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Abstract: We initiate a systematic analysis of moduli spaces of vacua of four di-

mensional N = 3 SCFTs. Our analysis is based on the one hand on the properties of

N = 3 chiral rings — which we review in detail and contrast with chiral rings of theories

with less supersymmetry — and on the other hand on constraints coming from low-

energy supersymmetry. This leads us to introduce a new type of geometric structure,

which characterizes N = 3 SCFT moduli spaces, and that we call triple special Kähler

(TSK). A rank-n TSK moduli space has complex dimension 3n, and is singular at com-

plex co-dimension 3 subspaces where charged states become massless. The structure

of singularities defines a stratification of the TSK space in terms of lower-dimensional

TSK manifolds.
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1 Motivation, summary, and open questions

Supersymmetric theories have been extensively studied in the past four decades. This

has partly been because their enhanced symmetries allow exact computations which

provide useful windows into strong coupling physics. Conformal invariance further

enhances the ability to perform exact calculations. This has resulted in great recent

progress in understanding the properties of, in particular, four dimensional supercon-

formal field theories (SCFTs) with various amount of supersymmetry.

Supersymmetry and conformal invariance also equip the moduli space of vacua

of these theories with rigid geometric structures [1–4]. The geometric structure be-

comes increasingly constraining as the number of supersymmetry charges increases.

Depending on the number of supercharges, this suggests the possibility of a systematic

“bottom-up” classification of 4d SCFTs by constructing all their possible moduli space

geometries.

In this and a follow up [5] paper, we will discuss this program in the case of

N = 3 SCFTs. Our aim is to assemble various results on N = 3 SCFTs and their

moduli spaces from the literature, precisely formulate the mathematical properties

of the moduli space of vacua of N = 3 SCFTs, and critically assess the prospects

for carrying out a classification of all such possible moduli space geometries. In this

paper we will analyze the relations between these moduli spaces and properties of

operators at the conformal vacuum, and introduce the notion of TSK manifolds and

its generalization to singular TSK spaces. Before summarizing these results, we pause

to motivate the study of N = 3 SCFTs.

For N = 1 supersymmetry (four supercharges), such an approach is not particu-

larly fruitful, basically because the moduli spaces are constrained only to be (singular)

Kähler spaces, which is too large a class of geometries to get a useful handle on. Fur-

thermore, upon deformation by relevant N = 1-preserving operators, the moduli spaces

of these SCFTs are generically lifted, leaving only discrete vacua (where often the su-

persymmetry is spontaneously broken). Nevertheless matching of the moduli spaces of

different N = 1 theories has been a very valuable tool to argue for non trivial N = 1

dualities [1, 6].

By contrast, the moduli spaces ofN = 2 SCFTs are much more tightly constrained.

All known examples have continuous moduli spaces of vacua which are combinations of

singular hyperkähler (Higgs branch, HB for short) or special Kähler (Coulomb branch,

CB for short) geometries, and upon deformation the CB is not lifted, but instead is

deformed. Also HB and CB geometries are much more rigid than N = 1 Kähler ge-

ometries as they are closely related to certain algebraic structures. Indeed, since the

groundbreaking work of Seiberg and Witten [7, 8], large portions of the landscape of
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moduli spaces of N = 2 SCFTs have been illuminated by algebraic techniques. Citing

only a selection of the most recent efforts: systematic studies of three dimensional ratio-

nal Gorenstein graded isolated singularities which give rise, via geometric engineering,

to consistent N = 2 SCFT Coulomb branches [9–12], a beautiful algebraic charac-

terization of the geometry of the Higgs branches of N = 2 theories [13], a successful

program of systematic classification of rank-1 N = 2 SCFTs through the study of al-

lowed Coulomb branches and their deformations [14–18]. These efforts have brought

remarkable progress in our understanding of these theories. For instance, it is now

known that the operators parametrizing Coulomb branches which have no complex

singularities can only have rational scaling dimensions, and for a given rank only a

finite set of possibilities are allowed [3, 4, 19]. It has also been established, contrary to

an earlier conjecture, that the Coulomb branch of N = 2 theories can have complex

structure singularities and not just metric ones [20, 21].

Despite this remarkable progress, the space of N = 2 SCFTs is very large [22–

24] and it is clear that it is still largely unexplored. A systematic classification of all

possible N = 2 CB geometries requires new insights possibly tying together CB and

HB constraints. In fact, even at rank 2, it is not clear that the rules for what kinds of

metric singularities on the CB are physically allowed are currently known.

Before discussing the N = 3 case, let us briefly mention a few words about the

moduli space of N = 4 SCFTs. This case is extremely constrained. In fact it is

believed that the space of allowed N = 4 theories is filled by the Lagrangian theories

[1] and their discrete gaugings [20, 21] along with a choice of line operators [25]. It is

worth mentioning that the list of N = 2 rank-1 Coulomb branch geometries contains

two entries corresponding to N = 4 theories [15, 26, 27]. While this matter has not

been settled completely yet, there is increasing evidence that one of the two geometries

corresponds to the “standard” SU(2) N = 4 theory while the other to an N = 4

relative theory with a non-maximal spectrum of line operators [27].

We thus arrive at the moduli spaces of N = 3 SCFTs [28–36]. As we will review

below, a rank-n theory has a 3n-complex-dimensional moduli space which is a Coulomb

branch. It has a flat generalization of a special Kähler structure which we call a “triple

special Kähler” (TSK) structure. It contains a CP2 of inequivalent complex structures

compatible with the metric are induced by the N = 3 supersymmetry. Surprisingly,

it also has an additional isolated ‘special” complex structure. The global geometry

of this moduli space is tightly constrained by the N = 3 superconformal algebra,

mainly through its symmetries which are spontaneously broken on the moduli space.

These imply that M is a non-compact, metrically complete collection of cones with a

common tip, and each cone is TSK with non-analyticities in complex co-dimension 3.

We will provide a detailed description of this structure below. Additional restrictions on
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N = 3 moduli spaces could follow from associativity (crossing symmetry) of the N = 3

superconformal local operator algebra. Preliminary studies of these constraints have

been carried out in [32, 34, 36, 37]. But these studies have not identified any additional

restriction on N = 3 moduli space geometries beyond those discussed below.

It is natural to guess that TSK spaces have an orbifold structure M ∼= C3r/Γ for

some discrete group Γ acting linearly on C3r. Somewhat surprisingly, in [5] we will show

that TSK structure alone is not enough to enforce this conclusion and in fact we will

discuss some counter-examples. Furthermore we will discuss that even if one assumes

the orbifold structure then other assumptions need to be made to fully characterize

the type of finite group Γ acting on the affine space. Under these assumptions Γ is

constrained to be a crystallographic complex reflection group (CCRG) admitting a

principal polarization [4, 5, 38] and a complete classification is possible. The work in

[5] will also address how to lift the extra assumption and attempt a systematic analysis

of the orbifold geometries.

The paper is organized as follows. In the next two sections we systematically

analyze the connection between the geometry of the moduli space of vacua and the

algebra of CFT operators which can have a non-vanishing vacuum expectation value.

The latter are constrained by the (unitary, positive energy) representation theory of

the N = 3 superconformal algebra. Section 2 sets some groundwork by describing

the situation for N ≤ 2 while section 3 discusses in detail the N = 3 case as well as

the extra structures that appear in the N = 4 case. Section 4 starts the systematic

analysis of the conditions on the moduli space geometry of an N = 3 SCFT implied

by the assumption of unbroken N = 3 supersymmetry. This sets the stage for section

5 where the definition of a TSK manifold is provided and the properties that follow

are studied in detail. We conclude in section 6 by discussing the singularity structure

of the moduli space of N = 3 SCFTs which will lead to a definition of a TSK space.

We conjecture that it applies to any moduli space of vacua with unbroken N = 3

supersymmetry.

2 Chiral rings and moduli spaces of vacua

We start by analyzing the structure of the N = 3 moduli space of vacua from the

perspective of the SCFT operator algebra. This analysis does not capture all of the

metric structure of the moduli space and can therefore be considered to be coarser than

the one which will lead to the definition of the triple special Kähler (TSK) structure

below. But the ring structure that certain operators (conjecturally) need to satisfy

to acquire a vacuum expectation value captures information on the singularities of
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the moduli space as a complex variety which are difficult to access from the TSK

perspective. Thus both are useful for characterizing the moduli space geometry.

The relation between the structure of the operator algebra and the moduli space of

vacua of four dimensional SCFTs seems to be special. In particular, as we will review

shortly, the problem of when a given operator can acquire a vev can be conjecturally

formulated in terms of a set of precise conditions on the operator algebra in the four

dimensional case. These heavily rely on the complex structure that these moduli spaces

inherit by virtue of supersymmetry, and, relatedly, on the shortening conditions sat-

isfied by the BPS operators whose vevs parametrize the space. In five (N = 1) and

six (N = (1, 0)) dimensions there are well-known examples of moduli space of vacua

parameterized by real coordinates which carry no action of the R-symmetry group [39–

42]. These are clearly counter-examples to the set of conjectural conditions that we

summarize below. More recently, it was pointed out that in three dimensions with

N = 1 supersymmetry, time reversal symmetry can ensure the existence of real moduli

space of vacua whose corresponding operators neither belong to short multiplets nor

satisfy chiral ring relations [43].

Another feature that singles out four dimensions from the rest is the fact that

the gauge coupling is dimensionless. This in turns allows us to study a large class of

SCFTs reliably at arbitrarily weak coupling and so to make precise statements relating

the SCFT operator algebra to the coordinate ring of the moduli space.

In the following we will first review some of the issues involved in making a con-

nection between the local operator content of four-dimensional CFTs and their moduli

space geometries. The goal is both to introduce the central notion of chiral rings as

a, conjecturally, necessary and sufficient condition for the existence of a moduli space

of vacua in four dimensions as well as to describe the structures on chiral rings of

N < 3 theories. The N = 3 supersymmetric case will be analyzed in the next section.

There, elaborating on the material presented in this section, we will highlight the new

structures which arise with N = 3 supersymmetry.

2.1 Chiral ring generalities

We start with the empirical observation that all known examples of moduli spaces in 4d

CFTs are associated with the existence of supersymmetry and of chiral rings. With this

in mind, in this section we make an attempt at singling out a minimal set of assumptions

for the existence of such moduli spaces. Note that supersymmetry is not part of the

assumptions; see section 2.2.1. This leads to a collection of results and conjectures,

which are mostly known to experts but do not necessarily appear gathered in a single

place in the literature. Concerning notations, we indicate the (super)translationally

invariant vacua with the generic letter u and the set of all allowed such values, that is
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the moduli space of vacua, with M. When we refer to the value of the vev of a specific

operator φa at u we will use the shorthand notation

ua := ⟨φa⟩u . (2.1)

We now state our main assumptions. Throughout this paper, we consider CFTs in

four dimensions which satisfy two conditions:

A. The theory has a U(1) conserved charge R such that the scaling dimension ∆ of

every local operator in the CFT satisfies

∆ ≥ |R| . (2.2)

We denote generically by φa the operators that saturate the bound with ∆ = R

and call them chiral, and φa those which saturate the bound with ∆ = −R, and
call them anti-chiral.

B. In any (super)translationally invariant vacuum u, the vevs of products of chiral

operators which can acquire a vev are independent of their spatial separation

∂x⟨φa(x)φb(0)⟩u = 0 , (2.3)

and similarly for anti-chiral operators.

A crucial consequence of these assumptions is that the operators which saturate

the bound (2.2) φa satisfy an operator product expansion (OPE) of the form

φa(x)φb(0) ∼
∑︂
c

Cc
ab φc(0) + (regular terms vanishing as x→ 0) . (2.4)

Indeed U(1) charge conservation implies their OPEs have no singular terms as their

space-time separation vanishes, x → 0, and that the leading terms (independent of

x) are other such primaries. The regular terms in (2.4) can either be descendants or

conformal primaries which do not saturate (2.2). In superconformal theories, the φa

are usually components of superconformal primaries of short multiplets with positive

U(1) charge. The shortening condition is a consequence of the fact that they saturate

the bound (2.2) (more below). This is the reason for calling them the chiral operators.

Similarly, the φa operators satisfy an analogous OPE and set of shortening conditions,

thus the name anti-chiral.

The limit of the algebra (2.4) as x→ 0 gives

φaφb =
∑︂
c

Cc
ab φc. (2.5)

This defines a ring structure, called the chiral ring, and this leads to the following
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Conjecture 1. The set of chiral operators φa which can acquire a vev, form an in-

finite basis of a ring thought of as a vector space over C. (2.5) are an infinite set of

relations defining the ring product. The Cc
ab are constrained by graded commutativity

and associativity of the ring product.

Conjecture 2. The set of all operators which can acquire a vev are products of chi-

ral and anti-chiral operators, and they satisfy no further relation in addition to the

aforementioned chiral ring relations.

The OPE (2.4) is valid in general only in the conformal vacuum. Applying (2.4)

inside an expectation value in a putative vacuum 0 ̸= u ∈ M which breaks conformal

invariance spontaneously, is a priori valid only if |x| is much less than the smallest

length scale associated to the vevs ⟨φa⟩u := ua at the u ∈ M vacuum. This is where

the condition B, see (2.3), comes in: it implies that the vev of the left side of (2.4)

at u ∈ M is independent of x, and so cluster decomposition in the |x| → ∞ limit

implies ⟨φa(x)φb(0)⟩u = ⟨φa⟩u⟨φb⟩u = uaub, using the notation (2.1). Assigning non-

zero complex vacuum expectation values ua ̸= 0 is consistent with the OPE algebra

(2.4) as long as

Conjecture 3. The vevs ua ∈ M obey the holomorphic ring relations

uaub =
∑︂
c

Cc
abuc, (2.6)

and any other “regular” superconformal primaries appearing on the right side of (2.4)

are assigned zero vev.

Hermitian conjugation gives the anti-chiral ring relations

φaφb =
∑︂
c

C
ab

c φc, (2.7)

made up of operators satisfying ∆ = −R, and assigning consistent complex vevs gives

the anti-holomorphic coordinate ring of M. The chiral and anti-chiral primary opera-

tors satisfy a non-trivial operator product algebra,

φa(x)φ
b(0) ∼ 1

|x|2∆b

[︂∑︁
cD

bc
a φc(0) + reg.

]︂
(∆a ≥ ∆b). (2.8)

U(1) charge conservation implies that the only chiral primaries which can appear on

the right side of (2.8) are those with dimension ∆c = ∆a − ∆b. It is known how to

compute a subset of the Dbc
a in N = 2 gauge SCFTs, see for instance [44, 45]. But the

Dbc
a do not enter directly into the moduli space coordinate ring. This is because the
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|x| → 0 and |x| → ∞ limits of vacuum expectation values of the left side of (2.8) — at

points on M away from the superconformal vacuum — are not related in any simple

way; cf. [46].

Another conjecture is that conditions A and B are also sufficient for flat directions

corresponding to ⟨φa⟩ to exist. That is, there exists a vacuum with spontaneously

broken conformal invariance corresponding to every assignment ⟨φa⟩ = ua ∈ C which

satisfies the ring relations (2.6). Since the only consistent assignment of vev to a

nilpotent element is zero, this sufficiency conjecture implies

Conjecture 4. The reduced ring corresponding to (2.5) — i.e., the quotient of the

chiral ring by its nilradical — is the holomorphic coordinate ring of M in a particular

complex structure.1 Explicitly

C{M} := C[u1, ..., un]/I(M) (2.9)

where I(M) := ⟨uaub −
∑︁

cC
c
abuc⟩, is the ideal generated by the holomorphic ring

relations (2.6).

It is important to the note that not all holomorphic coordinate rings of M arise this

way. In fact, we will find examples of holomorphic coordinate rings with respect to

the “special” complex structure of a TSK space for which there does not correspond a

chiral ring in the SCFT. This point will be discussed in detail below in section 5.2.5.

The U(1) charges available for playing the role of R in the ∆ ≥ |R| constraint in
CFTs are U(1) factors in a Cartan subalgebra (maximal torus) of the compact bosonic

symmetries, which are Lorentz rotations and R-symmetries.2 These U(1) charges are

thus the weights of the Lorentz and R-symmetry irreducible representations (irreps) of

the fields; we will present a systematic review below.

Finally, the chiral operators φa appearing in (2.4) need not in principle be Lorentz

scalars, and, indeed, in 4-dimensional SCFTs chiral operators with [jL > 0, jR = 0]

do occur. If such Lorentz non-singlets contribute to the reduced chiral ring, they can

consistently be assigned non-zero constant vevs, thus spontaneously breaking Lorentz

invariance without breaking supertranslation invariance. It is not known whether such

moduli spaces can occur, though it is generally assumed that they do not. Lorentz

1In the presence of extended supersymmetry, different choices of complex structures are identified

by different choices of the supercharge which annihilates the φa’s. Below we will explain this point in

detail.
2Since flavor symmetries are not part of the superconformal symmetry, unitarity conditions do not

bound dimensions in terms of flavor charges. It is conceivable that constraints from crossing symmetry

in specific theories could relate dimensions to flavor symmetry representations enforcing a relation like

(2.2).
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invariance is automatically unbroken if Lorentz non-singlet chiral operators in the spec-

trum of local operators are in the nilradical of the chiral ring. Otherwise, given our

current knowledge, it would be necessary to impose “by hand” that this class of opera-

tors do not get vevs, and the sufficiency conjecture mentioned above would be violated.

2.2 Chiral rings for N < 3 CFTs

It is helpful to see this general discussion in action in the context of 4 dimensional CFTs

with various amounts of supersymmetry. To this end let us first review the constraints

which come from superconformal representation theory [47].

The superconformal algebra in 4 dimensions with N supersymmetries is su(2, 2|N )

for N ≤ 3 and psu(2, 2|4) for N = 4. We focus here on the case N ≤ 3. The bosonic

subalgebra is

su(2, 2|N ) ⊃ so(4, 2)⊕ su(N )R ⊕ u(1)r. (2.10)

Here so(4, 2) is the conformal algebra, with maximal compact subalgebra su(2)Left ⊕
su(2)Right ⊕ so(2)∆. A representation is specified by its Lorentz spins3 [jL, jR], its

conformal dimension ∆, its su(N )R highest weight R = (R1, · · · , RN−1) and its u(1)r
charge r, and, following [47], we denote it by

[jL, jR]
(R,r)
∆ . (2.11)

Conjugation acts as (︂
[jL, jR]

(R,r)
∆

)︂†
= [jR, jL]

(R,−r)
∆ . (2.12)

The Poincaré supercharges transform in two irreducible representations,

Q ∈ [1, 0]
(fund,−1)
1/2 Q ∈ [0, 1]

(fund,+1)
1/2 , (2.13)

and similarly for the S-supercharges,

S ∈ [1, 0]
(fund,+1)
−1/2 S ∈ [0, 1]

(fund,−1)
−1/2 . (2.14)

For unitary SCFTs in four dimensions, operators φa saturate a ∆ = R bound

only if they are annihilated by at least one set of anti-chiral — i.e., Lorentz labels

[jL, jR] = [0, 1] — supercharges, Q
(I)
. This implies that the superconformal multiplets

to which the φa belong are special in that they satisfy shortening conditions. We will call

these multiplets chiral multiplets and, as already mentioned above, the φa chiral fields.

