2, n3, n4) denotes the action of hi on the highest weight. The choice of conju-
gation operator is not unique; different choices are related by sending hi → hig for i = 1, 2, 3.
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This change amounts to an action on the index by a global conjugation operator Cg,g,g, which
leaves the index (6) invariant.

The action of an outer automorphism on weights in expression (7) may be exchanged
with an action on the fugacities at which the characters are evaluated. In particular,
χ
hi·(n1,n2,n3,n4)
SO(8) (a(Oi), τ) = χ

(n1,n2,n3,n4)
SO(8) (h−1

i · (a(Oi), τ)). Since fugacities are determined by

the embedding ρ : su(2) → so(8) that determines the nilpotent orbit Oi, this action just
amounts to composing ρ with h−1

i to get another embedding h−1
i ◦ ρ.

Depending on the choice of O, this action might preserve the su(2) embedding and just
act on the flavour fugacities. Or it might change the su(2) embedding — i.e., change the
nilpotent orbit O. O = [18] and O = [22, 14] are examples of the former. In the case
of [18], the outer automorphism acts on the fugacities in a way that permutes the three 8-
dimensional representations, 8v,s,c; in the case of [22, 14], it permutes the fugacities associated
to f = su(2)⊕ su(2)⊕ su(2). The triple of orbits, O = [3, 15], [24], [24], are an example of the
latter. In each of these embeddings, one of the 8-dimensional representations decomposes as
(3, 1)+(1, 5) of su(2)⊕sp(2) and the other two decompose as (2, 4). The outer automorphism
permutes the three 8-dimensional representations, and hence permutes the three punctures
[3, 15], [24], [24].

By a suitable choice of conjugation, C1,h2,h3 , we can always remove the internal twists
and thereby relate the fixture to one with trivial internal twists. For example, consider5

Acting with C1,γ−1
4 ,γ6

eliminates the internal twists, at the cost of some action on the punc-
tures. If, for instance, γ4 = α and γ6 = β, this fixture is equivalent to

with trivial internal twists.

5Throughout this paper, we specify external twists by filling in punctures with different colors. When the
color is white, the puncture is untwisted. When it is green, red or blue, the twist is α, αβ or αβ2 respectively,
and when it is light grey or dark grey, it denotes a β or β2 twist.
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4. Once-punctured torus

As we saw in the (1,1,1) and in the (1, [α], [α]) sector, different choices of internal twists can
yield non-isomorphic physics already at the level of the 3-punctured spheres. But even when
the SCFTs associated to fixtures with different choices of internal twists are isomorphic,
they can lead to distinct physics once we start gauging the global symmetries. The simplest
examples arise when we sew together two punctures on a 3-punctured sphere to obtain a
once-punctured torus.

Consider, first, the case where the remaining puncture is in the untwisted sector. The
twists around the a and b cycles of the torus must commute. There are 18 possibilities,
which break up into 5 orbits under the modular group.

(1,1)

{(1, α), (α, 1), (α, α)}
{(1, αβ), (αβ,1), (αβ, αβ)}

{(1, αβ2), (αβ2,1), (αβ2, αβ2)}
{(1, β), (1, β2), (β, 1), (β, β), (β, β2), (β2,1), (β2, β), (β2, β2)}

(8)

For each orbit, there is (at least) one element where the twist around the a-cycle is 1, so we
can think of the theory as being obtained from a 3-punctured sphere with two untwisted full
punctures and one other untwisted puncture, by gauging the diagonal Spin(8) associated to
the full punctures. If the full punctures that we sew together are 1 and 2, then the twist
around the b-cycle on the sewn surface is the internal twist, γ4 which connects them. γ4 can
be any element of S3, so we can arrive at any of the 5 orbits listed above.

Each orbit in (8) is a fibration overM1,1, the compactification of the fundamental domain
for PSL(2,Z). The first orbit is just M1,1 itself. The next 3 are copies of (the compacti-
fication of) the fundamental domain of Γ̃0(2) and the last is (the compactification of) the
fundamental domain6 of Γ1(3). In both cases, the compactification is ramified over the
boundary point of M1,1. In the Γ̃0(2) case, two of the three sheets of the covering come
together over the boundary, so there are two distinct weak-coupling limits, depending on
whether the twist around the shrinking cycle is 1 or in [α] conjugacy class. In the Γ1(3)

6Up to conjugation, the congruence subgroups of SL(2,Z) are

Γ(n) =

{︃(︃
1 0
0 1

)︃
mod n

}︃
⊂ SL(2,Z)

Γ1(n) =

{︃(︃
1 b
0 1

)︃
mod n

}︃
⊂ SL(2,Z)

Γ0(n) =

{︃(︃
a b
0 d

)︃
mod n

}︃
⊂ SL(2,Z)

where, obviously, we have Γ(n) ⊂ Γ1(n) ⊂ Γ0(n) ⊂ SL(2,Z) and Γ1(2) ≃ Γ0(2). The center Z2 ⊂ SL(2,Z)
acts trivially on the Upper Half-Plane; the quotient PSL(2,Z) = SL(2,Z)/Z2 acts effectively. Γ(2) and
Γ0(2) contain the center; let us denote the quotients by Γ̃(2) = Γ(2)/Z2 and Γ̃0(2) = Γ0(2)/Z2. Several
of the moduli spaces that crop up in our analysis are quotients of the UHP by one of these congruence
subgroups: M0,4 = UHP/Γ̃(2), M1,1 = UHP/PSL(2,Z) and UHP/Γ1(p) (for p > 2) is the moduli space of
pairs (T, γ), consisting of a torus, T , and a nonzero element γ ∈ H1(T,Z/p).
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case, the four sheets come together to form a 2:1 cover of the boundary; the distinct weak
coupling limits correspond, respectively, to the twist around the shrinking cycle being in [β]
conjugacy class or 1.

As our first example, let puncture 3 be [5, 3], so that the 3-punctured sphere, before
gauging, is the (E8)12 Minahan-Nemeschansky SCFT [29].

(9)

Different choices of γ4 correspond to different embeddings of the Spin(8) gauge group in the
manifest Spin(8) × Spin(8) ⊂ E8. Under the “standard” embedding of Spin(8) × Spin(8),
the adjoint of E8 decomposes as (28, 1)⊕ (1, 28)⊕ (8v, 8v)⊕ (8c, 8c)⊕ (8s, 8s). If γ4 = 1, then
gauge group embeds diagonally in the above, and the 248 decomposes as

248 = 28⊕ 28⊕ (8v ⊗ 8v)⊕ (8s ⊗ 8s)⊕ (8c ⊗ 8c)

= 28⊕ 28⊕ (28⊕ 35v ⊕ 1)⊕ (28⊕ 35s ⊕ 1)⊕ (28⊕ 35c ⊕ 1).

