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Abstract

We provide a new extension to the geometric construction of 6d (1, 0) SCFTs that encap-

sulates Higgs branch structures with identical global symmetry but different spectra. In

particular, we find that there exist distinct 6d (1, 0) SCFTs that may appear to share their

tensor branch description, flavor symmetry algebras, and central charges. For example, such

subtleties arise for the very even nilpotent Higgsing of (so4k, so4k) conformal matter; we pro-

pose a method to predict at which conformal dimension the Higgs branch operators of the two

theories differ via augmenting the tensor branch description with the Higgs branch chiral ring

generators of the building block theories. Torus compactifications of these 6d (1, 0) SCFTs

give rise to 4d N = 2 SCFTs of class S and the Higgs branch of such 4d theories are cap-

tured via the Hall–Littlewood index. We confirm that the resulting 4d theories indeed differ

in their spectra in the predicted conformal dimension from their Hall–Littlewood indices. We

highlight how this ambiguity in the tensor branch description arises beyond the very even

nilpotent Higgsing of (so4k, so4k) conformal matter, and hence should be understood for more

general classes of 6d (1, 0) SCFTs.
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1 Introduction

A generic quantum field theory is characterized by its symmetries, both global and local.

Many diverse quantum field theories can be engineered from superstring theory in ten di-

mensions, which has no global symmetries and famously has only local symmetries required

by anomaly cancellation [47]. However, lower dimensional theories that arise via string the-

ory compactifications may have many kinds of global symmetries; in particular, there can

be R-symmetries, if the compactification preserves supersymmetry, and flavor symmetries

that commute with the (super-)Lorentz transformations. The flavor symmetry provides an

important property describing the quantum field theory; understanding the flavor symme-

try amounts to analyzing the flavor symmetry algebra f and its global form F , where F

is ambiguous from f up to the center of f. The spectrum of states of the theory falls into

representations of f, and there can be subtle distinctions between the global form of the

symmetry group F depending on those states. The analysis of the spectrum of the theory

can demonstrate that theories that appear to be identical at the level of the flavor symmetry

algebra are different. Determining which states, in which representations of f, exist in the

theory is related to the geometric and topological properties of the compactification space Y .

However, how these states are encoded in the geometry is often challenging to determine. In

this paper, we explicitly show how such states are captured in Y for certain compactifications

of string theory down to six dimensions and then further down to four dimensions.

In particular, the theories we look into in this paper are superconformal field theories

(SCFTs). A natural question is then how does one effectively distinguish superconformal

field theories. The most natural things to look at are the invariants of an SCFT. We define

the “conventional invariants” of an SCFT to be the central charges, the flavor algebras, and

the flavor central charges; these are invariants in the sense that if these quantities differ

between two SCFTs, then those SCFTs are themselves different. However, these are not

complete invariants: many distinct SCFTs are known for which all of these quantities are

identical. A more refined invariant, but still not complete, is the Higgs branch. In another

vein, the global form of the flavor symmetry group F is more refined than the flavor symmetry

algebra f, and can distinguish theories which differ only up to the center of F .

We will analyze six-dimensional SCFTs and take a six-dimensional perspective on analyz-

ing four-dimensional SCFTs. In fact, studying six dimensional SCFTs has been particularly

insightful and has played an important role in understanding lower-dimensional theories. The

quintessential examples are the understanding of the S-duality of 4d N = 4 super Yang–Mills

[75] and the class S construction [45, 46] of 4d N = 2 SCFTs from the 6d (2, 0) SCFTs. The

class S construction involves a twisted compactification of the 6d (2, 0) SCFT of type g on

a n-punctured genus g Riemann surface Cg,n. In this paper, we write such 4d SCFTs as

Sg⟨Cg,n⟩{· · · } , (1.1)
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where · · · refers to the data describing the punctures. The puncture data has been (almost)

exhaustively worked out in [14–22, 74]. The power of this approach is reflected in how

a multitude of physical properties of the 4d SCFTs are encoded in the geometry of the

punctured Riemann surface.

Another origin of 4d N = 2 SCFTs in six-dimensions is the torus compactification of a 6d

(1, 0) SCFT.When utilizing this approach, there is no need to perform any topological twist as

the flatness of the torus guarantees that supersymmetry is preserved in the compactification.

In fact, a 6d (1, 0) SCFT origin provides a particularly powerful perspective to understand

the Higgs branch of the lower dimensional SCFTs, as a supersymmetry-preserving torus

compactification does not modify the Higgs branch. This process can also be utilized in the

reverse direction: if one understands aspects of the Higgs branch of a 4d N = 2 SCFT from

the class S perspective, and there also exists a 6d (1, 0) on T 2 perspective, then one can learn

about the Higgs branch of the 6d (1, 0) SCFT.

Four-dimensional N = 2 SCFTs which have such 6d (1, 0) and 6d (2, 0) origins have been

discovered in recent years [7, 26, 68, 69]. The general principle is that theories of class S
of type g obtained from spheres with N simple punctures and any two regular punctures

associated to nilpotent orbits of g have an alternative description in terms of 6d rank N

(g, g) conformal matter, Higgsed by the same nilpotent orbits of g, compactified on a torus.

In [7], it was pointed out that the 6d (1, 0) origin makes manifest the full flavor algebra of

the 4d theory, whereas only a subalgebra is manifest in the class S description. This is the

original example of the 6d (1, 0) origin being the optimal approach to the 4d Higgs branch.

Unfortunately, the connection between the geometric construction of 6d (1, 0) SCFTs [51, 53]

and their Higgs branches has not been fully developed.

A vast landscape of 6d (1, 0) SCFTs have a geometric construction via F-theory [51, 53].

This approach involves constructing the description of the theory at the generic point of its

tensor branch, which is captured by a collection of curves and algebras. Furthermore, there

are simple rules for building new 6d SCFTs by compositing theories associated to ≤ 3 curves.

It has generally been believed that theories with the same tensor branch description corre-

spond to the same SCFT; in particular, such theories have the same anomaly polynomials

and all attendant SCFT invariants.

However, we show that this is not the case in this paper. From the class S description

of the T 2 compactification of the 6d (1, 0) SCFTs that we consider, we study the Hall–

Littlewood index to determine the Higgs branch spectrum. By looking at the spectra via

the Hall–Littlewood indices, we see that the two theories differ at somewhat large conformal

dimensions, however they do have the same “conventional invariants.” Given that the two

theories have different Higgs branches, they are necessarily distinct theories. Theories with

identical conventional invariants which nevertheless differ in their Higgs branch spectrum
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have been studied recently in [27, 28] for some 4d SCFTs of class S. In terms of the 6d (1, 0)

geometric construction, we find that there is an ambiguity in how the curves are composited

together and resolving this ambiguity leads to distinct 6d SCFTs. In this way, we propose a

method to recover the relevant aspects of the different Higgs branches directly from the 6d

(1, 0) perspective, and thus provide one of the first methods to recover the higher-dimensional

operators on the Higgs branch directly from the geometric construction of the 6d (1, 0)

SCFTs.

The rest of the paper is organized as follows. In Section 2, we explain the construction of

rank N (Dk, Dk) conformal matter and the Higgs branch deformations induced by pairs of

nilpotent orbits of the so2k⊕so2k flavor symmetry from the geometric perspective of F-theory;

we determine that there is a previously overlooked subtlety with the compositing by rank

one (D,D) conformal matter which occasionally leads to inequivalent theories with the same

tensor branch description. In Section 3, we highlight these distinct theories for a variety of

examples involving nilpotent orbits associated to very even D-partitions, and we determine

at what conformal dimension the operator spectrum on the Higgs branch differs. The torus

compactifications of these 6d (1, 0) SCFTs leads to 4d N = 2 SCFTs which have a dual

description in class S, and in Section 4, we observe that the two theories are also distinct

from that perspective and the Hall–Littlewood index differs at the same order as predicted

from the 6d (1, 0) description. Finally, in Section 5 we conclude, discuss the significance of

our results, and present some future directions.

2 (D,D) conformal matter and nilpotent Higgsing

In this paper, we provide substantial evidence that the tensor branch description of a 6d

(1, 0) SCFT from [51, 53] is insufficient, in the sense that it does not distinguish between

particular 6d (1, 0) SCFTs that have non-isomorphic Higgs branches. Six-dimensional SCFTs

are theories which contain degrees of freedom corresponding to tensionless strings [73, 75],

which magnetically-couple to tensor multiplets, and each of those strings acquires tension at

a generic point of the tensor branch.

