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Change Point Detection and Node Clustering for
Time Series of Graphs
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Abstract—Suppose an undirected graph is observed over time.
Its structure (i.e., nodes and edges) remains the same but the
measurements taken at the nodes may vary over time. This paper
proposes a method that simultaneously performs the following
two tasks: (i) it detects change points in the time domain, and
(ii) for each time interval between any two consecutive detected
change points, it partitions the nodes into different clusters
of similar measurements. The method begins with recasting
the problem into a model selection problem and employs the
minimum description length principle to construct a selection cri-
terion for which the best fitting model is defined as its minimizer.
A practical algorithm is developed to (approximately) locate this
minimizer. It is shown that the model selection criterion leads
to statistically consistent estimates, while numerical experiments
show that the method enjoys promising empirical properties. To
the best of the authors’ knowledge, the proposed method is one
of the first that performs simultaneous change point detection
and node clustering for time series of graphs.

Index Terms—graph denoising, graph-guided fused lasso,
group fused lasso, minimum description length principle, smooth-
ing proximal gradient descent

I. INTRODUCTION

CONSIDER the following situation. Suppose we would
like to study criminal activities in a certain region

over time. We could first partition the region into different
administrative districts, where each district is represented
by a node in a graph. Two nodes are connected if their
corresponding districts share a common border. For each node
weekly measurements are taken over a time period. These
measurements can be the weekly total numbers of reported
crime incidents in the district, or they can be the numbers of
certain crime incidents such as burglary. With this setup, we
can model the crime measurements as a time-evolving graph,
and see if the crime activities change over time, or if they are
spatially correlated in the sense that adjacent districts have
similar patterns.

This problem can be formalized as follows. Suppose a
time-evolving graph is observed at time t = 1, . . . , T . The
number of nodes and the node connectivity (i.e., edges)
remain unchanged over time, although the noisy measurements
observed at the nodes may change. We use p to denote the
number of nodes, nt,i to denote the number of measurements
observed in the ith node at time t, and xt,i,j to denote the jth
measurement (i.e., j = 1, . . . , nt,i) of the ith node at time t,

Cong Xu and Thomas C. M. Lee are with the Department of Statistics,
University of California, Davis, CA 95616 USA e-mail: {cngxu, tcm-
lee}@ucdavis.edu. The authors are most grateful to the reviewers and the
associate editor for their most useful and constructive comments. They also
acknowledge the support by the National Science Foundation under DMS-
1811405, DMS-1811661, DMS-1916125, CCF-1934568 and DMS-2113605.

where i = 1, . . . , p and t = 1, . . . , T . The values of the nt,i’s
are typically small, and could even be zero for some t, i; i.e.,
no measurement. For all {t, i, j}, we model the measurements
xt,i,j as realizations of normal random variables Xt,i,j that
satisfy

Xt,i,j
independent∼ N (βt,i, σ

2),

where βt,i is the true signal value for the ith node at time t,
and σ2 is the noise variance. The goal is to, given the data
xt,i,j , estimate the signal βt,i. Of course, an unbiased estimator
for βt,i is

∑nt,i

j=1 xt,i,j/nt,i (if nt,i > 0), the sample average.
However, this estimator is of high variance if nt,i is small,
which is quite common for many real data problems, where
it is typical to have nt,i = 1 for some {t, i}. We consider the
setting when both p and T are fixed, while all nt,i’s go to
infinity at the same linear rate.

To obtain improved estimates for βt,i, two additional as-
sumptions are imposed. First we assume that the underlying
signal is temporally smooth. Specifically, we assume that there
exists a sequence of M time points 1 < t1 < . . . < tM ≤ T ,
called change points, such that all the signal βt,i’s are the
same between any two consecutive change points. Write
βt = (βt,1, βt,2, ..., βt,p)

>, t0 = 1 and tM+1 = T + 1. This
assumption implies that βs = βt if tk ≤ s, t < tk+1 for all
k = 0, . . . ,M .

In addition to temporal smoothness, we also assume the
signal is “spatially” smooth, in the sense that two nodes that
are connected by an edge tend to have more similar values
of βt,i than nodes that are not. We formalize this idea by
assuming that, at any time point t, the nodes can be partitioned
into different connected subgraphs in such a way that all the
nodes within the same cluster share the same signal value. In
below we shall call these subgraphs clusters. In other words,
if at time t the ith and lth nodes are in the same cluster, then
βt,i = βt,l. Note that the clusters may change at the change
points t1, . . . , tM .

It is straightforward to estimate the underlying signal βt,i’s
if the change points and the cluster structure are known; it will
simply be the average of the relevant xt,i,j’s; see (17) below.
In this paper, however, we do not assume the change points
nor the cluster structure are known, and we will estimate them
as well as the βt,i’s. We first recast this problem as a model
selection problem and invoke the minimum description length
(MDL) principle [1], [2] to select a best-fitting model as our
final answer. As a model selection criterion, MDL defines the
best model as the model that compresses the data into the
shortest code length for storage. It has been shown to produce
excellent results in various model selection problems in signal
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and image processing; e.g., [3], [4], [5], [6], [7]. In particular,
in the context of image segmentation, it has been shown by [8]
and [9] that MDL produces superior solutions when comparing
to other popular model selection criteria including AIC, BIC
and cross-validation. We believe that similar results will hold
for the current problem and therefore MDL is used here to
select a best-fitting model.

To the best of the authors’ knowledge, the current paper
is one of the first that considers the problem of simultaneous
change point detection and node clustering for time series of
graphs, although various authors have considered other differ-
ent but similar problems. For example, the MDL principle was
used by [10] for offline change point detection and community
detection in time series of dynamic networks. Notice that the
focus of their work is to model the edge behavior of the
networks and no theoretical results are provided. A so-called
Spectral Scan Statistic was derived by [11] to test if the signal
over a given graph is constant, or is piecewise constant over
two subgraphs. Lastly, a commonly studied problem is change
point detection for time-varying Gaussian graphical models.
A popular approach is to impose different kinds of l1 type
penalties to encourage sparsity and smoothness across time so
that the entries of the precision matrix are piecewise constant
or slowly varying over time; e.g., [12], [13], [14], [15].

Finally, we note that a general categorization of different
types of changes in dynamic networks is proposed by [16].
The changes that we consider in this paper belongs to a
specific type called “extra information changes,” as the nodes
in the networks contain additional information (i.e., the signal
value). Another major contribution of [16] is the definitions of
different scalar-valued metrics that characterize various crucial
network properties at different time points. Based on these
metrics, an exponentially weighted moving average control
chart was designed and used for online change point detection.
Other recent works for online detection for changes in link or
edge properties in dynamic networks include [17], [18].

II. METHODOLOGY

To make the presentation more digestible, we begin with
deriving in Section II-A the MDL solution for the case when
there is no change point; i.e., the homogeneous case. Then in
Section II-B we will extend to the general case that allows for
change points.

A. Homogeneous Case

This subsection assumes the cluster structure stays the same
across different times. That is, there is no change point and
βt,i = βi for all {t, i}. The task is to estimate the cluster
structure, which includes the number of clusters as well as the
cluster membership for each node; i.e., which cluster the node
belongs to. Let d be the number of clusters (so 1 ≤ d ≤ p)
and write the cluster membership for the ith node as ci; i.e.,
the ith node belongs to the cith cluster, where 1 ≤ ci ≤ d.
Let c = {c1, c2, ..., cp} and P = {β1, β2, ..., βp}. For the
homogeneous case the goal is to estimate d, c and P .

As mentioned before, MDL defines the best fitting model
as the one that enables the best compression of the data, or

in other words, the one that produces the shortest code length
of the data. This idea can be formalized as follows. If we
write CL(z) as the code length of z, then the code length
CL(“data”) of the observed data can be decomposed into two
parts, a model F plus the corresponding residuals Ê :

CL(“data”) = CL(F) + CL(Ê |F), (1)

and the best model is the one that minimizes CL(“data”). Here
F = {d, c,P} and note that the dependence of Ê on F is
stressed in the notation of the last term.

To minimize (1) we need a computable expression for
CL(“data”) and we begin by calculating CL(F), which can
be further decomposed into

CL(F) = CL(d) + CL(c) + CL(P). (2)

According to [1], it takes approximately log(I) bits to encode
an integer I with upper bound unknown, and approximately
log(Iu) bits with a known upper bound Iu. To encode the
number of clusters d, we assume d = O(p), which aligns
with our computational algorithms below. This gives

CL(d) = log(d). (3)

For c, it takes log(d) bits to encode each ci. Then we have

CL(c) =

p∑
i=1

log(d) = p log(d). (4)

Next we calculate CL(P), and we need the maximum likeli-
hood estimate (MLE) of the βi’s. If the ith node belongs to
the rth cluster (i.e., ci = r), the MLE of βi is

β̂i =

∑T
t=1

∑
q,cq=r

∑nt,q

j=1 xt,q,j∑T
t=1

∑
q,cq=r

nt,q
, (5)

which is simply the average of all the observations of all the
nodes belonging to the rth cluster at all time. By [1], to encode
an MLE, the code length is 1

2 logN if N observations are
used for the estimation. For β̂i, this number is given by the
denominator of (5), and hence

CL(P) =

d∑
r=1

1

2
log(

T∑
t=1

∑
i,ci=r

nt,i). (6)

Notice that although there are p of the β̂i’s, there are only d
distinct values of them, as there are only d ≤ p clusters around.
Therefore the upper limit of the first summation in (6) is d not
p.