The three singlet B̂1 operators survive the gauging, and so the flavour symmetry is U(1)3.
We can obtain other values of γ4 by acting with the conjugation Ch1,1,1 as in (3). This

sets γ4 = h−1
1 . The conjugation acts as an outer-automorphism of the Spin(8) associated to

the first puncture, and hence changes the decomposition of the 248 (relative to what we had
before, with γ4 = 1). If h1 = α, the 248 decomposes as (28, 1)⊕ (1, 28)⊕ (8v, 8v)⊕ (8s, 8c)⊕
(8c, 8s) and so under the Spin(8) gauging, we have

248 = 28⊕ 28⊕ (28⊕ 35v ⊕ 1)⊕ (8v ⊕ 56v)⊕ (8v ⊕ 56v)

Only one B̂1 operator survives the gauging, and the flavour symmetry is U(1).
The S-dual descriptions involve replacing the [18] punctures from the untwisted sector

with the [16] punctures from the α-twisted sector.

The conformal manifold (the fundamental domain for Γ̃0(2)) is a 3-sheeted cover of M1,1.
Over the boundary of M1,1, two of the sheets (the ones corresponding to the weakly-coupled
Sp(3) description) come together and there are only 2 distinct weakly-coupled descriptions.
One is the Spin(8)-gauging of the (E8)12 Minahan-Nemeschansky theory and the other is
the Sp(3)-gauging of the rank-2 Sp(6)8 SCFT.
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The same analysis holds for γ4 = αβ and αβ2: we get a family of SCFTs with a U(1)
flavour symmetry, whose conformal manifold is (the compactification of) the fundamen-
tal domain for Γ̃0(2), fibered over M1,1, and whose two weakly-coupled descriptions are a
Spin(8)-gauging of the (E8)12 Minahan-Nemeschansky theory and an Sp(3)-gauging of the
Sp(6)8 SCFT.

Finally, if γ4 = β, we get a cyclic permutation of the three 8-dimensional representations
of the Spin(8) associated to the first puncture and upon gauging,

248 = 28⊕ 28⊕ (8v ⊕ 56v)⊕ (8s ⊕ 56s)⊕ (8c ⊕ 56c).

No B̂1 operators survive the gauging and the flavour symmetry is trivial.
In the same orbit, we can replace the [18] untwisted punctures by the full punctures from

the β- or β2-twisted sector. The corresponding fixture is the rank-3 (G2)
2
8 SCFT and the

once-punctured torus theory is its diagonal G2-gauging.

The conformal manifold is (the compactification of) the fundamental domain of Γ1(3), a
4-sheeted cover of M1,1. Over the boundary, there are two weakly-coupled descriptions: a
Spin(8) gauging of the (E8)12 SCFT (if the twist around the shrinking cycle is 1) and the
G2 gauging of the (G2)

2
8 SCFT (if the twist is in the conjugacy class [β]).

Thus, of the 5 orbits in (8):

• The first has a U(1)3 flavour symmetry and has a unique weakly-coupled description
as a Spin(8)-gauging of the (E8)12 SCFT.

• The next three are isomorphic families of SCFTs, with a U(1) flavour symmetry and
two weakly-coupled descriptions, as a (different) Spin(8)-gauging of the (E8)12 SCFT
or as an Sp(3)-gauging of the Sp(6)8 SCFT.

• The last is a family of SCFTs with trivial flavour symmetry, with two weakly-coupled
descriptions, as a (third) Spin(8)-gauging of the (E8)12 SCFT or as a G2-gauging of
the (G2)

2
8 SCFT.

Starting with the fixture (9), which of these three cases is obtained depends on the choice
of (conjugacy class of) γ4. The first corresponds to γ4 = 1, the second to [γ4] = [α] and the
third to [γ4] = [β].

For our second example, consider replacing the [5, 3] puncture by the puncture [5, 13] that
lies in a triplet of S3 (along with [42] and [42]). Before gauging, the fixture is a Spin(16)12 ×
SU(2)8 SCFT.
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(10)

As before, this figure labels entries (1, γ4) in (8). If γ4 = 1, the gauge group embeds
diagonally, and the adjoint of Spin(16) decomposes as

120 = 28⊕ 28⊕ (8v ⊗ 8v)

= 28⊕ 28⊕ 28⊕ 35v ⊕ 1
(11)

The singlet B̂1 operator survives the gauging, and the flavor symmetry of the gauge theory
is SU(2)×U(1). There is a unique weakly-coupled description, and the conformal manifold
is the fundamental domain of PSL(2,Z).

When γ4 = α, the decomposition is the same as in (11), and therefore, the flavor sym-
metry is the same. However, there is now an S-dual frame.

The conformal manifold is the fundamental domain of Γ̃0(2), with two weakly-coupled limits.
These are a Spin(8)-gauging of the Spin(16)12×SU(2)8 SCFT and an Sp(3)-gauging of the
Sp(6)8 × SU(2)8 SCFT.

When γ4 = αβ or αβ2, the decomposition (11) changes to 120 = 28 ⊕ 28 ⊕ 8s/c ⊗ 8v.
Therefore, the flavor symmetry of the gauge theory changes to SU(2) instead of SU(2)×U(1).
If γ4 = αβ, the S-dual description is

If γ4 = αβ2, the red puncture is replaced by the blue puncture, and the twist line can take
values 1 or αβ2. The conformal manifold in either case is the fundamental domain of Γ̃0(2)
with two weakly-coupled limits. These are a Spin(8)-gauging of the Spin(16)12 × SU(2)8
SCFT and an Sp(3)-gauging of the Sp(3)28 × SU(2)8 SCFT.

Finally, if γ4 = β or β2, the flavor symmetry remains SU(2), but the conformal manifold
of the gauge theory changes. In particular, the S-dual description is
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The conformal manifold is the fundamental domain of Γ1(3). It has two weakly-coupled
descriptions: a Spin(8)-gauging of the Spin(16)12 × SU(2)8 SCFT and a G2-gauging of the
(G2)

2
8 × SU(2)8 SCFT.
By contrast, the physics of the 3-punctured spheres in the ([α], [α], [β]) and ([β], [β], [β])

sectors is supposed to be independent of the internal twists. Consider the once-punctured
torus, with the puncture in the β-twisted sector. There are 18 choices for the twists around
the a- and b-cycles of the torus; any pair of non-commuting elements of S3 will do. These 18
choices form a single orbit under the modular group. Up to an overall conjugation by an ele-
ment of S3, this yields a conformal manifold which is the 3-sheeted cover ofM1,1, UHP/Γ̃0(2).
Over the boundary in M1,1, two sheets come together and there are two physically-distinct
weak-coupling limits, depending on whether the twist around the shrinking cycle is in the
[α] or the [β] conjugacy class.