Furthermore we will call the set of φa’s saturating the ∆ = R bound and all annihilated

3We follow the conventions of [47] and normalize the Lorentz spins to be integers, so that they are

the Dynkin labels of the su(2)Left ⊕ su(2)Right irreps.
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by the same Q
(I)

a set of co-chiral fields. In a SCFT with extended supersymmetry

the set of co-chiral fields depends on the choice of the supercharge Q
(I)
, I = 1, ...,N

defining the chiral ring. The assumption that the vacua ua ∈ M do not spontaneously

break the supertranslation symmetry implies that the vacua are annihilated by the

supercharges. This, together with the supertranslation algebra {Q(I), Q
(I)} = P , then

implies (2.3) as a supersymmetric Ward identity and thus:

Result 1. Chiral rings appear naturally in 4d SCFTs and the operators φa satisfying

(2.5) belong to a set of co-chiral fields. That is, they are the components of chiral (short)

multiplets which are all annihilated by a chosen supercharge.

Supertranslation symmetry also implies that the regular terms on the right side of

(2.4) are annihilated by the Q
(I)
, and since they are not chiral primaries, they must

be Q
(I)
-exact, i.e., superconformal descendants of chiral primaries. By the assumed

supertranslation invariance it follows that

Result 2. In any consistent vacua u ∈ M superconformal descendants automatically

have zero vev.

It is worth clarifying the differences between the different choices of the supercharge

defining the chiral ring. First notice that operator products of chiral multiplet primaries

close on other chiral multiplets, but may have singular terms in their OPE, because,

while the U(1)r charges of multiplets are additive, the Dynkin labels (highest weights) of

SU(N )R irreps are not. This is another way to see what was stated in Result 1, which

is that only special primary components of chiral multiplets enjoy operator product

algebras of the form (2.4) and thus form a chiral ring. These components are precisely

those annihilated by the chosen supercharge defining the set of co-chiral fields.

An obvious choice for these special chiral supermultiplet components are those

which carry highest weight, i.e., for which λ = R. Their operator products can only

close on other such chiral fields in multiplets whose Dynkin labels are the sum of

those of the original multiplets. These are then holomorphic fields φa satisfying (2.4).

Similarly, their hermitian conjugates are primaries of anti-chiral multiplets of lowest

weight λ = −R, and so are fields φa satisfying anti-chiral ring relations (2.7). There

are other non-highest-weight supermultiplet components which also satisfy (2.4), but

this kind of enlargement of the chiral ring only occurs for N ≥ 3 supersymmetry.

This does not exhaust all the possibilities for subsets of primary chiral fields whose

products satisfy chiral ring relations. In particular, a highest weight R of an irrep

of the su(N )R Lie algebra is highest with respect to an arbitrary choice of a basis of

simple roots of su(N )R. So other subsets of fields which form a chiral ring are the
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Shortening

Conditions

L

∆ > 2 + δ

A

∆ = 2 + δ

B

∆ = δ

Chiral

L

∆ > 2 + δ

[jL; jR]
(R;r)
∆

A∆
R,r,(jL;jR)

[jL; jR]
(R;r)
∆

r > r∗

CR,r,(jL;jR)

[jL; 0]
(R;r)
∆

r > r∗ +
1
β

BR,r,jL

A

∆ = 2 + δ

[jL; jR]
(R;r)
∆

r < r∗

CR,r,(jL;jR)

[jL; jR]
(R;r)
∆

r = r∗ˆ︁CR,(jL;jR)

[jL; 0]
(R;r)
∆

r = r∗ +
1
β

DR,jL

B

∆ = δ

Antichiral

[0; jR]
(R;r)
∆

r < r∗ − 1
β

BR,r,jR

[0; jR]
(R;r)
∆

r = r∗ − 1
β

DR,jR

[0; 0]
(R;r)
∆

r = r∗

Chiral-Antichiralˆ︁BR

Table 1. Consistent unitary multiplets in four-dimensional theories with any number of su-

persymmetries N = 1, 2, 3, 4 are represented in the first table. Boxes shaded in yellow contain

chiral multiplets, those shaded in green contain anti-chiral multiplets, and the box shaded in

red contains chiral-antichiral multiplets. In each box we indicate in blue the translation in

the notation of [48]. The constants r∗, δ, δ, α, α and β are given in equations (2.15), (2.16),

(2.17) and (2.18).

highest weight primaries of chiral supermultiplets with respect to each different basis

of simple roots. The different bases of simple roots form an orbit of the action of the

Weyl group, Weyl[su(N )R] = SN . SN , the symmetric group whose action on the weight

space is generated by reflections through hyperplanes orthogonal to the roots, acts by

permuting the supercharges Q
(I)
, I = 1, ...,N , and thus the corresponding different

choices of co-chiral fields.

In addition, the choice of Cartan subalgebra of su(N )R is not unique, and can be

rotated to other choices by conjugation by the su(N )R symmetry generators. Since, as

we will review below, a choice of a supercharge defines a complex structure on M and

the nonabelian R-symmetries do not act holomorphically on M it follows that

Result 3. Rotating the choice of Cartan subalgebra in general corresponds to rotating

the splitting of the M coordinate ring into its chiral and anti-chiral parts (2.5) and

(2.7). This corresponds to choosing a different complex structure on M.

The rest of this section will be dedicated to characterizing the possible chiral mul-
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tiplets which can arise with various amount of supersymmetry and their corresponding

chiral fields. Following [47], the shortening conditions on the various multiplets for

four dimensional SCFTs are summarized in Table 1. To simplify the notation, we

choose a slightly different naming scheme compared to [47]. Specifically we have re-

moved the subscript for both the A (and A) and B (and B) shortening condition, so

Aℓ,Bℓ → A,B. This is because (i) the distinction between A1 and A2 will make no

difference in the analysis below and (ii) in four dimension there is only oneB shortening

condition.

In Table 1 the following definitions are used:

δ := jR +α ·R+ βr (2.15)

δ := jL +α ·R− βr (2.16)

r∗ :=
1

2β
(jL − jR + (α−α) ·R)) (2.17)

where α, α and β are (vectors of) positive constants given by

Supersymmetry Algebra α α β

N = 1 u(1)R
3
2

N = 2 su(2)R ⊕ u(1)R (1) (1) 1
2

N = 3 su(3)R ⊕ u(1)R
(︁
2
3
, 4
3

)︁ (︁
4
3
, 2
3

)︁
1
6

N = 4 su(4)R
(︁
1
2
, 1, 3

2

)︁ (︁
3
2
, 1, 1

2

)︁
(2.18)

2.2.1 Non-supersymmetric 4d CFTs

In this case only the Lorentz weights are available to play the role of the U(1) charge

protecting the chiral ring relations. Of the unitary representations listed in table 26 of

[47], only the identity operator saturates a bound proportional to a linear combination

of the Lorentz spins, so there is no chiral algebra enforced simply by unitarity and

conformal invariance, and so presumably there is no spontaneous breaking of conformal

invariance in genuinely N = 0 CFTs if a chiral algebra is a necessary condition for the

existence of a moduli space. It is conceivable that other restrictions on the operator

spectrum of a CFT, such as those following from crossing symmetry and some global

internal symmetries, might lead to the “accidental” existence of a chiral algebra of

local operators in specific theories. But without the supersymmetric Ward identity

that makes chiral correlators independent of the operator positions, it is not clear how

or if the existence of such an algebra can be connected to the existence of a moduli

space.
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2.2.2 N = 1 SCFTs

These theories have a U(1)R R-symmetry, and their chiral multiplets are the type XB

or BX where X ∈ {L,A,B}. From Table 1 and (2.15)-(2.17) these all have scaling

dimension ∆ = 3
2
|r|. All such fields with positive r then form a chiral ring as in (2.5)

while their conjugates with negative r form the anti-chiral ring as in (2.7). The BB

multiplet is the identity, and the AB multiplets are all (perhaps higher-spin) free fields.

So only the LB multiplets, which have [jL, jR] = [j, 0] and r > 1
3
(j + 2), contribute

chiral algebra operators in an interacting N = 1 SCFT.

General restrictions on the types of chiral multiplets that can occur in N = 1

SCFTs do not seem to be known. In examples of N = 1 SCFTs which come from

relevant or marginal deformations of free gauge theories, [1, 0] chiral multiplets do

occur,4 but the authors are not aware of any examples where higher-spin [j ≥ 2, 0]

chiral multiplets are known to occur. It is not known whether crossing symmetry

forbids higher-spin bosonic chiral multiplets in interacting N = 1 SCFTs, nor is it

known whether it implies that the j = 0 scalar LB chiral multiplets must occur. In

all examples we are aware of, however, such scalar chiral multiplets do occur, and a

moduli space of vacua with spontaneously broken scale invariance exists.

2.2.3 N = 2 SCFTs

Now there are two independent u(1) internal charges corresponding to the rank two

u(2)R symmetry. The potential chiral multiplets have scaling dimension ∆ = R + r
2
.

From the point of view of the N = 2 moduli space, vevs of Lorentz scalar chiral

primaries are complex coordinates on either a Coulomb branch (if R = 0), a Higgs

branch (if r = 0), or a mixed branch (ifR r ̸= 0). The operators whose vevs parametrize

each branch, form a corresponding chiral ring which are therefore called Coulomb, Higgs

and mixed chiral rings. See Figure 1.

In detail, the BB multiplets with general R are known as Higgs branch operators

and their OPEs contain the Higgs branch chiral ring, and together with the R ≥ 2

AB operators form the Hall-Littlewood chiral ring [52]. It is argued in [13] that the

R ≥ 2 AB chiral operators are nilpotent, so the reduced Hall-Littlewood chiral ring

is the Higgs branch chiral ring. The Coulomb branch chiral ring is generated by those

scalar LB chiral multiplet primaries φ
[0,0]
a with R = 0. Finally the mixed branch chiral

ring is generated by scalar primaries of the LB chiral multiplet with R ̸= 0. Explicit

examples of chiral rings of theories containing mixed branches were worked out in [17].

Some general restrictions on the types of chiral multiplets that can occur in N = 2

SCFTs are known. First, the BB multiplets (which have scalar primaries with r = 0)

4In N = 1 superfield language, they are the Tr(ΦkWα) multiplets of [49–51].
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r

R

Qλ=−1

Qλ=+1

Q
λ=+1

Q
λ=−1

φ

φ

a

FF

a

Higgs branch operators

Coulomb branch operators

Figure 1. Hypermultiplet (type BB with R = 1, represented in blue) and vector multiplet

(type AB and BA, represented in green) in N = 2 theories. The big dots represent the

scalar operators: φ, φ in the hypermultiplet (with r = 0) and a,a in the vector multiplet

(with R = 0). The small dots without label represent the fermions in the corresponding

multiplets. The arrow in the upper right corner denotes the action of the Weyl group.

are free fields for R < 2, and the AB multiplets (which have [jL, jR] = [j, 0] and

r = j+2) are free, or have extra supersymmetry currents, or have higher-spin currents

for R < 2, so do not occur in interacting, genuinely N = 2 SCFTs. The BB multiplet

with R = 2 contains a conserved flavor symmetry current, so any N = 2 SCFT with a

continuous flavor symmetry necessarily has a chiral algebra. Finally, it was shown in

[53] that N = 2 SCFTs do not have “exotic chiral multiplets” — non-scalar LB chiral

multiplets with R = 0.

Extra constraints can be obtained by noticing that the choice of the Cartan gener-

ator R in su(2)R is a matter of convention, and any given choice of Cartan subalgebra

can be rotated to any other by conjugation by an element of SU(2)R. Such a rotation,

thus corresponds to a non-holomorphic isometry of the Higgs branch (or, more gener-

ally, the hyperkähler factors) of N = 2 moduli space, and so corresponds to rotating

the CP1 of hyperkähler complex structures. In terms of the chiral ring, this rotation

corresponds to different ways of splitting the moduli space coordinate ring (2.5) and
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(2.7) into its chiral and anti-chiral parts. The elements of a Lie group which leave any

choice of Cartan subalgebra invariant (as a whole, not point-wise) defines its discrete

Weyl subgroup. In the case of SU(2)R, the Weyl group is Z2 whose nontrivial element

acts to reflect weights as λ ↦→ −λ. Since supermultiplets are irreps of SU(2)R, its Weyl

subgroup maps supermultiplets to themselves.

For the BB chiral/anti-chiral multiplets, the “Higgs branch operators”, this map-

ping takes the co-chiral set of highest weight λ = R operators to a different co-chiral

set of lowest weight λ = −R operators. The λ = R set are chiral with respect to

(i.e., annihilated by) Q
λ=1

while the λ = −R set are chiral with respect to the other

supercharge Q
λ=−1

, see Figure 1. But for the BB multiplets, components chiral with

respect to Q
λ=−1

are automatically also anti-chiral with respect to Qλ=−1 = [Q
λ=1

]†.

Thus the Z2 Weyl group maps the Higgs branch chiral ring to its anti-chiral ring. This

implements the anti-holomorphic involution characteristic of any complex structure of

a hyperkähler manifold.

For the rest of the chiral multiplets — those of types LB or AB — the Weyl group

maps the co-chiral operators with highest weights λ = R to operators with λ = −R

but the same sign of r. In the case R = 0 — the “Coulomb branch operators” — the

two sets coincide, but for R > 0 — the “mixed branch operators” — they are distinct

and the λ = −R set do not form a chiral ring. Thus there is no Weyl group action on

the coordinate ring of a mixed branch and it acts trivially on the Coulomb branch.

3 Chiral rings for N = 3 SCFTs

With the N < 3 chiral rings behind us, we now turn to our main concern, the structure

of N = 3 chiral rings. The discussion will be similar to that of the mixed branch rings

of the N = 2 case, but will be more constrained as there is now only a single type of

complex geometry describing any component of the moduli space, the TSK structure

which will be introduced in the next section. The constraints which arise by bringing

together the TSK analysis of section 4 and 5, with the chiral ring data discussed in this

section, will be addressed in section 6. The qualitatively new structure that arises in the

chiral ring of N = 3 CFTs compared to ones with N < 3 is essentially due to the fact

that the rank of su(3)R is greater than 1 and that su(3)R has complex representations.

To identify a set of co-chiral primaries, we first choose a particular Q
λ
supercharge

with respect to which they are chiral (i.e., which annihilates them). Q transforms

as [0, 1]
(0,1),1
1/2 , with su(3)R weights λ = (0, 1), (1,−1), (−1, 0). For concreteness, let’s

choose Q
λ=(0,1)

to be our annihilating supercharge. This is equivalent to choosing an
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(a)

(0 1)

(1 0)

(b)

(0 1)

(1 0)

(b)

Q

Q

Q

Q
Q

Q

Figure 2. su(3)R weight lattice, with vectors showing a basis of fundamental weights. (a)

Green dots are the 3, or R = (0, 1) weights, and the orange dots are the R = (0, 2) weights

of the Q
λ
, λ ∈ R = (0, 1), null states. The only component of a chiral multiplet in the 3

annihilated by Q
(0,1)

alone is the one with highest projection along the λ = (0, 1) direction,

shown as the one lying on the dashed line. (b) Red dots are the 3, or R = (1, 0) weights,

and the blue dots are the R = (1, 1) weights of the Q
λ
null states. The components of a

chiral multiplet in the 3 annihilated by Q
(0,1)

alone are the two lying on the dashed line. The

light blue arrows show the choice of simple roots with respect to which our Dynkin labels are

defined. Below in the three-dimensional u(3)R weight lattice, we represent the weights of Q

and Q, which in addition to the su(3)R weights (R1, R2) take into account the u(1)r charge

r.

N = 1 subalgebra of the N = 3 algebra and thus a particular complex structure on

M.

Consider an XB superconformal primary in the R = (R1, R2) irrep of su(3)R.
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Acting by Q we obtain operators transforming in the (R1, R2)⊗(0, 1) which is in general

a reducible representation. The null states lie in the (R1, R2 + 1) [47]. A component

of the (R1, R2) irrep with weight (λ1, λ2), is mapped by the top component Q
(0,1)

to a

state with weight (λ1, λ2 + 1). The null representation always contains a component

with such a weight, but that is not enough to assert that (λ1, λ2) is annihilated by

Q
(0,1)

since (λ1, λ2 + 1) might also appear as a weight of a non-null representation in

the decomposition of (R1, R2) ⊗ (0, 1). We conclude that (λ1, λ2) is null if and only if

(λ1, λ2 + 1) does not appear in any non-null irreps of (R1, R2)⊗ (0, 1). It follows that:

The primary components of XBR with weights λ which have

the maximum value of α · λ are the ones annihilated by Q
(0,1)

. (3.1)

This characterizes the chiral ring operators with respect to a given choice of N = 3

supercharge.

This can be understood very easily by drawing the weight diagrams. For example,

the highest weight component of a chiral multiplet in the 3, or R = (0, 1), of SU(3)R is

annihilated Q
(0,1)

, but the other two components are not. This is because theR = (0, 2)

null states are reached by a combination of Q
(0,1)

together with Q
(1,−1)

or Q
(−1,0)

acting

on various components of the 3 multiplet. This is illustrated in figure 2(a). On other

hand, two weights of the 3, or R = (1, 0), irrep are annihilated by Q
(0,1)

, as illustrated

in figure 2(b). As described below theR = (1, 0) andR = (0, 1) are both identified with

the N = 3 free vector multiplet, thus the result depicted in fig. 2 implies that under

a given choice of the complex structure only a U(2) ⊂ U(3)R acts holomorphically

on M. This we will be derived even more explicitly below. Note that although in

these examples all the components chiral with respect to Q
(0,1)

are highest weights

with respect to some choice of SU(3)R simple roots, this need not always be the case;

figure 3 illustrates an example of the more general situation.

Type BB (chiral/anti-chiral) multiplets. The BB multiplets transform in rep-

resentation (see Table 1)

[0, 0]
(R1,R2),r
∆ with r = 2(R1 −R2) ∆ = R1 +R2 . (3.2)

They are entirely determined by R = (R1, R2), so we denote them BBR. They form

the analog of the N = 2 Higgs branch operators, though from the N = 2 perspective

they also contain Coulomb and Mixed branch operators. The BBR multiplets with

R1 +R2 ≤ 2 are special:

• The R = (0, 0) is the identity operator.
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χ

χ

χ

χ

χ

χ
(0 1)

QQ

Q

Figure 3. Above: su(3)R weight lattice with weights of theR = (0, 4) in red, of theR = (4, 0)

in green, and of the R = (1, 1) in blue. The chiral components of these BB multiplets, i.e.,

those annihilated by Q
(0,1)

, are the ones on the dashed “χ” lines. The anti-chiral components

are those on the dotted “χ” lines. Below: same objects in the full u(3)R weight lattice (see the

Appendix for details on this representation). In the three-dimensional depiction, the chiral

(respectively anti-chiral) components appear on the faces of the cubes.

• The R = (1, 0) and R = (0, 1) are free vector multiplets. See Figure 4.

• The R = (1, 1) is the N = 3 stress-tensor multiplet, so must be present in a local
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Q2

Q1

Q3

a2

a1

a3

ψ ψ3

ψ2

ψ1

F

Q
Q

Q

Figure 4. On the left is the weight diagram of u(3)R, with the components of the free vector

multiplet BB(1,0). Compare with the N = 2 case in Figure 1. On the right, this is the same

diagram, with only the Lorentz scalars represented. Note that these are the same scalars as

in the N = 4 vector multiplet. For clarity in the left diagram we have represented only the

BB(1,0) part of the full vector multiplet, the other half BB(0,1) having opposite weights.

CFT. See Figure 5. Thus every localN = 3 SCFT has a chiral ring, and, assuming

this ring is not nilpotent, therefore a moduli space of vacua. The BBR=(1,1)

multiplet contains an N = 2 BBR=1 Higgs branch multiplet and an XB mixed

branch multiplet both of dimension 2, but no N = 2 Coulomb multiplets [34].