The geometric construction is via F-theory compactified on a non-compact elliptically-

fibered Calabi–Yau threefold satisfying the negative-definite condition for the intersection

pairing of compact rational curves in the base of the fibration and that the singular fibers

above the intersection points of the curves are minimal.1,2 Each compact curve gives rise to

a string, with the tension proportional to the volume of the curve. The intersection pairing

1See [54] for a recent review of the construction of 6d SCFTs from F-theory, including all necessary

conditions and their derivation.
2If F-theory is instead compactified on a compact Calabi–Yau threefold, the resulting theory is a 6d (1, 0)

supergravity theory. See [3, 24, 30–38, 48, 63, 64, 70, 71] for some examples of such geometric constructions.
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corresponds to the Dirac pairing on the charge lattice of the strings, and the singular fiber

is associated to a gauge algebra where the gauge coupling is proportional to the inverse of

the associated string tension. The SCFT limit involves taking the volume of all compact

curves to zero simultaneously, which is identical to taking the tensionless limit for each

string. In particular, we utilize this curve-intersection technology to build 6d (1, 0) SCFTs

with minimal conformal matter (G,G) [25]. The geometric construction itself is modular

and can be reduced to the combinatorial problem of compositing together a small collection

of “building blocks”. Specifically, we can get such a 6d SCFT from compositing together

theories associated to the non-Higgsable clusters (NHCs) [65–67]. Writing the negative of

the self-intersection number of the curves and the algebras associated to the singular fibers,

the NHCs can be written as

su3
3 ,

so8
4 ,

f4
5 ,

e6
6 ,

e7
7 ,

e7
8 ,

e8
12 ,

su2
2

g2
3 , 2

su2
2

g2
3 ,

su2
2

so7
3

su2
2 ,

2 · · · 2⏞ ⏟⏟ ⏞
N−1

, 2 · · · 2⏞ ⏟⏟ ⏞
N−3

2
22 , 22

2
222 , 222

2
222 , 2222

2
222 .

(2.1)

Each NHC may be tuned, meaning that the gauge algebra can be enhanced beyond that which

is written in equation (2.1). Another key ingredient is the rank one E-string, corresponding

to a (−1)-curve with no associated gauge algebra, and its tuned counterparts:

g

1 . (2.2)

This theory has a flavor algebra f, and we can use
g

1 to composite together up to two tuned

non-Higgsable clusters, for example
gL
n and

gR
m, via gauging a gL ⊕ gR subalgebra of f; this

would lead to
gL
n

g

1
gR
m. (2.3)

As long as the resulting tensor branch configuration satisfies the negative-definiteness and

minimality constraints, then one can iterate this process of composition to generate a vast

landscape of 6d (1, 0) SCFTs. Hence each tuned E-string theory as in equation (2.2) plays a

role to composite together SCFTs.

To clarify the notation, we now give an explicit example. Consider a non-compact ellip-

tically fibered Calabi–Yau containing three compact curves in the base: C1, C2, and C3. We

take the intersection matrix to be

Ci · Cj =

⎛⎝−1 1 0

1 −3 1

0 1 −1

⎞⎠
ij

, (2.4)

where the numbers on the diagonal are the self-intersection numbers; it is straightforward to

see that this matrix is negative-definite. Furthermore, take the singular fibers over each of
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the three curves to correspond to the gauge algebras g1 = g3 = ∅ and g2 = su3. Then, we

can write this tensor branch configuration in a succinct form as

1
su3
3 1 . (2.5)

This configuration involves compositing together two copies of the rank one E-string with

the
su3
3 non-Higgsable cluster. We use this concise notation throughout this work.

In this paper, we focus on the 6d (1, 0) SCFTs known as rank N (so2k, so2k) conformal

matter, and the interacting fixed points obtained by nilpotent Higgsing of the so2k ⊕ so2k
flavor symmetry. Certain nilpotent Higgsings lead to theories with the same tensor branch

description, however, when compactified on T 2 the SCFTs have an alternative description

in terms of class S, and from that perspective we see that the Higgs branches are non-

isomorphic. In these cases, we propose precisely how to augment the 6d (1, 0) tensor branch

description with additional information about the compositing theories such that we observe

the distinct Higgs branches. While we focus on (nilpotent Higgsing of) (so2k, so2k) conformal

matter, this is not the only occasion where an ambiguity in the compositing arises, as we

discuss briefly in Section 5, and thus we expect that this additional information needs to be

accounted for in the tensor branch descriptions of numerous 6d (1, 0) SCFTs.

The rank N conformal matter theory of type (so2k, so2k) arises in M-theory as the theory

living on the worldvolume of N M5-branes probing a C2/Γso2k orbifold singularity [25]. In

the geometric construction of 6d (1, 0) SCFTs, this theory is obtained by compositing N − 1

copies of the tuned non-Higgsable cluster

so2k
4 , (2.6)

with N copies of the tuned E-string:
spk−4

1 . (2.7)

To wit, we have the configuration

N−1 (−4)-curves⏟ ⏞⏞ ⏟
spk−4

1
[so2k]

so2k
4

spk−4

1 · · ·
so2k
4

spk−4

1
[so2k]

. (2.8)

We refer to the
spk−4

1 as the compositing theory, and it is an SCFT in its own right; in fact,

it is the minimal (so2k, so2k) conformal matter theory. This theory has an so4k enhanced

flavor symmetry.3 The Higgs branch chiral ring has two generators: a moment map µ in the

3The Higgs branch of this SCFT has been studied from the perspective of magnetic quivers [11, 12, 39, 49].

Aspects of the Higgs branch of minimal (so2k, so2k) conformal matter for some k ≥ 5 have also been explored

from a conformal bootstrap approach in [8].
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adjoint representation of the so4k flavor symmetry and an additional generator µ± in one of

the spin representations of the so4k. The latter transforms in the representation of the SU(2)

R-symmetry with highest weight k−2. A priori there can be two SCFTs, one with the Higgs

branch chiral ring generated by (µ, µ+), and the other by (µ, µ−). However, it is easy to see

that these are equivalent SCFTs related by the outer automorphism of so4k. We refer to this

pair of equivalent theories as
sp+k−4

1 and
sp−k−4

1 , (2.9)

respectively. This may lead us to think that the tensor branch configuration for rank N

(so2k, so2k) conformal matter written in equation (2.8) is ambiguous; however, these theories

are equivalent for all combinations of signs on the (−1)-curve. We explicitly explore this

scenario and argue in Section 3.5 why all combinations of signs are equivalent.

The rankN (so2k, so2k) conformal matter theory has an so2k⊕so2k flavor symmetry. Then,

there exist Higgs branch renormalization group flows to new interacting fixed points, triggered

by giving nilpotent vacuum expectation values to the moment map of each of the flavor

symmetry factors. Let us assume that N is large enough such that the nilpotent Higgsing

leads to an interacting 6d SCFT. Then, we can determine the tensor branch configuration of

the 6d (1, 0) SCFT at the end of the RG-flow from the pair of nilpotent orbits that we use

to Higgs [50, 52, 55, 56, 62]. Each tensor branch configuration contains compositing theories

of the form

spq

1 . (2.10)

In each case of compositions with equation (2.10), it is necessary to determine whether there

is a distinction if one composites with

sp+q

1 or
sp−q
1 . (2.11)

Nilpotent orbits of so2k are classified by integer partitions of 2k, which denote the decom-

position of the vector representation under the corresponding embedding of su2. Since the

vector representation is real, not every partition of 2k is allowed: the even parts must appear

with even multiplicity, yielding a D-partition. Furthermore, each very even D-partition – a

D-partition with only even parts – corresponds to two distinct nilpotent orbits, which we

refer to as the redI and blueII orbits.
4 The tensor branch description after Higgsing depends

4See e.g. [16] or the standard reference [23] for further details on nilpotent orbits. [23] uses the subscripts

“I” and “II” to distinguish the two nilpotent orbits corresponding to a very even D-partition; [16] uses the

colors red and blue to distinguish them. Here, in a somewhat redundant notation, we will use both.
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only on the pair of D-partitions, and thus one concludes that the tensor branch descriptions

for the Higgsings by (redI , redI) and (redI , blueII) are the same.5,6

However, we find that while the tensor branch descriptions appear the same, the different

Higgsings actually lead to theories with a different Higgs branch operator spectrum, and thus

do correspond to two distinct 6d (1, 0) SCFTs. We see precisely for those Higgsings that the

distinction between compositing with
sp+q

1 versus
sp−q
1 is important.

