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Predictive simulations of complex systems are essential for applications ranging from weather
forecasting to drug design. The veracity of these predictions hinges on their capacity to capture the
effective system dynamics. Massively parallel simulations predict the system dynamics by resolving
all spatiotemporal scales, often at a cost that prevents experimentation while their findings may
not allow for generalisation. On the other hand reduced order models are fast but limited by the
frequently adopted linearization of the system dynamics and/or the utilization of heuristic closures.
Here we present a novel systematic framework that bridges large scale simulations and reduced order
models to Learn the Effective Dynamics (LED) of diverse complex systems. The framework forms
algorithmic alloys between non-linear machine learning algorithms and the Equation-Free approach
for modeling complex systems. LED deploys autoencoders to formulate a mapping between fine and
coarse-grained representations and evolves the latent space dynamics using recurrent neural networks.
The algorithm is validated on benchmark problems and we find that it outperforms state of the art
reduced order models in terms of predictability and large scale simulations in terms of cost. LED
is applicable to systems ranging from chemistry to fluid mechanics and reduces the computational
effort by up to two orders of magnitude while maintaining the prediction accuracy of the full system
dynamics. We argue that LED provides a novel potent modality for the accurate prediction of
complex systems.
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Some of the most important scientific advances and engineering designs are founded on the study of complex
systems that exhibit dynamics spanning multiple spatiotemporal scales. Examples include protein dynamics [1],
morphogenesis [2], brain dynamics [3], climate [4], ocean dynamics [5] and social systems [6]. Over the last fifty
years, simulations have become a key component of these studies thanks to a confluence of advances in computing
architectures, numerical methods and software. Large scale simulations have led to unprecedented insight, acting
as in-silico microscopes [7] or telescopes to reveal the dynamics of galaxy formations [8]. At the same time these
simulations have led to the understanding that resolving the full range of spatio-temporal scales in such complex
systems will remain out of reach in the foreseeable future.

In recent years there have been intense efforts to develop efficient simulations that exploit the multiscale character
of the systems under investigation [9-12]. Multiscale methods rely on judicious approximations of the interactions
between processes occurring over different scales and a number of potent frameworks have been proposed including
the Equation-Free framework (EFF) [10, 12-14], the Heterogeneous Multiscale Method (HMM) [11, 15, 16], and the
FLow AVeraged integatoR (FLAVOR) [17]. In these algorithms the system dynamics are distinguished into fine and
coarse scales or expensive and affordable simulations, respectively. Their success depends on the separation of scales
that are inherent to the system dynamics and their capability to capture the transfer of information between scales.
Effective applications of multiscale methodologies minimize the computational effort while maximizing the accuracy of
the propagated dynamics. The EFF relies on few fine scale simulations that are used to acquire, through “restricting”,
information about the evolution of the coarse-grained quantities of interest. In turn various time stepping procedures
are used to propagate the coarse-grained dynamics. The fine scale dynamics are obtained by judiciously “lifting” the
coarse scales to return to the fine scale description of the system and repeat. When the EFF reproduces trajectories of
the original system, the identified low order dynamics represent the intrinsic system dynamics, also called effective
dynamics, inertial manifold [18, 19] or reaction coordinates in molecular kinetics.

While it is undisputed that the EFF, HMM, FLAVOR and related frameworks have revolutionized the field of
multiscale modeling and simulation, we identify two critical issues that presently limit their potential. First, the
accuracy of propagating the coarse-grained/latent dynamics hinges on the employed time integrators. Second, the
choice of information transfer, in particular from coarse to fine scale dynamics in ‘lifting’, greatly affects the forecasting
capacity of the methods.
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In the present work these two critical issues are resolved through machine learning (ML) algorithms that (i) deploy
recurrent neural networks (RNNs) with gating mechanisms to evolve the coarse-grained dynamics and (ii) employ
advanced (convolutional, or probabilistic) autoencoders (AE) to transfer in a systematic, data driven manner, the
information between coarse and fine scale descriptions.

Over the last years, ML algorithms have exploited the ample availability of data, and powerful computing architectures,
to provide us with remarkable successes across scientific disciplines [20, 21]. The particular elements of our algorithms
have been employed in the modeling of dynamical systems. Autoencoders (AEs) have been used to identify a linear
latent space based on the Koopman framework [22], model high-dimensional fluid flows [23, 24] or sample effectively the
state space in the kinetics of proteins [25]. More recently AEs have been coupled with dynamic importance sampling [26]
to accelerate multiscale simulations and investigate the interactions of RAS proteins with a plasma membrane. RNNs
with gating mechanisms have been shown successful in a wide range of applications, from speech processing [27] to
complex systems [28], but their effectiveness in a multiscale setting has yet to be investigated. AEs coupled with
RNNs are used in [29-31] to model fluid flows. In [32], the authors build on the EFF framework, identify a PDE on a
coarse representation by diffusion maps, Gaussian processes or neural networks, and utilize forward integration in
the coarse representation. These previous works, however, fail to employ one or more of the following mechanisms
in contrast to our framework: consider the coarse scale dynamics [23, 24], account their non-Markovian [26, 32] or
non-linear nature [22], exploit a probabilistic generative mapping [23, 29-31] from the coarse to the fine scale, learn
simultaneously the latent space and its dynamics in an end-to-end fashion and not sequentially [22, 23, 26, 29-32],
alternate between micro and macro dynamics [22, 23, 20-32], and scale to high-dimensional systems [29, 30, 32].

Augmenting multiscale frameworks (including EFF, HMM, FLAVOR) with state of the art ML algorithms allows
for evolving the coarse scale dynamics by taking into account their time history and by providing consistent lifting
(decoding) and restriction (encoding) operators to transfer information between fine and coarse scales. We demonstrate
that the proposed framework allows for simulations of complex multiscale systems that reduce the computational cost
by orders of magnitude, to capture spatiotemporal scales that would be impossible to resolve with existing computing
resources.

I. LEARNING THE EFFECTIVE DYNAMICS (LED)

We propose a framework for learning the effective dynamics (LED) of complex systems, that allows for accurate
prediction of the system evolution at a significant reduced computational cost.

In the following, the high-dimensional state of a dynamical system is given by s, € R%, and the discrete time
dynamics are given by

St+At = F(St)7

where At is the sampling period and F' may be non-linear, deterministic or stochastic. We assume that the state of
the system at time ¢ can be described by a vector z; € Z, where Z C R% is a low dimension manifold with d, < d,.
In order to identify this manifold, an encoder £¥¢ : R% — R% is utilized, where wg are trainable parameters,
transforming the high-dimensional state s; to z; = £¥(s;). In turn, a decoder maps back this latent representation
to the high-dimensional state, i.e. §; = D¥P(z;).

For deterministic systems, the optimal parameters {w}, ws} are identified by minimizing the mean squared
reconstruction error (MSE),

2 2
wg, wp = argmin (st - .'s't) = argmin (st — pwr (8"’5 (st))) )
we, WD we,Wp
Convolutional neural network [33] autoencoders (CNN-AE) that take advantage of the spatial structure of the data
are embedded into LED.

For stochastic systems, D¥? is modeled with a Mixture Density (MD) decoder [34]. Further details on the
implementation of the MD decoder are provided in the SI, Section 1E, along with other components embedded in LED
like AEs in SI, Section 1A, Variational AEs in SI, Section 1B, CNNs in SI, Section 1C.

We demonstrate the modularity of LED, as it can be coupled with a permutation invariant layer (see details in the
SI, Section 1D), and utilized later in the modeling of the dynamics of a large set of particles governed by the advection
diffusion equation (see details in the SI, Section 3A).

As a non-linear propagator in the low order manifold (coarse scale), an RNN is employed, capturing non-Markovian,
memory effects by keeping an internal memory state.

The RNN is learning a forecasting rule

he =H"" (2, hi—nt), Zpar = RY% (hy),



where h, € R ig an internal hidden memorv state. Z,. A+ is a latent state prediction. H¥* and R¥®R are the
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FIG. 1: Multiscale-LED: Starting from an initial condition use the equations/first principles to evolve the
high-dimensional dynamics for a short period Ty,qrm. During this warm-up period, the state s; is passed through the
encoder network. The outputs of the autoencoder are iteratively provided as inputs to the RNN, to warm-up its
hidden state. Next, iteratively, (1) starting from the last latent state z; the RNN propagates the latent dynamics for
T > Twarm, (2) lift the latent dynamics at t = Tyyarm + T back to the high-dimensional state, (3) starting from
this high-dimensional state as an initial condition, use the equations/first principles to evolve the dynamics for
T, < Ty

The role of the RNN is twofold. First, it is updating its hidden memory state h;, given the current state provided at
the input z; and the hidden memory state at the previous time-step h;_a;, tracking the history of the low order state
to model non-Markovian dynamics. Second, given the updated hidden state h; the RNN forecasts the latent state at
the next time-step(s) Z¢ya;. The RNN is trained to minimize the forecasting loss ||Z;1a¢ — ¢+ a¢||3 by backpropagation
through time [36].

The LSTM and the AE, jointly referred to as LED, are trained on data from simulations of the fully resolved (or
microscale) dynamical system. The two networks can either be trained sequentially, or together. In the first case,
the AE is pretrained to minimize the reconstruction loss, and then the LSTM is trained to minimize the prediction
loss on the latent space (AE-LSTM). In the second case, they are seen as one network trying to minimize the sum of
reconstruction and prediction losses (AE-LSTM-end2end). For large, high-dimensional systems, the later approach of
end-to-end training is computationally expensive. After training, LED is employed to forecast the dynamics on unseen
data, by propagating the low order latent state with the RNN and avoiding the computationally expensive simulation
of high-dimensional dynamics. We refer to this mode of propagation, iteratively propagating only the latent/macro
dynamics, as Latent-LED. We note that, as non-Markovian models are not self-starting, an initial small warm-up
period is required, feeding the LED with data from the micro dynamics.

The LED framework allows for data driven information transfer between coarse and fine scales through the AE.
Moreover it propagates the latent space dynamics without the need to upscale back to the high-dimensional state
space at every time-step. As is the case for any approximate iterative integrator (here the RNN), the initial model
errors will propagate. In order to mitigate potential instabilities, inspired by the Equation-Free [10], we propose the
multiscale forecasting scheme in Figure 1, alternating between micro dynamics for 7}, and macro dynamics for 7;,,. In
this way, the approximation error can be reduced at the cost of the computational complexity associated with evolving
the high-dimensional dynamics. We refer to this mode of propagation as Multiscale-LED, and the ratio p = T, /T),
as multiscale ratio. In Multiscale-LED, the interface with the high-dimensional state space is enabled only at the
time-steps and scales of interest. This is in contrast to [37, 38], and is easily adaptable to the needs of particular
applications thus augmenting the arsenal of models developed for multiscale problems.