Now substitute (3), (4) and (6) into (2), we have

CL(F) = (p+ 1) log(d) +
d∑
r=1

1

2
log(

T∑
t=1

∑
i,ci=r

nt,i). (7)

Lastly we calculate the last term CL(Ê |F) of (1), which,
according to [1], is given by the negative log (base 2)
of the likelihood of the fitted model. With the Gaussianity
assumption Xt,i,j ∼ N (βi, σ

2) for all {t, i, j}, the negative
log-likelihood is

n

2
log(2π) +

n

2
log(σ2) +

1

2σ2

T∑
t=1

p∑
i=1

nt,i∑
j=1

(xt,i,j − βi)2, (8)
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where n =
∑T
t=1

∑p
i=1 nt,i is the total number of observa-

tions. The MLE β̂i for βi is given by (5), while the MLE for
σ2 is

σ̂2 =
1

n

d∑
r=1

SSEr,

where SSEr =
∑T
t=1

∑
i,ci=r

∑nt,i

j=1(xt,i,j − β̂i)2 is the sum
of squared errors of the rth cluster.

Plugging these MLEs β̂i and σ̂2 into (8), we obtain the code
length of the residuals Ê

CL(Ê |F) =
n

2
log(2π) +

n

2
log(

1

n

d∑
r=1

SSEr) +
n

2
, (9)

and from (1), (7) and (9), the overall code length is

CL(“data”) = CL(F) + CL(Ê |F)

=(p+ 1) log(d) +
d∑
r=1

1

2
log(

T∑
t=1

∑
i,ci=r

nt,i) +
n

2
log(2π)

+
n

2
log(

1

n

d∑
r=1

SSEr) +
n

2
.

Ignoring constant terms we arrive at the following MDL
criterion for the homogeneous case, and the best-fitting model
is defined as its minimizer:

(p+1) log(d)+

d∑
r=1

1

2
log(

T∑
t=1

∑
i,ci=r

nt,i)+
n

2
log(

1

n

d∑
r=1

SSEr).

(10)

B. Heterogeneous Case

This subsection considers the heterogeneous case where the
cluster structure and the signal values are allowed to change
at change points. The number M and the locations T =
{t1, t2, ..., tM} of such change points are unknown and need
to be estimated, and we will continue to use MDL. With M
change points, the time line is partitioned into M+1 intervals,
where the mth interval is [tm−1, tm) for m = 1, . . . ,M + 1.
We write the number of clusters in the mth interval as d(m)

and the cluster membership as c(m) = {c(m)
1 , c

(m)
2 , ..., c

(m)
p };

i.e., in the mth interval the ith node belongs to the c
(m)
i th

cluster. We write C = {c(1), c(2), ..., c(M+1)} and P =
{β1,β2, ...,βT }, and hence the model is F = {T , C,P},
which leads to the code length decomposition:

CL(F) = CL(T ) + CL(C) + CL(P). (11)

To encode T , we first need to encode the number of the change
points and then the actual locations of the change points. As
there are M change points, the code length is log(M + 1),
where the additional 1 is used to distinguish M = 0 and
M = 1. The locations of change points T can be encoded by
using the length of the time intervals (tm−tm−1)’s. Therefore
combining the two we have

CL(T ) = log(M + 1) +
M∑
m=1

log(tm − tm−1). (12)

It is understood that in (12) the last term of CL(T ) reduces to
0 when there is no change point (i.e., M = 0), which implies
CL(T ) = 0 when M = 0.

Once T is encoded, it becomes the homogeneous case for
each time interval. Using similar arguments as before, we have

CL(C) =
M+1∑
m=1

(p+ 1) log(d(m)) (13)

and

CL(P) =
M+1∑
m=1

d(m)∑
r=1

1

2
log(

tm−1∑
t=tm−1

∑
i,c

(m)
i =r

nt,i). (14)

Combining (11) to (14), we have

CL(F) = log(M + 1) +
M∑
m=1

log(tm − tm−1)

+
M+1∑
m=1

(p+ 1) log(d(m))

+

M+1∑
m=1

d(m)∑
r=1

1

2
log(

tm−1∑
t=tm−1

∑
i,c

(m)
i =r

nt,i).

(15)

Similarly, the code length of the residuals Ê is

CL(Ê |F) =
n

2
log(2π) +

n

2
log(

1

n

M+1∑
m=1

d(m)∑
r=1

SSE(m)
r ) +

n

2
,

(16)
where

SSE(m)
r =

tm−1∑
t=tm−1

∑
i,c

(m)
i =r

nt,i∑
j=1

(xt,i,j − β̂t,i)2

with β̂t,i being the MLE of βt,i

β̂t,i =

∑tm−1
s=tm−1

∑
q,c

(m)
q =r

∑ns,q

j=1 xs,q,j∑tm−1
s=tm−1

∑
q,c

(m)
q =r

ns,q
. (17)

Now adding (15) and (16) together and omitting constant
terms, the MDL criterion for the heterogeneous case is

MDL(T , C) = log(M + 1) +
M∑
m=1

log(tm − tm−1)

+
M+1∑
m=1

(p+ 1) log(d(m))

+
M+1∑
m=1

d(m)∑
r=1

1

2
log(

tm−1∑
t=tm−1

∑
i,c

(m)
i =r

nt,i)

+
n

2
log(

1

n

M+1∑
m=1

d(m)∑
r=1

SSE(m)
r ).

(18)

Note that in the notation of the above MDL criterion, P is
dropped from its argument list. It is because once T and C are
specified, P can be uniquely estimated by (17). Note also that
the dependence on M of the MDL criterion is not explicitly
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shown in its notation, but it is implicitly implied through T .
Lastly, notice that when there is no change point, MDL(T , C)
reduces to (10).

To sum up, we propose to estimate the change points
T = {t1, t2, ..., tM} and the cluster structures C =
{c(1), c(2), ..., c(M+1)} (and the signal P = {β1,β2, ...,βT }
) as the minimizer of MDL(T , C):

{T̂ , Ĉ} = arg min
T ,C

1

n
MDL(T , C). (19)

Since in general (19) cannot be minimized in real time, the
proposed method is for offline change point detection. This
is different from online monitoring of change points, where a
carefully designed control chart is typically used.

C. Theoretical Properties

This subsection establishes the statistical consistency of the
MDL solution {T̂ , Ĉ} defined by (19). The proofs of the
following results can be found in Appendixes A to E.

We need the following regularity conditions. First, for all
N > 0, it is assumed that there exist an N0 > 0 such that
whenever n > N0,

nt,i > N for all 1 ≤ i ≤ p, 1 ≤ t ≤ T. (20)

This condition guarantees that the numbers of observations
in all node nt,i’s go to infinity when the total number of
observations n goes to infinity. Second, it is assumed that

lim
n→∞

nt,i
n

= γt,i for all 1 ≤ i ≤ p, 1 ≤ t ≤ T, (21)

where the γt,i’s are some non-negative constants that sum to
one. This condition ensures that the numbers of observations
nt,i’s for the nodes grow at the same linear rate.

We also assume the conditions that were listed at the
beginning of Section II for the change points and signal. We
denote the true model as {T 0, C0}: T 0 = (t01, t

0
2, ..., t

0
M0)

and C0 = {c0(1), c0(2), ..., c0(M+1)}, where c0(m) =

{c0(m)
1 , c

0(m)
2 , ..., c

0(m)
p }. We have the following lemma.

Lemma 1. Suppose the total number of clusters
∑M+1
m=1 d

(m)

is known. Under the model assumptions and Conditions (20)
and (21), the MDL criterion (19) gives

T̂ → T 0 a.s. and Ĉ → C0 a.s.

Lemma 1 is based on the assumption that the total number
of clusters is known, which can be unrealistic for many real
data problems. This assumption can be relaxed.

Theorem 1. Assume the conditions of Lemma 1 with the
exception that the total number of clusters

∑M+1
m=1 d

(m) is
unknown. The MDL criterion (19) gives

T̂ → T 0 a.s. and Ĉ → C0 a.s.

III. PRACTICAL MINIMIZATION OF MDL(T , C)
Even for moderate sizes of p and T , direct minimization

of (18) is by no means a trivial task. This section develops
a practical procedure to tackle this task. The idea is to first
construct a function that can be used to generate a set of good
candidate models relatively quick, and then select the final
model from these candidate models as the one that gives the
smallest value of MDL(T , C). We shall call such a function
a candidate model generating function. The idea is similar
to, in the context of variable selection in linear models, first
apply lasso to quickly generate a set of candidate models on
its solution path, and then use a model selection criterion such
as BIC to select the best model from these candidate models.

We need some notation to proceed. Let yt,i be the
average of all the observations within the ith node at
time t; i.e., yt,i = x̄t,i = 1

nt,i

∑nt,i

j=1 xt,i,j , and write
Yt = (yt,1, yt,2, ..., yt,p)

> for t = 1, ..., T , and Y =
(Y >1 ,Y >2 , . . . ,Y >T )>; hence Y is a vector of length p × T .
Let n = (n1,1, . . . , n1,p, n2,1, . . . n2,p, . . . , nT,1, . . . , nT,p)

>

be the vector of the numbers of observations for the nodes,
and β = (β>1 ,β

>
2 , . . . ,β

>
T )> be the vector of the true signal,

where βt = (βt,1, βt,2, ..., βt,p)
> for t = 1, ..., T . Then the

goal is to retrieve the underlying signal β from its noisy
version Y

yt,i = βt,i + et,i, et,i
i.i.d.∼ N (0,

σ2

nt,i
)

under the assumptions of temporal and spatial smoothness.