Since, as will be discussed in the next section, low energy N = 3 supersymmetry

implies that an N = 3 moduli space will have both an N = 2 Higgs branch and

an N = 2 Coulomb branch subspace, it follows that additional chiral multiplets

beyond the BBR=(1,1) multiplet must occur in an N = 3 SCFT.

• The R = (2, 0) and R = (0, 2) contain additional conserved supercurrents, so

their occurrence indicates an enhancement to N = 4 supersymmetry. See figure

6.

The BBR = transforming in the R = (R, 0) contains CB operators [29, 34]. The

same argument for the anti-chiral ring implies that there must be a BB multiplet

with R = (0, R) as well. Symmetric products of the SU(3)R R = (1, 1) (adjoint) irrep

contain (3n, 0) and (0, 3n) irreps, so it is possible that the stress-energy OPEs can close

– 19 –



Q
Q

Q

Figure 5. N = 3 energy-momentum multiplet, which is the BB with R = (1, 1), where

only the Lorentz scalars are represented. The bottom component transforms in [0, 0]
(1,1),0
2

and is represented in green. The components at ∆ = 3 transform in [0, 0]
(0,1),−2
3 (blue) and

[0, 0]
(1,0),2
3 (red). The colored planes correspond to su(3)R irreducible representations.

on BB multiplets of dimension 3n containing CB and mixed Higgs-Coulomb branch

operators. Of course the N = 3 operator spectrum can contain BB in other (R, 0)

and (0, R) irreps, even though they can’t appear in the stress-tensor multiplet OPEs

with itself. In Figure 3 we depict instead the chiral operators provided by three BB

in the (4, 0), (0, 4) and (1, 1) representation.5 The N = 3 BB(0,4) multiplet has one

N = 2 BB4 highest weight Higgs branch chiral ring field, while the N = 3 BB(4,0) has

as co-chiral ring fields: one N = 2 BB4 Higgs branch, three XB3,2,1 mixed branch, and

one XB0 Coulomb branch, all of dimension 4.

Let’s now repeat the analysis performed in the N = 2 case and discuss the con-

straints arising from rotating the choice of Cartan subalgebra by conjugation by SU(3)R.

These transformations act as a non-holomorphic isometries of M. It translates the

moduli space complex structure within the CP2 of distinct TSK complex structures, as

described in Section 4. Such an SU(3)R rotation thus generally gives a different way

of splitting the moduli space coordinate ring into holomorphic and anti-holomorphic

rings.

5This example corresponds to the operator content of a physical rank-1 N = 3 theory: the chiral

ring generated by these operators is the coordinate ring of the (k = 4, ℓ = 4) theory in [31].
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Q
Q

Q

Figure 6. N = 3 multiplets BB with R = (2, 0) and R = (0, 2) where only the Lorentz

scalars are represented. The bottom components transform in [0, 0]
(2,0),4
2 and [0, 0]

(0,2),−4
2 and

are represented in green. Then we have components at conformal dimension ∆ = 3, namely

[0, 0]
(0,2),2
3 (blue) and [0, 0]

(0,0),6
3 (red) from the R = (2, 0) multiplet, and similarly [0, 0]

(2,0),−2
3

(red) and [0, 0]
(0,0),−6
3 (blue) from the R = (0, 2) multiplet. Finally there are two singlets

at ∆ = 4, [0, 0]
(0,0),0
4 (yellow) which correspond to the exactly marginal deformations. The

colored planes correspond to su(3)R irreducible representations.

Again the Weyl group identifies those elements which preserve a given choice of

the Cartan. In the SU(3)R, the Weyl group is the permutation group on 3 objects,

S3 ≃ Z3 ⋊ Z2, generated by elements W(12) ∈ Z2 and W(123) ∈ Z3 which we take to

act on SU(3) weights as W(12) : (λ1, λ2) ↦→ (−λ1, λ2 + λ1) and W(123) : (λ1, λ2) ↦→
(−λ1 − λ2, λ1). Take the complex structure of M induced by the Q

λ=(0,1)
supercharge.

Then, since W(12) fixes λ = (0, 1), a Z2 subgroup of the Weyl subgroup of SU(3)R
preserves the complex structure of M and it maps the chiral ring fields to themselves,

so its action gives a holomorphic involution of the chiral ring. This is apparent in the

weight diagrams of Figures 2 and 3, where W(12) acts by reflection through the line in

the (0, 1) direction. Note that from an N = 2 perspective this involution mixes up the

Higgs, mixed, and Coulomb branch operators. For example, in the case of the N = 3

BB(4,0) multiplet, the N = 2 BB4 Higgs chiral ring field is exchanged with the N = 2

XB4 Coulomb field, and the N = 2 XB and XB3 mixed branch chiral ring fields are

also interchanged. In the case of the N = 3 BB(1,1) multiplet, the N = 2 BB2 Higgs
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chiral ring field is exchanged with the N = 2 XB mixed branch chiral ring field.

The other four non-trivial elements of the SU(3)R Weyl group besides W(12) re-

flect or rotate Q
(0,1)

to the Q
(−1,0)

or Q
(1,−1)

supercharges so they change the complex

structure on M. These elements thus map the chiral ring to a different co-chiral set of

multiplet components forming an isomorphic chiral ring.

3.1 Differences between N = 4 and genuinely N = 3 chiral rings

Because of the enlarged bosonic symmetry of the super-conformal algebra, N = 4

superconformal representations are labelled by a SU(4) weightsR = (R1, R2, R3). It can

be shown that conserved currents can only resides inAA in the singlet representation of

SU(4) and BB multiplet with R1+R2+R3 ≤ 2 [47]. The BB have ∆ = R1+R2+R3 as

well as R1 = R3. Of particular relevance are those with R1 = R3 = 0 and in particular:

BB(0,1,0) This is the N = 4 free vector multiplet that coincides with the N = 3

BB(1,0) ⊕BB(0,1) free vector multiplet, see figure 4.

BB(0,2,0) This is the N = 4 stress-tensor multiplet, see figure 7. In N = 3

language this decomposes as the sum of three multiplet, namely the

BB(2,0), BB(0,2) and BB(1,1). The latter is the N = 3 stress-tensor

multiplet while the first two contain extra supercurrents, an exactly

marginal deformation as well as a chiral N = 2 CB operator.

BB(0,p,0) This multiplet contains N = 2 Coulomb branch of dimensions p. It

decomposes into p+ 1 N = 3 multiplets, namely

BB(0,p,0) −−−−−−−→
N=4 to N=3

⨁︂
R1+R2=p

BB(R1,R2) (3.3)

From the decomposition above it follows, even more straightforwardly than in the

N = 3 case, that N = 4 theories always have a CB and even more specifically a

dimension 2 globally defined CB coordinate as well as an exactly marginal operator

which is identified with the holomorphic gauge coupling of the theory. A genuine

N = 3 theory has, on the contrary, no exactly marginal deformation and no dimension

2 CB coordinate.

Since the structure of the freeN = 3 superconformal multiplet, BB(1,0) and BB(0,1)

coincides with the free N = 4 one, BB(0,1,0), the structure of the moduli space of N = 4

theories is largely similar to what we have thus far described. The main difference is

that in the N = 4 case the full space of CP3 ∼= SU(4)/SU(3)×U(1) of possible complex

structures, is physical. This will be described in more details below but can already be
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Q

Figure 7. N = 4 stress-tensor multiplet, which is the BB with R = (0, 2, 0), where only

the Lorentz scalars components are represented. Each dot represents an su(4)R weight; the

su(4)R weight lattice has been drawn in such a way that the u(3)R lattice of the previous

figures is a sublattice. The bottom component transforms in [0, 0]
(0,2,0)
2 and is represented

in green. The components at ∆ = 3 transform in [0, 0]
(0,0,2)
3 (blue) and [0, 0]

(2,0,0)
3 (red).

Finally we have two singlet scalars in [0, 0]
(0,0,0)
4 which correspond to the exactly marginal

deformations (yellow).

understood by noticing that two components of the BB(0,1,0) primary are chiral/anti-

chiral along with two more that are each separately chiral and anti-chiral. Thus the

complex structure of the N = 3 moduli space where all the special coordinates are

holomorphic, is now compatible with the structure of the SCFT.

Let’s quickly discuss some possible restriction on N = 4 multiplets. In [36] is noted

that the multiplets parametrizing the moduli space of a rank-r N = 4 theory, can be

accounted by the chiral component of r BB0,∆i,0, where ∆i, i = 1, ..., r, are the CB

scaling of the theory under the N = 2 decomposition. This is true for all known cases

but those with Dn gauge Lie Algebra with n ≥ 4. In this case extra multiplet are

present. For n < 6 those are all of the form BB(3,n−4,3) but more operators are present
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to account for the moduli space structure as n increases.

4 Conditions from low energy N = 3 supersymmetry

In the sections above, we have analyzed necessary conditions for the existence of an

N = 3 moduli space of vacua and some of the contraints implied by the structure of the

interacting superconformal operator algebra. We now revise this discussion assuming

the existence of vacua which preserve N = 3 supersymmetry and anlyze in detail the

implications on the low-energy effective theory that follow.

First, if the CFT has a vacuum spontaneously breaking conformal invariance but

preserving N = 3 supersymmetry, then it necessarily has a dilaton, and so a whole

moduli space of vacua,6 M. In the IR, the dilaton, being a Nambu-Goldstone boson,

is free. The only free massless N=3 multiplets respecting CPT symmetry with scalars

are the vector multiplet, or BB(1,0) ⊕BB(0,1), (with field content 3 complex scalars, 4

Weyl fermions, and a vector boson, see Figure 4) and a gravitino multiplet (1 complex

scalar, 3 Weyl fermions, 3 vector bosons, and a spin-3/2 fermion) [54]. Assuming the

existence of a local energy-momentum tensor, the massless particles must have spins

≤ 1 [55], so the dilaton and any other IR free massless scalars on M must belong to

N = 3 vector multiplets.

The vector multiplet contains a single U(1) gauge field, so spontaneously broken

N = 3 superconformal invariance implies M is a “Coulomb branch”. Furthermore the

bottom components of an N = 3 vector multiplet are 3 complex scalars, aI , I = 1, 2, 3,

which transform in the 32 representation of an IR effective U(3)∗ R-symmetry, where

the subscript refers to the charge of the overall U(1) factor.7 The ∗ subscript is to

emphasize that this U(3)∗ is an “accidental” symmetry in the IR at any given vacuum

∗ ∈ M. Thus, at a vacuum where the vector multiplet scalars have vevs aI∗, the U(3)∗
IR symmetry acts on the scalar fields as

(aI − aI∗) ↦→ RI
J(a

J − aJ∗ ), R ∈ U(3)∗. (4.1)

U(3)R is the automorphism group of the unbroken N = 3 supersymmetry algebra,

but a priori need not be a symmetry of the full theory. It is a symmetry of an N = 3

6We assume that the different vacua of the moduli space are distinguished by the vevs of a finite

set of real scalar fields, and M inherits the topology from open sets in the space of these vevs. This

makes M regular Hausdorff, second-countable, and thus metrizable, as a topological space.
7By choosing the vector multiplet scalars to have overall U(1) R-charge +2 we are using the

convention of [34, 47]. This differs from that of others [29] which assigns them charge −2.
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SCFT. We will work out below how the U(3)∗ action on the moduli space is related to

that of the U(3)R symmetry of an N = 3 SCFT.8

The points of Msmooth ⊂ M where there are only free massless vector multiplets

— i.e., where there is a finite mass gap to any other states in the theory — are thus

the target space of an N = 3 sigma model. Msmooth inherits a metric from the kinetic

terms of the massless scalar fields. This means that M is a metric space in the sense

that it admits a distance function. M must be metrically complete: any “missing”

points at finite distance can be probed by an arbitrarily low energy fluctuation from a

neighboring vacuum, and so must be included in the vacuum moduli space.

But M need not be smooth as a metric space: its distance function can have non-

analyticities along subspaces where additional electrically and magnetically charged

states become massless. Equivalently, its Riemannian metric tensor is ill-defined at

these subspaces. We will call the locus of metric non-analyticities of M the metric

singularities of M, Mmetric := M\Msmooth. We will see that this locus is the source

of (generalized) deficit angles or, equivalently, delta function supported curvature con-

tributions. The metric singularities can also contain the locus of singularities in the

complex structures, Mcplx, ofM and places whereM fails to be a topological manifold.

This will be discussed in detail in section 6.

If a vacuum of the SCFT has n massless vector multiplets at low energies with

complex scalar components aIi , i = 1, . . . , n, then low energy N = 3 supersymmetry

prohibits any potential terms in the effective action for the aIi . Then the component

of Msmooth containing that vacuum is a metrically smooth 3n-complex-dimensional

manifold. n is called the rank of (that component of) M. Also, we will call the vevs of

the aIi special coordinates on Msmooth, since they are closely analogous to the special

coordinates of N = 2 Coulomb branch special Kähler geometry.

At any vacuum in Msmooth the N = 3 supertranslation algebra is

{QI , QJ} = ϵIJKZK , {QI , QJ} = δIJP, (4.2)

where the ZK are a triplet of complex scalar central charges. Lorentz indices, Pauli

matrices and the like have been suppressed, as they are easily and uniquely determined

from the Lorentz irreps of the generators which are given below in (4.4).

8The low energy theory of a free N=3 vector multiplet actually has an accidentally enhanced N=4

supersymmetry as well as an accidental SU(4)∗ R-symmetry. We will focus here on the U(3)∗ subgroup

under which the microscopic N=3 supercharges transform as a 3−1. The additional constraints on the

moduli space geometry that occur when there is a microscopic N=4 supersymmetry were discussed

in section 3.1.
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The on-shell transformation rules of the massless N = 3 vector multiplet compo-

nent fields are easily worked out to be

QIaJj = ϵIJK ψKj QIa
J
j = δJI ψj

QIψJj = δIJ Fj QIψJj = ϵIJK P a
K
j

QIψj = 0 QIψj = P aIj (4.3)

QIFj = P ψ
I

j QIFj = P ψIj

where the bars denote complex conjugation, and we have used the Lorentz and R-

charges of the generators and fields,

operator QI P aIj ψj ψIj Fj

[jL, jR]
R ,r
∆ [1, 0]

(1,0),−1
1/2 [1, 1]

(0,0), 0
1 [0, 0]

(1,0),+2
1 [0, 1]

(0,0),+3
3/2 [1, 0]

(0,1),+1
3/2 [2, 0]

(0,0), 0
2

(4.4)

where j = 1, . . . , n labels the rank n different vector multiplets. We have used the no-

tation (2.11), and the U(3)R charges of the N = 3 vector multiplet fields are illustrated

in figure 4.

The supersymmetry algebra (4.2) implies the BPS bound on masses

M ≥ (ZKZK)
1/2 := |Z| . (4.5)

Since the triplet of charges ZK are central, they are linear combinations of conserved

(non-R) u(1) charges in the theory. Since there are noN = 3 global flavor symmetries in

a local unitary N = 3 SCFT [29], on Msmooth the central charge is a linear combination

of the n electric and n magnetic charges (qi, pi) of a state. By computing the central

charge from the low energy U(1)n N = 3 sigma model, just as forN = 2 supersymmetry

[7], their coefficients are, up to possible constant shifts, the special coordinates, aIi , and

the dual special coordinates aIiD (defined below). Since the constant parts of the special

and dual special coordinates are not determined by the sigma model, we are free to

choose them in each coordinate chart on Msmooth so that the central charges are given

by

ZK(qi, pi) = qiaKi + pia
Ki
D (4.6)

for (qi, pi) ∈ Z2n. The BPS bound implies that metric singularities can occur when

ZK(qi, pi) = 0 for some charges (qi, pi) and for all K ∈ {1, 2, 3}.
The set of metric singularities Mmetric ⊂ M is given by the locus of points where

charged states become massless on M, which can only happen when the BPS mass

bound (4.5) is zero. This means that Mmetric is given by the locus of points where
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the U(3) vector of central charges, ZI for I = 1, 2, 3, for charges Q := (pi, q
i) of states

which saturate the BPS bound, satisfy

ZI(Q) = 0, I = 1, 2, 3. (4.7)

Note that, unlike the N = 2 case where the BPS mass bound on the Coulomb branch,

M ≥ |Z(Q)|, vanishes when a single complex function vanishes, in the N = 3 case

the bound is M ≥ |Z(Q)| where we define |Z(Q)| := (ZK(Q)ZK(Q))
1/2. So M only

vanishes when all three components of ZK(Q) vanish.

This implies not only that metric singularities occur in complex codimension a

multiple of 39, but also that possible “walls” of marginal stability of BPS states occur

in real codimension at least 5, so are not walls at all. To see this, consider two BPS

states with charges Q and Q′. Then a point of marginal stability for these two states

is one where |Z(Q) +Z(Q′)| = |Z(Q)|+ |Z(Q′)|, which is equivalent to Z(Q′) = αZ(Q)

for α a positive real number. Thus a locus of marginal stability is defined by 5 real

conditions. So the BPS spectrum of an N = 3 SCFT is constant on each connected

component of Msmooth. Metric singularities will be discussed in much more detail in

section 6.2.

Msmooth is flat, since, following an argument of [56], there are no appropriate

irrelevant N=3 preserving deformations that can give rise to a metric curvature term.

In fact, N = 3 supersymmetry implies more: not only is Msmooth metrically flat, but

also flat coordinates on Msmooth are the vevs of the a
I
i fields: the special coordinates are

flat coordinates. This follows immediately from familiar facts about N = 2 Coulomb

branch effective actions. The N = 3 vector multiplet decomposes as a neutral N = 2

hypermultiplet and an N = 2 vector multiplet. The N = 3 IR effective action has the

same form as the N = 2 enhanced Coulomb branch effective action, but now since the

N = 2 hypermultiplet and vector multiplet scalars are related by the U(3)∗ IR effective

global symmetry, they must have the same kinetic terms,

Lbosonic = Im
[︁
τ ij(a)

(︁
∂aIi · ∂aIj + Fi · Fj

)︁]︁
. (4.8)

This form and unitarity of the low energy effective action imply

τ ij = τ ji and Im τ > 0. (4.9)

The second equation says that the matrix Im τ is positive definite. Since an N = 2

selection rule [57] forbids the vector multiplet metric and the hypermultiplet metric

9As discussed in an analogous situation in section 2.2 of [3], and in more detail in section 6.2, an

additional assumption that the common zeros of the central charges for BPS states in the spectrum

are nowhere dense in M may be necessary to arrive at this conclusion.
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from depending on the same fields, we must have

τ ij = constant. (4.10)

This has the immediate consequence that Msmooth is not only flat, but also that the aIi
are its flat coordinates.

Indeed, the moduli space effective action (4.8) implies the metric on Msmooth is

g = Imτ ij
(︁
daIidaIj + daIida

I
j

)︁
. (4.11)

As noted earlier, this extends to a metric structure (distance function) on all of M.

Since they are flat coordinates, on overlaps of special coordinate charts the two sets

of special coordinates must be linearly related, perhaps up to a constant shift. Since

BPS masses are well-defined functions on M, it follows from (4.6) that on overlaps of

special coordinate charts the two sets of special coordinates are strictly linearly related,

i.e., without constant shifts.

