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We study exponential families of distributions that are multivari-
ate totally positive of order 2 (MTP3), show that these are convex
exponential families, and derive conditions for existence of the MLE.
Quadratic exponential familes of MTP2 distributions contain attrac-
tive Gaussian graphical models and ferromagnetic Ising models as
special examples. We show that these are defined by intersecting the
space of canonical parameters with a polyhedral cone whose faces cor-
respond to conditional independence relations. Hence MTP; serves as
an implicit regularizer for quadratic exponential families and leads to
sparsity in the estimated graphical model. We prove that the max-
imum likelihood estimator (MLE) in an MTP; binary exponential
family exists if and only if both of the sign patterns (1,—1) and
(—1,1) are represented in the sample for every pair of variables; in
particular, this implies that the MLE may exist with n = d obser-
vations, in stark contrast to unrestricted binary exponential families
where 2¢ observations are required. Finally, we provide a novel and
globally convergent algorithm for computing the MLE for MTP4 Ising
models similar to iterative proportional scaling and apply it to the
analysis of data from two psychological disorders.

1. Introduction and motivation. This paper discusses exponential
families and, in particular, binary graphical models with a special form of
positive dependence. Total positivity is a strong form of positive dependence
that has become an important concept in modern statistics; see, e.g., [14, 22].
This property (also called the MTPy property) appeared in the study of
stochastic orderings, asymptotic statistics, and in statistical physics [19, 30].
Families of distributions with this property lead to many computational ad-
vantages [8, 16, 31] and they are a convenient shape constraint in nonpara-
metric statistics [32]. They also became a useful tool in modelling with latent
variables; see [9] for an overview. In particular, in [4] the MTPy property
explicitly appeared in the description of the binary latent class model.

In the Gaussian setting, the MTP5 property was shown to simplify infer-
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ence [5, 27]. In this case the MTPs property is equivalent to the covariance
matrix being an inverse M-matrix, which is a linear constraint on the concen-
tration matrix. This led Slawski and Hein [33] to propose efficient learning
procedures based on convex optimization; see also [11, 17, 25]. The present
paper develops similar results for exponential families with special emphasis
on models for binary variables, including ferromagnetic Ising models. Our
main results are the following:

e We show in Section 3 that the MTP, property is given by a convex
constraint in an exponential family and use convex optimization theory
to derive necessary and sufficient conditions ensuring than an estimate
maximizes the likelihood. For a quadratic exponential family, including
the Ising model for binary variables, the KKT conditions yield sparsity
in the associated matrix for interaction potentials.

e We show in Section 4 that the KKT conditions ensure context-dependent
conditional independence restrictions and that for binary variables the
MLE exists under MTPj, if and only if both of the sign patterns (1, —1)
and (—1,1) are represented in the sample for every pair of variables.
This ensures the minimal sample size for the MLE to exist be of order
d rather than 2¢ where d is the number of variables considered.

e We show — also in Section 4 — that adding conditional independence
assumptions by further assuming a graphical model, reduces this con-
dition to hold for pairs of vertices ¢j that are neighbours in the graph,
reducing the order of the minimal sample size to be the maximal clique
size of the graph.

e We show — also in Section 4 — that for symmetric binary MTP2
distributions, including ferromagnetic Ising models with no external
field, presence of just one of the sign patterns (1,—1) and (—1,1) for
every pair ensures existence of the MLE;

e We develop — in Section 5 — a novel IPS type algorithm for calcu-
lating the MLE in a ferromagnetic Ising model that is shown to be
globally convergent.

The remainder of this paper is structured as follows: In Section 2 we
formally introduce MTPs distributions and associated notation.

In Section 6 we apply our results to the analysis of two psychological
disorders, showing that the resulting MTP, graphical model is highly inter-
pretable and consistent with domain knowledge.

2. Preliminaries. Let V = {1,...,d} be a finite set and let X =
(Xy,v € V) be random variables with labels in V. We consider the product
space X = [],cy Ay, where X, C R is the state space of X, inheriting the
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order from R. In this paper, the state spaces are either discrete (finite sets)
or open intervals on the real line.

AssuMmPTION 1. All distributions are assumed to have densities with
respect to the product measure p = ®,cy iy, referred to as the base measure,
where p, is the counting measure if X, is discrete, and u, is the Lebesgue
measure giving length 1 to the unit interval if X, is an open interval.

We note that any other equivalent product measure can be used as base
measure without affecting the MTP4y property as defined below.

A function f on X is said to be multivariate totally positive of order 2
(MTPy) if

(2.1) f@)fly) < flery)flevy) forallz,ye X,

where x Ay and x V y denote the elementwise minimum and maximum, i.e.,
x Ay = (min(zy,yy),v € V), aVy= (max(zy,,y,),v V).

These inequalities are non-trivial only if z,y € & are not comparable, that
is, neither x < y nor x > y. For d = 2, a function that is MTP5 is simply
called totally positive [22]. We say that X or the distribution of X is MTPs
if its density function p is MTPs.

For strictly positive distributions, MTPs can be verified by checking that
(2.1) holds for x,y € X that are not comparable and differ in exactly two
coordinates; c.f. [22, Proposition 2.1]. We call such pairs elementary and
denote the set of all elementary pairs by £ C X x X. For more details on
MTP, distributions, see [22] and [18].

3. Totally positive exponential families. We first consider MTPq
for exponential families and show that maximum likelihood estimation for
exponential families under MTPs leads to a convex optimization problem.
We then discuss conditions for the existence of the MLE and finally specialize
these results to quadratic exponential families, which include as prominent
examples the Gaussian distribution and the Ising model.

3.1. Conwvexity of totally positive exponential families. Consider an ex-
ponential family with density p(x;6) satisfying

(3.1) log p(;0) = (0, T(x)) — A(0) + g(),

with sample space X, sufficient statistics 7' : X — R* and base measure u.
Assume that the family is minimally represented, i.e. that (A, T(X))+b=0
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almost surely implies A = 0, and that the family is regular so that the space
of canonical parameters

K={0ecRF : A®) < 0}
is an open convex set.

AssuMPTION 2. Throughout, we assume that there exists 6y such that
p(x;6p) is a product distribution, or equivalently,

(32)  plzVy;bo)p(z Ay;00) = p(z;60)p(y;00)  forallz,y € X.

Since every distribution in an exponential family can act as the base distri-
bution, we can then pick p(x;6p) as the base measure. It then holds that

g(xVy)+glxAy) —g(x) —g(y) = 0.

We say that such an exponential family has a product base.

All exponential families that contain a full independence distribution ad-
mit a product base. This includes all models discussed in this article and in
particular Gaussian graphical models and log-linear models.

For an exponential family of the form (3.1) and any two z,y € X we

define
N p(z vV y;0)p(z A y;0)
Ale.y:6) = log < p(z; 0)p(y; 0) ) '

The density p(x;60) is MTPs if and only if A(x,y;6) > 0 for all elementary
pairs in £. For exponential families with a product base it holds that

Alw,y;0) = (0, T(x Ay) +T(zVy) - T(x) - T(y)),
which is an affine function in 6.

DEFINITION 3.1. The set Ko C K of totally positive canonical param-
eters is the subset of canonical parameters for which the density p(x; @) is
MTPs.

Since Ky is given by the linear inequalities A(x,y;60) > 0 for all z,y € X,
we immediately get the following result.

THEOREM 3.2. The Ky of totally positive canonical parameters is a con-
vex set that is relatively closed in K.
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We note that this result holds also for exponential families without a
product base. However, in that case the set of MTP5 canonical parameters
Ko may be empty.