A. Construction of A Candidate Model Generating Function

The goal of a candidate model generating (CMG) function
is to quickly generate a set of good candidate models with
small values of MDL(T , C). Thus for the current problem,
a good CMG function should produce models that are both
temporally and spatially smooth, and yet maintain good data
fidelity. One natural way to construct such a function is to
combine three terms together: a penalty term that encourages
temporal smoothness, a second penalty term that encourages
spatial smoothness, and lastly a loss term that measures data
fidelity.

We begin with the temporal smoothness assumption, which
prefers signals close in time to have similar values (except
at the change points); i.e., βt+1 ≈ βt. This suggests the
following penalty term

Ω1(β) = λ1

T−1∑
t=1

‖βt+1 − βt‖2, (22)

where λ1 is a tuning parameter and ‖.‖2 is the vector l2-norm.
This is in similar spirit as the penalty used in the fused lasso
of [19] and the generalized total variation denoising method
of [20].

For the spatial smoothness assumption, we borrow the
idea from graph-guided-fused-lasso [21], [22] to construct the
penalty term. First, let E be the set of all connected edges in
the graph:

E = {(i, k) : the ith and kth nodes are connected, 1 ≤ i, k ≤ p}.
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Recall that the node connectivity of our graph is assumed
constant over time, so E does not change over time. Next,
define a matrix G in such way that if (i, k) ∈ E, then one
row of G is all zeros except the ith entry is 1 and the kth
entry is −1. Note that G is of size |E| × p, and is not unique
as its rows can be permuted, but it will not affect the final
results. Here we suggest using the following penalty term for
spatial smoothness:

Ω2(β) = λ2

T∑
t=1

‖Gβt‖1, (23)

where λ2 is a tuning parameter and ‖.‖1 is the vector l1-norm.
Lastly, we need a data fidelity term and a natural candidate

is the loss

l(β|Y ,n) =
T∑
t=1

p∑
i=1

nt,i
2

(yt,i − βt,i)2. (24)

Combining (22), (23) and (24), our CMG function is

f(β|Y ,n) = l(β|Y ,n) + Ω1(β) + Ω2(β)

= l(β|Y ,n) + Ω(β), (25)

where Ω(β) = Ω1(β)+Ω2(β). Thus, given a pair of (λ1, λ2),
one can generate a good candidate model by minimizing (25).

B. Generating Candidate Models with the CMG Function

Although the penalty Ω(β) is not smooth, (25) can still
be approximately minimized in the following manner. First,
using the smoothing proximal gradient method of [23], we
obtain a smooth approximation of Ω(β) so that its gradient
with respect to β can be derived. Then we apply the fast
iterative shrinkage-thresholding algorithm (FISTA) of [24] to
carry out the minimization. This procedure is summarized
in Algorithm 1, and technical details such as the smooth
approximation of Ω(β) are referred to Appendixes F to J.

The time complexity of Algorithm 1 can be as low as
O(kmaxT (|E| + p)), as long as sparsity is utilized in those
matrix multiplications involved in the algorithm. Notice that
this algorithm needs to be applied multiple times for different
pairs of (λ1, λ2). Also notice that a global optimization is
virtually infeasible, as the time complexity for change point
detection is O(T 2) if one uses dynamic programming [25],
and the time complexity for node clustering for each interval
is of polynomial rate. Therefore, the use of Algorithm 1 offers
substantial computational advantages.

We note that the output from Algorithm 1 does not produce
exactly the same value for βt,i’s that belong to the same
time interval and cluster. For example, suppose for a certain
node Algorithm 1 returns β̃ = (1.0, 1.1, 0.9, 2.3, 2.2, 2.3, 2.2)
for t = 1, . . . 7, which signifies there is a change point
at t = 4. To circumvent this issue, we conduct a fast
scanning operation that will adjust the values to β̂ =
(1.0, 1.0, 1.0, 2.25, 2.25, 2.25, 2.25). Details of the scanning
operation are summarized as Algorithms 2 and 3 in Ap-
pendix K. Note that the time complexity for this scanning
operation is O(Tp).

Thus, by performing the above steps, we can quickly obtain
a good candidate model {T̂ , Ĉ} for a given pair of (λ1, λ2). As
an optional step, we can generate more good candidate models
by perturbing {T̂ , Ĉ}, such as removing a change point in T̂ .

Lastly, we comment on the choice of (λ1, λ2), for which in
practice depends on the scale of the observations. Specifically,
a large T usually requires large values of λ1, while λ2 depends
on the number of edges |E| of the pre-specified graph G. One
may start with choosing a range of values (λmin

1 , . . . , λmax
1 )

for λ1 and another range (λmin
2 , . . . , λmax

2 ) for λ2. Then
calculate the MDL(T , C) values of all the candidate models
obtained from every pair of (λ1, λ2). If the minimum value of
MDL(T , C) occurs with a candidate model that corresponds
to λ1 = λmin

1 or λ1 = λmax
1 , one would need to decrease

the value of λmin
1 or increase the value of λmax

1 ; similarly for
λ2. Otherwise, one can deem that the original choices for the
ranges for λ1 and λ2 are reasonable. Also, after identifying
such suitable ranges for λ1 and λ2, one can try more choices of
(λ1, λ2) within these ranges (i.e. higher resolution) to achieve
better results. See also [26] [27] for practical methods for
choosing the initial ranges of values for λ1 and λ2.

Algorithm 1 FISTA for minimizing (25)

Require: Y , n, C derived by (43), (44) and (45), β[0],
Lipschitz constant L derived by (49) or (50), D derived
by (46), desired accuracy ε, λ1, λ2, kmax

1: µ = ε
2D , θ0 = 1

2: for k = 0, 1, . . . until β[k] converges or k ≥ kmax do
3: Compute α∗[k] based on β[k] by (47) and (48)
4: ∇h(w[k])← n(w[k] −X) +C>α∗[k]

5: β[k+1] ← w[k] − 1
L∇h(w[k])

6: θk+1 ← 2
k+3

7: w[k+1] ← β[k+1] + 1−θk
θk

θk+1(β[k+1] − β[k])
8: end for
9: return β̃ = β[k+1]

C. Summary

The minimization for MDL(T , C) defined by (18) can be
summarized by the following steps:

1) Given (λ1, λ2), apply Algorithm 1 to minimize (25) to
obtain β̃.

2) Apply Algorithms 2 and 3 to β̃ to obtain a good candidate
model {T̂ , Ĉ}.

3) (Optional) Perturb T̂ to generate more {T̂ , Ĉ}’s.
4) Repeat Steps 1 to 3 with different values of (λ1, λ2) to

obtain more {T̂ , Ĉ}’s.
5) Calculate the MDL(T , C) values for all {T̂ , Ĉ}’s obtained

from Step 4. Take the one that gives the smallest value
as the minimizer of MDL(T , C).

IV. SIMULATION EXPERIMENTS

A. Setting 1: Regular Grid

In this first experiment the graph structure was a square
image of size 8 × 8. That is, there were p = 64 nodes
arranged as an 8 × 8 two-dimensional grid, and each node
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was connected to its 4 neighboring nodes, except for those
nodes at the edges and corners of the grid, where they were
connected to, respectively, 3 and 2 neighboring nodes. We set
T = 100 and had change points at t = 25, 50, 60 and 90.
The nodes were partitioned into two groups and for each time
segment, all the nodes within the same group share the same
true signal βt,i value. The true signal values are reported in
Table I and they are visually displayed in Figure 1. All the
nt,i’s were set to 1.

segment interval cluster sizes values
1 [0, 25) 16, 48 2, 1
2 [25, 50) 16, 48 2.2, 1
3 [50, 60) 26, 38 2.1, 1
4 [60, 90) 26, 38 2.4, 1
5 [90, 100) 35, 29 2.4, 1

TABLE I: True signal values used for Experimental Setting 1.

Gaussian noise with variance σ2 ∈ {0.12, 0.22, 0.32, 0.42}
was added to the true signal to generate the noisy observations
xt,i,j , with 100 repetitions for each value of σ2. For each noisy
data set, 25 combined values of λ1 ∈ {0.5, 1, 2, 4, 8, 16} and
λ2 ∈ {0.5, 1, 2, 4, 8, 16} were used in Algorithm 1 to obtain
the MDL solution.

Figure 2 presents the results of this numerical experiment.
The histograms show the locations of all the detected change
points for the 100 repetitions - recall that these change points
are defined as the joint minimizer of (19). As expected, the
larger the noise variance, the more difficult to detect the change
points. This phenomenon is more obvious for those change
points where the changes of the true signal values were small:
t = 25 and 60. To be more specific, the only difference in the
true signal before and after the change point at t = 25 was the
value for the top-left region. As the noise level increases, it
becomes more difficult to detect this change point. A similar
phenomenon was observed for the change point at t = 60.

Apart from reporting the histograms of the detected change
points, we also evaluated the quality of the signal estimates
β̂t,i in terms of mean squared error (MSE):

MSE =
1∑T

t=1

∑p
i=1 nt,i

T∑
t=1

p∑
i=1

nt,i(β̂t,i − βt,i)2.

We report the MSE results in a similar fashion as [28]. First,
define the negative signal-to-noise ratio (SnR) as

10 log10

[{
T∑
t=1

p∑
i=1

σ2

nt,i

}/{ T∑
t=1

p∑
i=1

(βt,i − β̄)2

}]
.