While the effective action (4.8) is invariant under U(3)∗ transformations (4.1) for

any choice of aJj∗, this extends to covariance of the central charges (4.6) only for the

choice aJj∗ = 0 (whether or not this value of the coordinates occurs in any given special

coordinate chart). We will denote this action of the automorphism group of the N = 3

supersymmetry algebra on the low energy theory and BPS masses by U(3)R. We will

see below that it coincides with that of the U(3)R global symmetry in the case of

N = 3 SCFTs. The U(3)R acts such that the aJj special coordinates transform in the

32⊗1n := 32⊕32⊕· · ·⊕32 representation. This follows from theN = 3 supersymmetry

algebra (4.2) which implies that the central charges ZK transform in the 32. For this to

be true for all (qi, pi) EM charge sectors, (4.6) then implies the claimed U(3)R action.

We have identified the IR effective N = 3 supercharges in (4.2) with the microscopic

supercharges in the N = 3 supersymmetry algebra since there is no other triplet of

supercharges with which they could mix.

The assumed existence of the N = 3 supersymmetry charges means that relative to

a choice of basis of the supercharges, {QJ , J = 1, 2, 3}, there is a corresponding choice

of equivalence class, [aJj ], of the special coordinates in every coordinate chart of the

atlas, determined by (4.3). The equivalence relation is aJj ∼ ρija
J
i with ρ ∈ GL(n,C).

In other words, the choice of supercharge basis induces a preferred choice of U(3)R
orientation of the special coordinates everywhere on M.

Since M is a Coulomb branch, it carries an N = 3 analog of a special Kähler

structure which we now describe. The low energy U(1)n EM duality group is SpD(2n,Z),
the subgroup of GL(2n,Z) which preserves the non-degenerate integral skew Dirac

pairing D on the EM charge lattice,

M ∈ SpD(2n,Z) ⇐⇒ MDMT = D and M ∈ GL(2n,Z). (4.12)
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The Dirac pairing endows the charge lattice with a symplectic structure, and a splitting

of the lattice into magnetic and electric sublattices is polarization of the charge lattice

(a splitting into complementary lagrangian sublattices). A polarized basis can always

be chosen so that the Dirac pairing takes the canonical form

D = ϵ2 ⊗ δn, δn = diag{d1, d2, . . . , dn}, di ∈ Z+, di|di+1, (4.13)

and where ϵ2 is the 2×2 unit antisymmetric matrix. The skew eigenvalues di invariantly

characterize D. When all the di = 1, we say that the polarization and the Dirac pairing

are principal, and the EM duality group is the familiar Sp(2n,Z).
The low energy effective action (4.8) onM is written in terms of “electric” variables

— i.e., the vector potential of the vector multiplet couples to electric charges — so

presupposes a choice of polarization of the charge lattice. In analogy to special Kähler

geometry, we call the vevs of the complex scalar fields aIi in the vector multiplet the

special coordinates, and define the “magnetic” dual special coordinates by

aIiD := diτ
ijaIj (no sum on i), (4.14)

where the di are the skew eigenvalues of the Dirac pairing (4.13). It is convenient to

introduce a matrix notation where we treat aI as an n-component column vector, in

which (4.14) becomes

aID := δnτa
I . (4.15)

Then (4.6) and (4.8) imply that together (aIiD, a
I
i ) transform in the 6n-dimensional

representation of U(3)R × SpD(2n,Z) which is the tensor product of the defining repre-

sentations of the two factors. This, together with the fact that special coordinates are

linearly related and that there is a preferred choice of U(3)R orientation of the special

coordinates everywhere on M, means that on chart overlaps the two sets of special

coordinates are related by(︄
a′D

a′

)︄
= 13 ⊗M

(︄
aD

a

)︄
, M ∈ SpD(2n,Z). (4.16)

Write M in terms of n× n matrices as

M :=

(︄
A B

C D

)︄
∈ SpD(2n,Z). (4.17)

Together with the relation (4.14) between a and aD, (4.16) implies that the action of

M on the special coordinates is given by

M : aI ↦→ a′
I
= (ρτ )a

I , with ρτ = Cδnτ +D ∈ GL(n,C). (4.18)
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(4.16) also implies the EM duality group action on the n× n matrix τ ij of low energy

U(1)n gauge couplings on M is given by the action of SpD(2n,Z) on the Seigel upper

half space,10 which we denote by ◦,

M : τ ↦→ τ ′ =M ◦ τ := δ−1
n (Aδnτ +B)(Cδnτ +D)−1. (4.19)

5 Triple special Kähler (TSK) manifolds

We will call a 3n-complex-dimensional manifold with this EM duality structure a triple

special Kähler (TSK) manifold. In this section we assemble the properties of Msmooth

described above into a formal definition of a TSK manifold and then discuss some

properties which follow from the definition.

Note that the manifolds Msmooth described here are not metrically complete: they

are missing the singular points where the interesting physics occurs. We will propose

a definition of a metrically complete, but singular, triple special Kähler space, M,

in section 6 by using the constraints coming from the assumed unitarity, locality, and

superconformal invariance of the quantum field theory on the kinds of singular behavior

that M can and should have.

Definition 1. A TSK manifold is given by (Msmooth,D, {a, τ}) where:

(a) Msmooth is a 3n-complex-dimensional differentiable manifold with an atlas of spe-

cial coordinate charts, {Uα}.

(b) D is an integer non-degenerate skew-symmetric 2n× 2n matrix in canonical form.

(c) Denote the complex special coordinates in a given chart by aJj , J ∈ {1, 2, 3} and

j ∈ {1, . . . , n}, and define the dual special coordinates in that chart by aJjD =

djτ
jkaJk , where in each chart τ is a fixed complex symmetric n × n matrix with

positive definite imaginary part.

(d) Special coordinates are linearly related on a chart overlap, Uα ∩ Uβ, by
(︁
aD
a

)︁(α)
=

13⊗M (αβ)
(︁
aD
a

)︁(β)
whereM (αβ) ∈ SpD(2n,Z) is an integer 2n×2n matrix satisfying

M (αβ)DM (αβ)T = D.
10Our definition (4.15) leads to an action on τ which differs from the one usually defined — see

e.g., [58] — by the placement of factors of the δn matrix. Our conventions are chosen to preserve the

standard forms (4.6) and (4.8) of the central charges and IR effective action appearing in the physics

literature.
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Two Msmooth with special structures, {a, τ} and {a′, τ ′}, are considered equivalent if

they are related in every chart by τ ′ =M◦τ and
(︁
a′D
a′

)︁
= F⊗M

(︁
aD
a

)︁
, where F ∈ GL(3,C)

and M ∈ SpD(2n,Z) are independent of the chart.

There are additional structures on Msmooth which follow naturally from the def-

inition. The first is a fiber bundle Λ → Msmooth whose fibers are rank-2n lattices

≃ Z2n and whose transition functions are the inverse transposes of the same M (αβ) ∈
SpD(2n,Z) as in the definition ofMsmooth. Physically, Λ is the charge lattice and D gives

the Dirac pairing. With Λ one can then construct the central charges (4.6). Two cen-

tral charges, however, are considered equivalent only for a subgroup U(3) ⊂ GL(3,C)
of the equivalence of special structures.

The second structure is a flat positive-definite metric given in each chart by g =

Im
(︁
daJj ⊗ daJjD + daJjD ⊗ daJj

)︁
. Note that this metric is also only invariant under

U(3) ⊂ GL(3,C) of the equivalence. Thus specification of the central charges or metric

determines an overall normalization of length scales which is absent in the definition of

a TSK manifold given above.

A third structure which follows from the definition is a CP2
∐︁

CP0 of inequivalent

Kähler structures on Msmooth. We will describe these complex structures in more

detail in the next subsection. The CP2 of complex structures of Msmooth are the

physical complex structures and are related to the action of the N = 3 supersymmetry

charges. They form an orbit under a non-holomorphic action of the U(3) isometry

group of Msmooth. The remaining “isolated” special complex structure is not related to

the N = 3 supercharges; the U(3) isometry acts holomorphically with respect to the

special complex structure.

As we will see in section 6 when we discuss TSK spaces (as opposed to manifolds),

these three structures will play a central role and so will be considered as part of the

TSK space definition in the physical application to N = 3 moduli spaces.

In the above definition we have restricted the chart transitions toM (αβ) ∈ SpD(2n,Z).
This is in contrast to alternative definitions of special Kähler geometry, e.g., [59], in

which the transition functions are allowed to be affine transformations with linear part

in Sp(2n,R) plus constant shifts. The extra rigidity from the SpD(2n,Z) condition is

an important feature of the low energy physics of N = 3 theories and plays a central

role in our discussion in [5] of the global structure of N = 3 moduli spaces. However,

it may be useful to develop an analog for TSK geometry of the intrinsic definitions of

the Sp(2n,R) special Kähler geometry in [59] or in terms of Hessian structures [60].

Our definition can mostly be rephrased in a way which does not mention coordinates

by generalizing the description [61] of special Kähler geometry in terms of an algebraic

integrable system as follows.
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Definition 2. A TSK manifold Msmooth is given by (A,D, E, e,Ω) where:

(a) Msmooth is a 3n-dimensional complex manifold.

(b) A→ Msmooth is a holomorphic fiber bundle whose fibers are complex abelian vari-

eties of dimension n with a fixed Hodge form D and fixed complex structure.

(c) E → Msmooth is a rank-3 holomorphic vector bundle with a fixed euclidean bundle

metric e and fixed compatible complex structure.

(d) D, e, and the complex structure are constant across fibers, so D ⊗ e extends to a

real closed (1, 1)-form ˆ︁D on A⊗E. (It is the unique form which restricts to D⊗e
on fibers and which has rank 6n, i.e., half the real dimension of A⊗ E.)

(e) Ω is a non-degenerate holomorphic symplectic form on A⊗ E such that the fibers

are Lagrangian.

This is related to our previous definition as follows. The complex modulus of the

abelian fibers of A is τ , and its symmetry and the positive definiteness of its imaginary

part follow from the Riemann conditions for an abelian variety. A Kähler form on M
is given by

∫︁
fibers

Ω ∧ Ω ∧ ˆ︁D3n−1, and its associated Riemannian metric is g. The first

homology classes of the fibers of A form the EM charge lattice, Λ, and
∫︁
α∗β D is the

Dirac pairing on those charges, where α ∗β is the Pontryagin product of two homology

cycles on the abelian variety. Finally, the differential of the central charge is given by

the map dZ : Λ → T ∗E which assigns to a charge α ∈ Λ the C3-valued 1-form
∫︁
α
Ω.

One drawback of this definition is that although it automatically restricts the linear

part of the chart transition functions to be in SpD(2n,Z), because it only defines the

differential of the central charges, it only specifies the special coordinates up to constant

shifts. The requirement that we can set all the constant shifts in the transition functions

to zero is equivalent to the additional condition that there is no global obstruction to

integrating dZ to Z on Msmooth. For this reason, definition 2 is weaker than definition

1. (Note that this drawback of the integrable system definition also applies to the

analogous integrable system definition of special Kähler geometry.)

A second drawback is that this definition picks a complex structure on M. In fact

it is the “unphysical” one in which the U(3) isometry acts holomorphically. It would

be interesting to improve this definition to one which does not single out any complex

structure. For instance, a definition of hyperkähler geometry, H, can be given in terms

of the complex geometry of a complex twistor space T → CP1 with H fiber without

singling-out any one of the CP1 of complex structures of H (see, e.g., [62]). Perhaps,

analogously, there is a definition of TSK geometry in terms of the complex geometry

of a fiber bundle over CP2 with fibers given by the abelian variety bundle A→ M.
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5.1 Examples

We now illustrate the above definitions on two sets of simple examples, which will

accompany us throughout this section.

Example A: Rank 1 Zk orbifolds

Let Msmooth = (C3 − {0})/Zk for k = 1, 2, 3, 4, 6, where the Zk identifications are

C3 ∋ (a1, a2, a3) ∼ ξ(a1, a2, a3) for ξ any k-th root of unity. Only the origin is fixed by

these identifications, which guarantees that Msmooth is smooth indeed.

To specify the TSK structure we choose a Dirac pairing to be principal, D = ϵ2,

the aI , I = 1, 2, 3, to be special coordinates, and the EM couplings to be

τ ∈ H1 for k = 1,

τ ∈ H1 for k = 2,

τ = e2πi/3 for k = 3,

τ = i for k = 4,

τ = e2πi/3 for k = 6, (5.1)

where H1 is the complex upper half-plane. Then the dual coordinates are aID = τaI ,

for I = 1, 2, 3.

In these examples the duality group is SpD(2n,Z) = SL(2,Z). So the special

structures specified above are equivalent to ones with τ transformed by any element of

SL(2,Z) under its fractional linear action on H1. Thus for k = 1, 2, one can restrict to

τ in any fundamental domain of the SL(2,Z) action.
In the language of definition 2, the complex abelian varieties fibered over Msmooth

are elliptic curves with complex structure given by τ .

Note that the orbifolds studied in this paragraph are the full list of rank 1 N ≥ 3

theories. For reference we gather them in Table 2.

Example B: Rank 2 S3 orbifold

Define the orbifoldM = C6/S3 where the symmetric group S3 acts as follows. Let a
I
i for

I = 1, 2, 3, i = 1, 2 be complex coordinates on the covering space ˜︂M = C6 = C3 ⊗ C2.

S3 is generated by an order two and an order three element which we take to act on

C3 ⊗ C2 by multiplication of the vector of aIi coordinates by the matrices (the second

matrix acts on the right)

13 ⊗

(︄
0 1

1 0

)︄
, 13 ⊗

(︄
0 −1

1 −1

)︄
. (5.2)
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Note that this action is purely real.

For the TSK structure, we choose the aIi to be the special coordinates, a principal

polarization D = 13 ⊗ ϵ2, and an EM coupling matrix

τ =

(︄
ς 1

2
ς

1
2
ς ς + 1

)︄
(5.3)

for any complex ς with Im ς > 0.

It is then straightforward to check that the orbifold identifications on the 12-

component vector of dual special coordinates and special coordinates are of the form

( aD
a ) ∼ 13 ⊗M ( aD

a ) with M ∈ SpD(2n,Z) = Sp(4,Z). (Msmooth,D, {a, τ}) thus satis-
fies the requirements of definition 1 of a TSK manifold.

5.2 Some properties of Msmooth

Some properties of TSK manifolds which follow easily from definition 1 are:

• special coordinate monodromies give a homomorphism of the fundamental group

into the EM duality group whose image is the EM monodromy group (see section

5.2.1);

• the matrix τ of low energy U(1)n gauge couplings is fixed by the EM monodromy

group in each connected component of Msmooth (see section 5.2.2);

• there is a maximum finite order of all elements of the EM monodromy group (see

section 5.2.3);

• Msmooth is flat and has a U(3) group of isometries (see section 5.2.4);

• there is a CP2 of inequivalent metric-compatible “physical” complex structures

on Msmooth which are induced by the N = 3 supercharges (see section 5.2.5); and

• there is one additional “special” metric-compatible complex structure — not in-

duced by any supercharge — in which the special coordinates are holomorphic

coordinates (see section 5.2.5).

We now derive and discuss these properties.

5.2.1 Fundamental group and EM monodromy group

Let {Uα} be a good open cover of Msmooth by special coordinate charts. To each

overlap Uα∩Uβ corresponds a special coordinate transformationM (αβ) ∈ SpD(2n,Z) as
in definition 1, which can thus be associated to the corresponding (6n−1)-dimensional
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face of the nerve of the open cover. Upon continuing along a closed path γ in M the

special coordinates thus experience a monodromy of the form

( aD
a )

γ−→ 13 ⊗Mγ (
aD
a ) , Mγ :=M (α1αm)M (αmαm−1) · · ·M (α2α1) ∈ SpD(2n,Z), (5.4)

i.e., the product (in order, from some chosen starting point) of the overlap transfor-

mations of each face that γ intersects. The consistency condition on triple overlaps,

M (α1α3)M (α3α2)M (α2α1) = 1, means that Mγ only depends on the homotopy class, [γ],

of γ in Msmooth. Therefore M[γ] gives a representation of π1(Msmooth) in SpD(2n,Z).
Note that since Msing is of real codimension 6 in M, and so cannot link a path γ, it

does not contribute directly to non-trivial elements of π1(Msmooth). However, as we

will explore in more detail in section 6 there is a sense in which nontrivial elements

of π1(Msmooth) are associated with specific components of Msing. Fom now on we will

just write π1(M) in place of the more precise π1(Msmooth).

Denote by Γ(M) ⊂ SpD(2n,Z) the subgroup of the EM duality group generated

by the monodromies Mγ for all [γ] ∈ π1(M). We will call Γ(M) the EM monodromy

group of M.

Examples. In the examples given in section 5.1, the groups π1(M) are respectively

Zk and S3, by definition of the orbifolds.

A- In the rank one cases, the monodromy groups are

k = 1 Γ(M) = {1}
k = 2 Γ(M) = {1, S2}
k = 3 Γ(M) = {1, U2, U4}
k = 4 Γ(M) = {1, S, S2, S3}
k = 6 Γ(M) = {1, U, U2, U3, U4, U5} (5.5)

where S = ( 0 −1
1 0 ) and U = ( 0 −1

1 1 ) are generators of SL(2,Z) which satisfy S4 = U6 = 1.

B- In the rank two case, we have (see [38] for the details of the construction)

Γ(M) = {1, s1, s2, s1s2, s2s1, s1s2s1} ∼= S3 , (5.6)

with

s1 :=

(︃ −1 0 0 0
−1 1 0 0
0 0 −1 −1
0 0 0 1

)︃
, s2 :=

(︃
0 1 0 −1
1 0 1 0
0 0 0 1
0 0 1 0

)︃
, s1, s2 ∈ SpD(4,Z), (5.7)

satisfying the presentation of S3, namely s21 = s22 = (s1s2)
3 = 1.
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5.2.2 Global constancy of τ

Since τ is constant in each chart it must be fixed by all EM monodromies. One way of

seeing this is by noting that one can “straighten out” the special structure along any

path γ by transforming the special coordinates in the αj-th chart in (5.4) by acting

with M (α1α2)M (α2α3) · · ·M (αj−2αj−1)M (αj−1αj). In these new straightened coordinates

the induced transition transformations along γ are simply the identity, ˜︂M (αjαj−1) = 1,

for j ∈ {2, . . . ,m}, and the monodromy is given by the “final” transition element

Mγ = ˜︂M (α1αm). Furthermore, it then follows from the relation between the special

coordinates and the dual special coordinates given in definition 1 that τ (αj) = τ (α1) for

all j ∈ {1, . . . ,m} in the straightened coordinates.

By picking base points in each connected component of Msmooth and doing this

straightening for all paths starting at these base points, we see that we can choose the

special structure so that τ is constant in each component. Furthermore, by going to

the simply connected universal cover of each component of Msmooth we can choose all

their transition transformations to be the identity. In this way it is always possible to

cover each connected component of Msmooth by a single contractible closed chart, F ,

which is a fundamental domain of the action of π1(M) on the universal covering space

of that component of Msmooth. The special structure at the boundaries of F are then

identified by Γ(M) which gives a representation of the action of π1(M). This is the

way we presented the special structures of the orbifold examples given in section 5.1.

If we write Mγ in terms of n × n matrices as Mγ =
(︂

Aγ Bγ

Cγ Dγ

)︂
, then, together with

the relation between a and aD, (5.4) implies that the action of Mγ on the straightened

special coordinates is given by

Mγ : aIj ↦→ (ρτ,γ)
i
ja

I
i , with ρτ,γ = Cγδnτ +Dγ ∈ GL(n,C). (5.8)

The constancy of τ in these coordinates implies that τ must be fixed by allMγ ∈ Γ(M),

δnτ = (Aγδnτ +Bγ)(Cγδnτ +Dγ)
−1 for all γ ∈ π1(M), (5.9)

for each connected component of Msmooth.