Training of LED models is performed with the Adam stochastic optimization method [39], and validation based early



stopping is employed to avoid overfitting. All LED models are implemented in Pytorch, mapped to a single Nvidia
Tesla P100 GPU and executed on the XC50 compute nodes of the Piz Daint supercomputer at the Swiss national
supercomputing centre (CSCS).

II. RESULTS

We demonstrate the application of LED in a number of benchmark problems and compare its performance with
existing state of the art algorithms. In the SI Section 3D, we provide additional results on LED applied on alanine
dipeptide in water. The stochastic dynamics of the molecular system are handled with an MD decoder, and an
MD-LSTM in the latent space [40].

A. FitzHugh-Nagumo Model (FHN)

LED is employed to capture the dynamics of the FitzHugh-Nagumo equations (FHN) [41,442}. The FHN model
describes the evolution of an activator u(z,t) = p®(z,¢) and an inhibitor density v(z,t) = p"*(z,t) on the domain
z €10, L):
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The system evolves periodically under two timescales, with the activator/inhibitor density acting as the “fast” /“slow’
variable respectively. The bifurcation parameter ¢ = 0.006 controls the difference in the time-scales. We choose D% =1,
DY =4, L =20, qp =—0.03 and a; = 2.

Equation (1) is discretized with N = 101 grid points and solved using the Lattice Boltzmann (LB) method [43],
with time-step d; = 0.005. To facilitate comparison with [32], we employ the LB method to gather data starting from
6 different initial conditions to obtain the mesoscopic solution considered here as the fine-grained solution. The data is
sub-sampled, keeping every 200" data point, i.e. the coarse time step is At = 1. Three time series with 451 points
are considered for training, two time series with 451 points for validation, and 10 data points from a different initial
condition for testing. For the identification of the latent space, we compare principal component analysis (PCA),
diffusion maps, feed-forward AE, and CNN-AE, in terms of the mean squared error (MSE) of the reconstruction in the
test data, plotted in Figure 2 A. The MSE is plateauing after d, = 2, and the AE and CNN-AE exhibit at least an
order of magnitude lower MSR compared to PCA and DiffMaps. For this reason, we employ an AE with d, = 2 for
the LED. The hyper-parameters of the networks (reported in the SI, Table 3 along with training times) are tuned
based on the MSE on the validation data. The architecture of the CNN is reported in Table 5, and depicted in Figure
10 of the SI.

In Figure 2 B, we compare various propagators in forecasting of the macro (latent dynamics), starting from 32
different initial conditions in the test data, up to a horizon of T = 8000. We benchmark an AE-LSTM trained
end-to-end (AE-LSTM-end2end), an AE-LSTM where the AE is pretrained (AE-LSTM), a multi-layered perceptron
(AE-MLP), Reservoir Computers (AE-RC) [28, 44], and the SINDy algorithm (AE-SINDy) [45]. As a comparison
metric, we consider the mean normalised absolute difference (MNAD), averaged over the 32 initial conditions. The
definition of the MINAD is provided in SI, Section 2. The MNAD is computed on the inhibitor density, as the difference
between the result of the LB simulation v(x,t), considered as groundtruth, and the model forecasts ¢. The warm-up
period for all propagators is set to Tyarm = 60. The hyper-parameters of the networks (reported in Tables 4, 6, and 7
of the SI, along with the training times) are tuned based on the MNAD on the validation data. The LSTM-end2end
and the RC show the lowest test error, while the variance of the RC is larger. In the following, we consider an
LSTM-end2end propagator for the LED.

LED is benchmarked against EFF variants [32] in the FHN equation in Figure 2 C. As a metric for the accuracy,
the MNAD is considered, consistent with [32] to facilitate comparison. The EFF variants [32] are based on the
identification of PDEs on the coarse level (CSPDE). LED is compared with CSPDEs in forecasting the dynamics of
the FHN equation starting from an initial condition from the test data up to final time T = 451. CSPDE variants
are utilizing Gaussian processes (GP) or neural networks (NN), features of the fine scale dynamics obtained through
diffusion maps (F1 to F3) and forward integration to propagate the coarse representation in time. LED outperforms
CSPDE variants by an order of magnitude. In Figure 2 F, the latent space of LED is plotted against the attractor of
the data embedded in the latent space. Even for long time horizons (here Ty = 8000), the LED forecasts stay on the
periodic attractor.
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B. Kuramoto-Sivashinsky

The Kuramoto-Sivashinsky (KS) [46, 47] is a prototypiczﬁ ]partial differential equation (PDE) of fourth order that

exhibits a very rich range of non-linear phenomena. In case of high dissipation and small spatial extent L (domain
size), the long-term dynamics of KS can be represented on a low dimensional inertial manifold [18, 19], that attracts
all neighboring states at an exponential rate after a transient period. LED is employed to learn the low order manifold
of the effective dynamics in KS.

The one dimensional K-S equation is given by the PDE
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on the domain = [0, L] with periodic boundary conditions u(0,t) = u(L,t) and v = 1. The special case L = 22
considered in this work, is studied extensively in [48], and exhibits a structurally stable chaotic attractor, i.e. an



inertial manifold where the long-term dynamics lie. Equation (2) is discretized with a grid of size 64 points, and solved
using the fourth-order method for stiff PDEs introduced in [49] with a time-step of §t = 2.5 - 1072 starting from a
random initial condition. The data are subsampled to At = 0.25 (coarse time-step of LED). 15 - 10® samples are used
for training and another 15 - 10® for validation. For testing purposes, the process is repeated with a different random
seed, generating another 15 - 10> samples.
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Due to chaoticity of the KS equation, iterative forecasting witly ED is challenging, as initial errors propagate
exponentially. In order to assess whether the iterative forecasting with LED leads to reasonable, physical predictions,
we plot the density of values in the u, — u;, space in Figure 3 C. The data come from a single long trajectory of size
Ty = 8000 (32000 time-steps). We observe that LED, Figure 3 D, is able to qualitatively reproduce the density of the

simulation.

In Figure 3 E and F we plot the MNAD, and correlation between forecasts of LED and the reference with respect to
the multiscale ratio p. In Figure 3 G the speed-up of LED is plotted against p. Latent-LED is able to reproduce the
long-term “climate dynamics” [28], and remain at the attractor, while being more than two orders of magnitude faster



compared to the micro solver. As p is increased, the error is reduced (correlation increased), at the cost of reduced
speed-up.

Finally, in Figure 3 H, we compare the performance of Latent-LED (CNN-LSTM) with previous studies [28, 44], that
forecast directly on the high-dimensional space. Specifically, the Latent-LED matches the performance of an LSTM
(no dimensionality reduction), but shows inferior short-term forecasting ability compared to an RC (no dimensionality
reduction) forecasting on the high-dimensional space. This is expected as the RC and the LSTM have full information
of the state. In turn, when the RC is employed on the latent space of LED as a macro-dynamics propagator, the error
grows significantly and the performance is inferior to the CNN-LSTM case.

A forecast of Latent-LED is provided in the SI, Figure 11.

C. Viscous Flow Behind a Cylinder

The flow behind a cylinder is a widely studied problem in fluids [50], that exhibits a rich range of dynamical
phenomena like the transition from laminar to turbulent flow in high Reynolds numbers, and is used as a benchmark
for reduced order modeling (ROM) approaches. The flow behind a cylinder in the two dimensional space is simulated
by solving the incompressible Navier-Stokes equations with Brinkman penalization to enforce the no-slip boundary
conditions on the surface of the cylinder [51, 52]. More details on the simulation are provided in the ST Section 3D. We
consider the application of LED to two Reynolds’ numbers Re € {100,1000}. The definition of Re is provided in the
SI Equation (24).

The flow is simulated in a cluster with 12 CPU Cores, up to 1" = 200, after discarding initial transient. 250 time-steps
distanced At = 0.2 in time (total time T' = 50) are used for training, 250 for validation, and the rest for testing
purposes. The vortex sheeding period is T =~ 2.86 for Re = 100, and T = 2.22 for Re = 1000.

The state of LED is s; = {p, uy, uy,w} € R¥*512x1024 " where w is the vorticity field. For the autoencoding part,
LED employs CNNs that take advantage of the spatial correlations. The architecture of the CNN is given in Table
14 and depicted in Figure 13 in the SI. The dimension of the latent space is tuned based on the performance on the
validation dataset to d, = 4 for Re = 100 and d, = 10 for Re = 1000.

The LSTM propagator of LED is benchmarked against SINDy and RC in predicting the dynamics, starting from
10 initial conditions randomly sampled from the test data for a prediction horizon of T'= 20 (100 time-steps). The
hyper-parameters (reported on SI Tables 15, 16, 17, along with the training times) are tuned based on the MNAD on
the validation data. The logarithm of the MNAD is given in Figure 5 A for Re = 100 and E for Re = 1000. For the
Re = 100 case, the LSTM exhibits lower MNAD and lower variance compared to RC and SINDy. For the challenging
Re = 1000 scenario, LSTM and RC exhibit lower MNAD compared to SINDy, with the LSTM being more robust
(lower variance).

A prediction of the vorticity w by Latent-LED at lead time 7" = 4 is given in Figure 4. LED captures the flow for
both Re € {100,1000}. The error concentrates mostly around the cylinder, rendering the accurate prediction of the
drag coefficient challenging. In Figure 4 D and H, the latent space of Latent-LED is compared with the transformation
of the data to the latent space. The predictions stay close to the attractor even for very large horizon (7' = 20). The
Strouhal number St (defined in the ST Equation (23)) describes the periodic vortex shedding at the wake of the cylinder.
By estimating the dominant frequency of the latent state using a Fourier analysis, we find that LED reproduces exactly
the St of the system dynamics for both Re € {100, 1000} cases.

In the Re = 100 case, Latent-LED recovers a periodic non-linear mode in the latent space, and can forecast the
dynamics accurately, as illustrated in Figure 4. In this case, approaches based on the Galerkin method or dynamic
mode decomposition (DMD), construct ROM with six to eight degrees of freedom [53] that capture the most energetic
spatiotemporal modes. In contrast, the latent space of LED in the Re = 100 case has a dimensionality of d, = 4. In
the challenging Re = 1000 scenario, LED with d, = 10 can capture accurately the characteristic vortex street, and
long-term dynamics. We note that, to the best of our knowledge, ROMs for flows past a cylinder have been so far
limited to laminar periodic flows in the order of Re = 100 while this study advances the state of the art by one order
of magnitude.

Starting from 4 initial conditions randomly sampled from the test data, six LED variants ( Latent-LED, Multiscale-
LED with T, = 0.4,T,, € {0.4,0.8,1.2,2,4} for Re = 100, and Latent-LED, Multiscale-LED with T,, = 1.6,T,,, €
{0.8,1.6,3.2,6.4,12.8} for Re = 1000 ) are tested on predicting the dynamics of the flow up to Ty = 20, after Tyyarm = 2.
The MNAD is plotted in Figure 5 B for Re = 100, and F for Re = 1000. The speed-up is plotted in Figure 5 D
for Re = 100, and H for Re = 1000. The Latent-LED is two orders of magnitude faster than the flow solver, while
exhibiting MNAD errors of 0.02 and 0.04 for Re = 100, and Re = 1000 respectively. By alternating between macro
and micro, the error is reduced, at the cost of decreased speed-up.