Thus, the negative SnR increases as the noise level increases.
Next, define the denoised negative SnR as

10 log10

[
MSE

/{ 1

Tp

T∑
t=1

p∑
i=1

(βt,i − β̄)2

}]
,

and hence the smaller the denoised negative SnR is, the better
the estimates βt,i’s are. We compared the results obtained
from the proposed method with their corresponding saturated
models: here a saturated model was the model with a separate
parameter βt,i fitted for each node. In order to verify the

importance of both the temporal and spatial smoothness as-
sumptions, we also compared the performances of the version
of the proposed method without the temporal smoothness
assumption (i.e., forcing λ1 = 0) and the version without
the spatial smoothness assumption (i.e., forcing λ2 = 0).
The results are also reported in Figure 2. As the noise level
increases, the denoised negative SnRs for both the MDL fitted
model and the saturated model increase. Compared with the
saturated models, the denoised negative SnRs for the MDL
fitted models are smaller, even more so for those cases with
high noise levels. Note also that, from Figure 2(e), both
the versions of no smoothness assumption and no temporal
smoothness gave inferior performances when compared with
the proposed method. Similar results can also be seen in the
next two experiments.

Fig. 1: True signal values for Experimental Setting 1.

B. Setting 2: Graph based on California Counties

In this second experiment the graph structure was defined by
the 58 counties in California. Each county was a node, and two
nodes were connected if the two corresponding counties share
a common border. So there were 58 nodes and 136 edges;
see Figure 7(a). We partitioned the nodes into 4 groups, and
the number of time points was T = 60 with change points at
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(a) change points, σ2 = 0.01 (b) change points, σ2 = 0.04

(c) change points, σ2 = 0.09 (d) change points, σ2 = 0.16

(e) negative SnR

Fig. 2: (a)-(d) Histograms of the detected change points under
different noise levels. (e) Denoised negative SnRs for different
noise levels. Recall that a saturated model is a model with a
separate parameter fitted for each node.

t = 10, 20, 35 and 45. For each time segment, all the nodes
within the same group share the same true signal βt,i value;
see Table II and Figure 3. Note that these signal values were
selected so that the overall signal averages were the same for
all the time intervals. Consequently, any univariate change
point detection method will fail when it is applied to the
(univariate) time series of combined signal values for all time
points, as the important graph structure information is ignored.

segment interval cluster sizes values
1 [0, 10) 10, 17, 12, 19 10, 20, 30, 40
2 [10, 20) 10, 17, 12, 19 10, 31.18, 40, 20
3 [20, 35) 10, 17, 12, 19 20, 31.18, 31.67, 20
4 [35, 45) 10, 17, 12, 19 20, 40, 20, 19.47
5 [45, 50) 10, 17, 12, 19 30, 25.29, 31.67, 20

TABLE II: True signal values used for Experimental Setting 2.

We tested the proposed method with 6 difference noise
variance σ2 ∈ {12, 22, 32, 42, 62, 82} and 36 combined values
of λ1 ∈ {2, 4, 8, 16, 32, 64} and λ2 ∈ {0.5, 1, 2, 4, 8, 16}. As
before, the number of repetitions was 100. The histograms of
the detected change points are given in Figure 4, as well as the
denoised negative SnRs. Similar empirical conclusions can be
drawn as before: the larger the noise level, the more difficult

to detect the change points.

Fig. 3: True signal values for Experimental Setting 2.

C. Setting 3: Regular Grid with No Change Points

In this last experiment we tested the performance of the
proposed algorithm when there were no change points. The
graph structure is the same as that in Setting 1. The number
of time points was T = 60 and all nt,i’s were set to 1. We
partitioned the nodes into 3 groups, and their true signal values
are displayed in Figure 5.

One hundred Gaussian noisy data sets were generated for
each σ2 ∈ {0.12, 0.22, 0.32, 0.42}. For each simulated data set,
63 combined values of λ1 ∈ {0, 0.5, 1, 2, 4, 8, 16} and λ2 ∈
{0, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16} were used in Algorithm 1 to
obtain the MDL solution.

The proposed method and the version without the spatial
smoothness assumption (i.e., λ2 = 0) performed perfectly in
terms of change point detection; i.e. no change point detected.
However, the version without the temporal smoothness as-
sumption (i.e., λ1 = 0) detected many false change points
before perturbing T̂ . The denoised SnRs can be found in
Figure 5. One can see that the proposed method outperformed
the version without spatial smoothness.
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(a) change points, σ2 = 1 (b) change points, σ2 = 4

(c) change points, σ2 = 9 (d) change points, σ2 = 16

(e) change points, σ2 = 36 (f) change points, σ2 = 64

(g) negative SnR

Fig. 4: (a)-(f) Histograms of the detected change points under
different noise levels. (g) Denoised negative SnRs for different
noise levels.

(a) true signal values
(b) negative SnR

Fig. 5: (a) True signal values for Experimental Setting 3. (b)
Denoised negative SnRs for different noise levels.

V. REAL DATA APPLICATIONS

A. Violent Crime in Cincinnati, OH

The data set in this subsection concerns reported crime inci-
dents in Cincinnati, OH. It contains dates, times, locations, and
other information about the reported events. We considered
weekly crime rates from December 31, 2018, to December
29, 2019; i.e., T = 52. The data can be obtained from this

website1.
Each crime event has an FBI Uniform Crime Reporting code

that describes its type. As similar to [29], we used this code
to classify each crime event into violent crime or non-violent
crime: a violent crime can be homicide, rape, aggravated
assault, or robbery, while all the other types of crimes are
non-violent.

The nodes were defined by ZIP Code Tabulation Areas in
Cincinnati, and edges were defined by geographical neighbor-
hoods. There were 31 nodes and 77 edges in the graph; see
Figure 6(a). During the t-th week and at the i-th node, the
number of observations nt,i was the total number of reported
crime events, while the j-th measurement xt,i,j was 1 if the
j-th crime was violent, and 0 otherwise. Thus, the data was in
fact binomial and we modified the likelihood function in the
MDL criterion (18) to reflect this. The justification for this
extension can be found in Appendix L.

(a) (b)

Fig. 6: (a) The graph structure defined by the ZIP Code
Tabulation Areas in Cincinnati, OH. (b) Violent crime rate
for each week from 2018-12-31 to 2019-12-29 in Cincinnati,
OH. Vertical lines denote detected change point locations .

Change points were detected at 2019-05-20, 2019-08-05,
2019-09-23 and 2019-09-30. The weekly overall violent crime
rates, together with these 4 change points, are displayed in
Figure 6(b). [30] studied the relationships between temperature
and different kinds of crimes. The author concluded that higher
temperatures lead to statistically significant increases in all
types of crimes. However, the rate of increase is approximately
constant for violent crimes, while for non-violent crimes, the
rate of increase starts to slow down around 50 °F. Therefore,
the first detected change point (late May) signifies the begin-
ning of summer and hence an increased rate of violent crime.
The second detected change point (early August) was close to
the end of the peak travel season which may explain the drop
in violent crime rates. The last two change points together
actually suggest that the week in between was an outlier. In
fact, that week included the last weekend before Halloween,
and it is known that the violent crime rate (e.g., robbery and
sexual assault) increases shortly before or at Halloween.

B. Temperatures in Counties in California

The data set is the output of PRISM (parameter-elevation
regressions on independent slopes model), a combination of

1 https://data.cincinnati-oh.gov/Safety/PDI-Police-Data-Initiative-Crime-Incidents/
k59e-2pvf

https://data.cincinnati-oh.gov/Safety/PDI-Police-Data-Initiative-Crime-Incidents/k59e-2pvf
https://data.cincinnati-oh.gov/Safety/PDI-Police-Data-Initiative-Crime-Incidents/k59e-2pvf
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statistical and human-expert methods for climate mapping
[31]. It contains different readings such as temperatures and
precipitation. In this study, we considered mean annual tem-
peratures from 1960 to 2019 in 58 counties in California.
We collected data at the grids of 0.2 × 0.2 degrees of
longitude/latitude from this website2.

The graph structure was defined by the 58 counties in
California, in the same manner as in Section IV-B; see
Figure 7(a). The proposed method was applied and detected
one change point in the year 2012. We plotted the average
temperature of the whole of California in Figure 7(b), together
with the detected change point. It seems that the mean annual
temperatures after the change points are higher than those
before the change point, hence supporting a warming trend
in California [32].

(a) (b)

Fig. 7: (a) The graph structure defined by the counties in
California. (b) Mean annual temperatures (°C) of California
in 1960-2019. The vertical line indicates the detected change
point at 2012.

VI. CONCLUDING REMARKS

This paper proposed a method for simultaneous change
point detection and node clustering for time-evolving graphs.
The method is composed of two major components: (i) an
MDL criterion for which the best fitting model is defined as
its minimizer, and (ii) a practical algorithm for finding this
minimizer. It is shown that the MDL criterion yields statisti-
cally consistent estimates, while simulation results suggest that
the method also enjoys highly desirable empirical properties.

Future work includes extending the piecewise constant
assumption to piecewise linear or even quadratic fitting, for ac-
commodating more signal trends. Another possible extension
is to relax the iid noise assumption. For example, different
time intervals can have different noise levels, or the noise
can be temporally and/or spatially correlated. One could also
allow for outliers in the observations, or place different weights
on the nodes. Lastly, if the Gaussian noise assumption is
violated, say verified by performing diagnostic checking with
the residuals, then other noise assumptions could be used in
place. A good example was given in Section V-A, where a
binomial distribution was used to model the crime incident
data. In general, it should be relatively straightforward to
derive a tailored MDL criterion for any of these extensions.