In [25] we considered the Gaussian setting and showed that /s is a convex
cone. By essentially the same argument, this extends to discrete Gaussian
distributions over X = Z¢, which were introduced in [1]. More generally, we
obtain the following result.

PROPOSITION 3.3.  The set Ko is obtained by intersecting K with a closed
convez cone C C R, whose dual cone is the closure of the cone generated by
the set

{TxAy)+T(xVy) —T(x)-T(y): =,y €}

PROOF. The set of inequalities A(x,y;60) > 0, one for each elementary
pair z,y € &, defines a convex cone in § € R. We have (6, T(z Ay) +T(x V
y)—T(x)—T(y)) > 0 for all z,y € £ if and only if (#,v) > 0 for all v in the
cone generated by the set {T'(z Ay)+T(zVy) —T(z)—T(y) : z,y € E};
denote this cone by C*. This shows that C = (C*)" and so CV = (C*)VV. The
latter is equal to the closure of C* by the standard theory of convex cones;
see, for example, [13, Section 2.6.1]. O

REMARK 3.4. When X is finite, i.e. for log-linear models, Proposition 3.3
implies that C is polyhedral. Since C is polyhedral also in the Gaussian
setting, finiteness of X is not a necessary condition. In fact, we will show in
Proposition 3.6 that C is polyhedral for any quadratic exponential family.
When C is polyhedral, then every face of C intersected with IC corresponds
to the MTP5 distributions in an exponential subfamily.

3.2. The MLE and its existence. An important consequence of Theo-
rem 3.2 is that any M'TP4 exponential family is a convex exponential family
and thus the maximum likelihood estimator (MLE), if it exists, is uniquely
defined; see [7, Section 9.4].

Let U = {z',...,2"} denote a sample of size n and let T := 1 >, T(a")
be the average of the corresponding sufficient statistics. Let & denote the
interior of conv(supp(,uonl)), the convex support of the sufficient statistics.
Then by the general theory of exponential families [7], the MLE 0 exists if
and only if T lies in S, in which case it is uniquely defined by

VA@B) = E4T(X)] = T.

The following theorem extends this result to a characterization of existence
of the MLE for the subfamily of MTPy distributions. By Proposition 3.3
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there exists a closed convex cone C such that the space of all MTP5, canonical
parameters is given by Ko = K N C. We define

Sy:=8-CV
as the Minkowski sum of § with the dual of —C; c.f. Proposition 3.3.

THEOREM 3.5. Let p(x;ﬂ) be a mz’_nimally represented regular exponen-
tial family. Then the MLE 0 based onT' exists in the MTPy submodel if and
only if T € Sy, in which case 0 is uniquely defined by

(a) primal feasibility: 6 € Ko, )
(b) dual feasibility: 6 :=VA®) €S withé —T €V,

(¢) complementary slackness: (8, 6 —T) = 0.

PRrROOF. The maximum likelihood estimation problem can be formulated
as the following optimization problem:
imi 0,T) — A6
maximize (0,T) — A(0)
subject to 6 € C.

This is a convex optimization problem, since A(#) is convex on K. The
Lagrangian is

£(6,3) = (6,T) — A(6) + (0, ),
where A € CV. Let A* denote the conjugate dual of A with domain S. Then

rgle%é(ﬁ(Q, A) = AT + N,

and hence the dual optimization problem is given by
minimize A*(o)
c€eS
subject to o —T €C".

The MLE exists if and only if the primal and dual problems are feasible. The
primal problem is feasible by the assumption Ky # (). The dual problem is
feasible if and only if T € S,. The characterization of the MLE then follows
from the KKT conditions. O

As in the Gaussian case, complimentary slackness imposes sparsity in the
MLE 6. This property makes MTPs exponential families potentially useful in
high dimensional contexts. Before we discuss this in further detail, we shall
consider the case of a quadratic exponential family, including the Gaussian
case and Ising models.
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3.3. Quadratic exponential families. The density function of a quadratic
exponential family is of the form

(3.3) p(z;h,J) = exp (hT:r + 2T Jx/2 — A(h, J)) ,

with h € R? and J € S, where S? is the set of symmetric matrices in R%*¢
so here the canonical parameter space is I = R? x S%. Important examples
of such exponential families in the discrete setting are Ising models, which
we discuss in more detail in Section 5, and Gaussian graphical models in
the continuous setting. Note that in the binary setting we require J;; = 0
in order to obtain a minimally represented exponential family. We start by
showing that C is a polyhedral cone for any quadratic exponential family.

PROPOSITION 3.6.  The subfamily of MTPy distributions in a quadratic
exponential family is obtained by intersecting K with a polyhedral cone C,
namely the cone S& = {J € S| J;; > 0 for all i # j}.

PROOF. By [18, Theorem 7.5], a quadratic exponential family is MTPs
if and only if exp(J;jzix;) is MTPy for all ¢ # j. This is the case if and only
if for every x,y that differ in two coordinates 7, j with z; < y; and x; > y;,
it holds that

Jij(yi — zi) (x5 — y;) 2 0,
or equivalently J;; > 0. This completes the proof. ]

We denote the mean parameters by p := EgX and Z := EgXX”. Then
(1, Z) can be transformed to (u,Y), where ¥ = Z — uu? is the covariance
matrix of X. Note that then

C={(h,J)eRIxS*: J;; >0 fori#j}.

Each facet of C corresponds to one of the J;;’s being zero; c.f. Remark 3.4.
Equivalently, by the Hammersley-Clifford theorem, each facet consists of
members in the MTPs exponential family that satisfy the conditional inde-
pendence relation X; 1L X;[Xyn f;41- The dual cone of C is given by

(34) €V ={(0,2)cR¢xS?: Z;; >0fori+#j, and Z; = 0 for all 7}.

Let U = {z',...,2"} as before be a sample of size n and let Z = 1 >~
and M = 1% 29(2")T be the corresponding sample averages. Let S =
M — zzT denote the sample covariance matrix. By standard exponential
family theory, the MLE in the quadratic exponential family (3.3) corre-
sponds to the unique distribution in the family which matches the sample
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averages, i.e., (i, é) = (&, M), or equivalently, (,&,i) = (z,S). By adding
the MTP5 constraint, the situation changes somewhat. As a direct corollary
to Theorem 3.5 we obtain the following result regarding the MLE in an
MTP;, quadratic exponential family.

COROLLARY 3.7. Let p(x;h,J) be a minimal reqular quadratic exponen-
tial family. Let T and S be the sample mean and covariance matriz. Then the
corresponding MLE (h,J) € K with (i, 2) := VA(h,J) and ¥ := 2 — paT,
1s uniquely defined by

(i) Jij >0 fori# j,

(ii) i =%, Sy = Sii, and Xi; > Sij fori # 3,
(iii) (iz] - SZ])j,J =0 fO?" all i 7& j

PRrROOF. The conditions of Theorem 3.5 translate precisely to (i), (ii),
(iii), namely the primal feasibility condition is derived in Proposition 3.6,
the dual feasibility condition follows from (3.4), and the complementary
slackness condition follows from the fact that the inner product between
dual cones is zero if and only if each summand is zero. O

REMARK 3.8. In quadratic exponential families the condition T' € Sy =
S — CV, that assures existence of the MLE, translates to the condition (ii)
in Corollary 3.7. This condition can again be expressed more explicitly in
terms of the observations: in the Gaussian case this becomes equivalent to all
correlations being numerically less than one ([25]), and we derive the explicit
conditions for our cases in Theorem 4.5, Corollary 4.6, and Theorem 4.11.