Take, for instance, the A1 puncture from the β-twisted sector. If the twist around the
shrinking cycle of the torus is in the conjugacy class [α], then we get an Sp(3) gauging of
the Sp(3)28 × SU(2)14 SCFT; if the twist is in the [β] conjugacy class, we get a G2 gauging
of the (G2)

2
8 × SU(2)14 SCFT:

or

5. Classification of fixtures

Here, we use the various formulas for the superconformal index from §3 to classify fixtures
in the corresponding sectors.7 Here is a brief summary of the new theories in each sector.

1. In the ([β], [β], [β]) sector, there is one irregular fixture that was not previously dis-
cussed in [12], and we will list this fixture §5.1.

7Before we present the classification, we should make a remark about fixtures with irregular punctures
here. Recall that in §3, we argued that we can relate some of the new theories with internal twists to theories
without internal twists which have been classified before. This argument uses various conjugations operators
and the action of outer automorphisms on nilpotent orbits. We assume this also holds for fixtures with
irregular punctures, so that we can relate theories involving internal twists to those without them. Since we
do not have a formula for the index of an irregular fixture, we cannot directly prove this, but the consistency
of various S-dualities requires it to be true.
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2. The ([β], [α], [α]) sector has not been studied previously. We will present a complete
classification of fixtures in this sector in §5.2.

3. The (1, [β], [β]) sector has no new theories. This sector was studied in [12].

4. In the (1,1,1) sector, one might expect new theories due to the non-trivial action of
conjugation on the untwisted punctures, but as we argued in §3.5, any fixture in this
sector with internal twists is isomorphic to a fixture without internal twists possibly
with some punctures replaced. This implies that any theory one comes across is already
present in the tables given in [31].

5. Finally, in the (1, [α], [α]) sector, we have argued in §3.4 that the twist around a loop
based at the untwisted puncture that contains a twisted puncture, determines the
physics of the fixture. There are three possible values for this twist, and any theory
one finds is related to a theory in [11] (where the twist around the loop is α) via triality.

5.1. Classification of fixtures in ([β], [β], [β]) sector

As we remarked above, (β, β, β) sector was studied in [12] where fixtures of this sector were
also classified. We have found one more irregular fixture which corresponds to a gauge
theory, and we present it below.

# Fixture (d2, d3, d4, d6) G Num. of Hypers Representation

1
G2

G2
(Ã1, SU(2)3) (1, 0, 0, 0) SU(2) 3 1

2
(3; 2)

Table 3: The only fixture of the ([β], [β], [β]) sector that was not listed in [12].

Here G is the gauge group and di are the graded Coulomb branch dimensions for this gauge
theory fixture.

5.2. Classification of fixtures in ([β], [α], [α]) sector

5.2.1. Irregular fixtures

The ([β], [α], [α]) sector has eight irregular fixtures that correspond to free field theories, and
three irregular fixtures that correspond to gauge theories.

Table 4: Irregular fixtures of the ([β], [α], [α]) sector corresponding to free SCFTs.

# Fixture Num. of hypers Representation

1
[6]
[6]

(G2, ∅) 0 empty

2
[6]
[4, 2]

(G2(a1), ∅) 0 empty

3
[6]

[4, 12]
(Ã1, ∅) 0 empty
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# Fixture Num. of hypers Representation

4
[6]
[32]

(Ã1, SU(2)3) 3 1
2
(3, 2)

5
[6]
[23]

(0, SU(2)0) 0 empty

6
[6]

[22, 12]
(0, SU(3)4) 6 (2, 3)

7
[4, 12]
G2

([16], Sp(2)4 × SU(2)0) 5 (5, 1)

8
[6]

Ã1
([16], Sp(2)4 × SU(2)0) 5 (5, 1)

Table 5: Irregular fixtures of the ([β], [α], [α]) sector corresponding to gauge theories.

# Fixture (d2, d3, d4, d6) G Num. of Hypers Representation

1
[6]
G2

([4, 12], SU(2)3) (1, 0, 0, 0) SU(2) 3 1
2
(3; 2)

2
[6]

G2(a1)
([2, 14], Sp(2)5) (2, 0, 0, 0) SU(2)2 10 1

2
(2, 2; 4) + 1

2
(1, 1; 4)

3
[4, 2]
G2

([2, 14], Sp(2)5) (2, 0, 0, 0) SU(2)2 10 1
2
(2, 2; 4) + 1

2
(1, 1; 4)

5.2.2. Free field fixture

There is only 1 regular fixture in ([β], [α], [α]) sector which corresponds to a free field theory.

# Fixture Representation

1
[6]

[2, 14]
0 1

2
(4, 7)

Table 6: Free field fixture of ([β], [α], [α]) sector.

5.2.3. Interacting fixtures

The ([β], [α], [α]) sector has two interacting fixtures whose global symmetry is enhanced from
their manifest symmetry.

# Fixture (d3, d4, d6) (nh, nv) Gglobal

1
[16]
[6]

0 (0, 1, 0) (24, 7) (E7)8

2
[4, 12]
[4, 12]

0 (0, 2, 0) (26, 14) Spin(7)8 × SU(2)25

Table 7: Interacting fixtures of ([β], [α], [α]) sector with enhanced global symmetry.
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Here Gglobal is the global symmetry of an SCFT and (nh, nv) denote the effective number
of hyper and vector multiplets. This sector also has 28 interacting fixtures whose global
symmetry is unenhanced.

Table 8: Interacting fixtures of ([β], [α], [α]) sector with unenhanced global symmetry.