2http://www.prism.oregonstate.edu/explorer/map.php

The major challenge is then, how to practically minimize the
criterion.

APPENDIX

A. Proof of Lemma 1

Let B be a probability 1 set. For each ω ∈ B, suppose on
the contrary T̂ 9 T 0 or Ĉ 9 C0. As the numbers of time
points and nodes are finite, the possible values for T and C
are finite. Therefore, there exists a subsequence {nk} such that
T̂ → T ∗ and Ĉ → C∗ for some T ∗ and C∗ as k increases.

To simplify the notation for the set of indices in the
same cluster,

∑
{i|1≤i≤p,c(m)

i =r} is written as
∑
i,c

(m)
i =r

in below. Similarly,
∑
{i|1≤i≤p,c∗(m)

i =r,c
0(s)
i =l} is written as∑

i,c
∗(m)
i =r,c

0(s)
i =l

.
It is convenient to define the set R∗(m, r) that collects all

the time and node indices belonging to the m-th interval and
r-th cluster:

R∗(m, r) = {(t, i)|t∗m−1 + 1 ≤ t ≤ t∗m, c
∗(m)
i = r}. (26)

Therefore if during the interval {t∗m−1 + 1,≤ t∗m} the ith
node belongs to the rth cluster (i.e., c∗(m)

i = r), then its
signal estimate β̂∗(m)

i is given by the sample mean of all the
observations xt,i,j’s such that (t, i) ∈ R∗(m, r). We denote
this sample mean as β̂(R∗(m, r)), and we have

β̂
∗(m)
i = β̂(R∗(m, r)) =

∑t∗m−1
t=t∗m−1

∑
i,c
∗(m)
i =r

∑nt,i

j=1 xt,i,j∑t∗m−1
t=t∗m−1

∑
i,c
∗(m)
i =r

nt,i
.

(27)
To simplify notations, we replace nk by n. For large enough

n,

1

n
MDL(T̂ , Ĉ) =

1

n
log(M + 1) +

1

n

M∑
m=1

log(t∗m − t∗m−1)

+
1

n

M+1∑
m=1

(p+ 1) log(d(m))

+
1

n

M+1∑
m=1

d(m)∑
r=1

1

2
log(

t∗m−1∑
t=t∗m−1

∑
i,c
∗(m)
i =r

nt,i)

+
1

n

n

2
log(

1

n

M+1∑
m=1

d(m)∑
r=1

SSE∗(m)
r )

= cn +
1

2
log(

1

n

M+1∑
m=1

d(m)∑
r=1

SSE∗(m)
r ). (28)

In the above cn is of order O(log(n)/n) and

SSE∗(m)
r =

t∗m−1∑
t=t∗m−1

∑
i,c
∗(m)
i =r

nt,i∑
j=1

(xt,i,j − β̂∗(m)
i )2. (29)

As (T ∗, C∗) 6= (T 0, C0), for each R∗(m, r), there are two
possible cases, to be examined below.

http://www.prism.oregonstate.edu/explorer/map.php
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1) Case 1: If R∗(m, r) ⊆ R0(s, l), that is to say, R∗(m, r)
is totally within a true R0(s, l) = {(t, i)|t0s−1 + 1 ≤ t ≤
t0s, c

0(s)
i = l}, then ∀(t, i) ∈ R∗(m, r) ⊆ R0(s, l), xt,i,j ∼

N (β
(l)
(s), σ

2) i.i.d. (β(l)
(s) denotes the common mean shared by

all the nodes in R0(s, l)). Then from (27) and the strong law
of large number, β̂∗(m)

i = β̂(R∗(m, r)) → β
0(l)
(s) a.s. Also,

from (29)

1

n
SSE∗(m)

r =
1

n

t∗m−1∑
t=t∗m−1

∑
i,c
∗(m)
i =r

nt,i∑
j=1

(xt,i,j − β̂∗(m)
i )2

→
t∗m−1∑
t=t∗m−1

∑
i,c
∗(m)
i =r

γt,iσ
2 a.s., (30)

where γt,i is defined in (20).
2) Case 2: If R∗(m, r) ⊆ ∪(s,l)∈SR0(s, l) and R∗(m, r)∩

R0(s, l) 6= ∅, ∀(s, l) ∈ S, which is that same as saying
R∗(m, r) has nontrivial intersection with more than one true
R0(s, l), then

β̂
∗(m)
i = β̂(R∗(m, r))

=

∑t∗m−1
t=t∗m−1

∑
i,c
∗(m)
i =r

∑nt,i

j=1 xt,i,j∑t∗m−1
t=t∗m−1

∑
i,c
∗(m)
i =r

nt,i

=

∑
(s,l)∈S

∑min {t∗m,t
∗
s}−1

t=max {t∗m−1,t
∗
s−1}

∑
i,c
∗(m)
i =r,c

0(s)
i =l

∑nt,i

j=1 xt,i,j∑
(s,l)∈S

∑min {t∗m,t0s}−1
t=max {t∗m−1,t

0
s−1}

∑
i,c
∗(m)
i =r,c

0(s)
i =l

nt,i

→

∑
(s,l)∈S

∑min {t∗m,t
0
s}−1

t=max {t∗m−1,t
0
s−1}

∑
i,c
∗(m)
i =r,c

0(s)
i =l

γt,iβ
0(l)
(s)∑

(s,l)∈S
∑min {t∗m,t0s}−1
t=max {t∗m−1,t

0
s−1}

∑
i,c
∗(m)
i =r,c

0(s)
i =l

γt,i
a.s.

And
1

n
SSE∗(m)

r

=
1

n

t∗m−1∑
t=t∗m−1

∑
i,c
∗(m)
i =r

nt,i∑
j=1

(xt,i,j − β̂∗(m)
i )2

=
1

n

∑
(s,l)∈S

min {t∗m,t
0
s}−1∑

t=max {t∗m−1,t
0
s−1}

∑
i,c
∗(m)
i =r,c

0(s)
i =l

nt,i∑
j=1

(xt,i,j − β̂∗(m)
i )2

≥ 1

n

∑
(s,l)∈S

min {t∗m,t
0
s}−1∑

t=max {t∗m−1,t
0
s−1}

∑
i,c
∗(m)
i =r,c

0(s)
i =l

nt,i∑
j=1

(xt,i,j − β̂0(s)
(l) )2

→
∑

(s,l)∈S

min {t∗m,t
0
s}−1∑

t=max {t∗m−1,t
0
s−1}

∑
i,c
∗(m)
i =r,c

0(s)
i =l

nt,i∑
j=1

γt,iσ
2 a.s. (31)

Here the strict inequalities hold for at least one (m, r) be-
cause (T ∗, C∗) 6= (T 0, C0) and the total number of clusters∑M+1
m=1 d

(m) is known.
Thus, combining (28), (30) and (31), for large enough

n, 1
nMDL(T̂ , Ĉ) = cn + 1

2 log( 1
n

∑M+1
m=1

∑d(m)

r=1 SSE∗(m)
r ) >

cn + 1
2 log(σ2) = 1

nMDL(T 0, C0) ≥ 1
nMDL(T̂ , Ĉ), which is

a contradiction. This comes to the conclusion that (T̂ , Ĉ) →
(T 0, C0) a.s. when the total number of clusters

∑M+1
m=1 d

(m)

is known.

B. Lemma 2 and Its Proof

Lemma 2. Assume the setting of Lemma 1 with the exception
that the total number of clusters

∑M+1
m=1 d

(m) is unknown.
If the change points and the cluster structures are estimated
by (19), then

1) The number of change points cannot be underestimated;
i.e., M̂ ≥M0 for large enough n.

2) The true change points T 0 are a subset of the estimated
T̂ ; i.e., the true change points can be identified for large
enough n.

3) For large enough n and each 1 ≤ m ≤ M̂ with its
corresponding s such that ts−1 + 1 ≤ tm−1 + 1 < tm ≤
ts, there exists a true R0(s, l) such that

R̂(m, r) ⊆ R0(s, l)

for any of the fitted R̂(m, r). (Here R̂(m, r) and R0(s, l)
are defined in the similar manner as (26).) In other words,
the cluster structure cannot be underestimated.

The proof of Lemma 2 follows the proof of Lemma 1. If
Case 2 applies, there will be a contradiction. This finishes the
proof.

C. Lemma 3 and Its Proof

Lemma 3. For k independent Ûi ∼ N (µ, σ
2

ni
), let Û =

1
n

∑k
i=1 niÛi, where n =

∑k
i=1 ni. We have

∑k
i=1 ni(Ûi −

Û)2 ∼ σ2χ2
k−1.

Proof: Let Vi =
√
niÛi ∼ N (

√
niµ, σ

2) and
V = (V1, ..., Vk)>. Define an orthonormal matrix A =

(a1, ..., ak)> with a>1 = (
√
n1√
n
, ...,

√
nk√
n

). Therefore, Û =
1√
n
a>1 V ∼ N (µ, σ

2

n ). By the property of orthonormal ma-
trices, E(a>i V ) = a>i (

√
n1, ...,

√
nk)> = a>i

√
na1 = 0, for

i = 2, ..., k. Hence W = AV ∼ N (µ(
√
n, 0, ..., 0)>, σ2Ik).

By the definition of χ2 distribution,
∑k
i=2W

2
i ∼ σ2χ2

k−1 and∑k
i=1W

2
i = W>W = (AV )>AV = V >V =

∑k
i=1 V

2
i .

Then,
∑k
i=1 ni(Ûi− Û)2 =

∑k
i=1 niÛ

2
i −nÛ2 =

∑k
i=1 V

2
i −

(a>1 V )2 =
∑k
i=2W

2
i ∼ σ2χ2

k−1, which completes the proof.