REMARK 3.9. Note also that in the binary case, where we have J; = 0
and Z; = 1 for all 4, the condition (ii) reduces to i = z, and X;; > S;; for

i j.

The specialization of this result to Gaussian graphical models was dis-
cussed in [25]. Note that the MTPy constraint induces sparsity in the MLE
J through the complementary slackness constraint (iii). For example, if
Sij < 0, then complementary slackness implies that jij = 0 simply because
in an M'TP4 distribution all covariances are positive. The sparsity pattern of
J defines a face F of the polyhedral cone C. As in the Gaussian setting [25,
Corollary 2.4], the MTPy MLE J is the MLE of the quadratic exponential
family without the MTP4 constraint restricted to the face F. This is stated
formally in Corollary 3.10 and illustrated in Example 5.3 below.
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COROLLARY 3.10. Let J denote the MLE in a quadratic exponential
family under MTPy. Let F = {(i,§) € V x V | Jij = 0}. Then J equals the
mazimum likelihood estimate in the quadratic exponential family without the
MTPy constraint under the linear constraints J;j =0 for all (i,j) € F.

PROOF. This follows since the unique MLE in this quadratic exponential
family is given by the equations (ii) and (iii) in Corollary 3.7 above. O

In [25] it was shown that the MLE existed in the Gaussian case if and only
if the empirical covariance matrix satisfied S;; < |/5395;; by constructing
an ultrametric matrix Z from S that was both primary and dually feasible.
The argument used in [25] does not apply here as the primary feasibility
of Z is not always guaranteed. Indeed, we shall see that the condition is
necessary here but not sufficient; see Theorem 4.5 and Corollary 4.6 below.
The situation in a general exponential family can be quite different from the
Gaussian case as shown in the following example.

EXAMPLE 3.11.  The auto-Poisson family considered in [10, Section 4.2.4]
is a quadratic exponential family with product base. It consists of distribu-
tions of the form

d
p(x; h, J) x exp (Z (hiz; — log(z;!)) + mTJa:/2> ze{0,1,2,...}

i=1

The right-hand side sums to a finite number if and only if J;; < 0 for all
i,4. The subset of MTP5 distributions within this family is then given by
the product of independent Poisson distributions, that is, J;; = 0 for all 4, j.
Of course, for a finite state-space, no such problem occurs.

4. Totally positive binary distributions. For the remainder of this
paper, we focus on binary distributions, i.e., distributions over the sample
space X = {—1,1}%. To simplify notation we often use the following bijection
between X and the set By of all subsets of {1,...,d}, namely an element
x € X maps to the subset of all i« € {1,...,d} for which z; = 1. For
example, in the case d = 3 the point z = (1,1, —1) maps to the subset {1,2}
and (—1,—1, —1) to the empty set. Note that X and B, are also isomorphic
as lattices because the min-max operators A, V on X correspond to the set
operations N, U in By.

Building on the results from Section 3, in the following we provide con-
ditions for existence of the MLE in MTPs binary exponential families. In
particular, we study the KKT conditions for this setting and develop condi-
tions for existence of the MLE in the special case of binary distributions that
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factorize according to a graph (such as Ising models) and symmetric binary
distributions where p(xz) = p(—x) (such as Ising models with no external
field). Ising models will be discussed in detail in Section 5.

4.1. Binary distributions as exponential families. We now recall the rep-
resentation of strictly positive binary distributions as an exponential family.
Define A(z) := logp(x) for x € X = {—1,1}. To write the exponential
representation of this family of distributions we consider the space R of
dimension 2% equipped with the inner product

0,0) = Y O(x)o(x).

reX

For x € X, define a vector T'(z) € {0,1}* such that T'(x), = 1if z = y and it
is zero otherwise. The set of binary distributions forms a regular exponential
family which is minimally represented with canonical parameters 0(z) =
Az) — A\(—=1) for 2 # —1. Denote by 6 the vector of all §(z) for z € X and
observe that 6(—1) = 0. Then

p(z) = exp({(6, T (z)) — A(0)),

where A(0) = log[(1,exp(f))]. The space of canonical parameters is simply
the 2¢ — 1 dimensional real vector space RY" where X’ = X\ {—1}. The
interior of the convex support of the sufficient statistics is given by the set

S= {pERX, : p(z) > 0 for all z € X' and Zp(x)<1},
zeX’

which we identify with the interior of the probability simplex, namely

Slz{p:p(:l:)>0forall$€/\’and Zp(:v)zl}.

zeX

REMARK 4.1. The constraints on the space of canonical parameters K
defining binary MTPy distributions are

(4.1) OlxNy)+0(xVy) —0(x)—0y) >0

for all elementary pairs z,y € X. We recall that a pair z,y is elementary
if there exist a subset A C V and i,j € V \ A such that = corresponds to
AU {i} and y corresponds to AU {j}. The number of such pairs is (g) 2d4-2,
Another way to phrase (4.1) is that € is a supermodular set-function that
satisfies the normalizing condition #(—1) = 0; c.f. [6].
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4.2. KKT conditions and conditional independence. In this section we
study how the KKT conditions of Theorem 3.5 induce sparsity in the gen-
eral binary setting, in the form of context-specific conditional independence
constraints. To do this, we introduce some notation. Following Studeny [34],
we call the elements in Z% imsets. An important example of an imset is
T(x) € {0,1}* defined earlier. The imset

Uy = T(@Ay)+T(xVy) —T(x)—T(y)

is called a semi-elementary imset. If x,y form an elementary pair then u, ,
is called an elementary imset. If this pair is associated to sets A U {i} and
AU{j} we write u; ;4. With a slight abuse of notation we denote the class
of all elementary imsets by &£.

Primal feasibility in Theorem 3.5 requires that 0 satisfies (4.1), i.e.,

A~

(4.2) 0,v) >0 for all v € &.

The dual cone CV is the cone in RY generated by all elementary imsets. Dual
feasibility in Theorem 3.5 says that 6(x) > 0 for all x € X and

(4.3) 6-T = Z () where ¢, > 0.
vel

Although every element in CV is a non-negative combination of elementary
imsets, such a combination is typically not unique. For example,

Up23 +UL3p = Up3z2 t U200

In particular, the coefficients ¢, above are not uniquely defined. But in-
dependent of the choice of these coefficients, the complementary slackness
condition is equivalent to

0,6 -T) = > cylf,v) = 0.
vel

By (4.2), this holds if and only if
(4.4) c(f,v) =0 forallvek.

We conclude that <é, v) = 0 for every v that appears in a nonnegative linear
combination of the form (4.3). Therefore we obtain the following result.

PROPOSITION 4.2.  Fach equality in (4.4) corresponds to a context spe-
cific conditional independence statement where two variables are independent
conditioned on a particular value of the remaining variables, as represented
by an elementary imset.
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PROOF. Each inequality for a given elementary imset in (4.1) can be
interpreted as a sign condition on a specific conditional correlation

cov(Xi, Xj | Xy iy = x) >0,
corresponding to an elementary imset. O

Note that when d = 3 there are six such constraints and these play an
important role in the boundary decomposition of the latent class model [3].
To see how they appear in the description of a general binary latent class
model see [4]. In the following example, we show how this characterization
of complementary slackness can be used to compute the MLE.

EXAMPLE 4.3. Let d = 3 and consider the sample represented by the
diagram to the left in the following figure, where we again made use of the
bijection between {—1,1}3 and the set of all subsets of {1,2,3}.