In Figure 5 C and G, the relative error on the drag coefficient Cy; (defined in SI, Equation (28)) is plotted as a
function of the multiscale ratio p. Latent-LED exhibits a relative error of 0.04 that is reduced to approximately 0.02
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III. DISCUSSION

¢ |dynamics (LED) and accelerate the simulations of
5. Our work relies on augmenting the Equation-Free

We have presented a novel framework for
multiscale (stochastic or deterministic{): pH
formalism with state of the art ML methods

The LED framework is tested on a number bmark propems. In systems where evolving the high-dimensional
state dynamics is computationally e lprales the simulation by propagating on the latent space
and upscaling to the high-dimensio )ﬁ Tt itistic, generative mixture density, or deterministic
convolutional, decoder. This comes at the cost of tr ?(S a process that is performed once, offline. The
trained model can be used to forecast the dynamics ta g fr y arbitrary initial condition.

The efficiency of LED was evaluated in forecasting the FitzHugh-Nagumo equation dynamics achieving an order of
magnitude lower approximation error compared to othegiquation—Free approaches while being two orders of magnitude
faster than the Lattice Boltzmann solver. We demonstrated that the proposed framework identifies the effective
dynamics of the Kuramoto-Sivashinsky equation with L = 22, capturing the long-term behavior (“climate dynamics”),
achieving a speed-up of S =~ 100. Furthermore, LED captures accurately the long-term dynamics of a flow behind a
cylinder in Re = 100 and Re = 1000, while being two orders of magnitude faster than a flow solver. In the SI, we
demonstrate that LED can unravel and forecast the stochastic collective dynamics of 1000 particles following Brownian
motion subject to advection and diffusion in the three dimensional space (SI, Section 3A). In our recent work [40]
(briefly described in SI, Section 3E), we show that LED can be applied to learn the stochastic dynamics of molecular
systems. We note that the present method is readily applicable to all problems where Equation-Free, HMM, and
FLAVOR methodologies have been applied.

In summary, LED identifies and propagates the effective dynamics of dynamical systems with multiple spatiotemporal
scales providing significant computational savings. Moreover, LED provides a systematic way of trading between
speed-up and accuracy for a multiscale system by switching between propagation of the latent dynamics, and evolution
of the original equations, iteratively correcting the statistical error at the cost of reduced speed-up.

The LED does not presently contain any mechanism to decide when to upscale the latent space dynamics. This is an
active area of investigations. We do not expect LED to generalize to dynamical regions drastically different from those
represented in the training data. Further research efforts will address this issue by adapting the training procedure.



A T, =2 B 1,-041=2 C 1n=0am=20 D 1,=041=2
o 0.0225 T I <004 =z
: 2 0.0200 x I = = E
%—Z.O(l :l: é ?(‘) 003 _ - \fi
= 225 0.0175 I k2 S E
= - = —~
1 2 3 5 10 Latent 1 2 3 5 10 Latent 1 2 3 5 10 Latent
Re ] 100, dz —_ 4 pP= Tm/r['u P = 71771/,1—;1, pP= Tm/T;L
E Ty =2 Foor_167-% G r-1w6m=20 H r1-167-2
\ T - _ 1 —aonl m — | =2 |
_ (
2 —1.4 A
Z Tf = 8000
w—1.6
T 4 0.175 A $# CONN-LSTM-end2end
0.17! I ¢ CNN-LSTM
y| -
0.150 - W CNN-MLP
0.175 0.15( ¢ CNN-RC
1 i AFCSYNDS ] NdDy

Re =100, and E) for Re = 1000. B).TR6 M
and the rdfeldfice data
LED compared to the floy

. = 0.100 A
0.125 = 0100 =
The present methodelogy can®Be deploye

where emly data are gwvailable f BESEh

algorithgli@a]lﬁ)@s bet¥een data driven and fiy

predict@ of compleleultiscale systems.
<

0.050

Z 0.075

= 0.05(

0.025
0.050 0.02!

The authors would like to thank Nikolaos K

r solver w.r.t. p for Re = 100, and H) for Re
8 I

st principles models and opens new hori

ACIﬁ_-OWLEDGMENTS

allikounis (ETH Zurich) for helpful discussion:

method, Pascal Weber and Michalis O ing

NAD-and €) the relative error-on the drag by
nnction of the multiscale ratio p, F), G) the same for Re =

[>
| both in prollems described by first princip
macro or midroscale descriptions of the sys

s 1q

hnolakis (ETH Zurich) for help with the simul

tween predictions by LED
1000. D) The speed-up of
= 1000.

es as well as for problems
tem. LED creates unique
r the accurate and efficient

on the Lattice Boltzmann
htions of the flow behind a

cylinder, afld0¢qnnis Kevigkidis (Johns Hopkins University),Kostas Spiliotis (University of
to reproduce data for the FHN equation—IThe-authors-acknowledgethe-support—of the Swiss National Supercomputing

Centre (CSCS) providing the necessary computational resources under Projects $929.
-

0.000

AUTHOR CONTRIBUTION

ostock), for providing code

P.K. conceived the project; P.R.V., G.A., C.U., and P.K. designed and performed research; P.R.V., and G.A.
contributed new analytic tools; P.R.V., G.A., and P.K. analyzed data; and P.R.V., G.A., and P.K. wrote the paper.

AUTHOR DECLARATION

The authors declare no conflict of interest.



10

DATA AND CODE AVAILABILITY

All code and data for the analysis associated with the current submission will become readily available upon
publication in the following link: https://github.com/pvlachas/LearningEffectiveDynamics.

[1] Rackovsky, S. & Scheraga, H. A. The structure of protein dynamic space. Proceedings of the National Academy of Sciences
117, 19938-19942 (2020).
[2] Gilmour, D., Rembold, M. & Leptin, M. From morphogen to morphogenesis and back. Nature 541, 311-320 (2017).
[3] Robinson, P. A., Rennie, C. J., Rowe, D. L., O’Connor, S. C. & Gordon, E. Multiscale brain modelling. Philosophical
Transactions of the Royal Society B: Biological Sciences 360, 1043-1050 (2005).
[4] Council, N. R. A National Strategy for Advancing Climate Modeling (The National Academies Press, 2012).
[5] Mahadevan, A. The impact of submesoscale physics on primary productivity of plankton. Annual review of marine science
8, 161-184 (2016).
[6] Bellomo, N. & Dogbe, C. On the modeling of traffic and crowds: A survey of models, speculations, and perspectives. SIAM
review 53, 409-463 (2011).
[7] Lee, E. H., Hsin, J., Sotomayor, M., Comellas, G. & Schulten, K. Discovery through the computational microscope.
Structure 17, 1295-1306 (2009).
[8] Springel, V. et al. Simulations of the formation, evolution and clustering of galaxies and quasars. nature 435, 629-636
(2005).
[9] Car, R. & Parrinello, M. Unified approach for molecular dynamics and density-functional theory. Physical review letters 55,
2471 (1985).
[10] Kevrekidis, I. G. et al. Equation-free, coarse-grained multiscale computation: Enabling microscopic simulators to perform
system-level analysis. Communications in Mathematical Sciences 1, 715-762 (2003).
[11] Weinan, E., Engquist, B. et al. The heterognous multiscale methods. Communications in Mathematical Sciences 1, 87132
(2003).
[12] Kevrekidis, I. G., Gear, C. W. & Hummer, G. Equation-free: The computer-aided analysis of complex multiscale systems.
AIChE Journal 50, 1346-1355 (2004).
[13] Laing, C. R., Frewen, T. & Kevrekidis, I. G. Reduced models for binocular rivalry. Journal of computational neuroscience
28, 459-476 (2010).
[14] Bar-Sinai, Y., Hoyer, S., Hickey, J. & Brenner, M. P. Learning data-driven discretizations for partial differential equations.
Proceedings of the National Academy of Sciences 116, 15344-15349 (2019).
[15] Weinan, E., Li, X. & Vanden-Eijnden, E. Some recent progress in multiscale modeling. In Attinger, S. & Koumoutsakos, P.
(eds.) Multiscale Modelling and Simulation, 3-21 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2004).
[16] Weinan, E., Engquist, B., Li, X., Ren, W. & Vanden-Eijnden, E. Heterogeneous multiscale methods: a review. Commaunica-
tions in computational physics 2, 367-450 (2007).
[17] Tao, M., Owhadi, H. & Marsden, J. E. Nonintrusive and structure preserving multiscale integration of stiff odes, sdes, and
hamiltonian systems with hidden slow dynamics via flow averaging. Multiscale Modeling & Simulation 8, 12691324 (2010).
[18] Linot, A. J. & Graham, M. D. Deep learning to discover and predict dynamics on an inertial manifold. Physical Review E
101, 062209 (2020).
[19] Robinson, J. C. Inertial manifolds for the kuramoto-sivashinsky equation. Physics Letters A 184, 190-193 (1994).
[20] Jumper, J. et al. Highly accurate protein structure prediction with alphafold. Nature 596, 583-589 (2021).
[21] Brunton, S. L., Noack, B. R. & Koumoutsakos, P. Machine learning for fluid mechanics. Annual Review of Fluid Mechanics
52 (2019).
[22] Lusch, B., Kutz, J. N. & Brunton, S. L. Deep learning for universal linear embeddings of non-linear dynamics. Nature
communications 9, 1-10 (2018).
[23] Geneva, N. & Zabaras, N. Modeling the dynamics of pde systems with physics-constrained deep auto-regressive networks.
Journal of Computational Physics 403, 109056 (2020).
[24] Milano, M. & Koumoutsakos, P. Neural network modeling for near wall turbulent flow. Journal of Computational Physics
182, 1-26 (2002).
[25] Wehmeyer, C. & Noé, F. Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics. The
Journal of chemical physics 148, 241703 (2018).
[26] Bhatia, H. et al. Machine-learning-based dynamic-importance sampling for adaptive multiscale simulations. Nature Machine
Intelligence 3, 401-409 (2021).
[27] Chung, J. et al. A recurrent latent variable model for sequential data. Advances in neural information processing systems
28, 29802988 (2015).
[28] Vlachas, P. R. et al. Backpropagation algorithms and reservoir computing in recurrent neural networks for the forecasting
of complex spatiotemporal dynamics. Neural Networks 126, 191-217 (2020).
[29] Gonzalez, F. J. & Balajewicz, M. Deep convolutional recurrent autoencoders for learning low-dimensional feature dynamics
of fluid systems. arXiv preprint arXiv:1808.01346 (2018).



11

[30] Maulik, R., Lusch, B. & Balaprakash, P. Reduced-order modeling of advection-dominated systems with recurrent neural
networks and convolutional autoencoders. Physics of Fluids 33, 037106 (2021).