By virtue of the condition (5.9) that τ is fixed by Γ(M), the set

ρτ (M) := {ρτ,γ | γ ∈ π1(M)} (5.10)

forms a group, i.e., a representation of Γ(M) in Cn.

In the case of an N = 4 theory, the monodromy group is restricted to lie in a

subgroup of GL(n,R) ⊂ GL(n,C) with respect to some choice of real structure on Cn.

This will be discussed in section 5.4.
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Examples

A- In the rank one cases, evaluating (5.10) gives that ρτ (M) is the multiplicative

group of k-th complex roots of unity. Note that for k = 1, 2 this is a real group action.

B- In the rank two case, one checks that (5.3) is the set of matrix τ which satisfy

(5.9) for all the elements of S3 as generated by (5.7) and furthermore have positive

definite imaginary part. One then computes the GL(2,C) representation (5.10). Since

the matrices (5.7) have been chosen upper-block-diagonal, ρτ (M) does not depend on

ς, and we find the real group action

ρτ (M) = {( −1 −1
0 1 ) , ( 0 1

−1 −1 ) , (
−1 −1
1 0 ) , ( 0 1

1 0 ) , (
1 0
−1 −1 ) , (

1 0
0 1 )} . (5.11)

5.2.3 Constraints on the EM monodromy group

SpD(2n,Z) elements which fix a τ with Imτ > 0 are diagonalizable over C with eigen-

values which are roots of unity. One way to see this is to note that the GL(n,C) action
of ρτ,γ preserves the metric on M mentioned in the paragraph after definition 1 (and

discussed below). Since the metric is positive definite, ρτ,γ is conjugate to a unitary

matrix and so is semisimple over C and has all unit norm eigenvalues. Since ρτ,γ is

also represented by Mγ ∈ GL(2n,Z) its eigenvalues are roots of unity. In particular,

each Mγ ∈ Γ(M) is of finite order. Furthermore, the set of roots of unity that can

appear as eigenvalues of elements of GL(2n,Z) for a given value of n is finite [3, 4, 19].

Thus there is a maximum finite order of any element of Γ(M) if we assume that all

connected components of Msmooth have bounded dimension.

Examples. In the examples given in section 5.1 the maximum orders of Γ(M) is k

for the rank one examples, and the maximum order is 3 for the rank two example.

5.2.4 Flat metric, isometries, and quadratic forms

The special structure induces a natural Riemannian metric on Msmooth given by

g = Imτ ij
(︁
daIi daIj + daIida

I
j

)︁
, (5.12)

which is the physical metric on the moduli space induced by the fluctuations of the

massless scalar fields. It is a flat positive definite metric by virtue of the constancy of

τ and the positivity of Imτ , and the special coordinates are flat coordinates.

It is easy to check that the defining condition (4.12) that EM duality transforma-

tions preserve the Dirac pairing (4.13) implies, together with the definition (4.15) of

aD and the action, (5.8) and (5.9), of the monodromy group that ρτ (M) preserves the

metric:

ρ†( Imτ)ρ = Imτ for all ρ ∈ ρτ (M). (5.13)
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Thus ρτ (M) is a discrete isometry group of Msmooth.

The identifications (5.8) on the special coordinates upon traversing loops γ ∈
π1(M) break the local SO(6n) isometry group of a flat metric to the subgroup com-

muting with the linear action of ρτ (M) ⊂ GL(n,C) ⊂ GL(3n,C) on the special co-

ordinates. The commutant of GL(n,C) in GL(3n,C) is GL(3,C), whose intersection

with SO(6n,R) is U(3). This is the expected U(3)R continuous isometry group coming

from the broken R-symmetry on M.

Decompose the isometry group of M as U(3)R = SU(3)R ⋉ ˜︁U(1)r. We write the

overall ˜︁U(1)r factor with a tilde to emphasize that a priori it not need be compact,

so write it as its universal cover. This just means that, until we learn otherwise,
˜︁U(1)r charges of fields need not be integral or even rational. Even though the special

coordinates have ˜︁U(1)r charges r = 2 it does not immediately follow that the r-charges

of coordinates on M are even, because the special coordinates are generally not good

(globally defined) coordinates on M.

There is always a set of 9 independent globally defined functions on M quadratic

in the special coordinates. Because the metric is flat it induces a monodromy-invariant

hermitean quadratic form on the special coordinates given by a†I Imτ aI := aIi Imτ
ij aIj

which therefore extends to a well-defined quadratic form on all of Msmooth. Moreover,

since the monodromies commute with the U(3)R isometries, Msmooth inherits a whole

set of quadratic forms,

a†I Imτ aJ , I, J ∈ {1, 2, 3}, (5.14)

which transforms in the 80 ⊕ 10 of U(3)R. In section 5.3 we will examine the circum-

stances under which some of these coordinates are holomorphic with respect to various

complex structures.

If ρτ (M) is restricted, the continuous isometry group can be larger. This is what

happens for the moduli spaces of N = 4 theories, where the continuous isometry group

is enhanced to SO(6); see section 5.4.

Examples.

A- For our rank-1 examples, the groups ρτ (M) are the complex k-th roots of unity.

For k = 3, 4, 6, we obtain immediately that the continuous isometry group is U(3). In

the case k = 1, 2, since the roots are real, we get instead a continuous isometry group

SO(6). Thus the k = 1, 2 orbifold moduli space is consistent with the SCFT having

N = 4 supersymmetry, but the k = 3, 4, 6 cases are not.

B- Since the matrices in (5.11) are real the isometry group is SO(6), thus compatible

with N = 4 supersymmetry.
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5.2.5 Kähler structures

Any TSK manifold Msmooth has a CP2
∐︁

CP0 of inequivalent metric-compatible com-

plex structures. Since they are all compatible with a flat metric, they are, in fact,

Kähler structures on Msmooth. These complex structures are constructed as follows.

The real and imaginary parts of the special coordinates in a given chart form a

euclidean coordinate system — i.e., flat with respect to the metric (5.12) — on an open

set in R6n. A metric-compatible almost complex structure, J , on this chart can then

be represented in this coordinate system as a 6n× 6n real matrix such that

J2 = −16n. (5.15)

J is compatible with the metric (5.12) if g(J ·, J ·) = g(·, ·), which is equivalent to the

conditions that J is a constant matrix satisfying

JT (16 ⊗ Imτ)J = 16 ⊗ Imτ, (5.16)

where we are decomposing R6n = R6 ⊗ Rn.

The transition map (4.18) induces a unique almost complex structure which coin-

cides with J on the chart overlap. By straightening the coordinate charts along any

closed path in Msmooth, as described in section 5.2.2, it follows that the condition that

J extends to a complex structure of Msmooth is that

RγJ = JRγ for all γ ∈ π1(M), where Rγ := 13 ⊗ ρRτ,γ. (5.17)

Here we are using the decomposition R6n = R3 ⊗ R2n, and ρRτ,γ is the representative

of the monodromy group element ρτ,γ ∈ GL(n,C) of (5.8) considered as an element of

GL(2n,R). Concretely, if ρ = r + is is the decomposition of ρ ∈ GL(n,C) into its real

and imaginary parts, then ρR = 12⊗ r+ ϵ2⊗ s is its representation in GL(2n,R) where
ϵ2 := ( 0 −1

1 0 ). Thus a monodromy group element has the form

Rγ = 16 ⊗ rγ + J⊗ sγ, (5.18)

where

J := 13 ⊗ ϵ2 (5.19)

obeys J2 = −16, so can be thought of as a complex structure on R6. Then the re-

quirement (5.17) for general Rγ (i.e., without assuming any extra constraints on the

monodromy group) together with the conditions (5.15) and (5.16) that J be a metric-

compatible complex structure implies that

J = j ⊗ 1n, j2 = −16, jT j = 16, and [j, J] = 0. (5.20)
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The last two conditions in (5.20) imply that j ∈ U(3) when the R6 is interpreted

as C3 with complex structure J. This is because [j, J] = 0 means that j ∈ GL(3,C)
and jT j = 16 means that j ∈ O(6,R), and the intersection of these two groups is

U(3). The remaining condition on j, namely, j2 = −16 implies that its eigenvalues are

±i. As an element of U(3) there are thus two possibilities, eigenvalues {+i,+i,+i},
or eigenvalues {−i,+i,+i} (and the negatives of these, which are just the conjugate

complex structures).

In the first case j is the unique element +i13 ∈ U(3), which in the real basis is

just j = J. We call this the special complex structure on M. In this complex structure

holomorphic coordinates ζIi on Msmooth in any chart can simply be taken to be the

complex special coordinates themselves,

ζIi = aIi (special complex structure). (5.21)

The U(3)R isometry thus acts holomorphically in the special complex structure.

In the second case j can be any element of U(3) of the form

j = U
(︂ −i

+i
+i

)︂
U−1, for U ∈ U(3) (physical complex structures). (5.22)

Since the U ’s which commute with the diagonal matrix form a U(2) × U(1) subgroup

of U(3), the inequivalent such complex structures form the coset space U(3)/[U(2) ×
U(1)] ≃ CP2. We call this CP2 of complex structures the physical complex structures

on M. One can think of this CP2 of Kähler structures of a TSK space as an analog of

the CP1 of metric-compatible complex structures that form a hyperkähler structure.

This CP2 of complex structures are called physical because they are the ones in-

duced by the N = 3 supersymmetry charges. To see this, recall that any choice of

N = 1 subalgebra of the N = 3 supersymmetry algebra (4.2) defines a Kähler struc-

ture on M. For instance, if the N = 1 subalgebra is generated by the Q1 and Q1

supercharges, then the holomorphic complex coordinates on M are the vevs of those

complex scalars, φ, for whom Q1φ is a left-handed Weyl spinor. The effective N = 1

sigma model for these scalars induces a Kähler structure on M in the usual way. And

since there is a U(3)/[U(2)×U(1)] ≃ CP2 of inequivalent ways of embedding an N = 1

subalgebra in the N = 3 algebra, M admits a CP2 of inequivalent complex structures.

Explicitly, the transformation rules (4.3) of the massless N = 3 vector multiplet

component fields show that with respect to the complex structure induced by any given

supercharge, and for each value of i ∈ {1, . . . , n}, two of the three aIi are holomorphic

on M and the other is antiholomorphic. For example, with respect to the complex

structure induced by Q1, the holomorphic coordinates on M in any chart are

ζ1j = a1j, ζ2j = a2j , ζ3j = a3j . (5.23)
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Note that these do not transform as a triplet under SU(3)R. In these coordinates, the

metric (5.12) on M is g = 1
2
Imτ ij

(︁
dζ1idζ

1

j +dζ
2
i dζ2j +dζ

3
i dζ3j +c.c.

)︁
, whose associated

Kähler form is ω = i
2
Imτ ij

(︁
dζ1i ∧ dζ

1

j + dζ2i ∧ dζ2j + dζ3i ∧ dζ3j
)︁
.

The U(3)R automorphism group of the N = 3 supersymmetry algebra changes the

complex and Kähler structures to

ζR1j = R1
Ja

J
j = aJj(R

−1)J1 , ζR 2
j = R2

Ja
J
j , ζR 3

j = R3
Ja

J
j , (5.24)

ωR =
i

2
Imτ ij

(︂
dζR1i ∧ dζ

R 1

j + dζR 2
i ∧ dζR2j + dζR 3

i ∧ dζR3j
)︂
,

where R ∈ U(3). These are the complex structures induced by the R1
JQ

J supercharge.

(5.24) is the CP2 of inequivalent complex structures and Kähler forms on Msmooth

constructed above in (5.22).

The relation of the holomorphic coordinates on M to the special coordinates given

in (5.24) shows that the U(3)R isometry does not act holomorphically on M with

respect to any of the physical complex structures since their holomorphic coordinates

do not form among themselves a representation of U(3)R. Indeed, the action of the

U(3)R isometry of M can be interpreted as a change in the complex structure of a

fixed M, inducing an action on the CP2 of physical complex structures of M. From

(5.24) it follows that a U(2) × U(1) ⊂ U(3)R acts holomorphically on M, so does not

change its physical complex structure. Thus the orbit of the U(3)R action on CP2 is

all of CP2, since CP2 ≃ U(3)R/[U(2) × U(1)]. This is again analogous to the way the

non-holomorphic SU(2) isometry of a hyperkähler space acts on the CP1 of its complex

structures.

The physical complex structures and the U(3)R isometry action on Msmooth are

related by the properties of the special coordinates through (5.24). This relationship is

characterized in a coordinate invariant way by the condition, noted above, that there

is a U(2)×U(1) ⊂ SU(3)R holomorphic isometry with respect to any choice of physical

complex structure on Msmooth.

If the monodromy group, Γ(M), is such that its elements all have a restricted

form, as occurs for theories with N = 4 supersymmetry, it can happen that some of

the conditions on the compatible complex structure J are relaxed. In particular, N = 4

SCFTs have a CP3 of metric-compatible complex structures which form a single orbit

under the action on Msmooth of the SU(4)R symmetry of an N = 4 SCFT; see section

5.4 below.

Examples.

A- For our rank-1 examples, the holomorphic coordinates, ζI , in the special complex

structure are simply the special coordinates, ζI = aI . In these coordinates the Zk orb-
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ifold action multiplies all the ζI by a common root of unity. Holomorphic coordinates in

one of the physical complex structures can be taken to be, e.g., (ζ1, ζ2, ζ3) = (a1, a
2, a3).

In these coordinates the orbifold action is now (ζ1, ζ2, ζ3) ↦→ (ξζ1, ξζ2, ξζ3) for ξ an ap-

propriate root of unity. The orbifold action is still holomorphic in these coordinates,

so C3/Zk is a complex space with this choice of almost complex structure. Since the

orbifold action for k = 2 is purely real, C3/Z2 has additional complex structures beyond

the special and physical ones, which form a CP3 of inequivalent complex structures as

described in section 5.4 below.

B- The S3 orbifold action was defined to be holomorphic for the special coordinates,

so the special almost complex structure extends to a complex structure of the orbifold

space. Since the S3 action (5.2) commutes with the U(3)R rotations, it is easy to see

that the S3 action is holomorphic with respect to the physical almost complex structures

as well. In fact, since the S3 action is real, C6/S3 in fact has the larger CP3 space of

complex structures.

5.3 Special and hyperkähler slices

There are natural complex submanifolds of a TSK manifold which are n-dimensional

special Kähler and 2n-dimensional hyperkähler spaces. We call them the special and

hyperkähler slices of M, respectively. We will see that there is actually a family of

such slices parameterized by points in CP2.

We define these slices as follows. Choose any U(2) × U(1) ⊂ U(3)R subgroup11

of the isometry group of M. Then a special splice is any submanifold of M which

is fixed pointwise by the action of the U(2) subgroup, and a hyperkähler slice is any

submanifold which is fixed pointwise by the U(1) subgroup.

We will now show that these slices have the following properties:

• A special slice is an n-complex-dimensional flat special Kähler manifold. It has

a unique complex structure and a holomorphic U(1) isometry group.

• There is a CP1 of complex structures in which a hyperkähler slice is a 2n-complex-

dimensional flat hyperkähler manifold with a triholomorphic U(1) isometry. It

also has a complex structure in which it has a holomorphic U(2) isometry group,

but is not hyperkähler.

• If any special or hyperkähler slice exists, then a whole CP2 of inequivalent slices

also exist.

11Here we really mean an appropriate cover of U(2)×U(1) which is a subgroup of U(3)R = SU(3)R⋉
˜︁U(1)r. See the discussion in section 5.2.4.
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From the point of view of a choice of N = 2 subalgebra of the N = 3 superconformal

symmetry, a special slice is “just” the Coulomb branch and the hyperkähler slice the

Higgs branch. This makes many of the above properties appear natural. But we will

see that there are subtleties in making this identification which, in principle, could

prevent the slices from existing.

In any chart of Msmooth, under almost12 any U(1)×U(2) subgroup of the isometry

group, the special coordinates transform under the SU(2) factor as n copies of a singlet

and n copies of a doublet representation. By an overall U(3)R rotation of the special

coordinates we can thus describe the slices by the coordinate conditions

special slice: C = {a1i = a2i = 0, i = 1, . . . , n},
hyperkähler slice: H = {a3i = 0, i = 1, . . . , n}, (5.25)

in each chart. The U(3)R global action ensures that both are also globally defined as

nowhere dense n- and 2n-complex-dimensional submanifolds of Msmooth, respectively,

which both go through the origin of M. If the slices in (5.25) exist, then clearly

they can be rotated into other such slices by the action of the isometry group, giv-

ing U(3)R/[U(2) × U(1)] ≃ CP2 inequivalent slices, since the equations in (5.25) are

invariant under the U(2)× U(1) subgroup.

Under any of the complex structures of M, the special slice C is a holomorphic

submanifold, and it inherits the same complex structure form all of them. Furthermore,

by taking ai = a3i to be special coordinates on C, its Kähler form is ωC = i
2
Imτ ij dai ∧

daj, the U(3)R isometry of M acts as a holomorphic U(1)R isometry on C, and the

SpD(2n,Z) EM duality structure carries over unchanged. Thus C is a rank-n flat special

Kähler manifold.

There is a CP1 of inequivalent physical complex structures of M under which the

hyperkähler slice H is a hyperkähler manifold. These are the complex structures of the

form (5.24) but where R is chosen to be in the U(2) subgroup. For example, choose

the physical complex structure on M with holomorphic coordinates ζai for a = 1, 2

given by ζ1i = a1i and ζ2i = a2i . Then the Kähler form of H with respect to this

complex structure is ωH = i
2
Imτ ij(dζ1i ∧ dζ

1

j + dζ2i ∧ dζ2j) and the holomorphic 2-

form made from the Kähler forms with respect to the other two orthogonal complex

structures of H is ω
(2,0)
H = 2i Imτ ijdζ1i ∧ dζ2j . The U(3)R isometry of M acts on H as a

12The special cases of measure zero in which the U(2) factor is a subgroup of the SU(3)R factor of

the isometry group, then the statement does not hold. But in these cases it is easy to see that the only

subspaces fixed pointwise under either the U(1) or U(2) action are just a single point: the common

origin of the special coordinate systems. Furthermore, as we will see in the next section, the origin is

only a point in Msmooth when Msmooth is flat C3n, i.e., the moduli space of n free massless N = 3

vector multiplets.
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U(2) = SU(2)R × U(1)F isometry. The (ζ1i, ζ2i) transform as a doublet of the SU(2)R
non-holomorphic isometry, while the U(1)F action under which ζ1i and ζ2i all have the

same charge is a tri-holomorphic isometry. Thus the U(1)F is the part of the N = 3

R-symmetry which acts as a flavor symmetry from the N = 2 perspective.

Note that H inherits from the TSK structure of M some additional structure

beyond its hyperkähler structure. Firstly, it is flat. Secondly, it inherits from the

special complex structure of M an additional complex structure beyond the CP1 of

hyperkähler complex structures described above. In this new complex structure the a1i
and a2i special coordinates are holomorphic coordinates, and the U(2) isometry group

acts holomorphically. Thirdly, the SpD(2n,Z) EM duality special structure carries over

to H.

In summary, the hyperkähler and special slices of a TSK manifold are linear sub-

spaces of complex dimension 2n and n, respectively, which are reductions of the TSK

structure to analogs with U(2) and U(1) isometry groups, respectively.