(2.3}
1 N2 NS
182 7y e S e

7 16/ \ 35

We claim that 6 represented by the diagram on the right corresponds to
the MLE. First we check that & is indeed MTPy by checking that 6(z V

y)o(z A x) —o(x)o(y) > 0 for all six elementary pairs z,y. Up to the nor-
malizing constant 182, these are

{1},{2}: 12-35-7-16>0 {1,3},{2,3}:  30-35—7-40>0
{1},{3}: 7-35-7-35=0 {1,2},{2,3}: 30-16-12-40=0 .
{2},{3}: 40-35—16-35>0 {1,2},{1,3}:  30-7-12-7>0

This proves primal feasibility in Theorem 3.5. Dual feasibility is verified by
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the following diagram.

In other words, 6 —T = %'u173‘2+1f;2-u1,3|@ € CV. Complementary slackness
follows by direct calculations. Note that the two nonzero generators in the
decomposition of 6 — T correspond precisely to the MTP5, inequalities for
6 that hold as equalities. These equalities correspond to the conditional

independence statement 1 1L 3|2. O

4.3. Existence of the MLE. In this section we shall discuss problems
associated with existence of the MLE for binary MTP, distributions, the
main result being Theorem 4.5 which gives a simple necessary and sufficient
condition for existence.

4.3.1. Euxistence in the extended family. To derive simple conditions for
existence of the MLE within the exponential family of strictly positive bi-
nary distributions that are MTPs, we consider estimation in the extended
family where the strict positivity condition is relaxed and existence therefore
guaranteed.

Let P(X) denote the set of all probability distributions over X and Ps the
set of all totally positive binary distributions, i.e.,

P2 = {p e P(X) |Va,y € X :p(xVy)p(xrAy) > plx)p(y)}.

We note that P, is compact and geometrically convez, i.e.,

P1,p2 € P2 = ¢ *\/pip2 € P2

where

ci= 3 Vo@pe(a) < 1

zeX
and ¢ < 1 unless p; = po by the Cauchy—Schwarz inequality.



14 S. LAURITZEN ET AL.

For a lattice L we say that a subset L’ of L forms a sublattice of L if for
any two z,y € L it holds that z Ay € L' and 2V y € L. Note that for any
p € Py its support supp(p) = {z : p(z) > 0} is always a sublattice of X,
since

p(z) >0, p(y) >0 = p(z Vy)p(x Ay) > p(x)p(y) > 0.

Consider a sample U = {z!,..., 2"} with likelihood function

and let £(U) be the the smallest sublattice of X' containing the sample U.
We now show that the support of the MLE is given by L£(U).

THEOREM 4.4. The likelihood function attains its mazimum over Po in
a unique point p. Furthermore, it holds that supp(p) = L(U).

Proor. Continuity of the likelihood function together with compactness
of Py ensures that the maximum is attained. To prove uniqueness, suppose
for contradiction that py # po both maximize L. Then

L(c™"/P1p2) = ¢ "/ L(p1)L(p2) > L(ps)

contradicting that p; were maximizers.

Finally, note that U C supp(p) and hence L£(U) C supp(p). We show
L(U) 2 supp(p) by contradiction. Suppose L£L(U) C supp(p), then we can
construct p € Py such that L(p) > L(p), which contradicts the fact that p
is the MLE; namely, let p be p projected onto £(U) and rescaled to be a
probability mass function, i.e. p(x) o< p(2)1z(ry. Then p € Pz and L(p) >
L(p), which concludes the proof. O

4.3.2. Existence of MLE in the binary exponential family. The MLE ex-
ists in the binary exponential family if and only if the estimator p in the
extended family P(X) has full support. Thus as a consequence of Theo-
rem 4.4 we obtain the following result, where U;; = {x}j, . ,CC?J} denotes
the marginal sample induced on the pair 45,7 # j .

THEOREM 4.5. The MLE exists within the space of totally positive canon-
ical parameters Ko (c.f. Definition 3.1) if and only if L(U) = X. Fur-
thermore, L(U) = X if and only if every pair-marginal sample Usj for
i,j €V ={1,...,d} has both of (1,—1) and (—1,1) represented.
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PRrROOF. As mentioned, the MLE exists in the binary exponential family
if and only if the estimator p in the extended family P(X) has full support.
Thus, as a consequence of Theorem 4.4, the MTPy MLE exists if and only
LU)=2X.

For the second statement we first prove the backward direction using the
identification between X and subsets of V. Suppose every pair-marginal U;;
for 7,7 € V has both of (1, —1) and (—1, 1) represented. This means that for
every 4 there is a set x;; € U with ¢ € x;; and j € z;;. But then

{i} = () xy € LU) for all i.
JEV\i

Since the set of all singletons {i} for i € V' generates the full lattice X', we
obtain L(U) = & as desired.

We prove the forward direction by proving its contrapositive. Suppose
there is a pair 75 such that all sets € U have the property that

(4.5) tex = jEu.

The set of subsets y satisfying (4.5) form a proper sublattice £’ C X. Since
L(U) C L' we obtain that £L(U) # X, which completes the proof. O

Theorem 1 in [33] states that the MLE in the MTPy Gaussian distribu-
tion exists if and only if all sample correlations are strictly less than one.
Theorem 4.5 yields the analogous result for binary distributions. Indeed we
have the following.

COROLLARY 4.6. If the MLE exists within Kao, then the empirical co-
variance matrix satisfies Si; < /S S;j for all i # j.

ProOOF. The empirical correlation matrix R has |R;;| = 1 if and only if
it holds for all € U in the sample that x; = ax; +b. If both configurations
(1,—1) and (—1,1) are represented in U, this would imply b —a = 1 and
b+ a = —1 whereby b = 0, a = —1 and thus R;; = —1 implying S;; <

\/SiiSjj. L]

Note that the converse is not true. If for two variables the sample is
U={(-1,-1),(1,-1),(1,1)}, then the MLE does not exist according to
Theorem 4.5, but we have S1; = Soo = 8/9 and Si2 = 4/9; so the empirical
correlation is equal to 1/2.
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1 2 1 2

4 3 4 3

Fic 1. A cycle (left) and a chain (right) with four vertices.

As another example, consider the case d = 3. Then the vectors (1, —1,—1),
(=1,1,-1), (=1, —1,1) generate all of {—1,1}* and hence every sample sup-
ported on these three points will admit a unique MLE under the MTP5 con-
straint. This set is minimal in the sense that it cannot be reduced; none of its
subsets generates X. There are also minimal generating subsets of size four,
eg. (1,1,-1), (1,-1,-1), (-1,-1,1), (—1,1,1). For general d, a minimal
generating set of {—1,1}% is of order O(d) and there always exists a mini-
mal generating set of size exactly d. Hence for binary MTPs distributions d
samples can be sufficient for existence of the MLE. This is in sharp contrast
with unrestricted binary exponential families, where the MLE exists only if
all 2% states are observed at least once.

While the MLE in Example 4.3 could be computed by hand, calculations
get intractable rather quickly. The following example is sufficiently compli-
cated that it cannot easily be calculated by hand, but still simple enough so
that numerical optimization using the algorithm developed in [9] yields the
provably exact optimum.

EXAMPLE 4.7. Moussouris [29] provided a now classical example of a
distribution ¢ that is globally Markov to its dependence graph but does
not factorize; c.f. [26, Example 3.10]. The distribution in this example is
uniformly supported on eight points

(_17_1)_17_1) (17_17_17_1) (Lla_l?_l) (1’
1

5 1a _1)
(-1,-1,-1,1) (-1,-1,1,1) (-1,1,1,1) (1,1,1

1
1,1,1).