D. Lemma 4 and Its Proof

Lemma 4. For large enough n, if (T̂ , Ĉ) 6= (T 0, C0), then the
difference ∆ between the penalty terms in MDL(T̂ , Ĉ) and that
in MDL(T 0, C0) is positive and of order O(log n).
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Proof: Let B be a probability 1 set. For each ω ∈ B, suppose
on the contrary T̂ 9 T 0 or Ĉ 9 C0. For large enough n, The
penalty term of the MDL for the fitted model is

log(M∗ + 1) +
M∗∑
m=1

log(t∗m − t∗m−1) +
M∗+1∑
m=1

(p+ 1) log(d∗(m))

+
M∗+1∑
m=1

d∗(m)∑
r=1

1

2
log(

t∗m−1∑
t=t∗m−1

∑
i,c
∗(m)
i =r

nt,i),

(32)

and the penalty term of the MDL for the true model is

log(M0 + 1) +
M0∑
m=1

log(t0m − t0m−1) +
M0+1∑
m=1

(p+ 1) log(d0(m))

+
M0+1∑
m=1

d0(m)∑
r=1

1

2
log(

t0m−1∑
t=t0m−1

∑
i,c

0(m)
i =r

nt,i).

(33)

Define ∆ as the difference between (32) and (33).
As M0 ≤ M∗ ≤ T , d0(m) ≤ p, ∀m and d∗(m) ≤ p, ∀m,

the first part of ∆

[
log(M∗ + 1) +

M∗∑
m=1

log(t∗m − t∗m−1)

+
M∗+1∑
m=1

(p+ 1) log(d∗(m))
]
−
[

log(M0 + 1)

+
M0∑
m=1

log(t0m − t0m−1) +
M0+1∑
m=1

(p+ 1) log(d0(m))
]

(34)

is finite.
By Lemma 2 with large enough n, for each of the fitted

R̂(m, r) = R∗(m, r), there must exist a true R0(s, l), such that
R∗(m, r) ⊆ R0(s, l). Without loss of generality, we assume
that there exists a true set R0(s, l) = ∪(m,r)∈SR∗(m, r),
which means that this set is over segmented. And for all the
other true sets, we have R0(s′, l′) = R∗(m′, r′); that is, the
fitted model is the same as the true model in all the other sets.

Therefore, the second part of ∆ can be written in the
following format:

M∗+1∑
m=1

d∗(m)∑
r=1

1

2
log(

t∗m−1∑
t=t∗m−1

∑
i,c
∗(m)
i =r

nt,i)

−
M0+1∑
m=1

d0(m)∑
r=1

1

2
log(

t0m−1∑
t=t0m−1

∑
i,c

0(m)
i =r

nt,i)

=
∑

(m,r)∈S

1

2
log(

t∗m−1∑
t=t∗m−1

∑
i,c
∗(m)
i =r

nt,i)

−1

2
log(

t0s−1∑
t=t0s−1

∑
i,c

0(s)
i =l

nt,i). (35)

Here we have

∑
(m,r)∈S

t∗m−1∑
t=t∗m−1

∑
i,c
∗(m)
i =r

nt,i =

t0s−1∑
t=t0s−1

∑
i,c

0(s)
i =l

nt,i. (36)

As n is large enough, combining (36) with the assump-
tion (21), it can be seen that the second part of ∆ defined
by (35) is positive and of order O(log(n)). As in ∆, the other
part (34) is finite, the second part dominates ∆, which finishes
the proof.

E. Proof of Theorem 1

By Lemma 4, 1
n∆ is positive and of order O(log(n)/n).

The difference between the negative log-likelihood terms in
1
nMDL(T 0, C0)− 1

nMDL(T ∗, C∗) is

1

2
log(

1

n

M0+1∑
m=1

d0(m)∑
r=1

SSE(m)
r )− 1

2
log(

1

n

M∗+1∑
m=1

d∗(m)∑
r=1

SSE∗(m)
r ).

By Lemma 2, this difference is positive. To prove the the-
orem, it is sufficient to show that the difference is of order
o(log(n)/n). We begin with calculating

1

2
log(

1

n

M0+1∑
m=1

d0(m)∑
r=1

SSE(m)
r )− 1

2
log(

1

n

M∗+1∑
m=1

d∗(m)∑
r=1

SSE∗(m)
r )

=
1

2
log(

∑M0+1
m=1

∑d0(m)

r=1 SSE(m)
r∑M∗+1

m=1

∑d∗(m)

r=1 SSE∗(m)
r

)

=
1

2
log(1+∑M0+1
m=1

∑d0(m)

r=1 SSE(m)
r −

∑M∗+1
m=1

∑d∗(m)

r=1 SSE∗(m)
r∑M∗+1

m=1

∑d∗(m)

r=1 SSE∗(m)
r

)

≤1

2

∑M0+1
m=1

∑d0(m)

r=1 SSE(m)
r −

∑M∗+1
m=1

∑d∗(m)

r=1 SSE∗(m)
r∑M∗+1

m=1

∑d∗(m)

r=1 SSE∗(m)
r

.

(37)

Without loss of generality, we use the same idea in the proof
of Lemma 4. Let

SSE0
s,l =

t0s−1∑
t=t0s−1

∑
i,c0i=l

nt,i∑
j=1

(xt,i,j − β̂(R0(s, l)))2,

SSE∗m,r =

t∗m−1∑
t=t∗m−1

∑
i,c∗i =r

nt,i∑
j=1

(xt,i,j − β̂(R∗(m, r)))2,

where

β̂(R0(s, l)) =

∑t0s−1
t=t0s−1

∑
i,c0i=l

∑nt,i

j=1 xt,i,j∑t0s−1
t=t0s−1

∑
i,c0i=l

nt,i
,

β̂(R∗(m, r)) =

∑t∗m−1
t=t∗m−1

∑
i,c∗i =r

∑nt,i

j=1 xt,i,j∑t∗m−1
t=t∗m−1

∑
i,c∗i =r

nt,i
.

(38)
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Then the numerator of (37) can be written as

SSE0
s,l −

∑
(m,r)∈S

SSE∗m,r

=
∑

(m,r)∈S

t∗m−1∑
t=t∗m−1

∑
i,c∗i =r

nt,i∑
j=1

(xt,i,j − β̂(R0(s, l)))2

−
∑

(m,r)∈S

SSE∗m,r

=
∑

(m,r)∈S

t∗m−1∑
t=t∗m−1

∑
i,c∗i =r

nt,i∑
j=1

(xt,i,j − β̂(R∗(m, r))+

β̂(R∗(m, r))− β̂(R0(s, l)))2 −
∑

(m,r)∈S

SSE∗m,r

=
∑

(m,r)∈S

t∗m−1∑
t=t∗m−1

∑
i,c∗i =r

nt,i∑
j=1

(xt,i,j − β̂(R∗(m, r)))2

+ 2
∑

(m,r)∈S

t∗m−1∑
t=t∗m−1

∑
i,c∗i =r

nt,i∑
j=1

[(xt,i,j − β̂(R∗(m, r)))

(β̂(R∗(m, r))− β̂(R0(s, l)))]

+
∑

(m,r)∈S

t∗m−1∑
t=t∗m−1

∑
i,c∗i =r

nt,i∑
j=1

(β̂(R∗(m, r))− β̂(R0(s, l)))2

−
∑

(m,r)∈S

SSE∗m,r

=
∑

(m,r)∈S

SSE∗m,r + 0

+
∑

(m,r)∈S

t∗m−1∑
t=t∗m−1

∑
i,c∗i =r

nt,i∑
j=1

(β̂(R∗(m, r))− β̂(R0(s, l)))2

−
∑

(m,r)∈S

SSE∗m,r

=
∑

(m,r)∈S

t∗m−1∑
t=t∗m−1

∑
i,c∗i =r

nt,i∑
j=1

(β̂(R∗(m, r))− β̂(R0(s, l)))2

=
∑

(m,r)∈S

(

t∗m−1∑
t=t∗m−1

∑
i,c∗i =r

nt,i)(β̂(R∗(m, r))− β̂(R0(s, l)))2.

(39)

By (38), we have

β̂(R∗(m, r)) ∼ N (β
0(s)
(l) ,

σ2∑t∗m−1
t=t∗m−1

∑
i,c∗i =r

nt,i
) (40)

are independent for different (m, r) ∈ S. Also

β̂(R0(s, l)) =

∑
(m,r)∈S(

∑t∗m−1
t=t∗m−1

∑
i,c∗i =r

nt,i)β̂(R∗(m, r))∑
(m,r)∈S(

∑t∗m−1
t=t∗m−1

∑
i,c∗i =r

nt,i)
.

(41)

By (40), (41) and Lemma 3, we have

∑
(m,r)∈S

(

t∗m−1∑
t=t∗m−1

∑
i,c∗i =r

nt,i)(β̂(R∗(m, r))− β̂(R0(s, l)))2

∼σ2χ2
|S|−1.

As |S| ≤ Tp, we can conclude that (39) is of order O(1).
In addition, the denominator of (37),∑M∗+1
m=1

∑d∗(m)

r=1 SSE∗(m)
r , satisfies

1

n

M∗+1∑
m=1

d∗(m)∑
r=1

SSE∗(m)
r → σ2 a.s.