[31] Hasegawa, K., Fukami, K., Murata, T. & Fukagata, K. Machine-learning-based reduced-order modeling for unsteady flows
around bluff bodies of various shapes. Theoretical and Computational Fluid Dynamics 34, 367-383 (2020).

[32] Lee, S., Kooshkbaghi, M., Spiliotis, K., Siettos, C. I. & Kevrekidis, I. G. Coarse-scale pdes from fine-scale observations via
machine learning. Chaos: An Interdisciplinary Journal of Nonlinear Science 30, 013141 (2020).

[33] LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. nature 521, 436-444 (2015).

[34] Bishop, C. M. Mixture density networks. Technical Report NCRG/97/004, Neural Computing Research Group, Aston
University (1994).

[35] Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735-1780 (1997).

[36] Werbos, P. J. Generalization of backpropagation with application to a recurrent gas market model. Neural Networks 1, 339
— 356 (1988).

[37] Hernéndez, C. X., Wayment-Steele, H. K., Sultan, M. M., Husic, B. E. & Pande, V. S. Variational encoding of complex
dynamics. Physical Review E 97, 062412 (2018).

[38] Sultan, M. M., Wayment-Steele, H. K. & Pande, V. S. Transferable neural networks for enhanced sampling of protein
dynamics. Journal of chemical theory and computation 14, 1887-1894 (2018).

[39] Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. In 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (2015).

[40] Vlachas, P. R., Zavadlav, J., Praprotnik, M. & Koumoutsakos, P. Accelerated simulations of molecular systems through
learning of their effective dynamics. arXiv preprint arXiv:1312.6114 (2021).

[41] FitzHugh, R. Impulses and physiological states in theoretical models of nerve membrane. Biophysical journal 1, 445 (1961).

[42] Nagumo, J., Arimoto, S. & Yoshizawa, S. An active pulse transmission line simulating nerve axon. Proceedings of the IRE
50, 20612070 (1962).

[43] Karlin, I. V., Ansumali, S., Frouzakis, C. E. & Chikatamarla, S. S. Elements of the lattice boltzmann method i: Linear
advection equation. Commun. Comput. Phys 1, 616—655 (2006).

[44] Pathak, J., Hunt, B., Girvan, M., Lu, Z. & Ott, E. Model-free prediction of large spatiotemporally chaotic systems from
data: A reservoir computing approach. Physical review letters 120, 024102 (2018).

[45] Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing equations from data by sparse identification of non-linear
dynamical systems. Proceedings of the National Academy of Sciences 113, 3932-3937 (2016).

[46] Kuramoto, Y. Diffusion-Induced Chaos in Reaction Systems. Progress of Theoretical Physics Supplement 64, 346-367
(1978).

[47] Sivashinsky, G. I. Nonlinear analysis of hydrodynamic instability in laminar flames — I. Derivation of basic equations.
Acta Astronautica 4, 1177-1206 (1977).

[48] Cvitanovié, P., Davidchack, R. L. & Siminos, E. On the state space geometry of the kuramoto-sivashinsky flow in a periodic
domain. SIAM Journal on Applied Dynamical Systems 9, 1-33 (2010).

[49] Kassam, A. & Trefethen, L. Fourth-order time-stepping for stiff pdes. SIAM Journal on Scientific Computing 26, 1214-1233
(2005).

[50] Zdravkovich, M. Flow around circular cylinders; vol. i fundamentals. Journal of Fluid Mechanics 350, 377-378 (1997).

[51] Rossinelli, D. et al. Mrag-i2d: Multi-resolution adapted grids for remeshed vortex methods on multicore architectures.
Journal of Computational Physics 288, 1-18 (2015).

[62] Bost, C., Cottet, G.-H. & Maitre, E. Convergence analysis of a penalization method for the three-dimensional motion of a
rigid body in an incompressible viscous fluid. SIAM Journal on Numerical Analysis 48, 1313-1337 (2010).

[63] Taira, K. et al. Modal analysis of fluid flows: Applications and outlook. AIAA journal 58, 998-1022 (2020).



12
Supplementary Information I: Methods

The framework to learn and propagate the effective dynamics (LED) of complex systems is composed of the models
described in the following.

A. Autoencoders (AE)

Classical autoencoders are non-linear neural networks that map an input to a low dimensional latent space and then
decode it to the original dimension at the output, trained to minimize the reconstruction loss £ = |x — &|?. They
were proposed in as a non-linear alternative to Principal Component Analysis (PCA). An autoencoder is depicted in

Figure la. A t d
utoencoaers
\utoencoders
High dimensional High dimensional
state Reconst state l’ Reconstruction
|4' DECODER H— DECODER X
) Classical Autoencoder ( (b) Variational Autoencoder (VAE)

FIG. 1: (a) A schematic diagram of a classical Autoencoder (AE). A high-dimensional state @ is mapped to a low
dimensional feature space z by applying the encoder transformation through multiple fully connected layers. The low
dimensional feature space z is expanded in the original space by the decoder. The autoencoder is trained with the loss
L = ||z — Z||?, so that the input can be reconstructed as faithfully as possible at the decoder output. (b) A schematic

diagram of a Variational Autoencoder (VAE). Instead of modeling the latent space deterministically, the encoder
outputs a mean latent representation p,, along with the associated uncertainty o,. The latent space z is sampled
from a normal distribution z ~ N(:|pz,0,1), with diagonal covariance matrix.

B. Variational Autoencoders (VAE)

Research efforts on generative modeling led to the development of Variational Autoencoders (VAEs). The VAE
similar to AE is composed by an encoder and a decoder. The encoder neural network, instead of mapping the input x
deterministically to a reduced order latent space z, produces a distribution ¢(z|x;w,) over the latent representation
z, where wy is the parametrization of the distribution given by the output of the encoder w, = £"#(x). In most
practical applications, the distribution ¢(z|x;w,) is modeled as a factorized Gaussian, implying that w, is composed
of the mean, and the diagonal elements of the covariance matrix. The decoder maps a sampled latent representation
to an output & = D*P(z). By sampling the latent distribution ¢(z|x;w,), for a fixed input @, the autoencoder can
generate samples from the probability distribution over & at the decoder output. The network is trained to maximize
the log-likelihood of reproducing the input at the output, while minimizing the Kullback-Leibler divergence between
the encoder distribution ¢(z|z;w,) and a prior distribution, e.g. A(0,I). VAEs are esentially regularizing the training
of AE by adding the Gaussian noise in the latent representation. In this work, a Gaussian latent distribution with
diagonal covariance matrix is considered, i.e.,

(2| iz, 02) = N(2| p= (), diag(0=(2))), (1)

where w, = (fz,0) and the mean latent representation p, and the variance o, vectors are the outputs of the encoder
neural network £%¢(x). The latent representation is then sampled from z ~ N (u,,diag(c)). The decoder receives as
an input the sample, and outputs the reconstruction &. A VAE is depicted in Figure 1b.

A preliminary study, benchmarking VAEs against feedforward AEs (and Convolutional AE described later) in the
FitzHugh-Nagumo equation, and the Kuramoto-Sivashinsky equation, showed no significant advantages for the cases
considered in this work over feed-forward AEs. They are, however, part of the LED framework, and may be useful in
other applications.
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C. Convolutional Neural Networks

Convolutional neural networks (CNNs) are tailored to process image data with spatial correlations. Each layer of a
CNN is processing a multidimensional input (with a channel axis, and some spatial axes) by applying a convolutional
kernel or filter that slides along the input spatial axes. In other words, CNNs take into account of the structure in the
data in their architecture, which is a form of a geometric prior. In this work, CNN layers are used in the Autoencoder,
by introducing a bottleneck layer, reducing the dimensionality. Other dimensionality reduction techniques, like AEs,
Principal Component Analysis (PCA), or Diffusion maps (DiffMaps), that are based on vectorization of input field
data, do not take into account the structure of the data, i.e. when an input field is shifted by a pixel, the vectorized
version will differ a lot, while the convoluted image will not.

In this work, we employ Autoencoding CNNs (and compare them with feed-forward AEs) to identify the coarse
representation of the FitzHugh-Nagumo equation, the Kuramoto-Sivashinsky equation, and the incompressible Navier-
Stokes flow behind a cylinder at Re € {100, 1000}.

D. Permutation Invariance

Physical systems may satisfy specific properties like energy conservation, translation invariance, permutation
invariance, etc. In order to build data-driven models that accurately reproduce the statistical behavior of such systems,
these properties should be embedded in the model. In this section, the dynamics of particles of the same kind are
modeled with a permutation invariance layer. This is useful in simulations of molecules, i.e. molecular dynamics, where
the state of the system is described by a configuration of particles, and any permutation of these particles corresponds
to the same configuration. Permutation invariance is handled here with a sum decomposition of a feature space. The
exact procedure is depicted in Appendix ID.

Assume that the state of a dynamical system s is composed of N particles of the same kind, each one having
specific properties or features with dimensionality d,, e.g. position, velocity, etc. The features of a single particle
are given by the state € R% of the particle. Raw data is provided as an input to the network, i.e. the features
of all particles, stacked together in a matrix s € RV*9= A permutation of two particles represents in essence the
same configuration and should be mapped to the same latent representation. This is achieved with a permutation
invariant layer that first applies a non-linear transformation ¢ : R% — R% mapping each particles’ features to a
high-dimensional latent representation of dimension d,. This mapping is applied to all particles independently leading
to N such latent vectors. The mean of these vectors is taken to construct the representation of the configuration. The
representation % Zf\il #(x?) is finally fed to a final layer reducing the dimensionality to a low-order representation
z € R%=, with d, < dp, N. This is achieved by the mapping g : R% — R9% . In this work, the permutation invariance
layer is utilized in the modeling of the collective dynamics of a group of particles whose movement is governed by the
advection-diffusion equation in the one and three dimensional space. Both mappings ¢ and ¢ are implemented with
neural networks, having 3 layers of 50 hidden units each, and tanh activations.

E. Mixture Density Decoder

Mixture density networks (MDNs) [34] are powerful neural networks that can model non-Gaussian, multi-modal
data distributions. The outputs of MDNs are parameters of a mixture density model (mixture of probability density
functions). The most generic choice of the mixture component distribution, is the Gaussian distribution. Gaussian
MDNs are widely deployed in machine learning applications to model structured dynamic environments, i.e. (video)
games. The effectiveness of MDNs, however, in modeling physical systems remains unexplored.