This distribution is globally Markov with respect to the 4-cycle in Figure 1
(left), and we shall consider these eight points as constituting a sample of
size eight. The MLE for this graphical model as an exponential family does
not exist. Note that the sample distribution is not MTPs, since for example
the inequality

p(lv 715 717 1)p(71) 717 715 71) Z p(]-a 71, 71) *1)])(*]—, ]-a *17 71)

does not hold. On the other hand, since the conditions of Theorem 4.5 are
satisfied, the MLE & under MTP; exists. It is represented by the follow-
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ing diagram, where the highlighted nodes correspond to the eight points
supported by the sample.

Primal feasibility of & is verified by the following inequalities, one for each
of the 24 elementary pairs (labeled by sets {i} U A and {j} U A). Up to the
normalizing constant 128, these are:

{1}, {2} : 9.27-9-3>0 {1,3},{2,3} : 9-3-1-3>0
{1,4},{2,4} : 3.9-3-1>0 {1,3,4},{2,3,4}: 27-9-3-9>0
{1},{3} : 1.27-9-3=0 {1,2},{2,3} : 9.3-9.3=0
{1,4},{3,4}: 3.9-3.9=0 {1,2,4},{2,3,4}: 27-1-3.9=0
{1}, {4} : 3.27-9.9= {1,2},{2,4} : 3.3-9.1=0
{1,3},{3,4}: 3.3-1.9= {1,2,3},{2,3,4}: 27-3-9.9=0
{2}.{3} : 3.27-3-3>0 {1,2},{1,3} : 9-9-9-1>0
{2,4},{3,4} : 9:9-1-9>0 {1,2,4},{1,3,4}: 27-3-3-3>0
{2}, {4} : 1-27-3.9=0 {1,2},{1,4} : 3.9-9.3=0
{2,3},{3,4}: 9.3-3.9=0 {1,2,3},{1,3,4}: 27-1-9.3=0
{3}, {4} : 9.27-3-9>0 {1,3},{1,4} : 3.9-1-3>0
{2,3},{2,4} : 9.3-3-1>0 {1,2,3},{1,2,4}: 27-9-9-3>0

Quite surprisingly the MLE is therefore still globally Markov to the 4-cycle
even though these constraints were not explicitly enforced. Moreover, ¢ sat-
isfies an additional conditional independence relation, namely 1 11 4|{2, 3},
and so it is Markov to the smaller graph in Figure 1 (right).

There are many equivalent ways to write the vector &—7". The most canon-
ical is the one using all twelve elementary imsets allowed by the complemen-
tary slackness condition (4.4), that is, the ones corresponding to boldfaced
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rows above:

A~ T 3 1 1 3
o-T = —z-ugp+ 128 U312 + 198 < M13l4 + 128 13124 T

1 1 3
T oT5g U240t 128 Y24 + Tog Y2413 + 1og Y2413 +

5) ) )
+ 128 U140 + 128 U142 + Tog U143 + Tog Y1423
Each of the vectors u; j4 above is a generator of C¥ andso 6 —T € CV. [

REMARK 4.8. To show that & — T lies in CV it is enough to express it as
a nonnegative combination of vectors T'(x Ay) +T(x Vy) — T (z) — T(y) for
arbitrary pairs x,y € X. This follows directly from [34, Proposition 4.2].

Note that in the above examples the MLEs correspond to models satisfy-
ing conditional independence statements. However, in general the MLE will
satisfy a set of context specific conditional independence statements that
may not lead to full conditional independences. In the following subsection,
we consider binary MTPs models that satisfy conditional independence re-
lations given by a graphical model.

4.4. Totally positive graphical models for binary variables. Given a graph
G = (V,E), let P2(G) denote the set of distributions in Py that lie in the
completion of the exponential family ([7, pp. 154-155]) for the graphical
model over G, i.e.

Pa2(G) = P2 N Mg(G),

where Mg(G) denotes the set of extended Markov distributions ([26, p. 40])
obtained as limits of factorizing distributions; see also [20]. We note that
P2(G) is compact and geometrically convex (see e.g. [26, p. 73]); hence the
MLE over P3(G) exists and is unique.

We first need a lemma to identify when binary MTP, distributions p € Po
have full support based on their marginals. These results are critical for this
section in order to identify when the MLE of a binary distribution that is
Markov over a graph has full support.

LEMMA 4.9. Let p € Py and let x € X. Suppose p;j(x;,x;) > 0 for all
pairs i, j then p(x) > 0.

PROOF. For every i, let y(i) e supp(p) such that ygj) = (x;,x;). Let
A/B be the partition of V' such that z; = —1 for i € A and x; = 1 on B.

For each i € A define () = max;ep y(7) . By construction zZ@ = —1 and
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zg) = (1,...,1). Moreover z(*) € supp(p) because supp(p) is a lattice. Since
& = minge4 29, = € supp(p) again because the support of p is a lattice. [

COROLLARY 4.10. Ifp € Py then p has full support X if and only if each
pair-margin p;; has full support.

The following result extends Theorem 4.5 to binary graphical models
and relaxes the pair-marginal condition to be necessary only for pairs of
neighbours in the graph G. As before U;; = {x} } denotes the pair-

ijr
marginal sample for the pair ij.

n
]

THEOREM 4.11.  If every pair marginal sample U;; along edges ij € E
has both of (1,—1) and (—1,1) represented, then the unique MLE p € Pa(G)
has full support.

The proof makes use of the fact that the support of p, denoted by supp(p),
is a lattice since p € P,. In addition, since p € Mg(G), p also satisfies the
global, local, and pairwise Markov properties w.r.t. G ([26, p. 42, (3.16)]. In
particular, the proof relies on the following two lemmas.

LeMMA 4.12.  If the pair marginal sample Us; has both of (1,—1) and
(—1,1) represented for all ij € E, then supp(p;;) = {—1,1}? for allij € E.

ProOF. The MTP; property is closed under taking marginals (see [22]).
So if p is MTP», so are its marginals p;;. Thus supp(p;;) is a lattice containing
Uij. As a consequence, if U;; has both of (1,—1) and (—1,1) represented,
then supp(pij) = {—1,1}?, which completes the proof. O

Denoting by di the neighbors of node ¢ € V in G, the following lemma
will be needed for showing that supp(p;;) = {—1,1}? for all pairs ij and not
only the pairs 15 € F.

LEMMA 4.13.  Suppose that every pair marginal sample Us;; along edges
ij € E has both of (1,—1) and (—1,1) represented. If pgi(zg;) > 0 for some
Zoi, then Piuai(Tivei) > 0 for every ;.

PROOF. Since py;(zg;) > 0, clearly p;uai(xius;) > 0 for some x;, say
x; = 1. We need to show that p;usi(viug:) > 0 also if y; = —1 and ys; = xp;.
Let zus; be such that z; = —1 and z9; = (1,...,1). Since p € P2(G), its
support is a lattice and the same applies to each margin of p. Because

Yivdi = Tiudi N Ziudis
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to show that y; g; lies in the support of p;g; it is sufficient to show that
this holds for z;us;. By the assertion, for each j € 0i the edge-margin U;;
has (—1,1) represented. In particular, there is a point uY) € X such that

uEJ )— _1and u§j ) — 1. The support of p necessarily contains all elements in

U and hence p(u)) > 0 for all j € 9i. Let u be the elementwise maximum of
all u(9). This point lies in supp(p) because it forms a lattice. By construction,
Ujugi = Ziuoi, which proves that z; 9; (and hence also y; 9;) lies in the
support of p;ug;. The proof for the case where x; = —1 is analogous. O

We are now ready to provide the proof of Theorem 4.11.