The main caveat to this whole discussion, however, is that the hyperkähler and

special slices might fail to exist for rank n ≥ 2. The reason is easy to see: there may be

no solutions to the equations (5.25) in a given special coordinate chart. When n = 1,

solutions are always assured since the special coordinates (a1, a2, a3) of any given point

can be rotated to (α, 0, 0) by the U(3)R action, and so preserves some U(2) ⊂ U(3)R.

Thus it lies on a special slice, and, by picking a U(1) subgroup of the U(2), also on

a hyperkähler slice. But for n = 2 this argument fails, for the 2 × 3 matrix aIi of

special coordinates can generically only be rotated to the form
(︁
α 0 0
β γ 0

)︁
, and thus only

preserves a U(1), so only a hyperkähler slice is assured to go through the point. The

general condition for a hyperkähler or special slice to go through a point is that its

n× 3 matrix of special coordinates aIi have rank 2 or 1, respectively. Clearly, for n ≥ 3

a generic point has rank 3, so no subgroup of U(3)R is preserved and neither a special

nor a hyperkähler slice goes through it.

Since special and hyperkähler slices do not go through generic points, it is possible

that there are no points in a given special coordinate chart lying on these slices. It

then becomes a global question whether upon patching together all the charts, any have

slices going through them. In particular, as described in section 5.2.2, we can straighten

out the special coordinates to form a single “chart” covering all of Msmooth with its

boundaries identified by monodromy group transformations ρτ,γ of the form (5.8). The

question then becomes whether these identifications always force the existence of points

on the chart whose matrix of special coordinates have reduced rank. We do not know

the answer to this question.

Since the special and hyperkähler sections can be thought of as the Coulomb and

Higgs branches of the N = 3 theory viewed as an N = 2 theory with respect to a choice
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of an N = 2 subalgebra, it may seem surprising that we claim that neither a Higgs

branch, H, nor a Coulomb branch, C, might exist in an N = 3 theory with a moduli

space, M. M is a mixed branch from the N = 2 point view, locally the Riemannian

product ˜︁C × ˜︁H, where ˜︁C is some open set of a special Kähler space and ˜︁H is some

hyperkähler cone. But globally M may fail to be a product, and even fail to be a

bundle of, say, ˜︁H fibers over a C base, but be “twisted” in both the ˜︁H and ˜︁C directions.

Then both a H and C section might fail to exist.

This should be contrasted to the usual situation [57] in a genuinely N = 2 theory,

where the Higgs branch is typically fibered over the Coulomb branch along a singular

subvariety, C ′, of C, and C ′ and ˜︁H meet, moreover, at a singularity of the ˜︁H fiber. In

such a case both the Higgs and Coulomb sections necessarily exist. But there are a

special class of mixed branches, called enhanced Coulomb branches (ECBs) in [17], in

which a regular ˜︁H ≃ Hh is fibered over every point — in particular all the regular

points — of C. In this case we are saying that it is not a priori evident that the C
section need exist.13 The moduli space M of an N = 3 theory is an example of such

an ECB.

5.4 Enhancement to N = 4

The N = 4 superconformal symmetry group includes an SU(4)R R-symmetry factor

which is spontaneously broken on the moduli space of vacua. So what distinguishes

the moduli space of an N = 4 SCFT from that of a genuinely N = 3 SCFT is that

its continuous isometry group is enlarged to SO(6) ⊂ SU(4)R. The reason only the

index-2 SO(6) subgroup acts as an isometry on M is that the scalar fields of the free

massless N = 4 vector multiplet transforms in the 6 of SU(4)R. This implies also that

the SO(6) isometry group actions is such that the special coordinates transform in n

copies of the 6.

This enlargement of the continuous isometry group is the only further condition

that N = 4 supersymmetry imposes on the geometry of smooth points of an N = 4

moduli space. This is because the field content of the massless N = 3 and N = 4 vector

multiplets and the leading (2-derivative) terms of their IR effective actions coincide.

This enlargement of the continuous isometry group relative to the N = 3 case

implies a restriction on the monodromy group Γ(M) such that its representation

ρτ (M) ⊂ GL(n,C) (5.10) on Cn can be realized as a subgroup of a real group GL(n, V )

where V ≃ Rn is some real subspace of Cn. Since the monodromy group is now real,

there is a quadratic form which is left invariant by it and this in turn implies that the

coordinate ring always has a holomorphic invariant of degree 2. This matches with a

13Note that such a section was implicitly assumed to exist in the discussion of ECBs in [17].
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constraint discussed in 3.1 on the chiral ring of N = 4 SCFTs. It also implies that

there is an enlargement of the set of inequivalent metric-compatible complex structures

on M to a whole CP3. It is a single orbit of the action of the SU(4)R isometry group

on any given complex structure.

We now derive each of these consequences of the existence of an SO(6) isometry

group on a TSK manifold.

Restriction of the monodromy group. The requirement that the isometry group

be enhanced from U(3) to SO(6) implies that the identifications (5.8) on the special

coordinates upon traversing loops γ ∈ π1(M) must be restricted: the commutant of

ρτ (M) ⊂ GL(n,C) ⊂ GL(3n,C) in SO(6n) must contain an SO(6) which acts on

the first factor of the decomposition R6n = R6 ⊗ V , where V ≃ Rn ⊂ Cn is a real

subspace. Since the commutant of such an SO(6) in SO(6n) is GL(n,R) it follows that
ρτ (M) ⊂ GL(V ) ⊂ GL(n,C).

The real and imaginary decomposition Cn = V ⊕ iV gives Cn ≃ R2 ⊗ V as a real

vector space, and the monodromy group elements have the form ρRτ,γ = 12 ⊗ ˜︁rγ with

respect to this decomposition. Then in R6n = R6 ⊗ V the monodromies all have the

form

Rγ = 16 ⊗ ˜︁rγ (5.26)

for ˜︁rγ ∈ GL(V ).

An isometry, S, must commute with all the monodromies: [S,Rγ] = 0 for all γ.

This implies that in the R6 ⊗ V decomposition, S = s⊗ 1n with s ∈ GL(6,R).
An isometry S must also preserve the metric. The metric components in the

R6⊗V decomposition are g6n = 13⊗g′2n where g′2n is some positive symmetric matrix on

R2⊗V . Recall that with respect to the “standard” real decomposition of Cn ≃ R2⊗Rn,

g′2n = 12 ⊗ Imτ , but this factorized form need not persist in the Cn ≃ R2 ⊗ V real

decomposition. The condition that S = s ⊗ 1n in the R6 ⊗ V decomposition implies

that for such S to span SO(6) and leave the metric invariant, Imτ and V must be such

that g6n factorizes as

g6n = 16 ⊗ g′′n (5.27)

for g′′n some positive symmetric matrix on V . Then g6n = STg6nS implies sT s = 16, so

s ∈ O(6) ≃ SO(6)⋉ Z2.

The two conditions (5.26) and (5.27) require that there is a real decomposition

Cn = R2 ⊗ V with respect to which the monodromies are real and which at the same

time preserves the factorization of the metric derived from Imτ . In addition the mon-

odromy group and the form of τ are related by the fact (5.9) that τ is fixed by the

– 46 –



monodromy group action. We do not know what the most general form of the solution

of these interlocking constraints are, but it is clear that they tightly restrict the possible

monodromy groups that an N = 4 theory can have. In all the N = 4 cases we know,

the constraints are satisfied by monodromy groups which are real in the “standard”

real decomposition Cn ≃ R2 ⊗Rn, for which g′′n = Imτ . Since Imτ is positive definite,

the only way this can happen is if the lower left Cγ n×n block of eachMγ ∈ SpD(2n,Z)
monodromy vanishes. Then all monodromies will have the form

Mγ =

(︄
Aγ SγA

−T
γ δ−1

n

0 δnA
−T
γ δ−1

n

)︄
with AγδnτδnA

T
γ + Sγ = δnτδn (5.28)

for all γ ∈ π1(M), where Sγ is a symmetric integer matrix and Aγ ∈ GL(n,Z). Example

B described in section 5.1 is of this form.

Note that we have shown that the N = 4 isometry group actually contains O(6) ≃
SO(6)⋉ Z2, a slight enlargement over the initially assumed SO(6) isometry group.

Invariant holomorphic quadratic form on special slices. The set of nine in-

dependent globally defined quadratic forms, a†I Imτ aJ , on Msmooth found in section

5.2.4 for a general TSK manifold are enlarged to a set of 21 such forms on an N = 4

TSK manifold. This follows by decomposing Cn = V ⊕ iV into real and imaginary

subspaces as in the last paragraph and writing aI = αI + iαI+3 with respect to this

decomposition. Then the αa, a = 1, . . . , 6, transform in the 6 of the O(6) isometry

group, and the metric gives rise to the set of monodromy-invariant quadratic forms,

αag′′nα
b, which transform in the 21 of O(6). In particular, defining S := 13 ⊗ ( 1 i

i −1 ), a

globally defined complex quadratic form is

Sab α
ag′′nα

b = αIg′′nα
I − αI+3g′′nα

I+3 + 2iαIg′′nα
I+3 = aIg′′na

I , (5.29)

which is holomorphic in the special coordinates. Therefore it gives a holomorphic

quadratic invariant on any special slice of M.

Complex structures. Because of the restricted form (5.26) of the N = 4 mon-

odromy group, the set of inequivalent metric-compatible complex structures, J , is en-

larged. The condition that [J,Rγ] = 0 for all γ gives J = j ⊗ 1n and j2 = −16, just

as in (5.20) except now in the R6n = R6 ⊗ V decomposition. The condition that J is

metric compatible then implies jT j = 16. This means simply that j is an orthogonal

complex structure on R6. The inequivalent such complex structures form the coset

space SO(6)/U(3) ≃ CP3.

They form a single orbit under the action on Msmooth of the SU(4)R symmetry

of an N = 4 SCFT. This follows because each complex structure is left invariant by
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a U(3) ⊂ SU(4)R which acts holomorphically with respect to that complex structure.

Indeed, with respect to the N = 3 subalgebra for which that U(3) is the R-symmetry,

the complex structure is the N = 3 special complex structure introduced in section

5.2.5. So the R-symmetry orbit of this complex structure is all of CP3 since CP3 ≃
SU(4)R/U(3).

6 TSK spaces

N = 3 moduli spaces are not TSK manifolds, since interacting physics implies metric

singularities where additional charged states become massless. Beyond metric singular-

ities, singularities in the complex structure of the space are also physically important.

The latter are largely captured by the chiral ring structure extensively described in sec-

tion 2 and 3. Furthermore, we are interested in the moduli spaces of N = 3 SCFTs, as

a result of which their TSK geometries will be cones with (at least) a metric singularity

at its tip for any interacting theory. The question then arises as to what singulari-

ties are physically allowable. We do not have a definitive answer to this question, but

suggest here what we think are a reasonable minimum set of properties that a general

TSK space should have.

Singularities of the moduli space of vacua can be of two types, with different phys-

ical interpretation.

• Themetric singularities are points where the metric becomes non-analytic. These

are places where M is no longer a smooth Riemannian manifold, but may still

have a regular complex structure. We call the set of these points Mmetric. They

are interpreted as the loci where states which are charged under the low energy

U(1)n gauge group, and are massive on a generic point of M, becomes massless.

Since the central charge (4.6) provides a lower bound for the mass of a state given

its EM charges, the locus of metric singularities Mmetric is a subvariety of the set

of zeros of ZK(q, p), for all K = 1, 2, 3 and a set of occupied EM charges (q, p).

It is thus complex-analytic with respect to any of the complex structures of M.

• The set of complex singularities, which we will indicate as Mcplx, occur instead

where M is singular as a complex variety. If the chiral ring associated to the

operators whose vev parameterizes the moduli space is not freely generated [21],

this generically implies that complex singularities arise. In particular, given the

explicit expression of C{M}, the holomorphic coordinate ring of M (2.9), it is

straightforward to compute Mcplx.
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Generically, Mcplx is a proper subvariety of Mmetric, for explicit examples see [5, 38].

For this reason in the following we will use sing(M), the singular locus of a given TSK

space, and Mmetric interchangeably.

Examples.

It can be helpful to see how these structures work in practice in the two examples that

we have been analyzing in detail.

A- In the rank one examples, the case k = 1 is particular because it has no singularity.

For k > 1, the origin is obviously a metric non-analyticity as it is the locus where the

scale invariant theory lives. Metrically M is a flat cone with a curvature singularity

at its tip. Furthermore, M ≡ C3/Zk as a complex space. Writing explicitly the

corresponding holomorphic coordinate ring it is easy to show that the origin is also a

complex singularity. Thus in this case Mcplx
∼= Mmetric

∼= sing(M) ≡ {0}.

B- In ˜︂M ≡ C6 we can determine the varieties which are fixed by non-trivial elements

of S3. The order-two elements each fix a codimension 3 variety,

˜︁V(12) =
{︁
aI1 − aI2 = 0 , I = 1, 2, 3

}︁
, (6.1)˜︁V(23) =

{︁
aI1 + 2aI2 = 0 , I = 1, 2, 3

}︁
, (6.2)˜︁V(13) =

{︁
2aI1 − aI2 = 0 , I = 1, 2, 3

}︁
, (6.3)

and the order-three elements fix only the origin and permute the ˜︁V(ij).

Now we descend to the orbifoldM = ˜︂M/S3. On that space we can pick coordinates

uI :=
1

3
[(aI1)

2 + aI1a
I
2 + (aI2)

2] and vI :=
1

2
aI1a

I
2(a

I
1 + aI2) , (6.4)

which are six S3-invariant polynomials. The three submanifolds ˜︁V(12), ˜︁V(23), ˜︁V(13) all

descend to

Mmetric =
{︁
(uI)3 = (vI)2 , I = 1, 2, 3

}︁
. (6.5)

This is indeed the whole of Mmetric, as the other non-trivial elements of the orbifold

group fix only the origin. It has complex dimension 3 and complex codimension 3, and

it is a complete intersection. We then define Msmooth = M\Mmetric.

The study of complex singularities is more intricate and explicit computations can

become cumbersome given the large number of both generators of the holomorphic

coordinate ring and relations among them. To illustrate how things work, let’s focus

on its special slice, C ∼= C2/A2, identified as the a2i = a3i = 0 sub-locus. Since here the
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orbifold group, that is the Weyl group of A2, acts irreducibly, the Chevalley-Shephard-

Todd theorem [63, 64] simplifies things considerably and it ensures that the holomorphic

coordinate ring is a polynomial ring:

C{C} := C[u1, v1], (6.6)

where u1 and v1 are the A2-invariant homogeneous polynomials in the special coordi-

nates (a11, a
1
2) ∈ C2 of degree two and three respectively, defined in (6.4). (6.6) would in

particular imply that no complex singularity arises in this case, though this is an artifact

of considering only C. From the analysis of C{M}, it is in fact possible to show that

the origin of C is a complex singularity, so Mcplx = {0}. In this case Mcplx ⊂ Mmetric.

In the rest of this section, we will uncover constraints on the allowed singular be-

havior N = 3 moduli spaces by adding in the requirement of superconformal invariance

of the underlying N = 3 field theory.

6.1 Conditions from spontaneously broken scale and R-symmetries

Using the spontaneously broken dilatation symmetry we show that M is a bouquet of

flat cones (see figure 8), and the U(3)R symmetry together with dilatations acts linearly

on the special coordinates.

To see this, note that the spontaneously broken dilatation symmetry implies that

M has a real homothety (R+ scaling action), under which we take the line element

to scale with (mass) weight one. Thus the differentials of the special coordinates scale

linearly, and so the special coordinates themselves scale as aIj → µ aIj , where µ ∈ R+ is

the scale factor. By scaling µ→ 0 we see that the chart where the special coordinates

form a non-degenerate coordinate system on M approaches the point with coordinates

aIj = 0 arbitrarily closely. This point is at finite distance and is on the boundary of that

chart. The fixed point is not necessarily in the chart, but may instead only be on its

boundary, because the special coordinate system may (and generally does) degenerate

there.

Broken scale invariance implies that if there are more than one fixed points of

dilatations, they must be at infinite metric distance from one another, for otherwise

their distance would be a scale in the theory. Thus there can only be a single finite-

distance fixed point of dilatations on M. This is the scale-invariant vacuum which

we have seen is the origin of every special coordinate chart. M thus inherits the

aforementioned structure of a bouquet of cones with the origin as their shared tip; see

figure 8. We will now concentrate on a single metrically complete component of such a

bouquet.
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So, together with the spontaneously broken dilatations, the R+×U(3)R symmetry

acts linearly in terms of special coordinates. Furthermore, since the R+ charge (i.e.,

scaling dimension) of aJj is equal to half its U(1)r charge, they combine to form a

complex C∗ action. So the smooth part of an N = 3 CB, Msmooth, is a flat 3n-

complex-dimensional manifold with a C∗ complex homothety and an SU(3)R isometry

fixing one point of the metric completion of Msmooth. Because we do not assume
˜︁U(1)r ⊂ U(3)R to be compact, the complex homothety of M is not strictly given by a

C∗ action, but rather by some ˜︁C∗ action where ˜︁C∗ is the infinitely-sheeted cover of C∗

with a logarithmic branch point at the (excluded) origin.

In a special coordinate chart, which we have argued extends from the tip of the cone

to infinity (though it need not cover the whole cone in the “angular” directions), an

element U3 ∈ SU(3)R acts on the C3n special coordinates as multiplication by U3 ⊗ 1n,

while µ ∈ C∗ acts as multiplication by µ13 ⊗ 1n.

The TSK monodromy condition (5.4) implies that upon continuing along a path

γ nontrivial in π1(M), the special coordinates experience a monodromy in GL(3n,C)
of the form (5.8). From its form it is apparent that it commutes with the U(3)R
action on the special coordinates, and so is compatible with the U(3)R action being

an isometry of M. Since metric singularities are in complex co-dimension three, γ

does not link Mmetric. The situation is thus superficially different from the analysis

of CBs of N = 2 SCFTs where the special Kähler structure imposes that Mmetric

is in complex co-dimension one. In this case non-trivial loops link Mmetric and thus

the consistency between the monodromy group and EM duality in the IR sets strong

constraints on what singularities can appear and, consequentially, on the spectrum of

CB operators at the conformal point [4, 19]. Though non-trivial loops in Msmooth do

not link Mmetric in TSK spaces, nevertheless we will see below that there are elements

of π1(M) which are associated to components in Mmetric in the sense that they can

only be shrunk to a point by passing them through Mmetric. Thus the existence of

Mmetric is the obstruction to these paths being homotopically trivial as effectively as

if they linked Mmetric. From this, it follows that for TSK spaces the analysis of the

monodromy group gives similarly strong constraints as in the special Kähler case on

the structure of possible metric non-analyticities.

6.2 Conditions from BPS spectrum: TSK stratification

We now connect the geometry in a neighborhood of a point in Mmetric to the charges of

BPS states becoming massless there and to the EM duality monodromies they induce.