In physical systems, the state may be bounded. In this case, the choice of a Gaussian MDN is problematic due
to its unbounded support. To make matters worse, most applications of Gaussian MDNs when modeling random
vectors do not consider the interdependence between the vector variables, i.e. the covariance matrix of the Gaussian
mixture components is diagonal, in an attempt to reduce their computational complexity. Arguably in the applications
where they were successful, modeling this interdependence was not imperative. In contrast, in physical systems the
variables of a state might be very strongly dependent on each other. In order to cope with these problems, the following
approach is considered: Firstly, an auxiliary vector variable is considered v along with its distribution p(v|z). v € R
has the same dimensionality d, as the high-dimensional state (input/output of the autoencoder). The distribution is
modeled as a mixture of K multivariate normal distributions

K
plols) = Y- AN (b, 2500 ). ®

k=1
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FIG. 2: Tllustration of the permutation invariant encoder. The input of the network is composed of N atomic states
that are permutation invariant, e.g. positions {x',..., &} of N particles in a particle simulation, each one with
dimension dg, i.e. ' € R% Vi {1,...,N}. A transformation ¢(-) : R% — R% is applied to each atomic state

separately, mapping to a high-dimensional latent feature space. The mean of these latent representations of the atomic

states is computed, leading to a singe latent feature that is permutation invariant with respect to the input. The final
layer of the encoder maps the high-dimensional feature to a low dimensional representation z, which is again
permutation invariant with respect to the input, representing the encoding of the global state.

The multivariate normal distribution is parametrised in terms of a mean vector u¥, a positive definitive covariance
matrix XX and the mixing coefficients 7% which are functions of z. The covariance matrix is parametrised by a
lower-triangular matrix L¥ with positive-valued diagonal entries, such that X% = L¥ kT ¢ Rd=*d= (This triangular
matrix can be recovered by Cholesky factorization of the positive definite $¥). The functional forms of 7*(2) € R,
ly(2) € R% and the n(n+1)/2 entries of LY are neural networks, their values are given by the outputs of the decoder
for all mixture components k € {1,..., K}, i.e. wp = D¥?(z) = {7*, puk LE}; k. The positivity of the diagonal
elements of LY is ensured by a softplus activation function

F(2) = In(1 + exp()) 3)

in the respective outputs of the decoder. The mixing coefficients satisfy 0 < 7% < 1 and Zszl 7% = 1. To ensure these
conditions, the respective outputs of the decoder are passed through a softmax activation

T

e

= Zi o :

The rest (non-diagonal elements and mean vector) of the decoder outputs have linear activations, so no restriction in
their sign. In total, the decoder output is composed of K(n — 1)n/2 + Kn single valued outputs with linear activation
for the non-diagonal elements of Lf, and the mean vectors p,f,, and Kn positive outputs with softplus activation for
the diagonal of L¥, and K outputs with softmax activation for the mixing coefficients.

MD networks are employed in stochastic systems (e.g. molecular dynamics). In the following, we assume that the
high-dimensional state of the molecular system is described by s; € R%. The decoder D*? is modeled with an MD
network. The MD approximates the probability distribution of the state §; ~ p(-; wump), where wyp = DYP(z;) is
the output of the decoder that parametrizes the distribution. The optimal parameters of the MD autoencoder are

o(x);

(4)
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FIG. 3: A mixture density network modeling the probability density p(&|z), with bounded &. The decoder maps the
latent state z to the parameters of a mixture model on the latent vector v € R%  which are the mixing coefficients
7% € R, mean vectors ¥ € R and a lower-triangular matrix LX € R%*d= with positive-valued diagonal entries.
From the latter, the covariance matrix is derived from 3% = LELET which is positive definite by construction. The
mixture models the probability distribution of the latent state p(v|z). The targets, however, used to train the network
in a supervised way are defined on the reconstruction &. The targets are scaled to & € [0, 1]%, and then transformed
to targets for v using the inverse of the softplus activation. The MDN autoencoder is trained to maximize the
likelihood p(v|z) of the transformed data v.

identified by maximizing the log-likelihood of the reconstruction,
wg, wp = argmax log p(st; wMD)a

Wwe, Wp

where wyp = D*P(2;) = D*? (%4 (sy)).

F. Long Short-Term Memory Recurrent Neural Networks (LSTM-RNNs)

In the low order manifold (coarse, latent state), a Recurrent Neural Network (RNN) is utilized to capture the
non-linear, non-markovian dynamics. The forecasting rule of the RNN is given by

hy =H"" (Zt, htht)y Ziyar = RY% (ht); (5)

where wy and wpg are the trainable parameters of the network, h; € R% is an internal hidden memory state, and
Ziy At is a prediction of the latent state. The RNN is trained to minimize the forecasting loss ||Zt+at — 2t+a¢||3, which
can be written as

Zirar — zepads = [[RYR (he) — zeradls = [[RYR (HY* (21, hi-at)) — ziradl3- (6)
This leads to
Wy, WR = argminHRwR (HwH (Zt7 ht—At)) - zt+At| |g (7)
W, WR

The RNNs are trained with Backpropagation through time (BPTT) [36]. The mappings H** and R*7%, considered in
this work take the form of the long short-term memory (LSTM) [35] cell. The output mapping is given by a linear
transformation, i.e.

Ziyne = Wa nhy, (8)

where W, j, € R%=*dr_ As a consequence, the set of trainable weights of the hidden-to-output mapping is just one
matrix wgr =W, 3 € Rd=xdn_
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The LSTM possesses two hidden states, a cell state ¢ and an internal memory state h. The hidden-to-hidden
mapping

hi,c; = H™" (Zt; hi—at, thAt) 9)

takes the form

g,{ =O0f (Wf[htht, Zt] + bf) gé = Ji(Wi[hthta Zt] + bi)

¢; = tanh (Wc[htht; zi] + bc) Cy = gtf ©ci-at+g;O& (10)

97 = o (Wilhi—at, 2] + by)  he = g7 ©tanh(cy),
where gtf ,gi, g7 € R are the gate vector signals (forget, input and output gates), z; € R% is the latent input at time
t, hy € R is the hidden state, ¢, € R% is the cell state, while We, Wi, We, Wy, € R (dntd=) are weight matrices
and by, b;, be, by, € R? biases. The symbol ® denotes the element-wise product. The activation functions oy, oy and

oy, are sigmoids. The dimension of the hidden state dp, (number of hidden units) controls the capacity of the cell to
encode history information. The set of trainable parameters of the recurrent mapping H"?* is thus given by

HwH = {bfvbivbmbhaWfaWivwc;Wh} (11)
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Supplementary Information II: Comparison Measures

In this section, we elaborate on the metrics used to quantify the effectiveness of the proposed approach to capture
the dynamics and the state statistics of the systems under study. The mean normalized absolute difference (MNAD)
is used to quantify the prediction performance of a method in a deterministic system. This metric was selected to
facilitate comparison of LED with equation-free variants [32]. The Wasserstein distance (WD) and the L1-Norm
histogram distance (L1-NHD) are utilized to quantify the difference between distributions. These metrics are used in
stochastic systems or in the comparison of state distributions.

A. Mean normalised absolute difference (MNAD)

Assume that a model is used to predict a spatiotemporal field y(z,t), at discrete state ; and time ¢; locations.
Predicted values from a model (neural network, etc.) are denoted with g, while the groundtruth (simulation of the
equations with a solver based on first principles) with y. The normalized absolute difference (NAD) between the model
output and the groundtruth is defined as

NI T . .
NAD ]' |y m’“ ) y(flf“t])‘ (12)

N, P max; y(xut )) - Inini,j(y(xi:tj))7

where N, is the dimensionality of the discretized state . The NAD depends on the time ¢;. The mean NAD (MNAD)
is given by the mean over time of the NAD score, i.e.

Nt
1
MNAD = o Z NAD(t;), (13)

where N is the number of time-steps considered. The MNAD is used in the FitzHugh-Nagumo equation, and the
Kuramoto-Sivashinsky equation, to quantify the prediction accuracy of LED and benchmark against other methods
(e.g. other propagators on the latent space) or against other equation-free variants.

B. Pearson Correlation Coefficient

Assume as before, the spatiotemporal field y(z,t), at discrete state z; and time ¢; locations. This can be vectorized
in Ypee = vec(y(z,t)) € RN="NeX1 The same applies to the vectorized prediction §ye. = vec(j(z,t)) € RNa-Nex1 We
can compute the Pearson correlation coefficient, or simply correlation, as

COV vecH ~’U€C
Correlation = M, (14)

Oypec OGuee

where COV is the covariance, and o is the standard deviation.
The correlation is used as a prediction performance metric in the Kuramoto-Sivashinsky equation.

C. Wasserstein Distance

The Wasserstein distance (WD), is a metric used to quantify the difference between the distribution functions of
two random variables. It is defined as the integral of the absolute difference of the inverse Cumulative Distribution
Functions (CDF) of the random variables. Assuming two random variables Z; and Zs, with CDFs given by 7 = Fz, (2)
and Fz,(z), with 7 € [0, 1], the Wasserstein metric is defined as

WD(Z,,Z5) = /O |Fy (7)) = Fz(7)|dr. (15)

In high-dimensional problems, where the random variable is multivariate (random vector), we are reporting the mean
WD of each variable after marginalization of all others.
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D. L1-Norm Histogram Distance

In order to quantify the difference of the distributions of two random multivariate random variables Z; and Z5, we
employ in addition to the WD, the L1-Norm histogram distance. We measure this metric based on the L1 norm of the
difference between the normalized histograms of the random variables computed on the same grid. The number of bins
for the computation of the histograms, is selected according to Rice rule, given by Npins = {2\3/5 W where n is the
number of observations in the sample z. The WD and the L1-NHD are used to measure the difference between the
spatial particle distributions in the Advection-Diffusion model.
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FIG. 4: A) The L1-Norm Histogram distance averaged over time and initial conditions. The self-similar error is
plotted for reference, as errors below this level are statistically insignificant. B) The evolution of the L1-Norm
Histogram distance in time averaged over initial conditions. C) The Wasserstein distance averaged over time and
initial conditions. D) The evolution of the Wasserstein distance in time averaged over initial conditions. E) The
speed-up of LED compared to the micro scale solver is plotted w.r.t. p.

A. LED for Advection-Diffusion Equation

The LED method is applied to the simulation of the advection-diffusion equation. The microscale description
of the Advection-Diffusion (AD) process is modeled with a system of N = 1000 particles on a bounded domain

Q=[-L/2,L/ 2]d‘”. The particle dynamics are modeled with the stochastic differential equation (SDE)
dx; = u,dt + VD AW, (16)

where z; € Q denotes the position of the particle at time ¢, D € R is the diffusion coefficient, dW, € R% is a Wiener
process, and u; = A cos(wt) € R% is a cosine advection (drift) term. In the following, the three dimensional space
de = 3 is considered, with D = 0.1, A = [1,1.74,0.0]7, w = [0.2,1.0,0.5]7, and a domain size of L = 1. The Péclet
number quantifies the rate of advection by the rate of diffusion, i.e. Pe = %. In this work, L =1, U = |Al2 =~ 2,
suggest a Péclet number of Pe = 20. Equation (16) is solved with explicit Euler integration with At = 1072, initial
conditions &g = 0, and reflective boundary conditions ensuring that x; € ,Vt. The positions of the particles are saved
at a coarser time-step At = 1. Three datasets are generated by starting from randomly selected initial conditions. The
training and validation datasets consist of 500 samples each, and the test dataset consists of 4000 samples. The full
state of the system is high-dimensional, i.e. s; = [x};...; 2|7 € RV*3,

The particles concentrate on a few “meta-stable” states, and transition between them, suggesting that the collective
dynamics can be captured by a few latent variables. It is not straightforward, however, to determine a-priori the number
of these states and the patterns of collective motion. LED unravels this information and provides a computationally
efficient multiscale model to approximate the system dynamics. An AE with a permutation invariant input layer with
a latent dimension d,, an MD decoder and a stateful LSTM-RNN are employed to learn and forecast the dynamics on
the low-dimensional manifold.