PROOF OF THEOREM 4.11. From Corollary 4.10 it follows that p has full
support if and only if the marginal support supp(p;;) is full for all i, € V.
When ij € E, this follows from Lemma 4.12. Next, consider a pair ij ¢ E.
Since p € Mg(G), it satisfies the local Markov property with respect to G.
Hence for any x;,z; € {—1,1}, it holds that

Pij(inxy) = Y plzi, x| vaine;)P(aiv;)
ZHiudj
= Y il wa)pla; | wo;)p(wain;)-
THiudj
Since there is at least one xy;u9; in the support of py;ue;, then by Lemma 4.13

both of p(x;, xs;) and p(x;,xo;) are strictly positive and hence also the
corresponding summand. It follows that p;;(z;,z;) > 0, as desired. O

Theorem 4.11 provides conditions for the existence of the MLE in the
underlying exponential family, which we denote by K2(G), consisting of all
points in Py(G) with full support.

COROLLARY 4.14. If G is bipartite, then the minimal sample size re-
quired for existence of the MLE is n = 2. More generally, for arbitrary
graphs the minimal sample size for existence of the MLE is of the order of
the maximal clique size.

Hence the minimal sample size for existence of the MLE goes from 2¢
for unrestricted binary distributions, to d for MTPs binary distributions, to
O(maximal clique size) for MTP9 binary distributions on graphs, including
Ising models. In the following subsection, we consider a special class of bi-
nary distributions that contain as prominent examples Ising models without
external field and show that the minimal sample size for existence of the
MLE can be further reduced.
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4.5. Symmetric binary distributions. A distribution p over X = {—1,1}¢
is symmetric (or palindromic) if p(x) = p(—z) for all z € X. Distribu-
tions of this form have been studied for example in [28] and also appear
in statistical physics in the context of spin models with no external field.
If X = (Xy,...,X4) has a symmetric distribution, then EX; = 0 and
var(X;) = 1 for all « = 1,...,d. As a consequence, the covariance matrix
and the correlation matrix of X coincide. Note also that symmetry trans-
lates into linear constraints #(z) = 6(—x) for all x € X on the canonical
parameters of the binary exponential family. Hence symmetric distributions
with full support form themselves an exponential family. In the following,
we characterize existence of the MLE for symmetric binary distributions.

Let as before U = {z!,...,2"} denote a random sample. Let A(U) denote
the smallest algebra generated by U, that is, the smallest subset of X that
contains U and is closed under the lattice operations A,V and the comple-
ment z — —x. For a family of distributions P we let P® denote the set of
symmetric distributions in P and U® = U U—U be the symmetrized sample.

PROPOSITION 4.15.  If P is geometrically convex, then the MLE ps under
P? based on a sample U exists in P* if and only if the MLE ps under P based
on the symmetrized sample U® exists. In this case, it holds that ps = ps.

PRrROOF. Note that for any p € P, the likelihood function satisfies

L(p; US) _ H p(x)n(x)Jrn(fz) — L(ﬁ, US)’
reX

where p(z) = p(—z), and n(x) = [{i € 1,...,n : x; = z}| are the empirical
counts in the sample U. Since P is geometrically convex, a maximizer pg of
L(p; U?) is unique; thus ps(z) = ps(—x) and hence p € P5. Note also that
for any ps € P® we have

L(ps;U)? = L(ps; U®).

So any maximizer of L(ps;U) over P* is also a maximizer of L(ps; U®) and
vice-versa. Finally, the uniqueness implies that ps = ps, as desired. ]

By combining Proposition 4.15 with Theorem 4.5 we obtain the following
corollary on the existence of the MLE for symmetric binary distributions.

COROLLARY 4.16. The MLE for a symmetric binary exponential family
exists if and only if A(U) = X. Furthermore, A(U) = X if and only if for
every pair ij the event {X; # X} is represented in the sample.
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Finally, as a consequence we obtain the following corollary as an applica-
tion of Theorem 4.11 to symmetric binary distributions on graphs defined
as P3(G) = P2(G) NP5,

COROLLARY 4.17. If the event {X; # X;} is represented in every pair
marginal sample Us;, then the MLE p in the family P5(G) has full support.

REMARK 4.18. We note again the remark to Theorem 1 in [33] which
states that the MLE in an MTP, Gaussian distribution exists if and only
if all sample correlations are strictly less than one. Corollary 4.17 implies
that exactly the same is true for symmetric binary distributions. Interest-
ingly, while for (nontrivial, i.e., with at least one edge) Gaussian graphical
models sample size equal to two is necessary and sufficient for existence of
the MLE (with probability 1) [25], as a consequence of Corollary 4.14 and
Corollary 4.17, the MLE for a symmetric binary distribution on a bipartite
graph may have full support for sample size equal to one.

5. Totally positive Ising models. In this section, we study maximum
likelihood estimation in Ising models, a special class of binary distributions
that form a quadratic exponential family. An algorithm for calculating the
MLE p for general binary MTPs distributions was developed in [9]. In Sec-
tion 5.2, we develop an algorithm analogous to iterative proportional scaling
(IPS) for the special case of Ising models under MTP5. In addition, we dis-
cuss the special case of MTPs Ising models with no external field, which
forms a symmetric exponential family. Such distributions can be seen as a
proxy to Gaussian distributions and in Section 5.3 we discuss their similar-
ities and differences.

Since Ising models form a quadratic exponential family, their probability
mass function is of the form

(5.1) p(z;h,J) = exp (hTCL'+IETJIE/2—A(h, J)) .

with h € R? and J € Sg, where Sg is the set of symmetric matrices in R%*¢
with J;; = 0 for all 4, ensuring minimality of the representation; see (3.3).
We let Zs be the set of Ising models above that are also MTPo, i.e. where
Jij > 0 for aui;ﬁj.

Let @ = (h,J) denote the canonical parameters. We make the following
two important observations regarding the canonical parameters. For any
i,j € Vet A =V \{ij}. Then the corresponding conditional log-odds
ratios are all equal; more precisely, denote by x,y € X any two points
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satisfying x4 = ya, ; = y; = 1, and z; = y; = —1, then
(5.2) log (p (z vV y)pla A y)> = 47,
p()p(y)

This is another way of confirming that an Ising model defined by (h, J) is
MTPs if and only if J € Si NS¢; see Proposition 3.6. In addition, note that
for any x with x; = 1 and y equal to x up to the i’th coordinate, then

@)\ _
) ox (5 8) =

The sufficient statistics based on the observations z!

and second order moments

(z, M) := % (Z:U’,le(x’)T> .
=1 =1

Strictly speaking we should ignore the diagonal elements of M, but since they
are all deterministically equal to 1, this does not matter for the following
considerations. In addition, for a graphical Ising model on G = (V, E) — i.e.
where we assume J;; = 0 unless 7j € E — the entries M;; for ij ¢ E should
be ignored. The associated mean value parameters are

,...,x" are the first

(1, 2) == (Eo X, Eg X XT).

5.1. Euxistence of the MLE for totally positive Ising models. Theorem 4.11
can be specialized to the quadratic case, i.e. when also the Ising model is
assumed. The condition for existence is here unchanged compared to the
general Markov case. For an undirected graph G = (V, E) let Z3(G) be the
family of totally positive Ising models that are Markov w.r.t. G, i.e. where
Jij = 0 unless ij € E. We then have

THEOREM 5.1.  If every pair marginal sample U;; along edges ij € E has
both of (1,—1) and (—1,1) represented, then the MLE p € I5(G) is unique
and has full support.