# Fixture (d3, d4, d6) (nh, nv) Gglobal

1
[16]
[16]

0 (0, 6, 4) (112, 86) (G2)8 × Sp(3)28

2
[16]
[2, 14]

0 (0, 5, 4) (102, 79) (G2)8 × Sp(2)7 × Sp(3)8

3
[16]

[22, 12]
0 (1, 5, 3) (94, 73) (G2)8 × Sp(3)8 × SU(2)6 × U(1)

4
[16]
[23]

0 (0, 5, 3) (88, 68) (G2)8 × Sp(3)8 × SU(2)24

5
[16]
[4, 12]

0 (0, 4, 2) (69, 50) (G2)8 × Sp(3)8 × SU(2)5

6
[2, 14]
[2, 14]

0 (0, 4, 4) (92, 72) (G2)8 × Sp(2)27

7
[2, 14]
[22, 12]

0 (1, 4, 3) (84, 66) (G2)8 × Sp(2)7 × SU(2)6 × U(1)

8
[2, 14]
[23]

0 (0, 4, 3) (78, 61) (G2)8 × Sp(2)7 × SU(2)24

9
[2, 14]
[4, 12]

0 (0, 3, 2) (59, 43) (G2)8 × Sp(2)7 × SU(2)5

10
[22, 12]
[22, 12]

0 (2, 4, 2) (76, 60) (G2)8 × SU(2)26 × U(1)2

11
[22, 12]
[23]

0 (1, 4, 2) (70, 55) (G2)8 × SU(2)24 × SU(2)6 × U(1)

12
[22, 12]
[4, 12]

0 (1, 3, 1) (51, 37) (G2)8 × SU(2)5 × SU(2)6 × U(1)

13
[23]
[23]

0 (0, 4, 2) (64, 50) (G2)8 × SU(2)224

14
[23]
[4, 12]

0 (0, 3, 1) (45, 32) (G2)8 × SU(2)24 × SU(2)5

15
[16]
[16]

A1 (0, 5, 4) (102, 79) Sp(3)28 × SU(2)14

16
[16]
[2, 14]

A1 (0, 4, 4) (92, 72) Sp(2)7 × Sp(3)8 × SU(2)14

17
[16]

[22, 12]
A1 (1, 4, 3) (84, 66) Sp(3)8 × SU(2)14 × SU(2)6 × U(1)

18
[16]
[23]

A1 (0, 4, 3) (78, 61) Sp(3)8 × SU(2)14 × SU(2)24
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# Fixture (d3, d4, d6) (nh, nv) Gglobal

19
[16]
[4, 12]

A1 (0, 3, 2) (59, 43) Sp(3)8 × SU(2)14 × SU(2)5

20
[2, 14]
[2, 14]

A1 (0, 3, 4) (82, 65) Sp(2)27 × SU(2)14

21
[2, 14]
[22, 12]

A1 (1, 3, 3) (74, 59) Sp(2)7 × SU(2)14 × SU(2)6 × U(1)

22
[2, 14]
[23]

A1 (0, 3, 3) (68, 54) Sp(2)7 × SU(2)14 × SU(2)24

23
[2, 14]
[4, 12]

A1 (0, 2, 2) (49, 36) Sp(2)7 × SU(2)14 × SU(2)5

24
[22, 12]
[22, 12]

A1 (2, 3, 2) (66, 53) SU(2)14 × SU(2)26 × U(1)2

25
[22, 12]
[23]

A1 (1, 3, 2) (60, 48) SU(2)14 × SU(2)24 × SU(2)6 × U(1)

26
[22, 12]
[4, 12]

A1 (1, 2, 1) (41, 30) SU(2)14 × SU(2)5 × SU(2)6 × U(1)

27
[23]
[23]

A1 (0, 3, 2) (54, 43) SU(2)14 × SU(2)224

28
[23]
[4, 12]

A1 (0, 2, 1) (35, 25) SU(2)14 × SU(2)24 × SU(2)5

5.2.4. Mixed fixture

There is only one mixed fixture in the ([β], [α], [α]) sector.

# Fixture (d3, d4, d6) (nh, nv) Gglobal

1
[4, 12]
[4, 12]

A1 (0, 1, 0) (15, 7) 1
2
(2) + [Sp(3)5 × SU(2)8] SCFT

Table 9: The only mixed fixture of ([β], [α], [α]) sector.

5.2.5. Gauge theory fixtures

Finally, the ([β], [α], [α]) sector has 76 gauge theory fixtures, which we list below.

Table 10: Gauge theory fixtures of the ([β], [α], [α]) sector. di are the graded Coulomb branch
dimensions. The notation “+n free” in Gglobal indicates an additional factor of Sp(n) associated to
n free hypermultiplets. (nh, nv) are the effective number of hypers and vectors, after subtracting the
contribution of the free hypers (if present).

# Fixture (d2, d3, d4, d6) (nh, nv) Gglobal Gauge Theory

1
[16]

[32]

0 (1, 0, 4, 2) (72, 53) (G2)8 × Sp(3)8 × SU(2)8 Sp(3) + [(E7)8] + [Sp(3)28 × SU(2)8]
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# Fixture (d2, d3, d4, d6) (nh, nv) Gglobal Gauge Theory

2
[16]

[4, 2]

0 (1, 0, 3, 2) (64, 46) (G2)8 × Sp(3)8 Sp(3) + [(E7)8] + [Sp(6)8]

3
[2, 14]

[32]

0 (1, 0, 3, 2) (62, 46) (G2)8 × Sp(2)7 × SU(2)8 Sp(3) + [(E7)8] + [Sp(4)8 × Sp(2)7]

4
[2, 14]

[4, 2]

0 (1, 0, 2, 2) (54, 39) (G2)8 × Sp(2)7 Sp(3) + [(E7)8] + [Sp(5)7] +
1
2
(6)

5
[22, 12]

[32]

0 (1, 1, 3, 1) (54, 40)
(G2)8 × SU(2)8

×SU(2)6 × U(1)
Sp(3) + [(E7)8] + [SU(8)8 × SU(2)6]

6
[22, 12]

[4, 2]

0 (1, 1, 2, 1) (46, 33) (G2)8 × SU(2)6 × U(1) Sp(3) + [(E6)6] + [(E7)8] + (6)

7
[23]

[32]

0 (1, 0, 3, 1) (48, 35) (G2)8 × SU(2)24 × SU(2)8 Sp(3) + [(E7)8] + [(E7)8]

8
[23]

[4, 2]

0 (1, 0, 2, 1) (40, 28) (G2)8 × SU(2)24 Sp(3) + [(E7)8] +
1
2
(14′) + 3

2
(6)

9
[32]

[32]

0 (2, 0, 2, 0) (32, 20) SO(7)8 × SU(2)28 Sp(2)× SU(2) + [(E7)8] + 2(4, 1)

10
[32]

[4, 12]

0 (1, 0, 2, 0) (29, 17) SO(7)8 × SU(2)8 × SU(2)5 Sp(2) + [(E7)8] + (5)

11
[32]

[4, 2]

0 (2, 0, 1, 0) (24, 13) SO(8)8 × SU(2)8 Sp(2)× SU(2) + (4, 2) + 4(4, 1)

12
[4, 12]

[4, 2]

0 (1, 0, 1, 0) (21, 10) SO(8)8 × SU(2)5 Sp(2) + (5) + 4(4)

13
[4, 2]

[4, 2]