3 Very even Higgsing in 6d via examples

In this section, we consider explicit examples of the 6d SCFTs that are obtained from rank N

(so4k, so4k) conformal matter Higgsed on the left and the right by nilpotent orbits associated

to very even D-partitions. In the examples that we study here, we consider Higgsing both so4k
symmetries by nilpotent orbits associated to same very even D-partition. For the purposes

of the examples in this section, we focus on the D-partitions

[(2k − 2ℓ)2, 22ℓ] , (3.1)

though it is straightforward to generalize this analysis to any arbitrary pair of very even

D-partitions. Each such D-partition is associated to two distinct nilpotent orbits of so4k. As

discussed, we distinguish these two orbits by coloring the D-partition red or blue and adding

a subscript “I” or “II”.

We give several examples to demonstrate how seemingly looking identical 6d SCFTs with

identical flavor symmetry algebras are distinct and how it can be seen that they differ in

their Higgs branch spectrum. The cases for the Higgsing according to equation (3.1) where

ℓ = 1 and ℓ = 2 are rather special, and we discuss them separately. Similarly, special care

must be taken when g = so8, which we study first.

3.1 (so8, so8) with 2× [24]

For our first example, we take rank N (so8, so8) conformal matter. We consider Higgsing the

so8 ⊕ so8 flavor symmetry by the pairs of nilpotent orbits ([24]I , [2
4]I) and ([24]I , [2

4]II) and

contrast the two resulting theories. The original conformal matter theory corresponds to the

5There are examples in [50], where N is sufficiently small, such that the (redI , redI) and (redI ,blueII)

pairs of nilpotent Higgsings lead to distinct tensor branch descriptions. Such cases are exceptional.
6While the tensor branch descriptions may be identical, although it has not been found a way to see

the Higgs branch operators, one may approach with the reflection of the nilpotent Higgsing in the singular

geometry, corresponding to the origin of the tensor branch where all of the compact curves are shrunk to

zero-volume, from T-brane dynamics [1, 2, 13].
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tensor branch description

1
so8
4 1

so8
4 1 · · ·

so8
4 1⏞ ⏟⏟ ⏞

N−3 (−4)-curves

so8
4 1 , (3.2)

and we assume that N ≥ 3. According to [55], the tensor branch description of the SCFT

obtained after the nilpotent Higgsing we are considering is
so7
3

[sp2]
1

so8
4 1 · · ·

so8
4 1⏞ ⏟⏟ ⏞

N−3 (−4)-curves

so7
3

[sp2]
. (3.3)

The tensor branch description appears to be the same for both the pairs ([24]I , [2
4]I) and

([24]I , [2
4]II) for the nilpotent Higgsing. That, however, is incorrect; the tensor branch de-

scription in equation (3.3) is in fact ambiguous and the two possibilities correspond to distinct

SCFTs. There exists two avatars of the E-string, which have the geometric description
sp±0
1 ,

corresponding to the Higgs branch chiral ring possessing a generator in the positive or nega-

tive chirality spinor representation of the so16 flavor symmetry.7

We begin by studying the special case where N = 4, in which case the tensor branch

configuration is
so7

3
[sp2]

sp±0
1

so8

4
sp±0
1

so7

3
[sp2]

. (3.4)

Let µ±
1 and µ±

2 denote the Higgs branch chiral ring generators of the two E-strings, in either

the positive or negative chirality spin representations. We determine the number of gauge

singlets appearing in the tensor product of these generators

µ±
1 ⊗ µ±

2 , (3.5)

where the tensor product is taken over the common so8 gauged subalgebra. One finds that

µ+
1 ⊗ µ+

2 = µ−
1 ⊗ µ−

2 ⊃ (1,1,1) ,

µ+
1 ⊗ µ−

2 = µ−
1 ⊗ µ+

2 ̸⊃ (1,1,1) .
(3.6)

The Higgs branch generator in the spinor representation has conformal dimension ∆ = 2, and

thus we see that, depending on the combination of signs in equation (3.4), the SCFT may

or may not have an additional Higgs branch generator at ∆ = 4. Based on the comparison

to class S, discussed in Section 4, we associate the pairs of nilpotent orbits to tensor branch

descriptions as follows:

([24]I , [2
4]I) :

so7

3
[sp2]

sp+0
1

so8

4
sp+0
1

so7

3
[sp2]

,

([24]I , [2
4]II) :

so7

3
[sp2]

sp+0
1

so8

4
sp−0
1

so7

3
[sp2]

.

(3.7)

7The spinor generator for the E-string has ∆ = 2, and thus it combines with the moment map operator

to trigger an enhancement of the flavor symmetry so16 → e8.
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The generalization of this analysis to N > 4 is now clear. In the tensor branch configu-

ration in equation (3.3), there are N − 2 E-strings acting as compositing theories, and thus

there are N − 2 Higgs branch spinors µ±
i . We must consider the gauge singlets that appear

in

µ±
1 ⊗ · · · ⊗ µ±

N−2 , (3.8)

where, again, the tensor product means that we take the tensor product of the common so8
algebras after gauging. We find two possible options

µ+
1 ⊗ µ+

2 ⊗ · · · ⊗ µ+
N−3 ⊗ µ+

N−2 ⊃ (1,1, · · ·,1) , (3.9a)

µ+
1 ⊗ µ+

2 ⊗ · · · ⊗ µ+
N−3 ⊗ µ−

N−2 ̸⊃ (1,1, · · ·,1) . (3.9b)

Of course, we might expect that each of the 2N−2 combinations of signs corresponds to a

different theory, however, this would represent a dramatic over-counting. Inside of the tensor

branch description in equation (3.3), we can act by an outer-automorphism of any of the so8
gauge algebras, and this has the effect of flipping the signs on the two (−1)-curves adjacent to

that gauge algebra; as an outer-automorphism, this manifestly does not change the physical

theory. We choose to use the convention that all except the left-most and right-most (−1)-

curves have µ+; this can always be attained via a sequence of outer-automorphisms of the so8
gauge algebras. In this way, we can think of the two very even nilpotent orbits as Higgsing

the conformal matter theory in the following, distinct, ways:

[24]I :
sp0
1

so8
4

sp0
1

so8
4

sp0
1 · · · →

so7
3

sp+0
1

so8
4

sp+0
1 · · · ,

[24]II :
sp0
1

so8
4

sp0
1

so8
4

sp0
1 · · · →

so7
3

sp−0
1

so8
4

sp+0
1 · · · .

(3.10)

With this convention, it is easy to see that ([24]I , [2
4]I) and ([24]II , [2

4]II) give rise to the

same theory after successive actions of the so8 outer-automorphisms. Similarly, for all of

the examples in this paper, outer-automorphisms of the so2ℓ gauge algebras on the (−4)-

curves can be used to show that one can always transform the combinations of signs on the

compositing theories to (+,+, · · · ,+,+) or (+,+, · · · ,+,−). Thus, due to the two distinct

combinations of signs giving rise to different numbers of gauge singlets as in equation (3.9),

we expect that the tensor branch geometry in equation (3.3) corresponds to two distinct 6d

SCFTs, which differ in their Higgs branch operator content at ∆ = 2(N − 2). Again, based

on the matching with class S in Section 4, we associate the all plus SCFT to the pair of

nilpotent Higgsings ([24]I , [2
4]I), and with one minus to ([24]I , [2

4]II).

Finally, we can consider the special case where N = 3. The tensor branch description of

the Higgsed theory is then
so7
3 1

so7
3 . (3.11)
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This theory is constructed by starting with two copies of the theory

so7
3 , (3.12)

and compositing together by gauging an so7 ⊕ so7 subalgebra of the e8 flavor symmetry of

the E-string. There are two inequivalent embeddings of so7 ⊕ so7 inside of e8, specified by

their distinct branching rules

e8 → so7 ⊕ so7

248 → (21,1)⊕ (1,21)⊕ (7,1)⊕ (1,7)⊕ (8,1)⊕ (1,8) (3.13a)

⊕ (7,8)⊕ (8,7)⊕ (8,8) ,

e8 → so7 ⊕ so7 ⊕ u1

248 → (21,1)0 ⊕ (1,21)0 ⊕ (7,1)2 ⊕ (7,1)−2 ⊕ (1,7)2 ⊕ (1,7)−2 ⊕ (7,7)0 (3.13b)

⊕ (1,1)0 ⊕ (8,8)1 ⊕ (8,8)−1 .

We can see that the decomposition of the moment map of the E-string contains an so7 ⊕ so7
gauge singlet in the latter branching rule given by equation (3.13b), whereas there is none

in the former branching rule given in equation (3.13a). As this gauge singlet appears with

conformal dimension ∆ = 2, it corresponds to a moment map operator in the gauged theory;

thus, the theory with the gauge singlet has an additional u1 flavor symmetry. This matches

with the branching rules depicted above.