They are connected to one another through the physical condition that the central

charges associated to the vector of electric and magnetic charges of the BPS states

vanish at Mmetric.
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It is convenient to first set up a streamlined notation for the EM charges, the

central charges, and the special coordinates. We define bold symbols to be complex

3-vectors in the 3 of U(3)R, and define A := (ai
D, ai) be the 2n-component vector of

such 3-vectors which transforms linearly under the SpD(2n,Z) group. Let Q := (qi, pi)

be the 2n-component vector of integers in the charge lattice Λ ≃ Z2n. Finally, let Z be

the 3-vector of central charges, so ZQ(A) := QTA. The central charge defines a dual

relationship between the charges and the special coordinates. Specifically, introduce

a complex “charge space” V := C ⊗Z Λ ≃ C2n. The special coordinates A then take

values in C3 ⊗ V ∗ where V ∗ is the linear dual of the charge space. Furthermore, V

and C3 ⊗ V ∗ are symplectic spaces whose symplectic bilinear forms are induced by the

Dirac pairing. Denote the Dirac pairing on the charge lattice by ⟨Q,Q′⟩ = QTDQ′,

and extend it to V by linearity. Then V ∗ inherits an SpD(2n,Z) action from that on

V , and a Dirac pairing, ⟨A,A⟩ = A
T · D−1A from the Dirac pairing on V and the

U(3)-invariant inner product on C3.

If a state in the theory with chargeQ ̸= 0 becomes massless at a point P ∈ M where

ZQ(P ) = 0, then there will be charged massless states in the spectrum of the effective

theory everywhere on the locus MQ
metric := {P ∈ M|ZQ(P ) = 0}. This follows since,

as we discussed in section 4, the BPS spectrum is constant in any connected component

of Msmooth. Then Mmetric =
⋃︁

Q∈BPSM
Q
metric, for Q running over the set of charges of

BPS states in the spectrum. In this notation, the metric on Msmooth is

g = i⟨dA , dA⟩ . (6.7)

Since Z is a complex 3-vector, it seems reasonable that Mmetric is a complex codi-

mension 3 subspace of M. However this conclusion is difficult to justify or even make

sense of without some knowledge of the kinds of spaces M and Mmetric are.14 To

make further progress, we make the following assumption whose physical justification

is unclear to us:

Regularity assumption: M is a complex analytic space, and Mmetric =⋃︁
Q∈BPSM

Q
metric is an analytic subset of M of complex codimension 3.

It is important to notice that the central charges ZQ, a priori only locally defined on

charts, do not extend to single-valued functions on Msmooth — i.e., they are branched

over MQ
metric. However, with the regularity assumption, ZQ does extend analytically

to MQ
metric where it vanishes. This follows since M is metrically complete, so points

14As an example of the kind of wild behavior that we are trying to avoid, if the cardinality of the

set of BPS states is infinite, then the union of the MQ
metric could conceivably accumulate densely in

M.
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of MQ
metric are at finite distance in Msmooth, and so will be on the boundary of special

coordinate charts on Msmooth at finite values of the special coordinates. Because the

central charges are linear in the special coordinates, the restriction to MQ
metric describes

a complex codimension 3 linear subspace in the closure of a special coordinate chart at

least at a generic point.

In particular, MQ
metric inherits a flat metric almost everywhere, and so can be

decomposed into its smooth and singular parts just as we did for the ambient M space.

Furthermore, MQ
metric carries a rank-n TSK structure, since D, τ , and the SpD(2n,Z)

overlap transformations are all inherited from the ambient charts and their overlaps.

In the remainder of this section we argue that upon restriction to MQ
metric, its

inherited rank-n TSK structure consistently restricts to a rank-(n− 1) TSK structure.

Thus MQ
metric will itself be a TSK space.

Consider a point P ∈ MQ
metric where the induced metric on MQ

metric is flat (non-

singular). With the above assumption, a small neighborhood of P exists which is the

product of a flat 6(n − 1)-real-dimensional ball in MQ
metric with a 6-real-dimensional

flat cone over a base, LQ, which is a connected 5-real-dimensional closed manifold (the

link of MQ
metric in M). We will call this cone over LQ the transverse slice to MQ

metric in

M through P .

Denote by a the n-component vector of U(3) triplets of complex special coordinates

on M. A GL(n,C) transformation can be chosen to bring it to the form a = (a∥, a⊥)

such that a⊥ ∝ ZQ(A) are a triplet of coordinates vanishing along MQ
metric, and where

a∥ are the n−1 triplets of complex coordinates such that ∂/∂a∥ are tangent to MQ
metric.

The a∥ and their complex conjugates are thus good (independent, single-valued) coor-

dinates on the flat 6(n − 1)-real-dimensional ball in MQ
metric around P . The compo-

nents of the metric along Mmetric must be non-degenerate. The metric on Msmooth is

g = i⟨dA , dA⟩, where d is the exterior derivative on Msmooth, so the induced metric

along Mmetric is g∥ = i⟨d∥A , d∥A⟩. Its non-degeneracy implies that ∂∥A and ∂∥A span

a 6(n − 1)-real-dimensional symplectic subspace of C3 ⊗ V ∗. But since the conditions

determining this subspace are U(3)R-invariant, and the U(3)R acts irreducibly on the

C3 factor, this subspace is of the form C3⊗S∥ with S∥ ⊂ V ∗ a 2(n−1)-real-dimensional

symplectic subspace of V ∗. This defines a decomposition V ∗ = S∥ ⊕ (S∥)
⊥ into sym-

plectic subspaces, where (S∥)
⊥ is the 2-real-dimensional symplectic complement15 of

S∥.

Recall that the analytic continuation along any closed path γ in Msmooth will give a

monodromy, A
γ−→MγA, with Mγ ∈ SpD(2n,Z). Call EM duality monodromies along

closed paths in an arbitrarily small neighborhood of P the local monodromies of P . The

15The symplectic complement of S is defined by S⊥ := {v ∈ V ∗ | ⟨v, w⟩ = 0 for all w ∈ S}.
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fact that the a∥ are good coordinates around P implies that they suffer no nontrivial

local monodromies. This means, in particular, that the S∥ symplectic subspace is left

invariant by the local monodromies of P .

This puts strong constraints on the possible local monodromies around P ∈ MQ
metric:

they can be non-trivial only in the two (S∥)
⊥ directions. Moreover, the V ∗ = S∥⊕(S∥)

⊥

decomposition is dual to a decomposition of the charge lattice, Λ = Σ⊕Σ⊥, into sym-

plectic sublattices, where Σ is a rank-2 sublattice which includes all the BPS charges

that become massless on MQ
metric. We see this as follows.16

At the fixed values of a∥ corresponding to the coordinates of the point P , a⊥ are

a U(3) triplet of complex special coordinates on the transverse slice. They need not

be single valued: if [γ] ∈ π1(L
Q) is non-trivial, then there can be an associated non-

trivial monodromy M[γ] ∈ SpD(2n,Z). These are local monodromies of P because

the transverse slice is a cone, so γ can be continuously “shrunk” to be arbitrarily

close to P by scaling towards the tip, P , of the cone. These monodromies generate a

subgroup Γ(P ) ⊂ Γ(M) of the monodromy group which is a representation of π1(L
Q) in

SpD(2n,Z). From the definition, Z = QTA, of the central charges, such a monodromy

implies that if Q is in the BPS spectrum, then so is M−T
[γ] Q. Thus there will be a

whole local EM duality orbit of Q, Φ := Γ(P )−TQ, of charges of BPS states which have

vanishing masses at MQ
metric. Since the central charge is linear in the charges, if QTA

and (Q′)TA both vanish on MQ
metric, then (ℓQ+mQ′)TA = 0 there as well for arbitrary

integers ℓ,m. Thus algebraically MQ
metric is characterized by the integral span of Φ, i.e.,

a fixed sublattice, Σ ⊂ Λ.

Note that with respect to the real symplectic structure defined by the charge lattice

and its Dirac pairing, complex conjugation maps Σ to itself. Thus

QTA = QTA = 0 on MΣ
metric for all Q ∈ Σ . (6.8)

This means that at each point of MΣ
metric, A takes values only in the annihilator sub-

space of Σ. This is the subspace Σann ⊂ V ∗ which is the kernel of the dual pairing with

Σ ⊂ Λ.17 Taking derivatives of (6.8) in the a∥ direction implies QT∂∥A = QT∂∥A = 0

on MΣ
metric for all Q ∈ Σ. Thus the 2(n− 1)-dimensional symplectic subspace S∥ ⊂ V ∗

spanned by ∂∥A and ∂∥A on MΣ
metric is in the annihilator of Σ: S∥ ⊂ Σann. This implies

that Σ is at most rank 2. By assumption 0 ̸= Q ∈ Σ, so rank(Σ) ≥ 1. But if Σ were

rank 1 then all the massless states at MΣ
metric would have commensurate charge vectors.

Thus there would be an EM duality frame in which they were all electrically charged

16The following argument closely parallels one given in [3] in the context of N = 2 special Kahler

geometry.
17In other words, Σann := {v ∈ V ∗ |QT v = 0 for all Q ∈ Σ}. We do not use the usual notation,

“Σ⊥”, for the annihilator of Σ since we are reserving Σ⊥ for the symplectic complement of Σ in Λ.
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with respect to a single low energy U(1) gauge factor. This would give rise to an IR

free N = 3 U(1) gauge theory, which does not exist.

Thus Σ must have rank 2. It then follows18 that

S∥ = Σann , (6.9)

and Σ is a symplectic sublattice of Λ. Thus the charge lattice splits into two symplectic

sublattices, Λ = Σ⊕Σ⊥, where Σ⊥ is the symplectic complement of Σ. Recalling that

V = Λ⊗Z C and V ∗ is its linear dual, we have found that

S∥ = (Σ⊥ ⊗ C)∗, (S∥)
⊥ = (Σ⊗ C)∗. (6.10)

This decomposition of the charge lattice into symplectic sublattices which are dual

to the decomposition of the special coordinates in directions parallel and transverse to

MΣ
metric, together with the fact that MΣ

metric is a complex linear subspace of M in terms

of the special coordinates, gives the required restriction of the rank-n TSK structure

of M to a rank-(n − 1) TSK structure on MΣ
metric. Namely, simply restrict A to take

values in the C3 ⊗ S∥ subspace, τ to the S∥ subspace, and the charge lattice and D to

the symplectic Σ⊥ sublattice.

The physical interpretation of this splitting is not surprising: Σ is the space of

electric and magnetic charges of a U(1)⊥ factor, for which some charged states become

massless at MΣ
metric, while Σ

⊥ is the space of electric and magnetic charges of U(1)n−1
∥ ,

whose charged states are generically not massless at MΣ
metric. This basis, U(1)n−1

∥ ×
U(1)⊥, of the U(1)

n vector multiplets reflects the splitting V ∗ = S∥ ⊕ (S∥)
⊥ of the dual

charge space into symplectic subspaces.

Likewise, restricting to the complementary subspaces, Σ and (S∥)
⊥, induces a TSK

structure on the transverse slice through P . Indeed, the transverse slice through P can

be interpreted as the moduli space of a rank-1 N = 3 SCFT describing the degrees

of freedom which become massless at MΣ
metric, and the splitting derived above reflects

the physically obvious fact that this rank-1 SCFT decouples in the IR from the other,

heavy, charged states in the theory.

But the physical interpretation of the TSK structure inherited by MΣ
metric is less

clear. Nevertheless, this result imposes an interesting regularity on the geometry of TSK

spaces, closely parallel to that seen in the structure of symplectic singularities. Just as

we decomposed the rank-n TSK space as M = Msmooth ∪Mmetric into a rank-n TSK

manifold and a 3(n− 1)-dimensional singular locus, since we now know that Mmetric is

itself a rank-(n − 1) TSK space we can decompose it as Mmetric = M′
smooth ∪M′

metric

and learn that M′
metric is a rank-(n− 2) TSK space.

18See section 4.2 of [3] for the argument.
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Iterating, we produce a decomposition of the original TSK spaceM into the disjoint

union of a series of TSK manifolds of decreasing rank, M = Msmooth ∪ M′
smooth ∪

M′′
smooth ∪ . . .. This necessarily terminates as the dimension decreases strictly at each

step – and it has to decrease by a number of complex dimensions a multiple of three,

by the TSK constraint. This defines a stratification and associated transverse slices, of

M which will be formalized shortly in section 6.4. The strata are naturally partially

ordered by inclusion under closure. This partial order can be graphically depicted

in a Hasse diagram, which is a tree graph in which the vertices represent the strata,

and edges relate adjacent strata in the partial order. A transverse slice between two

adjacent strata in the Hasse diagram is called an elementary slice. Figures 8b and 8c

give an example of a stratification and its Hasse diagram.

As described above, the transverse slices to this stratification also possess a TSK

structure, interpreted physically as the moduli spaces of SCFTs at generic points on

the strata. The elementary slices have complex dimension 3, as this is the codimension

of the solutions of ZQ = 0.

This stratified structure, with transverse slices which are themselves characterized

in a precise manner, is very reminiscent of the structure of nilpotent orbits of Lie

algebras [65–69] and more generally of symplectic singularities [70–72], for which the

existence of the stratification has been demonstrated in [73]. From the N = 2 point

of view, the hyperkähler singular structure of the Higgs branch and its stratification

has been studied recently in [74]. A crucial difference with the geometries studied in

[74], is that in the general singular hyperkähler case considered there, the elementary

slices can have arbitrary large (quaternionic) dimension, whereas in the TSK case, they

always have the minimal dimension allowed for a TSK, i.e. three complex dimensions.

In other words, the elementary slices — or equivalently the edges of the Hasse diagram

— correspond to rank-1 N = 3 geometries, which in turn are given by a subset of the

Kodaira classification [29, 34, 38], see table 2. We will give examples after having given

the formal definition of TSK spaces in section 6.4.

In summary, the singular geometry of the moduli space of N = 3 SCFTs borrows

aspects from both the hyperkähler singular geometry of N = 2 Higgs branches, namely

the stratification, and from the special Kähler geometry of N = 2 Coulomb branches,

namely the fact that all the elementary slices have complex dimension 3.

Examples

A. Consider the rank one case, which is almost trivial. Here τ is a fixed number with

positive imaginary part and the central charges are ZK = (q+ pτ)aK , with (q, p) ∈ Z2.

As (1, τ) is an R-basis of C, q + pτ vanishes only for p = q = 0. So the central charge
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Kodaira TSK Corresponding N ≥ 3 theory

II∗ C3/Z6

N = 3 S-fold

Z3 gauging of SU(2) N = 4

Z6 gauging of U(1) N = 4

III∗ C3/Z4

N = 3 S-fold

Z2 gauging of SU(2) N = 4

Z4 gauging of U(1) N = 4

IV ∗ C3/Z3
N = 3 S-fold

Z3 gauging of U(1) N = 4

I∗0 C3/Z2
SU(2) N = 4

Z2 gauging of U(1) N = 4

I0 C3 U(1) N = 4

Table 2. The list of allowed TSK geometries for rank-1 N ≥ 3 theories, with the associated

Kodaira label. The green rows correspond to N = 4 geometries.

for charged state vanishes when a1 = a2 = a3 = 0. We recover that the origin is the

only singular locus.

B. In the rank two case, which is less trivial, we illustrate the construction of this

subsection. We have

Q =

⎛⎜⎜⎜⎜⎝
p1

p2

q1

q2

⎞⎟⎟⎟⎟⎠ , A =

⎛⎜⎜⎜⎜⎝
a1,1D a1,2D a1,3D

a2,1D a2,2D a2,3D

a11 a21 a31

a12 a22 a32

⎞⎟⎟⎟⎟⎠ , (6.11)

τ is a matrix given by equation (5.3). The central charge reads

ZK
Q (A) =

(︃
q1 + p1ς +

1

2
p2ς

)︃
aK1 +

(︃
q2 + p2 + p2ς +

1

2
p1ς

)︃
aK2 . (6.12)

Recall that the special coordinates aIi range over C6 which covers six copies of a funda-

mental domain of the S3 action (5.2) on C6. The three pre-images of Mmetric (6.5) in

the covering C6 are given by the three submanifolds (6.1), (6.2), and (6.3). Since they

are in different copies of an S3 fundamental domain, only one of them need be taken

to define the special coordinate chart in which we evaluate the central charge. For
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concreteness, let us choose a chart so that (6.1) describes Mmetric. Then the vanishing

of ZK
Q (A) along this submanifold corresponds for charges of the form

Σ : Q =

⎛⎜⎜⎜⎜⎝
p

−p
q

p− q

⎞⎟⎟⎟⎟⎠ , for (p, q) ∈ Z2. (6.13)

This is the rank-2 symplectic sublattice Σ introduced in the text. Σ⊥, the symplectic

complement of Σ, is then the span of

Σ⊥ :

⎛⎜⎜⎜⎜⎝
p′

p′

q′

q′ − p′

⎞⎟⎟⎟⎟⎠ , for (p′, q′) ∈ Z2. (6.14)

By (6.1), the special coordinates along Mmetric are given by aI1 = aI2 ≡ aI . The aI

are the components of the vector a∥ introduced above. The metric (4.11) becomes

Im ς (daIdaI +daIda
I) up to an irrelevant numerical prefactor, and there is no further

identification imposed on the coordinates. This means that the stratum has no metric

singularity, and it is identified with I0.

6.3 Conditions from SCFT locality and unitarity

The N = 3 superconformal multiplet structure for unitary theories (reviewed in section

3), together with the assumptions and conjectures relating 4d SCFT chiral rings to

moduli space coordinate rings (discussed in section 2), provide a convincing set of

relations between the SCFT operator algebra and the complex geometry of M.

What is the extent to which these relations can be used to constrain either the

SCFT operator algebra or the TSK geometry of M? It turns out that the relations

as yet provide only quite weak constraints in either direction. It is, however, unclear

to us how much of this is due to the weakness of our current understanding of N = 3

chiral rings and TSK spaces, and how much is due to these two structures capturing

complementary information about the SCFT.

The chiral ring is the holomorphic coordinate ring of M, where holomorphic means

with respect to a physical complex structure of M. The gradings of the chiral ring by

U(3)R charges also encodes the U(3)R action on M. Thus the chiral ring clearly cap-

tures information on the physical Kähler structures of M and the action of its U(3)R
group of isometries. But the general structure of N = 3 chiral rings described in section
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3 turns out to not give any additional constraints on TSK geometry beyond those devel-

oped in sections 4 and 5. For instance, the occurrence of dimension-2 chiral/anti-chiral

operators from the stress-tensor multiplet follows from the existence of the invariant

hermitian quadratic forms (5.14) on a TSK space, and the occurrence of the additional

chiral and anti-chiral dimension-2 operators from the N = 4 stress-tensor multiplet

also follow from the existence of the invariant holomorphic quadratic form (5.29) on an

N = 4 TSK space.

On the other hand, some central aspects of TSK geometry, especially the charge

lattice, its Dirac pairing, and the EM monodromy group, are invisible from the point

of view of the chiral ring. Furthermore, the holomorphic coordinate ring of a TSK

geometry with respect to its special complex structure does not seem to be captured

by any N = 3 chiral ring. But this “extra” structure on the TSK side does not seem to

give rise to any general constraints on which combinations of N = 3 chiral multiplets

must or must not appear in SCFTs.

An argument of Aharony and Evtikhiev [29] does draw such conclusions, but only

under the assumption of the existence of N = 2 Coulomb branch subspaces of M.

These subspaces are what we called the special slices of M in section 5.3. A general-

ization of their argument goes as follows.

As discussed in section 5.3, a special slice C ⊂ M is a subspace fixed point-wise by a

U(2) subgroup of U(3)R and is holomorphic with respect to any of the physical complex

structures of M. So if C exists then there will be chiral ring operators corresponding

to generators of the holomorphic coordinate ring of C. With respect to a choice of

N = 2 subalgebra of the N = 3 superconformal algebra, C is a Coulomb branch, so the

subgroup of the N = 3 isometry group which leaves it fixed is U(2) ≃ SU(2)R×U(1)F ,

where SU(2)R is part of the N = 2 R-symmetry group and U(1)F is the N = 2 flavor

symmetry.