0 (2, 0, 0, 0) (16, 6) SO(8)24 SU(2)× SU(2) + 4(2, 1) + 4(1, 2)

14
[16]

[32]

A1 (1, 0, 3, 2) (62, 46) Sp(3)8 × SU(2)14 × SU(2)8 Sp(3) + [Sp(3)28 × SU(2)8] + (14)

15
[16]

[4, 2]

A1 (1, 0, 2, 2) (54, 39) Sp(3)8 × SU(2)14 Sp(3) + [Sp(6)8] + (14)

16
[2, 14]

[32]

A1 (1, 0, 2, 2) (52, 39) SU(2)14 × Sp(2)7 × SU(2)8 Sp(3) + [Sp(4)8 × Sp(2)7] + (14)

17
[2, 14]

[4, 2]

A1 (1, 0, 1, 2) (44, 32) Sp(2)7 × SU(2)14 Sp(3) + [Sp(5)7] + (14) + 1
2
(6)

19



# Fixture (d2, d3, d4, d6) (nh, nv) Gglobal Gauge Theory

18
[22, 12]

[32]

A1 (1, 1, 2, 1) (44, 33)
SU(2)14 × SU(2)8

×SU(2)6 × U(1)
Sp(3) + [SU(8)8 × SU(2)6] + (14)

19
[22, 12]

[4, 2]

A1 (1, 1, 1, 1) (36, 26) SU(2)14 × SU(2)6 × U(1) Sp(3) + [(E6)6] + (14) + (6)

20
[23]

[32]

A1 (1, 0, 2, 1) (38, 28) SU(2)24 × SU(2)8 × SU(2)14 Sp(3) + [(E7)8] + (14)

21
[23]

[4, 2]

A1 (1, 0, 1, 1) (30, 21) SU(2)24 × SU(2)14 SU(2) + [(G2)8 × SU(2)14]

22
[32]

[32]

A1 (2, 0, 1, 0) (21, 13) SU(2)38 × SU(2)5 + 1 free
Sp(2)× SU(2) + 2(4, 1) + (4, 2)

+ (5, 1) + (1, 1)

23
[4, 12]

[32]

A1 (1, 0, 1, 0) (18, 10) Sp(2)5 × SU(2)28 + 1 free Sp(2) + 2(4) + 2(5) + (1)

24
[4, 2]

[32]

A1 (2, 0, 0, 0) (12, 6) SU(2)54 + 2 free
SU(2)2 + 2(1, 2) + 2(2, 1)

+ (2, 2) + 2(1, 1)

25
[4, 2]

[4, 12]

A1 (1, 0, 0, 0) (8, 3) SO(8)2 + 3 free SU(2) + 4(2) + 3(1)

26
[16]

[16]

˜︁A1 (1, 0, 5, 3) (93, 71) Sp(3)28 × SU(2)5
Sp(2) + [Sp(3)28 × Sp(2)8]

+ (5)

27
[16]

[2, 14]

˜︁A1 (1, 0, 4, 3) (83, 64) Sp(3)8 × Sp(2)7 × SU(2)5
Sp(2) + [Sp(3)8 × Sp(2)8 × Sp(2)7]

+ (5)

28
[16]

[22, 12]

˜︁A1 (1, 1, 4, 2) (75, 58)
Sp(3)8 × SU(2)6

×SU(2)5 × U(1)

Sp(2) + [Sp(3)8 × Sp(2)8 × SU(2)6 × U(1)]

+ (5)

29
[16]

[23]

˜︁A1 (1, 0, 4, 2) (69, 53) Sp(3)8 × SU(2)24 × SU(2)5
Sp(2) + [Sp(3)8 × Sp(2)8 × SU(2)24]

+ (5)

30
[16]

[32]

˜︁A1 (2, 0, 3, 1) (53, 38) Sp(3)8 × SU(2)8 × SU(2)5

Spin(8)× Sp(2) + 3(8v , 1) + (8c/s, 1)

+ (1, 5) +
1

2
(8s/c, 4)

31
[16]

[4, 12]

˜︁A1 (1, 0, 3, 1) (50, 35) Sp(3)8 × SU(2)25
Sp(2) + [Sp(5)8 × SU(2)5] + (5)

≃ Spin(7) + [Spin(7)8 × SU(2)25] + 3(8)

32
[16]

[4, 2]

˜︁A1 (2, 0, 2, 1) (45, 31) Sp(3)8 × SU(2)5 Sp(2)× Spin(7) + (5, 1) + 3(1, 8) +
1

2
(4, 8)

33
[2, 14]

[2, 14]

˜︁A1 (1, 0, 3, 3) (73, 57) Sp(2)27 × SU(2)5 Sp(2) + [Sp(2)8 × Sp(2)27] + (5)

20



# Fixture (d2, d3, d4, d6) (nh, nv) Gglobal Gauge Theory

34
[2, 14]

[22, 12]

˜︁A1 (1, 1, 3, 2) (65, 51)
Sp(2)7 × SU(2)6

×SU(2)5 × U(1)

Sp(2) + [Sp(2)8 × Sp(2)27 × SU(2)6 × U(1)]

+ (5)

35
[2, 14]

[23]

˜︁A1 (1, 0, 3, 2) (59, 46) Sp(2)7 × SU(2)24 × SU(2)5 Sp(2) + [Sp(2)8 × Sp(2)7 × SU(2)24] + (5)

36
[2, 14]

[32]

˜︁A1 (2, 0, 2, 1) (43, 31) Sp(2)7 × SU(2)8 × SU(2)5

Sp(2)× Spin(7)

+ (5, 1) + (1, 8) +
1

2
(4, 8) + 2(1, 7)

37
[2, 14]

[4, 12]

˜︁A1 (1, 0, 2, 1) (40, 28) Sp(2)7 × SU(2)25 Sp(2) + [Sp(4)7 × SU(5)5] + (5) +
1

2
(4)

38
[2, 14]

[4, 2]

˜︁A1 (2, 0, 1, 1) (35, 24) Sp(2)7 × SU(2)5
G2 × Sp(2) + 2(7, 1) + (1, 5)

+ 1
2
(7, 4) + 1

2
(1, 4)

39
[22, 12]

[22, 12]

˜︁A1 (1, 2, 3, 1) (57, 45) SU(2)26 × SU(2)5 × U(1)2 Sp(2) + [Sp(2)8 × SU(2)26 × U(1)2] + (5)

40
[22, 12]

[23]

˜︁A1 (1, 1, 3, 1) (51, 40)
SU(2)24 × SU(2)6

×SU(2)5 × U(1)

Sp(2) + [Sp(2)8 × SU(2)24 × SU(2)6 × U(1)]

+ (5)

41
[22, 12]