In this case, the latent dimension of LED is tuned to d, = 8 based on the log-likelihood on the validation data.
Reducing the latent dimension further, caused a decrease in the validation log-likelihood loss, while increasing the
latent dimension did not lead to any significant improvement. Regarding the rest of the LED hyper-parameters, the ¢
function consists of 3 x 50 layers and tanh activation, the permutation invariant space has dimension M = 100 with
mean feature function, and the decoder g consists of a network with 3 x 50 layers and tanh activation, reducing the
dimensionality to the desired latent state of dimension d, = 8. The decoder is composed of 3 x 50 layers, and a mixture
density output layer, with 25 hidden units, and 5 kernels outputting the parameters for the mixture coefficients, the
means, and the covariance matrices of the 5 kernels. The RNN propagating the dynamics in the latent space, is
composed of one stateful LSTM layer with 25 nodes and was trained with BBTT with a sequence length of 100.
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After training the RNN, the efficiency of LED in forecasting the dynamics is tested in 30 trajectories starting
from different initial conditions randomly sampled from the testing data. The final prediction horizon is set to
Tt = 2000. The particle spatial distribution predicted by LED is compared against the groundtruth in terms of
the L1-Norm Histogram distance (L1-NHD) and the Wasserstein distance (WD). The results are shown in Figure 4.
Three LED variants are considered. The first variant does not evolve the dynamics on the particle level (Latent-LED,
T,, = 0) and its error increases with time and exhibits the highest errors on average. The second and third variants,
(Multiscale-LED), evolve the low order manifold dynamics (coarse scale) for T, time units, and the particle dynamics
(fine scale) for T, = 5 to correct iteratively for the statistical error. This effect is due to the explicit dependence of the
coarse system dynamics in time, as the cos(wt) advection term dominates. Two values for T, are considered, T,, = 50
leading to a relative ratio of coarse to fine simulation time of p = T}, /T, = 10, and another one with T;,, = 100, leading
to p = 20. This incurs additional computational cost induced by the evolution of the high-dimensional state. The
warm-up time is Typqrm = 100 for all variants. As the multiscale ratio p = T}, /T, is increased, spending more time in
the latent propagation, the errors gradually increase. The propagation in the low dimensional latent space is far less
computationally expensive compared to the evolution of the high-dimensional dvnamics. As o is increased. greater
computatic
LED is abl

The effe
lower error
is isotropic
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FIG. 5: Analysis of the performance of LED for different Péclet numbers Pe € {20, 40,200,400}. Three LED variants
are considered, Latent-LED (T}, = 0), and two variants of Multilscale-LED with T,, = 5 and T;,, € {50,100}. The
warm-up time is Tyqrm = 100 for all variants. A) The Wasserstein distance and B) L1-Norm Histogram distance

between the particle spatial distributions averaged over time and initial conditions, plotted with respect to the
multiscale ratio p. The methods consistently exhibit lower error as the Péclet number decreases. C) The speed-up is
plotted w.r.t. p.

An example of the evolution of the latent state, the errors on the first two moments, and the L1-NHD between the
groundtruth and the predicted spatial distribution of particles in an iterative prediction on the test data is shown
in Figure 6a. The initial warm-up period of LED is set to Tyqrm = 100. LED captures the variance of the particle
positions but due to the iterative error propagation the error on the distribution (L1-NHD and mean position) is
increasing with time.

In Figure 7, the latent space of LED is clustered to identify frequently visited metastable states that can be mapped
back to their respective particle configurations using the decoder.
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FIG. 6: (a) LED applied on the 3-dimensional Advection-Diffusion equation, iteratively forecasting the evolution of
the particles starting from an initial condition in the test data. The initial warm-up period of LED is set to
Twarm = 100. An AE with a permutation invariant input layer, and a latent dimension of d, = 8 is utilized to
coarse-grain the high-dimensional dynamics. The decoder of LED is mapping from the latent space to the particle
configuration using a MD decoder. We plot the evolution of the latent state in time, along with the L1-NHD between
the predicted and groundtruth particle distributions and the absolute error on the mean, and the standard deviation
of the particle distributions. LED can forecast the evolution of the particle positions with low error, even though the
total dimensionality of the original state describing the configuration of the N = 1000 particles of the system is
s, € R1000%X3 " The network, learned an d, = 8 dimensional coarse-grained representation of this configuration.
However, due to the iterative prediction with LED, the error on the predicted distribution of particles is increasing
with time. (b) Multiscale propagation in LED. To alleviate the iterative error propagation, the multiscale propagation
is utilized with T}, = 100, T}, = 5, p = 20. Due to the iterative transition between propagation in the latent space z;
of LED for T,,, and evolution of the micro-scale particle dynamics for T},, the effect of iterative statistical error
propagation is alleviated.



22

B Latent dynamics in test
-

® Target Density WS Prodicted Density

e T 0
PCA mode 1 04 -02 ozu 02 04

FIG. 7: A) Evolution of the second PCA mode of the latent state z; € R%=8 against the first mode. Higher color
intensity denotes higher density. Six high density regions are identified. Spectral clustering on the PCA modes of the
latent dynamics reveals the clusters. The six cluster centers are marked, while color illustrates the cluster membership.
The LED probabilistic decoder is employed to map each cluster center to a realization of a high-dimensional simulation
state. LED effectively unravels six meta stable states of the Advection-Diffusion equation, along with the transitions
between them, representing the low order effective dynamics. B) Evolution of the third PCA mode against the second
one, colored according to cluster assignment. C) Density of the particle positions from simulation plotted against the

distribution of the positions predicted by LED. We remark the good agreement between the two distributions.



a. Hyper-parameter Tuning

The hyper-parameters of LED are given in Table 1 for the Autoencoder, and Table 2 for the RNN.

TABLE 1: Autoencoder hyper-parameters for Advection-Diffusion in 3-D (d, = 3)

Hyper-parameter Values ‘
Number of AE layers {3}
Size of AE layers {50}
Activation of AE layers tanh(-)
Latent dimension {1,2,3,4,5,6,7,8,9,10,12, 16, 18,22, 24, 28,32, 64}
Residual connections False
Variational True/False
Permutation Invariant Layer d, {200, 1001}
Number of MD kernels K {5}
Hidden units of MD decoder {50}
Input/Output data scaling Min-Max in [0, 1]
Noise level in the data {0,1,10} (%o)
Weight decay rate {0.0,0.00001}
Batch size 32
Initial learning rate 0.001

TABLE 2: LED-RNN hyper-parameters for Advection-Diffusion in 3-D (dg = 3)

Hyper-parameter ‘ Values ‘
Number of AE layers {3}
Size of AE layers {50}
Activation of AE layers tanh(-)
Latent dimension {8}
Residual connections False
Variational False
Permutation Invariant Layer d, {200}
Number of MD kernels K {5}
Hidden units of MD decoder {50}
Input/Output data scaling |Min-Max in [0, 1]
Noise level in the data {0}
Weight decay rate {0.0}
Batch size 32
Initial learning rate 0.001
BBTT Sequence length {100}
RNN cell type {Istm, gru}
Number of RNN layers {1}
Size of RNN layers {25}
Activation of RNN Cell tanh(-)
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b. Generalization to Different Number of Particles

In this section, we provide additional results on the generalization of LED for a different number of particles
in the simulation. Due to the permutation invariant encoder, coarse-graining the high-dimensional input of LED, the
network is expected to be able to generalize to a different number of particles, since the identified coarse representation
should rely on global statistical quantities, and not depend on individual positions. LED trained in configurations
of N = 1000 particles is utilized to forecast the evolution of N = 400 particles evolving according to the Advection-
Diffusion equation. The propagation of the errors is plotted in Figure 8. The initial warm-up period of LED is set to
Twarm = 100 for all variants. We observe an excellent generalization ability of the network.
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FIG. 8: LED trained on particle configurations with N = 1000 number of particles, learned an d, = 8 dimensional
coarse-grained representation of this configuration. We utilize two models with T), = 0 (iterative latent propagation)
and T}, = 100, p = 20 (multiscale forecasting) to forecast the evolution of a particle configuration composed of N = 400
particles to test the generalization ability of the model. The initial warm-up period is set to Tyerm = 100. We plot the
latent space, the L1-NHD between the densities of the particle positions, and the error on the first two moments, for

both variants of LED. We observe that the LED is able to successfully generalize to the case of N = 400 particles.
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B. FitzHugh-Nagumo Model (FHN)

The hyper-parameters of the Autoencoder are reported in Appendix IIIBa. Input and output are scaled to [0, 1]
and an output activation function of the form 1 + 0.5 tanh(-) is used to ensure that the data at the output lie at this
range. The architecture of the CNN we employed is given in Figure 10. In this case, the inhibitor and activator density
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a. Hyper-parameters and Training Time

The hyper-parameter tuning of the autoencoder of LED and training times are reported in Table 3. PCA and
Diffusion maps have very short fitting (training) times of approximately one minute. The layers of the CNN autoencoder
employed in the FHN and its training times are given in Table 5. The architecture of the CNN autoencoder employed
in the FHN is depicted in Figure 10.

The hyper-parameters for the LSTM and its training times are given in Table 4. For the MLP, a three layered
network with CELU activations is employed. Training time for the MLP is 100 minutes. The hyper-parameters
and training times for the RC are given in Table 6. The hyper-parameters and training times for SINDy are given
in Table 7.

In all cases, the parameters of the best performing model on the validation data is denoted with red color.

TABLE 3: Autoencoder hyper-parameters and training times for FHN

| Hyper-parameter tuning | Values
Number of AE layers {3}
Size of AE layers {100}

Activation of AE layers celu(-)

Latent dimension {1,2,3,4,5,6,7,8,9,10,11,12,16, 20, 24, 28, 32, 36, 40, 64 }

Input/Output data scaling [0,1]
Output activation 1+ 0.5 tanh(-)
Weight decay rate {0.0,0.0001}

Batch size 32
Initial learning rate 0.001

Training times [minutes]
| Minl Mean | Max |
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FIG. 10: The architecture of the CNN employed in the FHN equation. First, the input is padded to the closest power

of two. Then, four layers of consecutive application of 1D convolutions, average pooling, CELU activations functions

and dropout are used. Then an MLP is utilized to project to the low-order latent space. The output activation of the
MLP is also 1 4 0.5 tanh(-).