Decompose a general N = 3 chiral multiplet, XB(R1,R2),r, into N = 2 multiplets.

Using the general decomposition of su(3) irreps in terms of su(2) ⊕ u(1) irreps given

in, e.g., eqn. (6.16) of [47], along with the condition (3.1) for a there to be a chiral

ring operator in the multiplet, it is a straight forward computation to see that any

SU(2)R × U(1)F -neutral chiral ring operator must be in the U(3)R irrep with weights

(R1, R2) = (0, R) and r = r∗ where r∗ is defined in (2.17). From the shortening

conditions summarized in table 1, the only N = 3 chiral multiplets in this U(3)R
representation are the BB(0,R) multiplets.

We learn from this that if a special slice (N = 2 Coulomb branch) exists, then

BB(0,R) and BB(R,0) multiplets for some R must appear in the spectrum of supercon-

formal primaries in an N = 3 SCFT, and furthermore, that these are the only primaries

contributing chiral ring operators on the special slice. Since these operators have di-
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mension ∆ = R and R ∈ Z, it follows that the special slice holomorphic coordinate

ring generators necessarily have integer scaling dimensions.

But, as discussed at length in section 5.3, we do not have an argument (physical

or mathematical) for the existence of special slices in TSK spaces of ranks greater than

1. It is possible that the stratified structure of TSK spaces and the fact that rank-1

TSK spaces do have special slices can be used to show the existence of special slices in

general. We will leave the exploration of this possibility to later work [5].

6.4 Proposal for a definition of a TSK space

(a)

M1

M0

M2

M4M3

(b)

M4M3

M2M1

M0

(c)

Figure 8. Cartoons of scale-invariant moduli spaces, where each real dimension in the figure

represents 3 complex dimensions. The cones and lines are meant to extend to infinity; they are

truncated here due to lack of space. Figure (a) shows a bouquet of three cones: the conformal

vacuum is the common tip of the cones, while at all other points conformality is spontaneously

broken. Each cone has sub-cones of metric singularities, shown in red. Figure (b) shows a

space where Msmooth = M4 ∪ M3 ∪ M2, the disjoint union of two dimC=6 manifolds and

one dimC=3 manifold, and Mmetric = M1 ∪M0 is the disjoint union of a dimC=3 manifold

M1, and a 0-dimensional manifold M0 (the conformal vacuum). The strata of this space are

the Mj and their partial ordering by inclusion under closure is given in the Hasse diagram

shown in figure (c).

We end by suggesting here what we think are a reasonable minimum set of prop-

erties that a general TSK space should have, summarizing the basic ingredients above.

Following [75]:

Definition 3. A TSK space, M, is a complete metric space analytically stratified by

TSK manifolds:

(a) M =
⋃︁

j∈P Mj for a finite partially ordered set P of pairwise disjoint locally closed

subsets Mj called strata.
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(b) Mi ∩Mj ̸= ∅ iff Mi ⊂ Mj iff i ≤ j.

(c) P is a graded poset19 where dimC(Mj) = 3 rank(j).

(d) Each stratum is a TSK manifold.

(e) Through any point of stratum Mi and for all j > i there exists a transverse slice

in Mj, Ti<j, which is a TSK space.

(f)
⋃︁

i<j Mi = sing(Mj), the locus of metric or complex singularities of the metric

completion of Mj.

(g) sing(Mj) is an analytic subspace of Mj, and the special structure and metric on

sing(Mj) is the one induced by the metric completion of Mj.

See figure 8 for a visualization of some simple examples of such stratified spaces.

We recap the motivation for this definition: The metric completeness of M im-

plies that its singular locus inherits a distance function. Furthermore, together with

a regularity assumption that the common zeros of the central charges for BPS states

in the spectrum are nowhere dense in M — which seems reasonable since the central

charges are linear in the special coordinates — the condition that the singular locus

occurs when the central charges (4.6) all vanish for some charges in the BPS spectrum

implies that the singular locus is an analytic subspace of M of complex-codimension

3. We argued above that almost everywhere Mmetric inherits a TSK structure from

that of M, basically by restriction. Induction on P then implies the TSK stratification

described above.

It might be useful to note that the condition that the singular locus is complex-

analytic (with respect to any of the complex structures of M) endows M with a

Whitney stratification [76]. This kind of stratification is more constrained and has

nicer regularity properties than the looser topological stratification demanded above.

The condition that the stratification is graded ensures that there is a stratum of

complex dimension 3m for every 0 ≤ m ≤ n where 3n is the largest dimension of any

stratum. Transverse slices are the moduli spaces of the N = 3 SCFT describing the

massless degrees of freedom at each stratum, so are TSK spaces. Since the rank of Ti<j

as a TSK space is rank(j)− rank(i), they can be defined using the above definition of

a TSK by induction on P .

19This means that P has a rank function, rank : P → Z≥0, compatible with the ordering such that

if j covers i then rank(j) = rank(i) + 1. “j covers i” (notated j ⋗ i) means that j > i and there is no

k such that j > k > i.
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The elementary transverse slices, Ti⋖j, are the transverse slices where the index, j,

of the enclosing stratum covers i in P . We argued above that the possible geometries

of the elementary slices is constrained to be one of the 5 possibilities listed in table 2.

This raises the possibility that all TSK geometries can be constructed in an algebraic

way using the elementary transverse slices as “building blocks”. We will explore this

idea in the second part of this study, [5].

We conclude by illustrating this proposed definition of TSK spaces using the simple

examples developed above.

Examples

A- In the rank one examples, the Hasse diagrams are trivial and correspond directly

to the geometries of table 2:

I0

k = 1

I∗0

k = 2

IV ∗

k = 3

III∗

k = 4

II∗

k = 6 (6.15)

We label each edge of the Hasse diagram by the geometry of its associated elementary

transverse slice. The case k = 1 is not singular, so we don’t have any transition. The

unique stratum is a copy of I0. In the other cases, the geometries are singular, the

singular locus is the origin, and there is a single transverse slice.

B- For our rank two example, one can conjecture the following Hasse diagram:

M2

M1

M0

I∗0

I0

(6.16)

Since the theory has rank two, we expect a diagram of height two. In addition, we com-

puted the space of metric singularities in equation (6.5). It is a complete intersection

and an irreducible variety, so there is only one stratum, M1, of complex dimension 3.

– 62 –



As a consequence, the poset P is totally ordered, and its Hasse diagram has the shape

of a line.

We still have to identify the geometry of the elementary slices. Here it is handy to

use some physics intuition. The moduli space C6/S3 corresponds to the moduli space

of the SU(3) N = 4 superYang-Mills theory. Then M1 is where an SU(2) subgroup of

the gauge group remains unbroken, and thus the transverse slice to the first stratum is

the moduli space of an N = 4 SU(2) sYM theory, which is the I∗0 ≡ C3/Z2 TSK space.

The stratum M1 itself can be instead identified by looking at the parametrization

of Mmetric (6.1)-(6.2) in ˜︂M. Recall that the orbifold group is S3 = Z3 ⋊ Z2. The Z3

component interchanges (6.1)-(6.2) and thus to understand M1 is sufficient to consider

one of the subspaces, say (6.1). The Z2 instead fixes this subspace and thus M1
∼=

C3 ≡ I0. A similar analysis can be carried directly in M by looking at the Mmetric

parametrized by uI and vI . The scaling dimension of the uniformizing parameter of

the (uI)3 = (vI)2 complete intersection singularity, is in fact 1.

It is interesting to notice that in this case M1 has a (non-normal) complex sin-

gularity at the origin, but no intrinsic metric singularity. This singularity is instead

present in the full space and it represents the locus where the full SU(3) gauge group

is unbroken, that is why in our depiction in (6.16) a third stratum M0 is present. The

second part of this study, [5], will contain a more detailed analysis of these structures

beyond these simple examples.
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A Notations and conventions

We represent the weight space of u(3)R. This space has natural coordinates (r1, r2, r3)

which are related to R = (R1, R2) and r by⎧⎪⎪⎪⎨⎪⎪⎪⎩
R1 = r1 − r2

R2 = r2 − r3

r = r1 + r2 + r3

⇔

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r1 =

1
3
(2R1 +R2 + r)

r2 =
1
3
(−R1 +R2 + r)

r3 =
1
3
(−R1 − 2R2 + r)

(A.1)

According to (2.13), the supercharges Q transform in a representation with weights

Q : (R1, R2, r) ∈ {(1, 0,−1), (−1, 1,−1), (0,−1,−1)} , (A.2)

or equivalently

Q : (r1, r2, r3) ∈
{︃(︃

1

3
,−2

3
,−2

3

)︃
,

(︃
−2

3
,
1

3
,−2

3

)︃
,

(︃
−2

3
,−2

3
,
1

3

)︃}︃
. (A.3)

We choose these weights as the basis of our root space. This makes it easy to see

graphically how the supercharges act to generate the superconformal multiplets. This

means that a weight will be represented by a point with coordinates (q1, q2, q3) given

in terms of (r1, r2, r3) or (R1, R2, r) by⎧⎪⎪⎪⎨⎪⎪⎪⎩
q1 =

1
3
(r1 − 2r2 − 2r3) =

1
3
(2R1 +R2 − r)

q2 =
1
3
(−2r1 + r2 − 2r3) =

1
3
(−R1 +R2 − r)

q3 =
1
3
(−2r1 − 2r2 + r3) =

1
3
(−R1 − 2R2 − r).

(A.4)
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[33] I. Garćıa-Etxebarria and D. Regalado, Exceptional N = 3 theories, JHEP 12 (2017)

042, [arXiv:1611.05769].

[34] M. Lemos, P. Liendo, C. Meneghelli, and V. Mitev, Bootstrapping N = 3

superconformal theories, JHEP 04 (2017) 032, [arXiv:1612.01536].

[35] T. Bourton, A. Pini, and E. Pomoni, 4d N = 3 indices via discrete gauging,

arXiv:1804.05396.

[36] F. Bonetti, C. Meneghelli, and L. Rastelli, VOAs labelled by complex reflection groups

and 4d SCFTs, arXiv:1810.03612.

– 66 –

http://arxiv.org/abs/1804.01108
http://arxiv.org/abs/1804.03152
http://arxiv.org/abs/1501.00357
http://arxiv.org/abs/1704.07890
http://arxiv.org/abs/1802.09626
http://arxiv.org/abs/1305.0318
http://arxiv.org/abs/1611.08602
http://arxiv.org/abs/1906.03912
http://arxiv.org/abs/hep-th/9810063
http://arxiv.org/abs/1512.03524
http://arxiv.org/abs/1512.06434
http://arxiv.org/abs/1602.08638
http://arxiv.org/abs/1602.01503
http://arxiv.org/abs/1611.05769
http://arxiv.org/abs/1612.01536
http://arxiv.org/abs/1804.05396
http://arxiv.org/abs/1810.03612


[37] M. Cornagliotto, M. Lemos, and V. Schomerus, Long Multiplet Bootstrap, JHEP 10

(2017) 119, [arXiv:1702.05101].

[38] P. C. Argyres, A. Bourget, and M. Martone, Classification of all N ≥ 3 moduli space

orbifold geometries at rank 2, arXiv:1904.10969.

[39] N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string

dynamics, Phys. Lett. B388 (1996) 753–760, [hep-th/9608111].

[40] N. Seiberg, Nontrivial fixed points of the renormalization group in six-dimensions,

Phys. Lett. B390 (1997) 169–171, [hep-th/9609161].

[41] K. A. Intriligator, D. R. Morrison, and N. Seiberg, Five-dimensional supersymmetric

gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B497 (1997)

56–100, [hep-th/9702198].

[42] A. Hanany and A. Zaffaroni, Branes and six-dimensional supersymmetric theories,

Nucl. Phys. B529 (1998) 180–206, [hep-th/9712145].

[43] D. Gaiotto, Z. Komargodski, and J. Wu, Curious Aspects of Three-Dimensional N = 1

SCFTs, JHEP 08 (2018) 004, [arXiv:1804.02018].

[44] M. Baggio, V. Niarchos, and K. Papadodimas, On exact correlation functions in

SU(N) N = 2 superconformal QCD, JHEP 11 (2015) 198, [arXiv:1508.03077].

[45] E. Gerchkovitz, J. Gomis, N. Ishtiaque, A. Karasik, Z. Komargodski, and S. S. Pufu,

Correlation Functions of Coulomb Branch Operators, JHEP 01 (2017) 103,

[arXiv:1602.05971].

[46] G. K. Karananas and M. Shaposhnikov, CFT data and spontaneously broken conformal

invariance, Phys. Rev. D97 (2018), no. 4 045009, [arXiv:1708.02220].

[47] C. Cordova, T. T. Dumitrescu, and K. Intriligator, Multiplets of Superconformal

Symmetry in Diverse Dimensions, arXiv:1612.00809.

[48] F. A. Dolan and H. Osborn, On short and semi-short representations for

four-dimensional superconformal symmetry, Annals Phys. 307 (2003) 41–89,

[hep-th/0209056].

[49] N. Seiberg, Electric - magnetic duality in supersymmetric nonAbelian gauge theories,

Nucl. Phys. B435 (1995) 129–146, [hep-th/9411149].

[50] K. A. Intriligator and N. Seiberg, Duality, monopoles, dyons, confinement and oblique

confinement in supersymmetric SO(N(c)) gauge theories, Nucl. Phys. B444 (1995)

125–160, [hep-th/9503179].

[51] F. Cachazo, M. R. Douglas, N. Seiberg, and E. Witten, Chiral rings and anomalies in

supersymmetric gauge theory, JHEP 12 (2002) 071, [hep-th/0211170].

– 67 –

http://arxiv.org/abs/1702.05101
http://arxiv.org/abs/1904.10969
http://arxiv.org/abs/hep-th/9608111
http://arxiv.org/abs/hep-th/9609161
http://arxiv.org/abs/hep-th/9702198
http://arxiv.org/abs/hep-th/9712145
http://arxiv.org/abs/1804.02018
http://arxiv.org/abs/1508.03077
http://arxiv.org/abs/1602.05971
http://arxiv.org/abs/1708.02220
http://arxiv.org/abs/1612.00809
http://arxiv.org/abs/hep-th/0209056
http://arxiv.org/abs/hep-th/9411149
http://arxiv.org/abs/hep-th/9503179
http://arxiv.org/abs/hep-th/0211170


[52] A. Gadde, L. Rastelli, S. S. Razamat, and W. Yan, Gauge Theories and Macdonald

Polynomials, Commun. Math. Phys. 319 (2013) 147–193, [arXiv:1110.3740].

[53] A. Manenti, Differential operators for superconformal correlation functions,

arXiv:1910.12869.

[54] J. Wess and J. Bagger, Supersymmetry and supergravity. Princeton University Press,

Princeton, NJ, USA, 1992.

[55] S. Weinberg and E. Witten, Limits on Massless Particles, Phys. Lett. 96B (1980)

59–62.

[56] C. Cordova, T. T. Dumitrescu, and K. Intriligator, Deformations of Superconformal

Theories, JHEP 11 (2016) 135, [arXiv:1602.01217].

[57] P. C. Argyres, M. R. Plesser, and N. Seiberg, The Moduli space of vacua of N=2 SUSY

QCD and duality in N=1 SUSY QCD, Nucl. Phys. B471 (1996) 159–194,

[hep-th/9603042].

[58] K. Hulek and G. Sankaran, The geometry of siegel modular varieties, arXiv preprint

math/9810153 (1998).

[59] D. S. Freed, Special Kahler manifolds, Commun. Math. Phys. 203 (1999) 31–52,

[hep-th/9712042].

[60] G. Lopes Cardoso and T. Mohaupt, Special Geometry, Hessian Structures and

Applications, arXiv:1909.06240.

[61] R. Donagi and E. Witten, Supersymmetric Yang-Mills theory and integrable systems,

Nucl. Phys. B460 (1996) 299–334, [hep-th/9510101].

[62] D. D. Joyce, Compact manifolds with special holonomy. Oxford University Press on

Demand, 2000.

[63] G. Shephard and J. Todd, Finite unitary reflection groups, Canadian J. Math. 6 (1954)

274.

[64] C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77

(1955) 778–782.

[65] H. Kraft and C. Procesi, Minimal singularities in gln, Invent. math 62 (1981), no. 3

503–515.

[66] H. Kraft and C. Procesi, On the geometry of conjugacy classes in classical groups,

Commentarii Mathematici Helvetici 57 (1982), no. 1 539–602.

[67] B. Fu, D. Juteau, P. Levy, and E. Sommers, Generic singularities of nilpotent orbit

closures, Advances in Mathematics 305 (2017) 1–77.

[68] S. Cabrera and A. Hanany, Branes and the Kraft-Procesi Transition, JHEP 11 (2016)

175, [arXiv:1609.07798].

– 68 –

http://arxiv.org/abs/1110.3740
http://arxiv.org/abs/1910.12869
http://arxiv.org/abs/1602.01217
http://arxiv.org/abs/hep-th/9603042
http://arxiv.org/abs/hep-th/9712042
http://arxiv.org/abs/1909.06240
http://arxiv.org/abs/hep-th/9510101
https://cms.math.ca/10.4153/CJM-1954-028-3
http://www.jstor.org/stable/2372597?origin=crossref&seq=1#page_scan_tab_contents
http://arxiv.org/abs/1609.07798


[69] S. Cabrera and A. Hanany, Branes and the Kraft-Procesi transition: classical case,

JHEP 04 (2018) 127, [arXiv:1711.02378].

[70] E. Brieskorn, Singular elements of semi-simple algebraic groups, in Actes du Congres

International des Mathématiciens (Nice, 1970), vol. 2, pp. 279–284, 1970.

[71] P. Slodowy, Simple singularities, in Simple Singularities and Simple Algebraic Groups,

pp. 70–102. Springer, 1980.

[72] A. Beauville, Symplectic singularities, arXiv preprint math/9903070 (1999).

[73] D. Kaledin, Symplectic singularities from the poisson point of view, Journal für die

reine und angewandte Mathematik (Crelles Journal) 2006 (2006), no. 600 135–156.

[74] A. Bourget, S. Cabrera, J. F. Grimminger, A. Hanany, M. Sperling, A. Zajac, and

Z. Zhong, The Higgs Mechanism – Hasse Diagrams for Symplectic Singularities,

arXiv:1908.04245.

[75] M. Goresky and R. MacPherson, Stratified morse theory, in Stratified Morse Theory,

pp. 3–22. Springer, 1988.

[76] H. Whitney, Tangents to an analytic variety, Annals of mathematics (1965) 496–549.

– 69 –

http://arxiv.org/abs/1711.02378
http://arxiv.org/abs/1908.04245

	Motivation, summary, and open questions
	Chiral rings and moduli spaces of vacua
	Chiral ring generalities
	Chiral rings for N<3 CFTs
	Non-supersymmetric 4d CFTs
	N=1 SCFTs
	N=2 SCFTs


	Chiral rings for N=3 SCFTs
	Differences between N=4 and genuinely N=3 chiral rings

	Conditions from low energy N=3 supersymmetry
	Triple special Kähler (TSK) manifolds
	Examples
	Some properties of Msmooth
	Fundamental group and EM monodromy group
	Global constancy of τ
	Constraints on the EM monodromy group
	Flat metric, isometries, and quadratic forms
	Kähler structures

	Special and hyperkähler slices
	Enhancement to N=4

	TSK spaces
	Conditions from spontaneously broken scale and R-symmetries
	Conditions from BPS spectrum: TSK stratification
	Conditions from SCFT locality and unitarity
	Proposal for a definition of a TSK space

	Notations and conventions