Furthermore, we can show that the numerator and the denom-
inator of (37) are independent. That is to say,

0 <
1

2
log(

1

n

M0+1∑
m=1

d0(m)∑
r=1

SSE(m)
r )− 1

2
log(

1

n

M∗+1∑
m=1

d∗(m)∑
r=1

SSE∗(m)
r )

=o(log(n)/n).
(42)

Then for large enough n, combining Lemma 4 and (42) gives

1

n
MDL(T 0, C0)− 1

n
MDL(T̂ , Ĉ)

=− 1

n
∆ +

1

2
log(

1

n

M0+1∑
m=1

d0(m)∑
r=1

SSE(m)
r )

− 1

2
log(

1

n

M∗+1∑
m=1

d∗(m)∑
r=1

SSE∗(m)
r ) < 0,

which is a contradiction. This finishes the proof.

F. An Alternative Expression for Ω1(·) in (22)

Let α(1) = (α>1 ,α
>
2 , ...,α

>
T−1)> and Q1 =

{α(1)|‖αt‖2 ≤ 1, t = 1, ..., T − 1}. Notice that for any
vector v, ‖v‖2 = max

‖α‖2≤1
α>v, where α is a vector that has

the same dimension as v. Then Ω1(β) can be written as

Ω1(β) = λ1

T−1∑
t=1

‖βt+1 − βt‖2 = λ
T−1∑
t=1

max
‖αt‖2≤1

α>t (βt+1 − βt)

= λ max
α(1)∈Q1

T−1∑
t=1

α>t (βt+1 − βt) = max
α(1)∈Q1

α>(1)C1β,

where the matrix C1 ∈ R(T−1)p×Tp is defined as

C1 = λ1


−I I

−I I
. . . . . .

−I I

 (43)

with I = Ip being the p-dimensional identity matrix.
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G. An Alternative Expression for Ω2(·) in (23)

Let α(2) ∈ RT |E| and Q2 = {α|‖α‖∞ ≤ 1}, and notice
that ‖v‖1 = max

‖α‖∞≤1
α>v. Then Ω2(β) can be written as

Ω2(β) = λ2

T∑
t=1

‖Gβt‖1 = ‖C2β‖1 = max
α(2)∈Q2

α>(2)C2β,

where

C2 = λ2

G . . .
G

 . (44)

H. A Smooth Approximation of Ω(·) = Ω1(·) + Ω2(·)
Let α = (α>(1),α

>
(2))
> and

C = (C>1 ,C
>
2 )>. (45)

The penalty term Ω(β) can be written as

Ω(β) = max
α(1)∈Q1

α>(1)C1β+ max
α(2)∈Q2

α>(2)C2β = max
α∈Q

α>Cβ,

where Q = {α = (α>(1),α
>
(2))
>|α(1) ∈ Q1 and α(2) ∈ Q2}.

By [33], The smooth approximation of Ω(β) can be con-
structed as gµ(β) = max

α∈Q
(α>Cβ − µd(α)), where µ is a

positive smoothness parameter and d(α) = 1
2‖α‖

2
2. Therefore,

the original penalty term Ω(β) can be viewed as g0(β).
Let D = max

α∈Q
d(α), then by [33], g0(β)− µD ≤ gµ(β) ≤

g0(β), which means that gµ(β) is an approximation of g0(β)
with a maximum gap of µD. [23] suggested that µ = ε

2D
achieves the best convergence rate for the given desired
accuracy ε. For the current problem

D = max
α∈Q

d(α) = max
α(1)∈Q1

1

2
‖α(1)‖22 + max

α(2)∈Q2

1

2
‖α(2)‖22

=
1

2
(T − 1) +

1

2
T |E|. (46)

Also, by Theorem 1 in [23], for µ > 0, gµ(β) is convex and
continuously-differentiable with respect to β, with gradient

∇gµ(β) = C>α∗,

where α∗ = arg max
α∈Q

α>Cβ − µd(α). Here ∇gµ(β) is

Lipschitz continuous with Lipschitz constant Lµ = 1
µ‖C‖

2,
where ‖.‖ is the matrix spectral norm. (‖C‖ ≡ max

‖v‖2≤1
‖Cv‖2).

As α∗ = ((α∗(1))
>, (α∗(2))

>)>, by [23], we have

α∗(1) = (α∗(1),1, ...,α
∗
(1),(T−1))

>

α∗(1),t = S1(
λ1
µ

(βt+1 − βt)), t = 1, . . . , T − 1,
(47)

where S1 is the projection operator that projects a vector onto
l2 unit ball:

S1(u) =

{ u
‖u‖2 ‖u‖2 ≥ 1,

u ‖u‖2 < 1.

In addition,

α∗(2) = (α∗(2),1, ...,α
∗
(2),T )>

α∗(2),t = S2(
λ2
µ
Gβt), t = 1, . . . , T,

(48)

where S2 is the projection operator defined as

S2(x) =

 x x ∈ [−1, 1]
−1 x < −1
1 x > 1.

And for any vector u, the projection S2(u) is defined as
applying S2 element-wise. So the operator can be viewed as
the projection operator that projects a vector onto l∞ unit ball.

I. Smoothing Proximal Gradient Descent

By replacing the penalty term Ω(β) with gµ(β), we obtain
the following optimization problem

min
β

h(β) ≡ l(β|X,n) + gµ(β).

The gradient of h(β) is ∇h(β) = n(β−X)+C>α∗, which
is Lipschitz continuous with the Lipschitz constant

L = nmax + Lµ = nmax +
1

µ
‖C‖2, (49)

where nmax is the largest element of vector n.

J. Computation of the Lipschiz Constant

To use the smoothing proximal gradient descent algorithm,
one needs to compute the Lipschiz constant L (49). However,
it is difficulty to calculate the spectral norm ‖C‖ when the
dimension of C is high. Therefore, following [23], we replace
it with an upper bound. We begin by calculating

‖C‖2 =

∥∥∥∥(C1

C2

)∥∥∥∥2 = max
‖v‖2≤1

∥∥∥∥(C1v
C2v

)∥∥∥∥2
2

= max
‖v‖2≤1

‖C1v‖22 + ‖C2v‖22

≤ max
‖v‖2≤1

‖C1v‖22 + max
‖v‖2≤1

‖C2v‖22.

Let v = (v>1 ,v
>
2 , . . . , v

>
T )>, where vt = (vt,1, vt,2, ..., vt,p)

>,
t = 1, ..., T . Now calculate

‖C1v‖22 = λ21

T−1∑
t=1

‖vt+1 − vt‖22

= λ21

T−1∑
t=1

(‖vt+1‖22 − 2vt+1 · vt + ‖vt‖22)

≤ λ21

T−1∑
t=1

2(‖vt+1‖22 + ‖vt‖22)

≤ λ21

T∑
t=1

4‖vt‖22 = 4λ21‖v‖22.

Therefore, max
‖v‖2≤1

‖C1v‖22 ≤ 4λ21. Next calculate

‖C2v‖22 = λ22

T∑
t=1

‖Gvt‖22 ≤ λ22
T∑
t=1

d21‖vt‖22 = λ22d
2
1‖v‖22,

where d1 is the largest (non-negative) singular value of G, or
d1 = ‖G‖. So max

‖v‖2≤1
‖C2v‖22 = λ22d

2
1.

Combining the above, we have

L = nmax +
1

µ
‖C‖2 ≤ nmax +

1

µ
(4λ21 + λ22‖G‖2). (50)
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K. Processing Output from Algorithm 1

As mentioned in Section III-B, the output from Algorithm 1
does not produce exactly the same signal values βt,i’s for
nodes belonging to the same time interval and cluster. To
circumvent this issue, we apply Algorithm 2 to the output
from Algorithm 1. Briefly, Algorithm 2 compares the fitted
signal values (from Algorithm 1) between any two time points
with a pre-set threshold to determine if a change point exists,
and if yes, sets all the relevant fitted signal values to the
same value. It employs Algorithm 3 recursively to compare
connected nodes, in a depth-first manner. Nodes with very
similar fitted signal values are assigned to the same cluster.

Algorithm 2 To convert output from Algorithm 1 into a final
fitted model

Require: fitted coefficients β̃, threshold ε, edges of the graph
E, tolerance γ

1: T̂ ← ∅, Ĉ ← ∅
2: c1 ← γ

√
p(2ε)2

3: for t = 1, 2, . . . , T − 1 do
4: if ‖β̃t+1 − β̃t‖ > c1 then
5: Add t to T̂
6: end if
7: end for
8: for m = 1, . . . , |T̂ |+ 1 do
9: tm ← mth element in T̂ , (t|T̂ |+1 ← T + 1)

10: tm−1 ← (m− 1)th element in T̂ , (t0 ← 1)
11: c2 ← γ

√
(tk − tk−1)(2ε)2

12: l← (−1,−1, ...,−1) ∈ Rp
13: c← 0
14: for i = 1, . . . , p do
15: if li = −1 then
16: Apply Algorithm 3 with i, β̃, c2, E, l, c and

(tm−1, tm)
17: c← c+ 1
18: end if
19: end for
20: Add l to Ĉ
21: end for
22: return fitted change points T̂ , set of fitted membership

vectors Ĉ

L. Justification for binomial log likelihood

Recall that in Section V-A the crime data set was modeled
with a binomial distribution and we modified the MDL cri-
terion by replacing the Gaussian likelihood with a binomial
likelihood. Here we provide further details.

Suppose the observations are binomial counts; i.e. yt,i ∼
Binomial(nt,i, βt,i), where nt,i is known, βt,i ∈ [ε0, 1− ε0]
for some positive ε0, and βt,i satisfies both the temporally and
spatially smoothness assumptions.