[32]

˜︁A1 (2, 1, 2, 0) (35, 25)
SU(2)8 × SU(2)6

×SU(2)5 × U(1)2
SU(4)× Sp(2) + (4, 4) + 2(4, 1)

+ (6, 1) + (1, 5)

42
[22, 12]

[4, 12]

˜︁A1 (1, 1, 2, 0) (32, 22) SU(2)6 × SU(2)25 × U(1)2 Sp(2) + [Sp(3)6 × SU(2)5 × U(1)] + (5) + (4)

43
[22, 12]

[4, 2]

˜︁A1 (2, 1, 1, 0) (27, 18) SU(2)6 × SU(2)5 × U(1)3
Sp(2)× SU(3)

+ (5, 1) + 2(1, 3) + (4, 3) + (4, 1)

44
[23]

[23]

˜︁A1 (1, 0, 3, 1) (45, 35) SU(2)224 × SU(2)5 Sp(2) + [Sp(2)8 × SU(2)224] + (5)

45
[23]

[32]

˜︁A1 (2, 0, 2, 0) (29, 20) SU(2)16 × SU(2)28 × SU(2)5 Sp(2)2 + (4, 4) + 2(1, 4) + (5, 1)

46
[23]

[4, 12]

˜︁A1 (1, 0, 2, 0) (26, 17) SU(2)16 × SU(2)8 × SU(2)25
Sp(2) + [Sp(3)5 × SU(2)8]

+ 3
2
(4) + (5)

47
[23]

[4, 2]

˜︁A1 (2, 0, 1, 0) (21, 13) SU(2)38 × SU(2)5
Sp(2)× SU(2) + 1

2
(5, 2)

+ 3
2
(1, 2) + (5, 1) + 2(4, 1)

48
[16]

[16]

G2(a1) (2, 0, 4, 3) (88, 67) Sp(3)28
Spin(8)2 + [(E8)12]

+ 3(8v , 1) + 3(1, 8v)

49
[16]

[2, 14]

G2(a1) (2, 0, 3, 3) (78, 60) Sp(3)8 × Sp(2)7
Spin(8)× Spin(7) + [(E8)12]

+ 3(8v , 1) + 2(1, 7)

21



# Fixture (d2, d3, d4, d6) (nh, nv) Gglobal Gauge Theory

50
[16]

[22, 12]

G2(a1) (2, 1, 3, 2) (70, 54) Sp(3)8 × SU(2)6 × U(1)
Spin(8)× SU(4) + [(E8)12]

+ 3(8v , 1) + (1, 6)

51
[16]

[23]

G2(a1) (2, 0, 3, 2) (64, 49) Sp(3)8 × SU(2)24 Spin(8)× Sp(2) + [(E8)12] + 3(8v , 1)

52
[16]

[32]

G2(a1) (3, 0, 2, 1) (48, 34) Sp(3)8 × SU(2)8
Spin(8)× SU(2)2 + 3(8v , 1, 1) + (8s, 1, 1)

+ 1
2
(8s, 2, 1) +

1
2
(8c, 1, 2)

53
[16]

[4, 12]

G2(a1) (2, 0, 2, 1) (45, 31) Sp(3)8 × SU(2)5
Spin(7)× Sp(2) + 3(8, 1)

+ (1, 5) + 1
2
(8, 4)

54
[16]

[4, 2]

G2(a1) (3, 0, 1, 1) (40, 27) Sp(3)8
Spin(7)× SU(2)2 + 3(8, 1, 1)

+ 1
2
(8, 2, 1) + 1

2
(8, 1, 2)

55
[2, 14]

[2, 14]

G2(a1) (2, 0, 2, 3) (68, 53) Sp(2)27 Spin(7)2 + [(E8)12] + 2(7, 1) + 2(1, 7)

56
[2, 14]

[22, 12]

G2(a1) (2, 1, 2, 2) (60, 47) Sp(2)7 × SU(2)6 × U(1)
Spin(7)× SU(4) + [(E8)12]

+ 2(7, 1) + (1, 6)

57
[2, 14]

[23]

G2(a1) (2, 0, 2, 2) (54, 42) Sp(2)7 × SU(2)24 Spin(7)× Sp(2) + [(E8)12] + 2(7, 1)

58
[2, 14]

[32]

G2(a1) (3, 0, 1, 1) (38, 27) Sp(2)7 × SU(2)8
Spin(7)× SU(2)2 + 2(7, 1, 1) + (8, 1, 1)

+ 1
2
(8, 2, 1) + 1

2
(8, 1, 2)

59
[2, 14]

[4, 12]

G2(a1) (2, 0, 1, 1) (35, 24) Sp(2)7 × SU(2)5
G2 × Sp(2) + 2(7, 1) + (1, 5)

+ 1
2
(7, 4) + 1

2
(1, 4)

60
[2, 14]

[4, 2]

G2(a1) (3, 0, 0, 1) (30, 20) Sp(2)7

G2 × SU(2)2 + 2(7, 1, 1)

+ 1
2
(7, 2, 1) + 1

2
(7, 1, 2)

+ 1
2
(1, 2, 1) + 1

2
(1, 1, 2)

61
[22, 12]

[22, 12]

G2(a1) (2, 2, 2, 1) (52, 41) SU(2)26 × U(1)2 SU(4)2 + [(E8)12] + (6, 1) + (1, 6)

62
[22, 12]

[23]

G2(a1) (2, 1, 2, 1) (46, 36) SU(2)24 × SU(2)6 × U(1) SU(4)× Sp(2) + [(E8)12] + (6, 1)

63
[22, 12]

[32]

G2(a1) (3, 1, 1, 0) (30, 21) SU(2)8 × SU(2)6 × U(1)3
SU(4)× SU(2)2 + 2(4, 1, 1) + (6, 1, 1)

+ (4, 2, 1) + (4, 1, 2)

64
[22, 12]

[4, 12]

G2(a1) (2, 1, 1, 0) (27, 18) SU(2)6 × SU(2)5 × U(1)3
SU(3)× Sp(2) + 2(3, 1) + (3, 4)

+ (1, 5) + (1, 4)

65
[22, 12]

[4, 2]

G2(a1) (3, 1, 0, 0) (22, 14) SU(2)6 × U(1)5
SU(3)× SU(2)2 + 2(3, 1, 1)

+ (3, 2, 1) + (3, 1, 2)

+ (1, 2, 1) + (1, 1, 2)

22



# Fixture (d2, d3, d4, d6) (nh, nv) Gglobal Gauge Theory

66
[23]

[23]

G2(a1) (2, 0, 2, 1) (40, 31) SU(2)224
Sp(3)× Sp(2) + 3

2
(6, 1) + 1

2
(14′, 1)