ProoF. By Theorem 4.11, the MLE exists within the convex exponential
family P2(G). Since Zo(G) is an exponential subfamily of that, the MLE also
exists within Z»(G). O

In the following we shall develop an algorithm for calculating the MLE in
MTP; Ising model.
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5.2. IPS algorithm for computing the MLE. The standard IPS algorithm
(see [26], page 82) for computing the MLE without the MTPy restriction
works by cycling through all pairs ij € F and optimizing the likelihood
function when fixing the values of all canonical parameters associated with
variables other than the given pair, namely

W7 i= (v € VAL G, J77 = (Juwsu,v € VA {i )

Dually, this corresponds to fitting the mean value parameters associated
with 4, j to their empirically observed values, i.e.

Wi = Zi, Wy =I5, Zij = Mz‘j-

If the MLE exists, then this algorithm is known to converge to the MLE
(see [26], page 82). We next extend this algorithm to MTP5 Ising models.

Let e;; denote the empirical distribution of (X;, X;). Note that this dis-
tribution depends on the sufficient statistics through the formula

eij(1,1) = (1 + 2 + ; + M;j)/4, eij(1,—1) = (1 +2; — 2 — Mi;)/4,
eij(—l, 1) = (1 — T + i’j — sz)/4, eij(—l, —1) = (1 — T — IZ‘]' + M”)/4

We now assume that e;;j(1,—1) > 0 and e;;(—1,1) > 0 for all ij € E,
which ensures that —1 < Z; < 1 for all i € V and that the MLE has full
support; see Theorem 4.11. By Corollary 3.7 and the following paragraph,
for edges where S;; = M;; — z;Z; < 0, it holds that J;; = 0. For the other
edges it holds that

eij(1,1) > 1+2;+2j+2;%5)/4 = (1+Z;)(1+7;)/4 > 0

and, similarly, e;;(—1,—-1) > (1 — 2;)(1 — z;) > 0.

The IPS algorithm is initialized in any point inside the model such as
the uniform distribution or the distribution where all variables are mutually
independent with mean 4 = Z. The update for the edge ij € E can be
expressed as

eij(Ti, Tj)

(5.4) p(x) « p(z) P

= p(x—ij | s, zj)eij (i, x5) = p()qij (i, ).
Using (5.2) we easily verify that J;; is the only entry of J affected by this
update. Exploiting that ¢;;(x;, ;) > 0, we can define

1o gi(1,1)gi (-1, —1)

9.5 Az = —1lo .
(5:5) = g8 ey (L)
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Using a mixed parametrization (see [7]) with (1, 15, J;j) and canonical para-
meters for all other indices, the update step can equivalently be expressed as

Jij = Jij + Dij, pi = i, py I,

where all other entries of (h,J) remain unchanged.

To ensure the MTPy constraint, it is natural to replace J;; with zero if
the update becomes negative and then recalculate (h;, hj) to comply with
the requirement (u;, it5) = (%4, T;)-

Alternatively we can express the update in terms of mean value parame-
ters by letting éij < M;; + A*. To compute A\* define e]; = e;;(\*) by

e (1L1) = (143 +2;+Z5)/4 = ei(1,1) + A\*/4,
e;;(1,=1) = (1+z; —&; —5)/4 = ey(1,—1) — A" /4,
eii(—1,1) (1 —Zi+7; — Eiy)/4 = eij(=1,1) = A"/4,

62}‘(—1,—1) = (1 X; i‘j—l—E”)/ll = eij(—l,—l)—l-)\*/él,

and define ¢;; = e7; /pij- Then A* is given by the solution to the equation

where (L 1) (—1, 1)
1 (1, (-1, —
AU()‘*) = flog qz*] qz] - .
4 qij(la _1)%]‘(_1’ 1)
Note that A;;(A) is strictly increasing in A, A;;(0) < —J;;, and Aj;(A) — oo
for A — min(e;;(1,—1),e;;(—1,1)). Hence there is a unique solution A* with
A* > 0. Letting x = A\/4, then (5.6) becomes

o (eij(1,1) +z)(e; (=1, -1 +2)\ _ _ o pij (1, Dpi (=1, -1)\
o8 <<eij<—1,1> = e, 1) ) = e <pij<—1,1>pij<1,—1>> o
or equivalently,
(eij(1, 1) +a)(eij (=1, -1 +2) _ pij(1, Dpii(=1,-1) = 4,
(eij(—=1,1) —z)(e;;(1, —1) —z)  pi(—=1,1)p;;(1, 1) '

Denoting the right-hand side of the above equation by R, multiplying both
sides by (e;;(—1,1) — z)(e;;(1,—1) — x), and moving everything to the left,
we obtain a quadratic equation az? +bx + ¢ =0 witha =1 — R,

b=re;(1,1)+e;(—1, 1)+ R(e;j(—1, 1)+ eij(l, —-1)),
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Algorithm 1 IPS-type algorithm for computing the MLE in MTP» Ising
models.

input: Sample moments @’ M), a graph G = (V, E), and precision e.
output: The MLE (p, G, i, E).

initialize u = 7 p(e) = 27V T,y (1 - (—1)™ ) for all € X; =1
initialize E* = {uv € E | Myy > TuZ0 }; E=0;

repeat
for ij € ET do
calculate A;; by (5.5);
calculate J;; by (5.2);
if Aij + Jij > 0 then
update p by (5.4);
E « EuU{ij};
else
solve A”(A) = —Jij;
update p by (5.7);
E « E\{ij};
end if
end for
calculate (u, Z) from p;
until max,ev |fiv —Zo| <€ and E>M and max,, .z |[Zuww — Mu| < €
return p, G = (v, E‘), W, =.

Cc= eij(l, 1)6@'(-1, —1) - R(eij(—l, 1)61']'(17 —1)).
Hence the solution \* = 4x* is given by taking x* to be the positive root of

this quadratic equation. Using A\* we can then update p(x) as follows:

(5.7) p(z) p@;)m

The full procedure is presented in Algorithm 1. In the following theorem we
show that this procedure indeed converges to the MLE (if it exists).

THEOREM 5.2. If the MLE for the MTPy Ising model on the undirected
graph G = (V, E) exists, then the output of Algorithm 1 converges to the
MLE for e — 0.