The examples in this subsection can be summarized as follows. Nilpotent Higgsing of the

so8 ⊕ so8 flavor symmetry of the rank N ≥ 3 (so8, so8) conformal matter theory by the pairs

of nilpotent orbits ([24]I , [2
4]I) or ([24]I , [2

4]II) leads to two distinct 6d SCFTs. These two

SCFTs differ in their Higgs branch operator spectrum starting at conformal dimension

∆ = 2(N − 2) . (3.14)

3.2 (so4k, so4k) with 2× [(2k − 2)2, 22]

We now consider the tensor branch configurations corresponding to Higgsing both sides of

rank N conformal matter of type (so4k, so4k) by one of the nilpotent orbits associated to the

very even D-partition [(2k − 2)2, 22]. We assume that k > 2, as the k = 2 case has been

studied in Section 3.1. The tensor branch description of these theories is

so7
3

[sp1]

sp1
1

so12
4

sp3
1 · · ·

sp2k−5

1⏞ ⏟⏟ ⏞
k−3 (−4)-curves

(N+1)−2(k−1) (−4)-curves⏟ ⏞⏞ ⏟
so4k
4

[sp1]

sp2k−4

1
so4k
4

sp2k−4

1 · · ·
so4k
4

sp2k−4

1
so4k
4

[sp1]

sp2k−5

1 · · ·
sp1
1⏞ ⏟⏟ ⏞

k−3 (−4)-curves

so7
3

[sp1]
. (3.15)

We require that N ≥ 2k−2 to prevent the two nilpotent Higgsings from becoming correlated

across the tensor branch. In this quiver there are N − 2 curves of self-intersection (−1),
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each of which composites between the adjacent curves. Each (−1)-curve theory contains

two Higgs branch operators: a moment map operator in the adjoint representation of the

flavor symmetry, and a spinor generator in either the S+ or S− representation of the flavor

symmetry, as discussed around equation (2.9). We label the spinor generators of each of the

(−1)-curve theories as µ±
1 , µ

±
2 , · · · , µ±

N−2. We wish to count the gauge singlets that appear

in the tensor product of these spinorial generators:

µ±
1 ⊗ µ±

2 ⊗ · · · ⊗ µ±
N−3 ⊗ µ±

N−2 . (3.16)

We can see that the decomposition of the spinor representations of the so20 flavor symmetries

of the
sp1
1 compositing theories are

so20 → so7 ⊕ so12 , (3.17a)

S+ → (1, S+)⊕ · · · , (3.17b)

S− → (1, S−)⊕ · · · . (3.17c)

The · · · represent terms that are not singlets under the so7, and thus we can see that there

are gauge singlets in the tensor product in equation (3.16). Depending on the combinations

of signs, we find that there are two possibilities for the number of gauge singlets appearing

inside of the tensor product of the spinors in equation (3.16):

µ+
1 ⊗ µ+

2 ⊗ · · · ⊗ µ+
N−3 ⊗ µ+

N−2 ⊃ (1,1, · · · ,1) , (3.18a)

µ+
1 ⊗ µ+

2 ⊗ · · · ⊗ µ+
N−3 ⊗ µ−

N−2 ̸⊃ (1,1, · · · ,1) . (3.18b)

This indicates that the tensor branch geometry given in equation (3.15) corresponds to two

6d SCFTs that differ at conformal dimension

2
2k−5∑︂
q=1
q odd

(q + 2) + (N − 2k + 2)(2k − 2) = 2N(k − 1)− 2(k − 1)2 − 2 , (3.19)

in the spectrum of Higgs branch operators.

3.3 (so4k, so4k) with 2× [(2k − 4)2, 24]

We now turn to the case where ℓ = 2 in the D-partition in equation (3.1), and furthermore

we take k ≥ 4.8 The tensor branch configuration describing the 6d SCFT(s) obtained by the

nilpotent Higgsing of rank N (so4k, so4k) conformal matter by nilpotent orbits associated to

8The case of k = 3 can also be studied, but requires some modification to the exposition. We leave this

as a straightforward exercise for the interested reader.
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the very even D-partition [(2k − 4)2, 24] is

so12
3

[sp2]

sp3
1

so16
4

sp5
1 · · ·

sp2k−5

1⏞ ⏟⏟ ⏞
k−4 (−4)-curves

(N+1)−2(k−2) (−4)-curves⏟ ⏞⏞ ⏟
so4k
4

[sp1]

sp2k−4

1
so4k
4

sp2k−4

1 · · ·
so4k
4

sp2k−4

1
so4k
4

[sp1]

sp2k−5

1 · · ·
sp3
1⏞ ⏟⏟ ⏞

k−4 (−4)-curves

so12
3

[sp2]
. (3.20)

Again, we consider the gauge singlets that appear in the tensor products of the µ±
i :

µ±
1 ⊗ µ±

2 ⊗ · · · ⊗ µ±
N−3 ⊗ µ±

N−2 . (3.21)

Of course, we can see that this would never lead to a singlet under the so12 gauge algebras

on the left and the right. However, anomaly cancellation requires that an so12 algebra on a

(−3)-curve includes the presence of a half-hypermultiplet in one of the spin representations

of the so12. We can consider two a priori distinct SCFTs, corresponding to
so+12
3 and

so−12
3 , where

the sign denotes the chirality of the spinor belonging to the half-hypermultiplet. Similarly

to the
sp±q
1 theories, compositing together with different signs can lead to different SCFTs.

We refer to the scalars inside of these two half-hypermultiplets as µ±
L and µ±

R, respectively,

and then we consider gauge singlets appearing in the decomposition

µ±
L ⊗ µ±

1 ⊗ µ±
2 ⊗ · · · ⊗ µ±

N−3 ⊗ µ±
N−2 ⊗ µ±

R . (3.22)

A priori, there is no expectation that the construction of gauge invariant operators involving

hypermultiplets on the tensor branch leads to operators of the 6d SCFT at the origin. In

the context of 6d SCFTs however, this is not without precedent; for example, the “end-to-

end” operators of [6, 72], are operators of 6d (1, 0) SCFTs obtained by taking gauge singlet

combinations of hypermultiplets along the 6d quiver. Furthermore, we see that this analysis

matches the alternative derivation via the class S construction in Section 4, and thus we have

strong evidence that these operators do indeed ascend to operators of the 6d SCFT.

It is easy to see that when all of the signs in equation (3.22) are positive one obtains a

gauge singlet inside of this tensor product, and when exactly one of the signs is negative one

does not obtain any gauge singlet.9 As such, we expect that the two different combinations

of signs lead to distinct 6d SCFTs, with different spectra of states on their Higgs branches.

Using the known conformal dimensions of the µ±
i and µ±

L,R, the difference in Higgs branch

operators occurs at conformal dimension

2 + 2
2k−5∑︂
q=3
q odd

(q + 2) + (N − 2k + 4)(2k − 2) = 2kN − 2N + 8k − 12− 2k2 . (3.23)

9Flipping any two signs leaves the number of gauge singlets invariant, as discussed in Section 3.1, so there

are only these two distinct options.
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3.4 (so4k, so4k) with 2× [(2k − 2ℓ)2, 22ℓ]

Finally, we consider the cases where ℓ = 3, · · · , k − 1, which requires that we have k ≥ 4.

The tensor branch configuration for rank N (so4k, so4k) conformal matter Higgsed on the left

and the right by nilpotent orbits corresponding to such a D-partition [(2k − 2ℓ)2, 22ℓ] is

spℓ−3

1

k−ℓ−1 (−4)-curves⏟ ⏞⏞ ⏟
so4ℓ+4

4
[spℓ]

sp2ℓ−1

1
so4ℓ+8

4
sp2ℓ+1

1 · · ·
sp2k−5

1

(N+1)−2(k−ℓ) (−4)-curves⏟ ⏞⏞ ⏟
so4k

4
[sp1]

sp2k−4

1
so4k

4
sp2k−4

1 · · ·
so4k

4
sp2k−4

1
so4k

4
[sp1]

k−ℓ−1 (−4)-curves⏟ ⏞⏞ ⏟
sp2k−5

1 · · ·
sp2ℓ−1

1
so4ℓ+4

4
[spℓ]

spℓ−3

1⏞ ⏟⏟ ⏞
N−1 (−4)-curves

.

(3.24)

We can see that it is necessary to have N ≥ 2(k − ℓ) to prevent the effects of the nilpotent

Higgsing on each side of the quiver from correlating with each other. The flavor algebra is

f =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sp2k if ℓ = k − 1 , N = 2(k − ℓ) ,

sp⊕2
ℓ ⊕ sp2 if N = 2(k − ℓ) ,

sp⊕2
k if ℓ = k − 1 ,

sp⊕2
ℓ ⊕ sp⊕2

1 otherwise.