+ (6, 4)

67
[23]

[32]

G2(a1) (3, 0, 1, 0) (24, 16) SU(2)48
Sp(2)× SU(2)2 + 2(4, 1, 1)

+ (4, 2, 1) + (4, 1, 2)

68
[23]

[4, 12]

G2(a1) (2, 0, 1, 0) (21, 13) SU(2)38 × SU(2)5
Sp(2)× SU(2) + 2(4, 1) + (4, 2)

+ (5, 1)

69
[23]

[4, 2]

G2(a1) (3, 0, 0, 0) (16, 9) SU(2)64
SU(2)3 + 2(2, 1, 1) + 2(1, 2, 1)

+ 2(1, 1, 2) + 1
2
(2, 2, 2)

70
[16]

[16]

G2 (1, 0, 2, 1) (48, 28) Sp(3)28 Spin(8) + 3(8s) + 3(8v)

71
[16]

[2, 14]

G2 (1, 0, 1, 1) (38, 21) Sp(3)8 × Sp(2)7 Spin(7) + 3(8) + 2(7)

72
[16]

[22, 12]

G2 (1, 1, 1, 0) (30, 15) SU(6)8 × SU(2)6 × U(1) SU(4) + 6(4) + 1(6)

73
[16]

[23]

G2 (1, 0, 1, 0) (24, 10) SO(12)4 Sp(2) + 6(4)

74
[2, 14]

[2, 14]

G2 (1, 0, 0, 1) (28, 14) Sp(4)7 G2 + 4(7)

75
[2, 14]

[22, 12]

G2 (1, 1, 0, 0) (18, 8) SU(6)6 × U(1) + 2 free SU(3) + 6(3) + 2(1)

76
[2, 14]

[23]

G2 (1, 0, 0, 0) (8, 3) SO(8)2 + 6 free SU(2) + 4(2) + 6(1)

6. 4-punctured sphere with 4 [α]-twisted punctures

As a preliminary to §6.1, let us make some remarks on the moduli space of S3 bundles on
a 4-punctured sphere, with 4 punctures in the [α] conjugacy class. We can obtain the 4-
punctured sphere by gluing together two of our 3-punctured spheres (1) along γ3 = (γ3̃)

−1,
yielding the following figure.
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(12)

The isomorphism classes of S3 bundles on a 4-punctured sphere are labeled by the holonomies
around a basis for π1 of the punctured surface. In this case, we can choose the basepoint to
be the distinguished point on γ3 and — for present purposes — forget about γ3 (and γ4, γ̃4).

The holonomies are

δ1 = γ−1
6 γ1γ6, δ2 = γ5γ2γ

−1
5 , δ3 = γ̃−1

6 γ̃1γ̃6, δ4 = γ̃5γ̃2γ̃
−1
5 (13)

which satisfy one relation,

δ4δ3δ2δ1 = 1

If the four punctures are in the [α] conjugacy class ([γ1] = [γ2] = [γ̃1] = [γ̃2] = [α]), then it
is easy to show [21] that

• Either all four are equal δ1 = δ2 = δ3 = δ4 = αβj (for some choice of j) or two of them
are equal.

• When all four are equal, modular transformations leave the δs invariant, and the moduli
space of S3 bundles is a copy of M0,4. In that case, the twist along the original cycle
along which we glued, γ3, is trivial. Indeed the twist around any pinching cycle, when
the 4-punctured sphere degenerates, is 1.
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• When they are not all equal, the consistent choices of δs form a single orbit under the
modular group. In this case, the twists around the pinching cycle could be any of 1, β
or β2 and all three possibilities appear for each degeneration of the 4-punctured sphere.

• In either case, the physics is invariant under an overall conjugation of the δi by a
common element of S3.

The conformal manifold in the former case is a copy of M0,4 or a quotient thereof (if
some of the nilpotent orbits are identical). In the latter case, the conformal manifold is an
4-fold branched cover8 of M0,4, whose interior is UHP/Γ(4), where Γ(4) ⊂ Γ(2) is an index-8
normal subgroup

1 → Γ(4) → Γ(2) → (Z)32 → 1

One of the (Z2)s is the center, generated by −I, which acts trivially on the UHP. The
six cusp points of Γ(4) map 2 : 1 to the boundary points of M0,4. Correspondingly, in
each degeneration limit, the four-punctured sphere may obtain up to two weakly-coupled
descriptions based on whether the twist around the degenerating cycle is 1 or in the [β]
conjugacy class. This gives new conformal manifolds, not previously seen in the literature
that may have more than 3 and up to 6 different weakly coupled limits. We will see instances
of this result below. A more systematic discussion will be presented in [21].

6.1. Resolving atypical punctures

The Z3 twisted sector has two atypical punctures, Ã1 and G2, which support a “hidden”
exactly marginal deformation. They resolve to a pair of punctures from non-commuting
Z2-twisted sectors: Ã1 ∼ [4, 12] + [6] and G2 ∼ [6] + [6]. This appears to lead to choices (of
which [α]-twisted sectors the resolving punctures come from). In fact, all of these choices
lead to isomorphic families of SCFTs, as we shall now explain.

Consider, as an example, the gauge-theory fixture

where, in this case, we can choose the internal twists to be trivial. “Resolving” the Ã1

puncture means replacing this with a 4-punctured sphere in the degeneration limit where a
[4, 12] and a [6] puncture (from different Z2-twisted sectors) collide.

It is always possible to choose a representative so that the internal twists remain trivial,
in which case, we have three possible resolutions.

8Choosing 4 elements of the [α] conjugacy class, which are not all equal and whose product is 1, give 24
possibilities. An overall conjugation reduces this number to 4.
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(14)

Since the internal twists are trivial, the δs defined in (13) are just equal to the corresponding
external twists. Since these are not all equal, we are in the situation where the conformal
manifold is a branched cover of M0,4. Over this point on the boundary, the twist around the
pinching cycle can be 1, β or β2. If it is β or β2, we have the gauge theory fixture depicted
above. If it is 1, then we have an Sp(2) gauge theory9.

(15)

The fixture on the left is a hypermultiplet in the (5) of Sp(2). The fixture on the right is one
of the two SCFTs with flavor symmetry algebra Sp(3)8 × Sp(2)8 × Sp(2)7 recently studied
in [32]. The internal twists on the fixture determine it to be Theory IIb in the notation of
that paper.