TABLE 4: LED-RNN hyper-parameters and training times for FHN

Hyper-parameter ‘ Values ‘
end2end training True / False
Number of AE layers {3}
Size of AE layers {100}
Activation of AE layers celu(+)
Latent dimension 2
Input/Output data scaling [0,1]
Output activation 1+ 0.5tanh(-)
Weight decay rate 0.0
Batch size 32
Initial learning rate 0.001
BPTT Sequence length {20, 40, 60}
Output forecasting loss True/False
RNN cell type Istm
Number of RNN layers 1
Size of RNN layers {16, 32,64}
Activation of RNN Cell tanh(:)
Output activation of RNN Cell|1 + 0.5 tanh(-)

Training times [minutes] HMin‘Mean‘Max‘
end2end training 22| 25 | 28
only the RNN (sequential) || 0.9 | 1.2 | 1.6




TABLE 5: CNN Autoencoder and training times for FHN

= = = =
w N = O

[
Ut

e i i e N e e
— —_
(=)} [N

NN NS NN NN NI

—
-3

Layer ENCODER
(0) ConstantPadld(padding=(13, 14), value=0.0)
(1) ConstantPadld(padding=(2, 2), value=0.0)
(2) Conv1d(2, 8, kernel size=(5,), stride=(1,))
(3) AvgPoolld(kernel _size=(2,), stride=(2,), padding=(0,))
(4) CELU(alpha=1.0)
(5) ConstantPadld(padding=(2, 2), value=0.0)
(6) Conv1d(8, 16, kernel size=(5,), stride=(1,))
(7) AvgPoolld(kernel_size=(2,), stride=(2,), padding=(0,))
(8) CELU (alpha=1.0)
9) ConstantPadld(padding=(2, 2), value=0.0)

Conv1d(16, 32, kernel_size=(5,), stride=(1,))
AvgPoolld(kernel_size=(2,), stride=(2,), padding=(0,))
CELU (alpha=1.0)
ConstantPadld(padding=(2, 2), value=0.0)
Conv1d(32, 4, kernel_size=(5,), stride=(1,))
AvgPoolld(kernel size=(2,), stride=(2,), padding=(0,))
Flatten(start_.dim=-2, end_dim=-1)

Linear(in_features=32, out_features=d,, bias=True)

— =
=)

[
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AAAA,—\
il i
=~ o
s e

(15)

18 CELU (alpha=1.0)
z € R%=
Layer DECODER
(1) Linear(in_features=d,, out_features=32, bias=True)
(2) CELU(alpha=1.0)
(3) Upsample(scale_factor=2.0, mode=linear)
(4) ConvTransposeld(4, 32, kernel size=(5,), stride=(1,), padding=(2,))
(5) CELU(alpha=1.0)
(6) Upsample(scale_factor=2.0, mode=linear)
(7) ConvTransposeld(32, 16, kernel size=(5,), stride=(1,), padding=(2,))
(8) CELU(alpha=1.0)
9) Upsample(scale_factor=2.0, mode=linear)

ConvTransposeld(16, 8, kernel size=(5,), stride=(1,), padding=(2,))
CELU(alpha=1.0)
Upsample(scale_factor=2.0, mode=linear)
ConvTransposeld(8, 2, kernel size=(5,), stride=(1,), padding=(2,))
1 + 0.5 Tanh()

Unpad()

’ Latent dimension d,

{1,2,3,4,5,6,7,8,9,10,11, 12, 16, 20, 24, 28, 32, 36, 40, 64}

Training times [minutes]
’ Min‘ Mean ‘ Max ‘
[215[ 370 [ 530 |
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TABLE 6: Reservoir Computer hyper-parameters and training times (in CNN-RC) for FHN

’Hyper—parameter tuning Values ‘
Solver Pseudoinverse
Size 1000
Degree 10
Radius 0.99
Input scaling o {0.5,1,2}
Dynamics length 100
Regularization n {0.0,0.001,0.0001, 0.00001}
Noise level per mill {10, 20, 30,40, 100}

Training times [minutes]
[Min|Mean|  Max |
015/ 018 019 |

TABLE 7: SINDy hyper-parameters and training times (in CNN-SINDy) for FHN

Hyper-parameter tuning‘ Values ‘
Degree {1,2,3}
Threshold {0.001, 0.0001, 0.00001}
Library Polynomials

Training times [minutes]
’Min‘Mean‘ Max ‘
0.14] 023 ] 032 |
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C. Kuramoto-Sivashinsky

A KS trajectory is plotted in Figure 11, along with the latent space evolution of Latent-LED and the predicted
trajectory. We observe that the long-term climate is reproduced, although the LED is propagating an 8-dimensional

latent state.
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FIG. 11: A) Contour plot of the KS dynamics starting from an initial condition from the test data. B) The evolution
of the d, = 8 dimensional latent state of Latent-LED. C) The predicted field by Latent-LED iteratively propagating
the dynamics on a d, = 8 dimensional latent space, after a warm-up period Tiyerm = 60 (T, = 0).

a. Hyper-parameters and Training Times

The hyper-parameter tunings and training times for the AE and CNN are given in Table 8 and Table 9 respectively .
The architecture of the CNN autoencoder employed in KS is given in Table 10 along with the training times, and
depicted in Figure 12. PCA fitting time is approximately one minute. The hyper-parameters and training times of the
LSTM-RNN of LED are given in Table 11. The hyper-parameters and training times of the RC are given in Table 12.
The hyper-parameters and training times of SINDy are given in Table 13.

TABLE 8: Autoencoder hyper-parameters for KS

Hyper-parameter tuning ‘ Values
Number of AE layers {3}
Size of AE layers {100}
Activation of AE layers celu(+)
Latent dimension {1,2,3,4,5,6,7,8,9,10, 11,12, 16, 20, 24, 28, 32, 36, 40, 64}
Input/Output data scaling [0,1]
Output activation 1+ 0.5 tanh(-)
Weight decay rate {0.0,0.0001}
Batch size 32
Initial learning rate 0.001

Training times [minutes]
‘ Min‘ Mean ‘ Max ‘
[160] 192 [ 311




TABLE 9: CNN hyper-parameters for KS

Hyper-parameter | Values
Convolutional True
Kernels Encoder: 5 —5—5—5, Decoder: 5—5—5—-5
Channels 1-16—-32—-64—-8—-d, —8—-64—-32—-16—1
Batch normalization True / False
Transpose convolution True / False
Pooling Average
Activation celu(-)
Latent dimension {1,2,3,4,5,6,7,8,9,10,11, 12, 16, 20, 24, 28, 32, 36, 40, 64}
Input/Output data scaling [0,1]
Output activation 1+ 0.5 tanh(-)
Weight decay rate 0.0
Batch size 32
Initial learning rate 0.001

Training times [minutes]
| Min| Mean | Max |
[236] 311 | 476 |
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FIG. 12: The architecture of the CNN employed in KS.
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TABLE 10: CNN Autoencoder for KS

Layer ENCODER
(1) ConstantPadld(padding=(2, 2), value=0.0)
(2) Convld(1, 16, kernel_size=(5,), stride=(1,))
(3) AvgPoolld(kernel size=(2,), stride=(2,), padding=(0,))
(4) CELU(alpha=1.0)
(5) ConstantPadld(padding=(2, 2), value=0.0)
(6) Conv1d(16, 32, kernel_size=(5,), stride=(1,))
(7) AvgPoolld(kernel_size=(2,), stride=(2,), padding=(0,))
(8) CELU(alpha=1.0)
9) ConstantPadld(padding=(2, 2), value=0.0)
(10) Conv1d(32, 64, kernel size=(5,), stride=(1,))
(11) | AvgPoolld(kernel_size=(2,), stride=(2,), padding=(0,))
(12) CELU(alpha=1.0)
(13) ConstantPadld(padding=(2, 2), value=0.0)
(14) Conv1d(64, 8, kernel size=(5,), stride=(1,))
(15) | AvgPoolld(kernel size=(2,), stride=(2,), padding=(0,))
(16) CELU (alpha=1.0)
(17) Flatten( start_dim =-2, end_dim = -1)
(18) Linear(in_features =32, out_features =8, bias=True)
(19) CELU(alpha=1.0)
z € R®
Layer DECODER
(1) Linear(in_features=8, out_features=32, bias=True)
(2) CELU(alpha=1.0)
(3) Upsample(scale_factor=2.0, mode=linear)
(4) | Convld(8, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(5) CELU(alpha=1.0)
(6) Upsample(scale_factor=2.0, mode=linear)
(7) |Conv1d(64, 32, kernel size=(5,), stride=(1,), padding=(2,))
(8) CELU(alpha=1.0)
9) Upsample(scale_factor=2.0, mode=linear)
(10) |Conv1d(32, 16, kernel size=(5,), stride=(1,), padding=(2,))
(11) CELU(alpha=1.0)
(12) Upsample(scale_factor=2.0, mode=linear)
(13) | Conv1d(16, 1, kernel size=(5,), stride=(1,), padding=(2,))
(14) 1 + 0.5 Tanh()
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TABLE 11: LED (LSTM-RNN) hyper-parameters and training times for KS

Hyper-parameter ‘ Values ‘
end2end training False / True
Convolutional AE (CNN) True
Kernels Encoder: 5 —5—5—5, Decoder: 5—5—5—-5
Channels 1-16—-32—-64—-8—-d,—8—-64—-32—-16—-1
Batch normalization False
Transpose convolution False
Pooling Average
Activation celu(+)
Latent dimension 8
Input/Output data scaling [0,1]
Output activation 1+ 0.5 tanh(-)
Weight decay rate 0.0
Batch size 32
Initial learning rate 0.001
BPTT Sequence length {25, 50,100}
Output forecasting loss True/False
RNN cell type Istm
Number of RNN layers 1
Size of RNN layers {64, 128,256,512}
Activation of RNN Cell tanh(:)
Output activation of RNN Cell 1+ 0.5 tanh(-)

Training times [minutes] HMin‘Mean‘ Max‘
end2end training 476 | 978 (1140
only the RNN (sequential) || 960 | 1100 {1140

TABLE 12: Reservoir Computer hyper-parameters and training times (in CNN-RC) for KS

’Hyper-parameter tuning Values ‘
Solver Pseudoinverse
Size 1000
Degree 10
Radius 0.99
Input scaling o {0.5,1,2}
Dynamics length 100
Regularization n {0.0,0.001,0.0001, 0.00001 }
Noise level per mill {10, 20, 30,40, 100}

Training times [minutes]
[Min[Mean|  Max |
025/ 035 038 |




TABLE 13: SINDy hyper-parameters and training times (in CNN-SINDy) for KS

’Hyper—parameter tuning‘ Values ‘
Library Polynomials
Degree {1,2,3}
Threshold {0.001, 0.0001,0.00001}

Training times [minutes]
’ Min ‘ Mean ‘ Max ‘
013062 159 |
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D. Viscous Flow Behind a Cylinder

The flow behind a cylinder in the two dimensional space is simulated by solving the incompressible Navier-Stokes
equations with Brinkman penalization to enforce the no-slip boundary conditions on the surface of the cylinder [51, 52],
ie.