(3.25)

Before turning our hand to the general case, let us analyze the case with the fewest number

of curves. We take

ℓ = k − 1 and N = 2(k − ℓ) = 2 . (3.26)

In this case, the Higgsing acts as follows

sp2k−4

1
[so4k]

so4k
4

sp2k−4

1
[so4k]

([22k],[22k])−−−−−−−−−−→
spk−4

1
so4k
4

[sp2k]

spk−4

1 . (3.27)

We expect that when the two compositing theories corresponding to the (−1)-curves have

different chirality spinors as the generators of their chiral ring, then we will have distinct 6d

SCFTs on the right-hand side. We first analyze some of the Higgs branch operator content

of
sp+k−4

1
so4k

4
[sp2k]

sp+k−4

1 . (3.28)

We have four generators of the Higgs branch chiral ring before compositing: the moment

maps µL and µR and the spinors µ+
L and µ+

R. In particular, both µ+
L and µ+

R transform in the

S+ representation of their so4k flavor symmetries, and after gauging we find that

µ+
L ⊗ µ+

R ⊃ 1 , (3.29)

where we write only the so4k singlet representations appearing in the decomposition. If we

were to instead consider the Higgs branch of

sp+k−4

1
so4k

4
[sp2k]

sp−k−4

1 , (3.30)
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then we would have µ−
R instead of µ+

R, and the tensor product of the two different spin

representations of so4k does not yield a singlet:

µ+
L ⊗ µ−

R ̸⊃ 1 . (3.31)

As the spinor generators have conformal dimension ∆ = k − 2 then the two theories associ-

ated to the tensor branch descriptions appearing in equations (3.28) and (3.30) are distinct

theories, and they begin to differ in their Higgs branch spectrum at ∆ = 2k − 4.

It is now straightforward to consider the general tensor branch description in equation

(3.24). We can see that if all of the N compositing theories have a positive chirality spinor,

then there will be a gauge singlet in the N -fold tensor product, whereas if exactly one of the

compositing theories has a negative chirality spinor then that gauge singlet is not present.10

As such, we expect these two 6d SCFTs to differ in the Higgs branch spectra at conformal

dimension

2(ℓ− 1) + 2
2k−5∑︂

q=2ℓ−1
q odd

(q + 2) + (N − 2k + 2ℓ)(2k − 2) = 2N(k − 1)− 2ℓ− 2(k − ℓ)2 . (3.32)

Due to the duality of class S when compactified on a torus, as discussed in Section 4, we

refer to the theory with the extra gauge singlet as the Higgsing by the nilpotent orbits

([(2k − 2ℓ)2, 22ℓ]I , [(2k − 2ℓ)2, 22ℓ]I), and that without as the Higgsing by the nilpotent orbits

([(2k − 2ℓ)2, 22ℓ]I , [(2k − 2ℓ)2, 22ℓ]II).

We now consider several special cases that will be of particular relevance in Section 4.

First, take ℓ = k − 1, and thus the very even D-partitions that we consider are of the form

[22k]. We find that the ([22k]I , [2
2k]I) theory has a Higgs branch operator of dimension

([22k]I , [2
2k]I) : ∆ = 2(N − 1)(k − 1)− 2 , (3.33)

that is absent from the ([22k]I , [2
2k]II) theory. Similarly, when ℓ = k − 2 we see an operator

belonging to the Higgs branch chiral ring at

([42, 22k−4]I , [4
2, 22k−4]I) : ∆ = 2(N − 1)(k − 1)− 6 , (3.34)

in the ([42, 22k−4]I , [4
2, 22k−4]I) theory, that is not present in the ([42, 22k−4]I , [4

2, 22k−4]II)

theory.

More generally, if we Higgs on the left with D-partition [(2k − 2ℓ)2, 22ℓ] and on the right

with D-partition [(2k − 2ℓ′)2, 22ℓ
′
], assuming that ℓ, ℓ′ ≥ 3 and N ≥ 2k − ℓ− ℓ′, we find that

10Again, flipping any pair of signs does not change the gauge singlet from what is written here.
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there is a flavor singlet Higgs branch operator in the ([(2k − 2ℓ)2, 22ℓ]I , [(2k − 2ℓ′)2, 22ℓ
′
]I)

theory with conformal dimension

([(2k − 2ℓ)2, 22ℓ]I , [(2k − 2ℓ′)2, 22ℓ
′
]I) : ∆ = 2N(k− 1)− (k− ℓ)2 − (k− ℓ′)2 − ℓ− ℓ′ , (3.35)

which is absent in the ([(2k − 2ℓ)2, 22ℓ]I , [(2k − 2ℓ′)2, 22ℓ
′
]II) theory. We can see that equation

(3.35) in fact holds more generally, when ℓ, ℓ′ ≥ 1, by comparing to the results found in

Sections 3.2 and 3.3. In fact, by generalizing further, we can see that equation (3.35) holds

for ℓ, ℓ′ ≥ 0.

3.5 A non-example: the uniqueness of conformal matter

We have now demonstrated in a variety of examples that the Higgs branch depends on

whether one composites together the (−4)- or (−3)-curves with the positive or negative

chirality versions of minimal (D,D) conformal matter. We have observed that Higgsing by

the two distinct nilpotent orbits belonging to the same very even D-partition leads to distinct

6d SCFTs. In this way, we find that the Higgs branch renormalization group flows recreate

the double Hasse diagram formed by pairs of nilpotent orbits of so2k. At this point, the

reader may be wondering: why is it that only the tensor branch configurations associated to

nilpotent Higgsing by very even D-partitions have two avatars? Any nilpotent Higgsing of

rank N (so2k, so2k) conformal matter leads to a tensor branch which contains minimal (D,D)

conformal matter as a compositing theory, and thus one may expect that in all cases there

are distinct theories depending on whether one chooses the compositing theories to have the

positive or negative chirality spinors. In this section, we demonstrate in an example that

these a priori distinct theories usually give rise to the same 6d SCFT. Consider the example

of rank 2 (so4k, so4k) conformal matter, for which one can write down the following two tensor

branch descriptions:

sp+2k−4

1
[so4k]

so4k

4
sp+2k−4

1
[so4k]

and
sp+2k−4

1
[so4k]

so4k

4
sp−2k−4

1
[so4k]

. (3.36)

Once we understanding the branching rule

so8k → so4k ⊕ so4k

S+ → (S+, S+)⊕ (S−, S−)

S− → (S+, S−)⊕ (S−, S+) ,

(3.37)

it is straightforward to determine that there are the following gauge singlet states, charged

under the so4k ⊕ so4k flavor symmetry, in each respective theory. In the ++ theory we have:

µ+
L ⊗ µ+

R = (S+, S+)⊕ (S−, S−) , (3.38)
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whereas in the +− theory there is instead:

µ+
L ⊗ µ−

R = (S+, S−)⊕ (S−, S+) . (3.39)

Thus, we see that there are the same number of gauge singlets appearing inside of µ±
L ⊗ µ±

R,

and furthermore the difference between the representations of the Higgs branch operators

under the flavor symmetry can be compensated by an outer automorphism of one of the so4k
factors. It is then clear that the two putative theories appearing in equation (3.36) are, in

fact, equivalent. For the class of 6d (1, 0) SCFTs obtained via nilpotent Higgsing of rank

N (D,D) conformal matter, a general analysis, involving outer-automorphisms of the gauge

and flavor algebras similar to the discussion in Section 3.1, reveals that there is only this

subtle distinction in the Higgs branch spectrum when the tensor branch description is that

associated to nilpotent Higgsing of the so4k⊕so4k flavor symmetry by pairs of nilpotent orbits

associated to very even D-partitions.

4 6d (1, 0) on T 2 and class S
At this point, the reader may be wary. We have argued for the existence of Higgs branch

operators of 6d (1, 0) SCFTs by studying gauge invariant combinations of Higgs branch

operators on the partial tensor branch. However, there is no guarantee that the operators

thus-constructed actually parametrize the Higgs branch of the SCFT at the origin of the

tensor branch. Indeed, the analogous construction in 4d N = 2 would fail rather badly;

when one moves out on the Coulomb branch (the analogue of the tensor branch in 4d),

generically the entire Higgs branch is lifted.

Fortunately, for the classes of 6d (1, 0) SCFTs that we are considering, there is an alter-

native description of the Higgs branch at the superconformal fixed point. It is isomorphic

to the Higgs branch of a certain 4d N = 2 SCFT of class S. In the latter case, there is an

independent computation of the Hilbert series of the Higgs branch, from which we can con-

firm our conjecture that these 6d (1, 0) SCFTs are distinct, despite sharing the same tensor

branch description, and furthermore, vindicates our method for extracting the spectrum of

Higgs branch operators from the tensor branch configuration.