Now consider the degeneration limit where [4, 12] collides with the [2, 14] puncture. The
twist around the degenerating cycle can be 1, β or β2. When it is 1, we obtain a Spin(8)
gauge theory,

9We use different colors to specify different internal twists. The labeling is the same as for external twists
that we mentioned in footnote 5: white represents a trivial twist; green, red and blue represent α, αβ and
αβ2 twists; and light grey and dark grey represent β and β2 twists respectively.
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and when it is β or β2, we obtain a G2 gauge theory.

Finally, there is the degeneration where [4, 12] collides with [16]. When the twist around
the degenerating cycle is 1, we obtain a Spin(7) gauge theory

and when it is β or β2 we obtain a G2 gauge theory.

Overall, this family of SCFTs has five distinct weakly-coupled limits. This is a consequence
of the nonabelian nature of S3 twisted D4 sector which has not been seen previously. Indeed,
all previously known one-dimensional conformal manifolds of 4D N = 2 SCFTs have at most
three distinct weakly-coupled points.
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Let us compare this with the family of SCFTs obtained from the four-punctured sphere
in the second row of (14). When the twist around the degenerating cycle is 1, we obtain the
same Sp(2) gauge theory as above.

The weakly coupled descriptions also match in the other degeneration limits. When [4, 12]
collides with the [2, 14] puncture, we obtain the same Spin(8) and G2 gauge theories,

and when [4, 12] collides with the [16] puncture, we obtain the same Spin(7) and G2 gauge
theories.
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It is straightforward to check that the third row in (14) yields the same family of SCFTs.
By way of contrast, we could have started with the same 4-punctured sphere obtained by

resolving the Ã1 puncture, but with the internal twists chosen so that the δs are all equal.
For concreteness, take the first row of (14) but let δ1 = δ2 = δ3 = δ4 = α.

(16)

The fixture on the right has the same flavor symmetry algebra as above, i.e. Sp(3)8 ×
Sp(2)8 × Sp(2)7 but the internal twists dictate that it is Theory IIa10 in [32]. The twist
around the degenerating cycle does not take the value β or β2, and hence, the gauge theory
fixture containing Ã1 does not appear.

In another degeneration limit, where [4, 12] collides with [2, 14], we obtain a Spin(8) gauge
theory

10The difference between Theory IIa and Theory IIb, as proposed in [32], is captured by the difference in
the global form of their flavour symmetry groups. There, we found that the flavour symmetry of Theory IIa is
Sp(3)8/Z2×Sp(2)8×Sp(2)7, whereas the flavour symmetry of Theory IIb is

(︁
Sp(3)8×Sp(2)8)

)︁
/Z2×Sp(2)7

— the quotient by the diagonal subgroup of the centers of Sp(3) and Sp(2). A method to find the global
form of the global symmetry group of any fixture in class S has been proposed in [9]. Here we see that this
rather subtle difference affects the conformal manifold of an Sp(2) gauging of the theory in a significant way.
In (15), the flavour symmetry of the resulting (family of) SCFTs is (Sp(3)8)/Z2 × Sp(2)7 × SU(2)5 and the
theory has trivial 1-form symmetry, whereas in (16), the flavour symmetry is Sp(3)8 ×Sp(2)7 ×SU(2)5 and
the theory has a Z2 1-form symmetry (since all local operators, before the gauging, are invariant under the
center of the Sp(2) that we gauge). This is in accord with the general results of [8].
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where the hypermultiplets transform in 1
2
(6, 8v) instead of 1

2
(6, 8s). Finally, in the third

degeneration limit, we obtain a Spin(7) gauge theory

where the embedding of Spin(7) in Spin(8) differs from the one considered above by the
action of triality.

The conformal manifold for this family of SCFTs is a copy of M0,4. It is straightforward
to check that we get the same family of SCFTs if we take δ1 = δ2 = δ3 = δ4 = αβj for
j = 1, 2 instead.

6.2. Six weak coupling limits

In §6.1, we saw that a 4-punctured sphere, with 4 punctures in the [α] conjugacy class
could have as many as 6 distinct weak-coupling limits at various points on its 1-dimensional
conformal manifold. But the example studied there had only 5 weak-coupling limits, as one
degeneration of the surface yielded a gauge-theory fixture — a strongly-coupled point in
the interior of the conformal manifold. Here, we will exhibit an example where all of the
degenerations are weakly-coupled and so we indeed get 6 distinct weak-coupled limits.

Let us start with a configuration, as before, with trivial internal twists

Over the same point on the boundary of M0,4, we also find a Spin(8) gauge theory
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When [16] collides with [2, 14] puncture, we again have two possible weak-coupling limits.
When the twist around the degenerating cycle is 1, we get an SU(4) gauge theory,

and when it is β or β2, we obtain an SU(3) gauge theory.

Finally, when [16] collides with the [22, 12], we obtain a Spin(7) gauge theory when the twist
around the pinching cycle is 1,

and when it is β or β2 we obtain a G2 gauge theory.

Here, the 6 weakly-coupled descriptions occur at the 6 cusp points of UHP/Γ(4), a
structure radically-different from what has been seen, heretofore, in N = 2 SCFTs. We will
discuss what happens when we make other choices for the conjugacy classes of the external
twists in [21].
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[27] P. C. Argyres, M. Lotito, Y. Lü, and M. Martone, “Geometric constraints on the
space of N = 2 SCFTs II: Construction of special Kähler geometries and RG flows,”
arXiv:1601.00011 [hep-th].

33

http://dx.doi.org/10.1007/JHEP03(2010)032
http://arxiv.org/abs/0910.2225
http://dx.doi.org/10.1103/PhysRevLett.106.241602
http://arxiv.org/abs/1104.3850
http://dx.doi.org/10.1007/s00220-012-1607-8
http://arxiv.org/abs/1110.3740
http://arxiv.org/abs/1110.3740
http://dx.doi.org/10.1007/JHEP05(2014)120
http://arxiv.org/abs/1212.1271
http://dx.doi.org/10.1016/0550-3213(94)90214-3
http://arxiv.org/abs/hep-th/9408099
http://dx.doi.org/10.1103/PhysRevLett.75.1699
http://arxiv.org/abs/hep-th/9505100
http://dx.doi.org/10.1088/1126-6708/2007/12/088
http://arxiv.org/abs/0711.0054
http://dx.doi.org/10.1007/JHEP05(2012)145
http://arxiv.org/abs/1203.5517
http://arxiv.org/abs/1207.3577
http://dx.doi.org/10.1088/1126-6708/2007/03/090
http://arxiv.org/abs/hep-th/0701063
http://dx.doi.org/10.1142/S0217751X1340006X
http://arxiv.org/abs/1203.2930
http://arxiv.org/abs/1505.04814
http://arxiv.org/abs/1505.04814
http://arxiv.org/abs/1601.00011
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