PROOF. Let (h,J) denote the canonical parameters of the exponential
family. Then the log-likelihood function satisfies

1
~—log L(h,J) =logc(h, J) — hTz — tr(JM)/2,
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where c¢(h, J) is the normalizing constant of the exponential family. We fix
a value (h°, J°) with J2, > 0 and consider the following restricted convex
optimization problem:

mi&i%ize loge(h, J) — hTz — tr(JM)/2

subject to  J;; >0, hy = R u e V\{i,j}, Juw = JO, for uv # ij.
Exploiting that most entries of (h,J) are fixed, this problem is equivalent to

i 1 h,J) — hiTi — hiT: — J;; My
minimize ogc(h, J) — hit; — hjz; — Jij My

subject to J;; > 0,

where the fixed values h,, = b0, u € V\{i, 5} and J,,, = J2, for uv # ij enter
into the function log ¢(h, J). Since also this subfamily is a convex exponential
family, the solution to this optimization problem is uniquely determined by:

(i) Primal feasibility: J;; > 0
(ii) Dual feasibility: f; = Z;, fi; = ;, and éij > M,
(iii) Complementary slackness: (Z;; — M;;)J;; = 0.
Thus, if J?j + Aj; > 0 we update as in (5.4). Else we update as in (5.7).
Note that every step of the algorithm maximizes the likelihood over a
section. In addition, any fixed point of the algorithm satisfies the conditions
in Corollary 3.7 and hence must be equal to the unique MLE. Furthermore,
the updates depend continuously on p. Hence the algorithm is an instance of
iterative partial maximization as described in [26, page 230] and is therefore
convergent with the unique MLE as limit. O

We note a computational issue with Algorithm 1. As stated above, the
algorithm requires visiting all possible states x € X', which becomes compu-
tationally prohibitive for large d as the computational effort is then exponen-
tial in d. This problem can be overcome by an appropriate use of probability
propagation as in [21]. More precisely, instead of representing p by its values
p(x),z € X, we represent p by a set of potentials 1;5,ij € E, such that

p(x) o H i (x4, 25) = H exp(zixjJij).
ijeE ijer

Whenever a marginal p(z,,x,) is required for the update, it is calculated
from J by probability propagation as e.g. described in [15]. Then instead
of updating p itself, the update (5.4) or (5.7) is performed by updating J
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only. This reduces the computational effort to become linear in the maximal
clique size of G rather than d.

Finally, note that since the algorithm runs entirely in terms of probabil-
ities p(z), a simple modification of the algorithm as in [24, 26] guarantees
convergence even when the MLE does not exist within the exponential fam-
ily. We refrain from providing the details of this modification.

ExaMPLE 5.3. Consider again the data in Example 4.7. On this data,
Algorithm 1 converges in one step and the maximum likelihood distribution
is given by a rational function of the data. The corresponding MLEs are

1 05 025 0.125 0100
¢ _ |05 1 05 02 G _log(3) |1 010
025 05 1 05 |’ 2 0101
0.125 025 05 1 0010

This is a very special example, where the following three MLEs all coincide:

1. MLE computed under MTP5 for general binary distributions.
2. MLE computed for the MTP5 Ising model over the complete graph.
3. MLE computed for the Ising model over the chain graph in Figure 1.

The equivalence of (2) and (3) follows from Corollary 3.10 whereas (1) and
(2) are usually not equivalent. O

5.3. Totally positive Ising models with no external field. A special exam-
ple of a symmetric binary distribution is the Ising model with no external
field, that is, a family of binary distributions over X = {—1,1}% of the form

(5.8) p(x) =

c(J)

This was termed the palindromic Ising model in [28]. The space of canonical
parameters is the set Sg of all symmetric dxd matrices with 0 in the diagonal.
The mean parameter is ¥ = Z = EX X’ which is the correlation matrix
because X;; = IEXE = 1 and EX; = 0. By Proposition 3.6, the quadratic
exponential family is MTP; if and only if J;; > 0 for all ¢ # j. In [28] these
models have been studied as a close proxy to the Gaussian distribution since
(5.8) becomes almost identical to the Gaussian density by letting J = — K
in this expression.

As a consequence of Proposition 4.15, we note that Algorithm 1 also
converges for palindromic Ising models by working with the symmetrized

exp (xTJ$/2) .
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sample U + U?. However, the algorithm can be simplified using

61']'(1, 1) = eij(—l, —1) = (1 + Mlj)/ll
eij(1,—1) eij(=1,1) = (1 — My;)/4.

In addition,

~ . 1 pw(—l,l)(l—f-MZ]—f—)\)
(5.9 ol = g 18— My~ )

can be used to determine A to ensure the MTP; property is preserved under
the update. We refrain from giving the full details of the simplified steps in
this algorithm.

6. Application to psychological disorders. In this section, we il-
lustrate the developed methods via a real data case study. We analyze data
obtained from the National Comorbidity Survey Replication study [2, 23]
(NCS-R data), which was also analyzed in [12]. The data consists of 9282
observations of 18 binary variables, namely depr (Depressed mood), inte
(Loss of interest), weig (Weight problems), mSle (Sleep problems), moto
(Psychomotor disturbances), mFat (Fatigue), repr (Self reproach), mCon
(Concentration problems), suic (Suicidal ideation), anxi (Chronic anxi-
ety /worry), even (Anxiety > 1 event), ctrl (No control over anxiety), edge
(Feeling on edge), gFat (Fatigue), irri (Irritable), gCon (Concentration
problems), musc (Muscle tension), gSle (Sleep problems). These variables
are symptoms related to two disorders, namely major depression (MD) and
generalized anxiety disorder (GAD). The symptoms that are known to ap-
pear in both disorders are sleep problems, fatigue, and concentration prob-
lems. These so-called bridge variables appear in pairs mSle, gSle, mFat, gFat
and mCon, gCon.

The contingency table resulting from this dataset is very sparse with only
872 out of 65536 elementary events observed; 5667 out of 9282 respondents
recorded none of the listed symptoms. All variables are positively correlated
in the sample. Although the sample distribution is not MTP,, assuming to-
tal positivity is justified in this application, since the symptoms are likely to
appear jointly. The sample does not satisfy the conditions of Theorem 4.5,
because the variables anxi and even are perfectly correlated with each other
and with seven other variables in the sample distribution. For the analysis,
we therefore removed these two problematic variables and ran Algorithm 1
on the remaining contingency table of size 2'¢. We used a convergence crite-
rion of € = 10™%. The algorithm converged after 28 iterations through all 120
variable pairs which in our current rough implementation took 37 minutes
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Fic 2. (left) Sample correlation network for the NCS-R data, (right) the corresponding
network of J.

on a laptop. We note that using the algorithm and software developed in [9]
fitting the unconstrained MTPs model failed due to space limitations.

Figure 2 shows the network corresponding to the sample correlation ma-
trix (left) and the MLE .J (right). The magnitude of an entry 4j in the matrix
is represented by the thickness of the corresponding edge. The sample cor-
relation network including the two nodes anxi and even is also shown in
Figure 2b of [12]. The sparsity of the MLE J as compared to the sample
correlation matrix is striking; it contains 72 edges as compared to 120 edges
in the complete graph on 16 vertices. In addition, the graphical model given
by J cleanly separates into two blocks with the upper block prominently
containing a star graph with center depr. This resembles Figure 4 in [12],
where this subgraph is called a causal skeleton of the covariance graph and
was obtained based on rankings by 12 clinicians. Moreover, we note that the
bottom block, while less prominently, also contains a star graph centered at
the variable edge. Finally, note that the three most significant edges across
the two blocks are between pairs of bridge variables. This analysis shows
that Algorithm 1 resulted in an interpretable sparse graphical model with a
network that seems relevant for the application.

The graphical model learned by Algorithm 1 fits reasonably well: The
value of the log-likelihood function at the MLE is -28,767.3, while the value
of the log-likelihood function of the unrestricted Ising model (fitted using the
loglin function in R) is -28,682.45. This results in a likelihood ratio statistic
of 169.7 which appears high compared to a x? distribution with 120 — 72 =
48 degrees of freedom. However, the exact and asymptotic distributions of
this statistic are unknown; the asymptotic distribution is a mixture of y2-
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distributions with different degrees of freedom, but with unknown weights.
We also calculated the split-likelihood ratio test statistic as described in
[35] and this resulted in a test statistic of U, = 1.8 x 107°® which does not
reject the MTP9 hypothesis for any level «v as it should be compared to 1/a.
Hence it appears that the MTP+ analysis of this dataset is appropriate.
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