To verify that our tensor branch analysis is really capturing differences in the SCFTs

at the origin of the tensor branch, we use a duality to the class S construction [45, 46]. It

is known that rank N (g, g) conformal matter compactified on a T 2 gives rise to the same

4d N = 2 SCFT as the compactification of the 6d (2, 0) SCFT of type g on a sphere with

two maximal punctures and N simple punctures [26, 68, 69]. In the rank one case, this was

extended beyond maximal punctures in [7]. We write this equivalence as

Tg,N{O1, O2}⟨T 2⟩ = Sg⟨S2⟩{O1, O2, O
⊕N
simple} . (4.1)
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Here, O1 and O2 are nilpotent orbits in g; on the left they Higgs the g⊕g flavor symmetry in

6d, whereas in the class S description on the right they correspond to partial closure of the

two full punctures. Due to the torus compactification, the Higgs branch of this 4d N = 2

SCFT is identical to the Higgs branch of the original 6d (1, 0) theory.

The Hall–Littlewood limit of the superconformal index [42–44, 59, 60] can be obtained

from the class S description. It is a formal power series of the form

IHL(τ) = TrHHL
τ 2(∆−R)(−1)F , (4.2)

where HHL is the subspace of local operators satisfying ∆ − 2R − r = j1 = 0; here ∆ is

the conformal dimension, R is the charge under the SU(2) R-symmetry, and r the charge

under the U(1) R-symmetry. The index counts (with sign) operators in short multiplets of

the superconformal symmetry, B̂R and DR(0,j2) (in the notation of Dolan and Osborn [29]).

It is generally believed [9, 10, 44] that there are no DR(0,j2) multiplets in genus-zero theories

of class S.11 In which case, the Hall–Littlewood index coincides with the Hilbert series of

the Higgs branch of the class S theory, with each B̂R operator contributing τ 2R to the index.

The refined version of the index, IHL(a; τ) is defined similarly but with the coefficient of

τ 2R being the character χ(a)R of the flavor symmetry representation under which the B̂R

operators transform, rather than merely the dimension.

For an (N + 2)-punctured sphere, the Hall–Littlewood index takes the form [44, 60]

IHL(a; τ) =
∑︂
Λ

∏︁N+2
i=1 KHL(ai)PΛ(ai)

(KHL({τ})PΛ({τ}))N
, (4.3)

where we describe each term contributing to this expression below.

1. The sum is over finite dimensional irreducible representations Λ of g. Here, we are

interested in g = so4k and we denote Λ by its Dynkin labels

Λ = (n1, n2, . . . , nn−2;nS+ , nS−) , (4.4)

where the last two Dynkin labels are those associated to the two irreducible spinor

representations. The outer-automorphism of so4k acts on the representation ring by

exchanging nS+ ↔ nS− .

2. Flavor fugacities ai associated to the ith puncture are determined by decomposition of

the fundamental representation of g as a representation of ρi(su2)× fi. Here, ρi : su2 →
so4k describes the embedding associated to the nilpotent orbit of the ith puncture; the

fi is the remaining flavor symmetry algebra. Furthermore, {τ} is the fugacity for the

trivial puncture (i.e. the regular embedding of su2 ↪→ so4k).

11Exceptions to this conjecture seem to occur for class S on spheres with at least four twisted-punctures

[58]. As we do not consider such configurations in this paper, these exceptions are not relevant.
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3. The K-factor associated to the ith puncture is determined by the restriction of the

adjoint representation adg of g to ρi(su2)× fi as

adg =
⨁︂
j

Vj ⊗Rj,i , (4.5)

where Vj is the (2j + 1)-dimensional irreducible representation of su2 and Rj,i is the

corresponding representation of fi, possibly reducible. Upon this decomposition, a K-

factor for the ith puncture is

KHL(ai) = (1− τ 2)
rank(g)

2 PE

[︄∑︂
j

τ 2(j+1)χfi
Rj,i

(ai)

]︄
, (4.6)

where PE[· · · ] denotes the plethystic exponential and χfi
Rj,i

(ai) is the character of the

flavor algebra fi in the relevant representation.

4. The PΛ are Hall–Littlewood polynomials for the representation Λ, which are given by

PΛ(ai) =
1

WΛ(τ)

∑︂
w∈W

ew(Λ)
∏︂

α∈Φ+

1− τ 2e−w(α)

1− e−w(α)
, (4.7)

WΛ(τ) =

√︄ ∑︂
w∈StabW (Λ)

τ 2l(w) , (4.8)

where Φ+ are the positive roots of g, W is the Weyl group of g, and flavor fugacities

{ai} can be assigned once we choose a basis for the weight lattice for g.

5. The unrefined index is recovered in the limit of setting the fugacities ai → 1.

The simple puncture in the class S theory of type so4k corresponds to the D-partition [4k−
3, 3]. For the punctures O1, O2, we will take two very even D-partitions. It is a fundamental

fact of the representation theory of so4k that a very-even D-partition, O, gives rise to two

nilpotent orbits, OI and OII . The two orbits are exchanged by the outer-automorphism of

so4k, which exchanges S+ ↔ S−.

The spinor representations S+ and S− decompose differently under the corresponding

embeddings of su2 ⊕ f.

• Under the embedding corresponding to OI :

– For k even, S+ decomposes as half-integer-spin representations of su2 tensored

with pseudoreal representations of f, while S− decomposes as a direct sum of

integer-spin representations of su2 tensored with real representations of f.

– For k odd, S+ decomposes as half-integer-spin representations of su2 tensored

with real representations of f, while S− decomposes as a direct sum of integer-spin

representations of su2 tensored with pseudoreal representations of f.
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• Under the embedding corresponding to OII , the decompositions of S+ and S− are

reversed.

By contrast, representations of the form Λ = (n1, n2, . . . , n2k−2; 0, 0) decompose identically

under the embeddings corresponding to OI and OII .

The outer-automorphism of so4k is clearly a symmetry of the conformal field theory. In

the index in equation (4.3), it exchanges Λ+ with Λ−, that are given by

Λ+ = (n1, n2, . . . , n2k−2;nS+ , nS−), Λ− = (n1, n2, . . . , n2k−2;nS− , nS+); (4.9)

i.e. the representations with the final two Dynkin labels interchanged. This obviously leaves

the sum unchanged. In particular, this means that the theory with two very even punctures

OI , O′
I is isomorphic to the theory with OII , O′

II . However, they are not necessarily (and,

in general, are not) isomorphic to the theory with OI , O′
II . At the level of the index in

equation (4.3), however, the difference is invisible up to the order in the τ -expansion at

which the representations Λ = (0, 0, . . . , 0; 1, 0) and/or (0, 0, . . . , 0; 0, 1) first contribute to

the index.

There is a simple formula [22] for the order at which each representation Λ first contributes

to the index written in equation (4.3). Let

w(O) = (w1, w2, · · · , w2k−2;wS+ , wS−) (4.10)

be the weighted Dynkin diagram corresponding to the nilpotent orbit O.12 The entries of

w(O) are either 0, 1 or 2. For the simple puncture, we have

w([4k − 3, 3]) = (2, 2, . . . , 2, 0; 2, 2) , (4.11)

and the weighted Dynkin diagram corresponding to the trivial puncture (O = Oregular) is

w0 = (2, 2, . . . , 2; 2, 2) . (4.12)

Then, the leading contribution to the index from the representation Λ is the contribution

from the characters χRΛ
(a)τnΛ , where

nΛ = Λ · C−1 ·
(︂
Nw0 −

N+2∑︂
i=1

w(Oi)
)︂
, (4.13)

and C is the Cartan matrix. The character χRΛ
is obtained as follows. First, for each puncture

Oi, we can decompose the representation Λ of so4k under the corresponding embedding

ρi(su2)× fi as

Λ =
⨁︂
j

Vj ⊗RΛ j,i . (4.14)

12See page 83 of [23] for the determination of the weighted Dynkin diagram from the D-partition.
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Next, we let ji be the largest value of j that occurs in the decomposition in equation (4.14)

at the ith puncture. Then,

RΛ =
N+2⨂︂
i=1

RΛ ji,i . (4.15)

We briefly highlight this with an example. Consider g = so8 with three punctures: [24]I ,

[24]I , and [5, 3]. For Λ = 8v we have the following decompositions:

[24]I :

{︃
so8 → su2 ⊕ sp2 ,

8v → (2,4) ,

[5, 3] :

{︃
so8 → su2 ,

8v → 5⊕ 3 .