An MDL criterion for binomial data can be derived in the
same manner as in Section II. Notice that yt,i can be viewed
as the summation of nt,i iid Bernoulli trails xt,i,j , and that the
asymptotic properties hold when nt,i satisfies (20) and (21).

Algorithm 3 Use a depth-first search strategy to compare
connected nodes, and nodes with similar fitted signal values
to the coefficients are labelled the same.

Require: current index i, fitted coefficients β̃, threshold c2,
edges of the graph E, current membership vector l,,
current label c, time interval (tm−1, tm)

1: li ← c
2: β̃(tm−1,tm),i ← (β̃tm−1,i, β̃tm−1+1,i, ..., β̃tm−1,i)

>

3: β̃(tm−1,tm),j ← (β̃tm−1,j , β̃tm−1+1,j , ..., β̃tm−1,j)
>

4: for j = 1, . . . , p do
5: if (i, j) ∈ E and li = −1 and ‖β̃(tm−1,tm),i −

β̃(tm−1,tm),j‖2 < c2 then
6: Apply Algorithm 3 with j, β̃, c2, E, l, c, (tm−1, tm)
7: end if
8: end for
9: return updated membership vector l

When {t, i} belongs to the rth cluster in the mth time
interval, the MLE of βt,i is

β̂t,i =

∑tm−1
s=tm−1

∑
q,c

(m)
q =r

ys,q∑tm−1
s=tm−1

∑
q,c

(m)
q =r

ns,q
.

Ignoring constant terms, the negative log-likelihood is

−
T∑
t=1

p∑
i=1

yt,i log(βt,i)−
∑

(nt,i − yt,i) log(1− βt,i).

After plugging in the MLE for βt,i, the code length of
the residuals CL(Ê |F) can be obtained, which leads to the
following MDL criterion for binomial data

MDL(T , C) = log(M + 1) +

M∑
m=1

log(tm − tm−1)

+
M+1∑
m=1

(p+ 1) log(d(m))

+
M+1∑
m=1

d(m)∑
r=1

1

2
log(

tm−1∑
t=tm−1

∑
i,c

(m)
i =r

nt,i)

−
T∑
t=1

p∑
i=1

yt,i log(β̂t,i)

−
T∑
t=1

p∑
i=1

(nt,i − yt,i) log(1− β̂t,i).

(51)

For simplicity, we re-express the above MDL criterion as

MDL(T , C) =O(log(n))

−
M+1∑
m=1

d(m)∑
r=1

[(

tm−1∑
t=tm−1

∑
i,c

(m)
i =r

nt,i)

σ(
(
∑tm−1
t=tm−1

∑
i,c

(m)
i =r

yt,i)

(
∑tm−1
t=tm−1

∑
i,c

(m)
i =r

nt,i)
)],

(52)

where O(log(n)) is a term with order log(n) and σ(x) =
x log(x) + (1− x) log(1− x) for x ∈ (0, 1).
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To establish the theoretical properties of (52), we will show
that Lemma 1 and Theorem 1 are also true under the binomial
setting. In addition, Lemma 2 and Lemma 4 also hold for (52)
and their proofs are exactly the same.

Proof for Lemma 1:
We follow the same arguments as that in Appendix A.

1

n
MDL(T̂ , Ĉ)

=cn −
M+1∑
m=1

d(m)∑
r=1

[(

∑t∗m−1
t=t∗m−1

∑
i,c
∗(m)
i =r

nt,i

n
)σ(β̂(R∗(m, r)))]

(53)

where

β̂(R∗(m, r)) =

∑t∗m−1
t=t∗m−1

∑
i,c
∗(m)
i =r

yt,i∑t∗m−1
t=t∗m−1

∑
i,c
∗(m)
i =r

nt,i
.

Similarly we will discuss two cases for each R∗(m, r).
If R∗(m, r) ⊆ R0(s, l), then by the strong law of large num-

ber, we have β̂(R∗(m, r))→ β
0(l)
(s) . In addition, with (21) we

have 1
n

∑t∗m−1
t=t∗m−1

∑
i,c
∗(m)
i =r

nt,i →
∑t∗m−1
t=t∗m−1

∑
i,c
∗(m)
i =r

γt,i.
Therefore,

(

∑t∗m−1
t=t∗m−1

∑
i,c
∗(m)
i =r

nt,i

n
)σ(β̂(R∗(m, r)))

→(

t∗m−1∑
t=t∗m−1

∑
i,c
∗(m)
i =r

γt,i)σ(β
0(l)
(s) ) a.s.

(54)

On the other hand, if R∗(m, r) ⊆ ∪(s,l)∈SR0(s, l) and
R∗(m, r) ∩R0(s, l) 6= ∅, ∀(s, l) ∈ S, we can show that

β̂(R∗(m, r))→∑
(s,l)∈S

∑min {t∗m,t
0
s}−1

t=max {t∗m−1,t
0
s−1}

∑
i,c∗i =r,c

0
i=l

γt,iβ
0(l)
(s)∑

(s,l)∈S
∑min {t∗m,t0s}−1
t=max {t∗m−1,t

0
s−1}

∑
i,c∗i =r,c

0
i=l

γt,i
a.s.

Then

(

∑t∗m−1
t=t∗m−1

∑
i,c
∗(m)
i =r

nt,i

n
)σ(β̂(R∗(m, r)))

→(
∑

(s,l)∈S

min {t∗m,t
0
s}−1∑

t=max {t∗m−1,t
0
s−1}

∑
i,c∗i =r,c

0
i=l

γt,i)

σ(

∑
(s,l)∈S

∑min {t∗m,t
0
s}−1

t=max {t∗m−1,t
0
s−1}

∑
i,c∗i =r,c

0
i=l

γt,iβ
0(l)
(s)∑

(s,l)∈S
∑min {t∗m,t0s}−1
t=max {t∗m−1,t

0
s−1}

∑
i,c∗i =r,c

0
i=l

γt,i
) a.s.

≤
∑

(s,l)∈S

(

min {t∗m,t
0
s}−1∑

t=max {t∗m−1,t
0
s−1}

∑
i,c∗i =r,c

0
i=l

γt,i)σ(β
0(l)
(s) ).

(55)

The last inequality was obtained because of the convexity of
σ(.), together with Jensen’s inequality

σ(

∑
αixi∑
αi

) ≤
∑
αiσ(xi)∑
αi

for any positive weights αi.

Same as the argument in Appendix A, there would be a
contradiction if Lemma 1 under the binomial setting does not
hold. This finishes the proof.

Proof for Theorem 1:
By Lemma 2 with large enough n, without loss of gen-

erality, we assume that there is only one real cluster that
is composed of multiple fitted clusters; i.e. R0(s, l) =
∪(m,r)∈SR∗(m, r). And all the other real clusters are not
overfitted. Then the difference between the negative log-
likelihood terms in 1

nMDL(T 0, C0)− 1
nMDL(T ∗, C∗) is

− 1

n
l(β̂(R0(s, l)); {yt,i|(t, i) ∈ R0(s, l)})

+
∑

(m,r)∈S

1

n
l(β̂(R∗(m, r)); {yt,i|(t, i) ∈ R∗(m, r)}),

(56)

where

l(β; {yt,i|(t, i) ∈ R(s, l)})

=
∑

(t,i)∈∈R(s,l)

yt,i log(β) + (nt,i − yt,i) log(1− β) (57)

is the log-likelihood function.
By the strong law of large number we have β̂(R∗(m, r))→

β
0(l)
(s) a.s.∀(m, r) ∈ S and β̂(R0(s, l)) → β

0(l)
(s) a.s. We also

have

l′(β̂(R0(s, l)); {yt,i|(t, i) ∈ R0(s, l)}) = 0

l′(β̂(R∗(m, r)); {yt,i|(t, i) ∈ R∗(m, r)}) = 0
(58)

as β̂(R0(s, l)) and β̂(R∗(m, r)) are MLEs. The Taylor
expansion of l(β̂(R0(s, l); {yt,i|(t, i) ∈ R0(s, l)}) around
β̂(R0(s, l)) gives

l(β̂(R0(s, l)); {yt,i|(t, i) ∈ R0(s, l)})
=l(β

0(l)
(s) ; {yt,i|(t, i) ∈ R0(s, l)})

− 1

2
l′′(β̃(R0(s, l)); {yt,i|(t, i) ∈ R0(s, l)})

× (β
0(l)
(s) − β̂(R0(s, l)))2

(59)

and

l(β̂(R∗(m, r))); {yt,i|(t, i) ∈ R∗(m, r))})
=l(β

0(l)
(s) ; {yt,i|(t, i) ∈ R∗(m, r))})

− 1

2
l′′(β̃(R∗(m, r))); {yt,i|(t, i) ∈ R∗(m, r)})

× (β
0(l)
(s) − β̂(R∗(m, r)))2,

(60)

where β̃(R0(s, l)) is between β̂(R0(s, l)) and β
0(l)
(s) , while

β̃(R∗(m, r)) is between β̂(R∗(m, r)) and β0(l)
(s) .

Since β̂(R∗(m, r)) − β
0(l)
(s) = O( 1√

n
) and

β̂(R0(s, l)) − β
0(l)
(s) = O( 1√

n
) by the central limit

theorem, and 1
n l
′′(β̃(R0(s, l)); {yt,i|(t, i) ∈ R0(s, l)}) and

1
n l
′′(β̃(R∗(m, r))); {yt,i|(t, i) ∈ R∗(m, r)}) are stochastically

bounded, (56) is of o(log(n)/n), which finishes the proof.
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