(4.16)

As such, we can see that RΛ=8v = (4,4) under the sp2 ⊕ sp2 flavor symmetry from the two

[24]I punctures.

Since we take N of the punctures to be simple, [4k − 3, 3], equation (4.13) reduces to

nΛ = Λ · C−1 ·
(︂
(0, 0, . . . , 0, 2N ; 0, 0)− w(O1)− w(O2)

)︂
. (4.17)

In the examples that we wish to consider, we have

w
(︁
[22k]I

)︁
=

(︁
0, 0, . . . , 0; (1 + (−1)k), (1− (−1)k)

)︁
,

w
(︁
[22k]II

)︁
=

(︁
0, 0, . . . , 0; (1− (−1)k), (1 + (−1)k)

)︁
,

w
(︁
[42, 22k−4]I

)︁
=

(︁
0, 2, 0, . . . , 0; (1 + (−1)k), (1− (−1)k)

)︁
,

w
(︁
[42, 22k−4]II

)︁
=

(︁
0, 2, 0, . . . , 0; (1− (−1)k), (1 + (−1)k)

)︁
,

w
(︁
[(2k − 2l)2, 22l]I

)︁
=

(︁
0, 2, 0, 2, . . . , 0, 2⏞ ⏟⏟ ⏞

2(k−l−1)

, 0, 0, . . . , 0⏞ ⏟⏟ ⏞
2l

; (1 + (−1)k), (1− (−1)k)
)︁
,

w
(︁
[(2k − 2l)2, 22l]II

)︁
=

(︁
0, 2, 0, 2, . . . , 0, 2⏞ ⏟⏟ ⏞

2(k−l−1)

, 0, 0, . . . , 0⏞ ⏟⏟ ⏞
2l

; (1− (−1)k), (1 + (−1)k)
)︁
.

(4.18)

We want to extract the values of nS+ and nS− , for which we need

S+ · C−1 = 1
2
(1, 2, 3, . . . , 2k − 2; k, k − 1) ,

S− · C−1 = 1
2
(1, 2, 3, . . . , 2k − 2; k − 1, k) .

(4.19)

Putting together equations (4.17), (4.18), and (4.19), we get nS+ and nS− for any pair of

punctures O1 and O2. For instance, we see that

nS+

(︁
[22k]I , [2

2k]I
)︁
= 2(k − 1)(N − 1)−

(︁
1 + (−1)k

)︁
,

nS−
(︁
[22k]I , [2

2k]I
)︁
= 2(k − 1)(N − 1)−

(︁
1− (−1)k

)︁
,

(4.20)
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whereas we get different values for the other theories:

nS+

(︁
[22k]I , [2

2k]II
)︁
= 2(k − 1)(N − 1)− 1 ,

nS−
(︁
[22k]I , [2

2k]II
)︁
= 2(k − 1)(N − 1)− 1 .

(4.21)

Thus we find that the discrepancy between the theories Sso4k⟨S2⟩{[22k]I , [22k]I , [4k−3, 3]⊕N}
and Sso4k⟨S2⟩{[22k]I , [22k]II , [4k − 3, 3]⊕N} first appears at order τ 2(k−1)(N−1)−2 where the

representation Λ = S+ (for k even) or Λ = S− (for k odd) contributes a B̂(k−1)(N−1)−1

operator. We depict these two distinct class S theories in terms of their N + 2 punctured

spheres in Figure 4.1.

In fact, from equation (4.15), we see that this operator is a singlet of the flavor symmetry.

This is precisely the state that was determined, in equation (3.33), to exist in the nilpotent

Higgsing of the 6d rank N (so4k, so4k) conformal matter theory by the pair of nilpotent orbits

([22k]I , [2
2k]I), and which does not exist for the ([22k]I , [2

2k]II) Higgsing. In this way, we see

that the class S analysis of the Higgs branch confirms the conclusion of the 6d (1, 0) analysis.

[22k]I

[4k − 3, 3]⊕N

[22k]I

(a) Sso4k⟨S2⟩{[22k]I , [22k]I , [4k − 3, 3]⊕N}

[22k]I

[4k − 3, 3]⊕N

[22k]II

(b) Sso4k⟨S2⟩{[22k]I , [22k]II , [4k − 3, 3]⊕N}

Figure 4.1: The (N+2)-punctured spheres associated to the class S theories where the Higgs

branch operator spectrum differs as described in equations (4.20) and (4.21). The former

contains a B̂(k−1)(N−1)−1 operator that the latter does not.

Applying this method to all pairs of very even D-partitions that were studied in Section

3, we observe that the 4d class S and 6d (1, 0) approaches to the Higgs branch agree, as

(perhaps) expected. The most general pair of very even D-partitions, studied at the end of

Section 3.4 was

O = [(2k − 2ℓ)2, 22ℓ] , O′ = [(2k − 2ℓ′)2, 22ℓ
′
] . (4.22)

Combining equations (4.17), (4.18), and (4.19) we can again determine nS± for the pairs

(OI , O
′
I) and (OI , O

′
II) We find for the pairs of two reds (OI , O

′
I),

nS+

(︁
OI , O

′
I

)︁
= 2N(k − 1)− (k − ℓ)2 − (k − ℓ′)2 − ℓ− ℓ′ +

(︁
1− (−1)k

)︁
,

nS−
(︁
OI , O

′
I

)︁
= 2N(k − 1)− (k − ℓ)2 − (k − ℓ′)2 − ℓ− ℓ′ +

(︁
1 + (−1)k

)︁
,

(4.23)
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and for the pairs of a red and a blue (OI , O
′
II),

nS+

(︁
OI , O

′
II

)︁
= 2N(k − 1)− (k − ℓ)2 − (k − ℓ′)2 − ℓ− ℓ′ + 1 ,

nS−
(︁
OI , O

′
II

)︁
= 2N(k − 1)− (k − ℓ)2 − (k − ℓ′)2 − ℓ− ℓ′ + 1 .

(4.24)

The Hall–Littlewood indices of the two theories begin to differ at order

τ 2N(k−1)−(k−ℓ)2−(k−ℓ′)2−ℓ−ℓ′ , (4.25)

where there is one additional flavor singlet Higgs branch operator in the (redI , redI) theory

that is absent in the (redI , blueII) theory. This is identical with the result from the 6d

(1, 0) tensor branch analysis as given in equation (3.35). Using the methodologies described

throughout this paper, the extension to an arbitrary pair of very even D-partitions, both on

the 6d (1, 0) and class S sides, is straightforward, though somewhat tedious.

5 Conclusion

In this paper, we have demonstrated that distinct 6d (1, 0) SCFTs can share the same de-

scription of the low-energy theory that lives at the generic point of the tensor branch. Such

SCFTs differ in their spectrum of Higgs branch operators, which we compute in two indepen-

dent ways for the very even nilpotent Higgsing of rank N (D,D) conformal matter. First,

we consider the generators of the Higgs branch spectrum of the building blocks, i.e. minimal

(D,D) conformal matter, out of which the 6d SCFTs we consider are built; we then construct

gauge-invariant operators out of these generators. Alternatively, we consider the compactifi-

cation on a torus, which preserves the Higgs branch, and compute the Higgs branch spectrum

from the dual class S description of the resulting 4d N = 2 SCFTs. Both approaches lead

to identical results.

To conclude, we give several examples which demonstrate how the two possibilities for

compositing via minimal (D,D) conformal matter can lead to distinct 6d SCFTs with the

same tensor branch description, outside of the class of theories obtained via very even nilpo-

tent Higgsing of rank N (D,D) conformal matter. In these examples, there generally do not

exist known class S duals, and thus the powerful techniques used in this paper to verify the

computation of Higgs branch operators cannot be applied. However, we seek to emphasize

that such compositing may also be ambiguous beyond minimal (D,D) conformal matter, for

example, in configurations where the compositing theory is instead
suK
1 . Further analysis is

required to determine when the tensor branches constructed via the algorithms of [51, 53]

correspond to multiple 6d (1, 0) SCFTs.

23



5.1 Flavor algebras from E-strings

Flavor symmetries in 6d (1, 0) SCFTs can arise in a variety of ways, as pointed out in, for

example, [7, 41]. One particular source is the so-called “E-string flavor”, which occurs when

we have a configuration of the form

· · · g
m 1ρ

h
n · · · . (5.1)

We write a subscript ρ on the (−1)-curve to stress that compositing the (−m)- and (−n)-

curves together via an E-string involves a choice of embedding

ρ : g⊕ h → e8 . (5.2)

The non-Abelian part of the flavor algebra arising from such a compositing is

fE-string = Commutant(ρ, g⊕ h) , (5.3)

i.e. the commuting subalgebra of the gauge symmetries under the embedding ρ, which is

highly dependent on the choice of ρ. In Section 3.1, we explore the tensor branch configuration

so7
3 1ρ

so7
3 , (5.4)

and we discover that there are two inequivalent ρ, which have commutants u1 and ∅, re-

spectively. The flavor symmetry is an invariant of the SCFT, thus these two tensor branch

configurations correspond to distinct SCFTs, and the duality to class S verifies that both

theories exist as interacting 6d (1, 0) SCFTs. Such ambiguity in the choice of embedding is

ubiquitous in the geometric constructions of [51, 53], and raises the question of which embed-

dings lead to interacting SCFTs at the origin of the tensor branch. We explore an example

tensor branch configuration with such an ambiguity that appears in [41]. Consider

[so7]
su2
2 1ρ

so8
4 . (5.5)

To understand how the (−1)-curve composites between the two neighboring curves, we need

to understand embeddings

ρ : su2 ⊕ so8 ⊕ fE-string → e8 , (5.6)

where the su2 and so8 factors must have Dynkin embedding index 1 as they are gauged. For a

detailed study of the relevance of Dynkin embedding index one for F-theory compactifications

see [35]. In [41], two embeddings were pointed out, with

fE-string = su⊕3
2 and fE-string = sp2 , (5.7)

however, in principle, there may be additional embeddings. In fact, the embedding

ρ : su2 ⊕ so8 ⊕ sp2 → e8 , (5.8)
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is not appropriate in this configuration, as the Dynkin embedding index of the su2 factor is

2, not 1. This tensor branch configuration can also be obtained from nilpotent Higgsing of

rank two (e6, e6) conformal matter:

1
[e6]

su3
3 1

e6
6 1

su3
3 1

[e6]

(2A1,D4(a1))−−−−−−−−−−−→
su2
2

[so7]
1

so8
4 . (5.9)

Compactification of at least one of the SCFTs associated to the tensor branch configuration

in equation (5.5) then has a dual description in terms of class S of type e6 on a sphere with

two simple punctures and two punctures associated to the nilpotent orbits 2A1 and D4(a1).
13

From the class S perspective, the Hall–Littlewood index yields

1 + 30τ 2 + 64τ 3 +O(τ 4) , (5.10)

which demonstrates that the flavor algebra is enhanced from the manifest (so7)16 ⊕ u⊕3
1 to14

f = (so7)16 ⊕ (su2)
⊕3
24 . (5.11)

Thus, we can confidently state, via the duality to class S, that
su2
2

[so7]
1

[su⊕3
2 ]

so8
4 , (5.12)

describes the tensor branch of an interacting 6d (1, 0) SCFT, however, this does not suggest

that any other embeddings of the form in equation (5.6) do not give rise to interacting 6d

SCFTs. It is an important question for the understanding of the landscape of possible 6d

(1, 0) SCFTs to determine if tensor branch geometries like that in equation (5.5) correspond

to one or more interacting SCFTs.

5.2 From nilpotent orbits to E8-homomorphisms

The rank N (g, g) conformal matter theories have many tools with which their properties

can be studied. In particular, they can be realized as the worldvolume theories on a stack of

M5-branes probing a C2/Γg orbifold. Here, Γg is the finite subgroup of SU(2) of the same

ADE-type as g. In this M-theory framework, the 6d SCFT behaves as a defect in 7d super

Yang–Mills, with gauge algebra g, and the SCFT thus inherits a g ⊕ g flavor symmetry.

13For the exceptional Lie algebras we use the Bala–Carter notation [4, 5] for the nilpotent orbits, see [23]

for more details.
14The levels of the enhanced su2 factors are not immediately obvious. They can be obtained by considering

the degeneration limit of the 4-punctured sphere in which the theory becomes a weakly-coupled SU(2) gauging

of interacting fixture #43 of [17] with an additional half-hypermultiplet in the 2. Alternatively, the S-dual

realization is a Spin(8) gauging of the (E7)24×Spin(7)16 SCFT, which is interacting fixture #3 of [17]. The

centralizer of so8 ⊂ (e7)24 is (su2)
⊕3
24 .
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Each flavor symmetry factor can be Higgsed by a nilpotent orbit of g, corresponding to

turning on asymptotic boundary conditions for the scalar inside of the 7d vector multiplet.

Nilpotent orbits of simple Lie algebras are well-studied and classified [4, 5]. In addition, when

compactified on a torus the resulting 4d N = 2 SCFTs have an alternative description in

terms of class S and thus one has an independent construction with which to study aspects

of the Higgs branch of the 6d (1, 0) SCFTs.

For other classes of 6d (1, 0) SCFTs, we are not so lucky. In this section, we remark on

the 6d SCFTs obtained via Higgs branch renormalization group flows from the rank N (e8, g)

orbi-instanton theories. The orbi-instanton is realized in M-theory as a stack of N M5-branes

probing a C2/Γg orbifold singularity, and contained inside of an M9-brane [25]. In such a

configuration, one must specify the boundary conditions inside of the M9-brane, which are

fixed by a choice of homomorphism π : Γg → E8, and changing these boundary conditions

corresponds to performing Higgs branch renormalization group flows. We can consider the

Higgsed rank N (e8, g) orbi-instanton theories as

Ωg,N(π, σ) , (5.13)

where π : Γg → E8 is the E8-homomorphism with which the e8 flavor symmetry is Hig-

gsed, and σ : su2 → g is the nilpotent orbit by which the g flavor symmetry is Higgsed.

Homomorphisms from ΓsuK and Γe8 to E8 have been classified in [57] and [40], respectively,

however in each of the other cases there is no known complete classification. In addition, the

orbi-instantons and their Higgsings do not generally have known class S descriptions after

compactification on a torus, and thus that avenue for understanding the 6d Higgs branch is

closed.

In [41], the authors seek to classify the homomorphims Γg → E8 utilizing the study of

6d (1, 0) tensor branch geometries. Of course, if one were to attempt to derive the nilpotent

orbits in the same way, and one did not know about the two different ways of compositing

using
spq

1 pointed out in this paper, then one would not notice that each very even D-partition

corresponds to two nilpotent orbits! This is pointed out in [41], where the authors claim only

to classify such homomorphims only up to outer automorphism. Here, we argue that by

including the information about different possible compositings in the tensor branch descrip-

tion, one can see the difference between E8-homomorphisms that appear to correspond to

the same tensor branch. Furthermore, one should again be able to determine properties of

the Higgs branches of the two SCFTs obtained in such a way, and observe how they differ.

For conciseness, we consider the following example: take the rank N (e8, so8) orbi-

instanton, which has the following tensor branch configuration:

[e8] 1 2
su2
2

g2
3

N−1 (−4)-curves⏟ ⏞⏞ ⏟
1
so8
4 1 · · ·

so8
4 1 [so8] . (5.14)
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To be more illuminating, we focus on the case where N = 3. Consider the homomorphism

π : Γso8 → E8, discussed in [41], which triggers a Higgs branch renormalization group flow

to a new 6d SCFT with the following tensor branch description:

[e8] 1 2
su2
2

g2
3 1

so8
4 1

so8
4 1 [so8]

π−→ [so9] 1
so7
3

[sp2]
1

so8
4 1 [so8] . (5.15)

As we can see, there is a (−1)-curve, corresponding to the E-string, that composites between

the
so7
3 and

so8
4 building blocks. In Section 3.1, we saw that such a compositing was ambiguous,

and could lead to distinct 6d SCFTs. Due to this ambiguity, we propose that there are two

distinct E8-homomorphisms, labeled as πI and πII , which lead to the same tensor branch.

Further Higgsing the so8 flavor symmetry on the right by either the [24]I or the [2
4]II nilpotent

orbit leads to the following tensor branch configuration:

[so9] 1
so7
3

[sp2]
1

so8
4 1 [so8] → [so9] 1

so7
3

[sp2]
1

so7
3 [sp2] . (5.16)

Based on the arguments in Section 3.1, in particular the two distinct embeddings of so7 ⊕
so7 inside of e8 given in equation (3.13), we expect that this tensor branch configuration

corresponds to two distinct 6d SCFTs; (πI , [2
4]I) with an additional u1 flavor symmetry, and

(πII , [2
4]I) without. Unfortunately, as we discussed, there does not exist known class S duals

for the compactifications of Higgsed orbi-instantons on T 2, and thus, unlike in the study of

Higgsed conformal matter, we lack an independent method to verify this plurality of 6d (1, 0)

SCFTs.15
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