Ju Vp
— 4 (u-Viu=—— +vAu+ ¥ u® —u),
G+ (V= = O —u) -
V-u=0,

where u = [uy, uy]T € R? is the velocity, p € R is the pressure field, p is the density, v is the kinematic viscocity, and A
is the penalization coefficient. The velocity-field u(®) € R? describes the translation of the cylinder. The numerical
method of the flow solver is finite differences, with the incompressibility enforced through pressure projection. The
computational domain is Q = [0, 1] x [0,0.5], the cylinder is positioned at (0.2,0.5) € Q, with diameter D = 0.075.
The cylinder is described by the characteristic function x(*), that is x(¥) = 1 inside the cylinder Q) and x(*) = 0
outside Q \ Q). We consider the application of LED to two Reynolds’ numbers Re = 100 and Re = 1000, by setting
v = 0.0001125 and v = 0.00001125 respectively. The Strouhal number (defined in the SI Equation 26) is St = 0.175,
and St = 0.225 for Re = 100 and Re = 1000 respectively. For both cases, the domain is discretized using 1024 x 512
grid-points and the time-step §t is adapted to ensure that the CFL number is fixed at 0.5. More details on the domain
size and simulation are provided in the SI 3 D.

Equation 17 is solved for the velocity u € R? and pressure field p € R using the pressure projection method. First,
we perform advection and diffusion of the flow field in the whole domain

u* =u' + 6t (vAu' — (u*- V)u') . (18)

The continuity equation requires the field to be divergence-free. This condition is imposed with the pressure projection

(19)

The pressure field used here is obtained by solving the Poisson equation emerging from the divergence of Equation (19),
i.e.

Aptt =Ly .y, 20
p 5V (20)
Note that adding Equation (19) and Equation (18) yields the original Equation (17) without the penalization term for
Euler timestepping. The time-step is completed by applying the penalization force using 6tA = 1,

utt! = u + X(s),t+1(u(s),t+1 _ u**) ] (21)

We remark that the penalisation force acts as a Lagrange multiplier enforcing the translation motion of the cylinder on
the fluid. The temporally discrete equations described above are solved on a grid with spacing Az using second-order
central finite differences for diffusion terms, and a third-order upwind scheme for advection terms.

For the simulated impulsively started cylinder the Reynolds-number for a cylinder with diameter D moving with
velocity v in a fluid with kinematic viscosity v is defined as

Dv

Re = I (22)
In the present simulations the cylinder moves with constant velocity v = 0.15 in —x-direction. The computational
domain is chosen to be Q = [0, 1] x [0,0.5] and moves with the center of mass of the sphere with diameter D = 0.075,
that is fixed at (0.2,0.5) € 2. Here we present results for a simulation at Re = 100 and Re = 1000 by setting the
kinematic viscocity to be v = 0.0001125 and v = 0.00001125 respectively. For both cases, the domain is discretized
using 1024 x 512 gridpoints and the time-step 6t is adapted to ensure that the CFL-number is fixed at 0.5.

The Strouhal number St describes the periodic vortex shedding at the wake of the cylinder. It is defined as

_Dbf

14

St (23)

where f is the frequency of vortex shedding. In our case, St = 0.175 for Re = 100, and St = 0.225 for Re = 1000.
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The state of the simulation is described by the velocity u € R? and the pressure p € R at each grid point. The drag
coefficient (Cd) around the cylinder for the viscosity u and pressure p; is calculated as

F. = | u(Vu+vuT)-nds, (24)
F, = Sﬁﬁ —pnds, (25)
2-F,-u
Cyq,=—-H+r = 26
= Tl D 0
2-F,-u
Cyp=—-"L_"=2_ 27
= 5 TulP- D @
Ca=Cqp+Cap, (28)

where uy, = (1,0)7 is the free-stream velocity and n is the outward normal of the cylinder perimeter.

The state of the LED at every time-step is composed of four fields, the two components of the velocity field u,, and
Uy, the scalar pressure p at each grid-point, and the vorticity field w computed a-posteriori from the velocity field, i.e.
st = {ug, uy, p,w} € RI*512x1024 " The simulation state s; is saved at a coarse time resolution At = 0.2 for a total
of 1000 coarse time-steps. There are 512 grid points along the length of the channel and 1024 gird points along the
width of the channel. After discarding the initial transients, 250 time-steps are used for training (equivalent to 7' = 50
time units), the next 250 for validation (equivalent to 7' = 50 time units), and the next 500 for testing (equivalent to
T = 100 time units).
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FIG. 13: The architecture of the CNN employed in the flow behind a cylinder example.

LED employs a Convolutional neural network (CNN) to identify a low dimensional latent space z € R* in the
Re = 100 scenario, and z € R'? in the Re = 1000 scenario. The CNN architecture is depicted in 13, and the layers are
given in Table 14. We experimented with various activation functions, addition of batch-normalization layers, addition
of transpose convolutional layers in the decoding part, different kernel sizes, and optimizers. The data are scaled to
[0,1]. The output activation function of the CNN autoencoder is set to 0.5 + 0.5 tanh(-), whose image range matches
the data range.

The hyper-parameter tuning and training times for the LSTM-RNN of LED are given in Table 15. The hyper-
parameters and training times for the RC are given in Table 16. The hyper-parameters and training times for SINDy
are given in Table 17.

The hyper-parameters and training times for the RC are given in Table 16. The hyper-parameters and training
times for SINDy are given in Table 17.



TABLE 14: CNN Autoencoder of LED for the flow behind a cylinder at Re € {100, 1000}

Layer ENCODER

(0) interpolationLayer()

(1) ZeroPad2d(padding=(6, 6, 6, 6), value=0.0)

(2) Conv2d(4, 20, kernel_size=(13, 13), stride=(1, 1))

(3) BatchNorm2d(20, eps=1e-05, momentum=0.1, affine=0, track_running_stats=True)

(4) AvgPool2d( kernel size=2, stride=2, padding=0)

(5) CELU (alpha=1.0)

(6) ZeroPad2d(padding=(6, 6, 6, 6), value=0.0)

(7) Conv2d(20, 20, kernel size=(13, 13), stride=(1, 1))

(8) BatchNorm2d(20, eps=1e-05, momentum=0.1, affine=0, track_running_stats=True)

(9) AvgPool2d( kernel_size=2, stride=2, padding=0)

(10) CELU (alpha=1.0)

(11) ZeroPad2d(padding=(6, 6, 6, 6), value=0.0)

(12) Conv2d(20, 20, kernel_size=(13, 13), stride=(1, 1))

(13) BatchNorm2d (20, eps=1e-05, momentum=0.1, affine=0, track_running_stats=True)

(14) AvgPool2d( kernel_size=2, stride=2, padding=0)

(15) CELU(alpha=1.0)

(16) ZeroPad2d(padding=(6, 6, 6, 6), value=0.0)

(17) Conv2d(20, 20, kernel size=(13, 13), stride=(1, 1))

(18) BatchNorm2d(20, eps=1e-05, momentum=0.1, affine=0, track_running_stats=True)

(19) AvgPool2d( kernel_size=2, stride=2, padding=0)

(20) CELU (alpha=1.0)

(21) ZeroPad2d(padding=(6, 6, 6, 6), value=0.0)

(22) Conv2d(20, 20, kernel size=(13, 13), stride=(1, 1))

(23) BatchNorm2d (20, eps=1e-05, momentum=0.1, affine=0, track_running_stats=True)

(24) AvgPool2d( kernel size=2, stride=2, padding=0)

(25) CELU (alpha=1.0)

(26) ZeroPad2d(padding=(6, 6, 6, 6), value=0.0)

(27) Conv2d(20, 2, kernel size=(13, 13), stride=(1, 1))

(28) AvgPool2d( kernel_size=2, stride=2, padding=0)

(29) CELU (alpha=1.0)

(30) Flatten(start_dim=-3, end_dim=-1)

(31) Linear(in_features=64, out_features=d,, bias=True)

(32) CELU (alpha=1.0)

z € R%

Layer DECODER

(0) Linear(in_features=d,, out_features=64, bias=True)

(1) CELU (alpha=1.0)

(2) ViewModule()

(3) ConvTranspose2d(2, 20, kernel_size=(13, 13), stride=(2, 2), padding=(6, 6), output_padding=(1, 1))

(4) BatchNorm2d (20, eps=1e-05, momentum=0.1, affine=0, track_running_stats=False)

(5) CELU (alpha=1.0)

(6) ConvTranspose2d (20, 20, kernel_size=(13, 13), stride=(2, 2), padding=(6, 6), output_padding=(1, 1))

(7) BatchNorm2d(20, eps=1e-05, momentum=0.1, affine=0, track_running_stats=False)

(8) CELU(alpha=1.0)

(9) ConvTranspose2d (20, 20, kernel_size=(13, 13), stride=(2, 2), padding=(6, 6), output_padding=(1, 1))
(10) BatchNorm2d(20, eps=1e-05, momentum=0.1, affine=0, track_running_stats=False)

(11) CELU (alpha=1.0)

(12) ConvTranspose2d (20, 20, kernel_size=(13, 13), stride=(2, 2), padding=(6, 6), output_padding=(1, 1))
(13) BatchNorm2d(20, eps=1e-05, momentum=0.1, affine=0, track_running_stats=False)

(14) CELU (alpha=1.0)

(15) ConvTranspose2d (20, 20, kernel_size=(13, 13), stride=(2, 2), padding=(6, 6), output_padding=(1, 1))
(16) BatchNorm2d (20, eps=1e-05, momentum=0.1, affine=0, track_running_stats=False)

(17) CELU(alpha=1.0)

(18) ConvTranspose2d (20, 4, kernel size=(13, 13), stride=(2, 2), padding=(6, 6), output_padding=(1, 1))
(19) interpolationLayer()

(20) 1 + 0.5 Tanh()

{1,2,3,4,5,6,7,8,9,10,11,12, 16} |

‘ Latent dimension d,

Training times [minutes]
’ Min ‘Mean‘ Max ‘
[1os0[ 1081 1083 |




TABLE 15: LED (LSTM-RNN) hyper-parameters and training times for the flow behind a cylinder example

’ Hyperparameter Values
Optimizer Adabelief
Batch size 32
Initial learning rate 0.001
Max Epochs 1000
BPTT sequence length L| {10,25}
Warm-up steps 10
Prediction horizon 1000
RNN Cell LSTM
Number of RNN layers 1
Size of RNN layers {32,64}
Scaling [0, 1]

Training times [minutes]

’ Min‘ Mean ‘ Max

|

[722[ 723 [ 724

|
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TABLE 16: Reservoir Computer hyper-parameters and training times (in CNN-RC) for flow behind a cylinder example

’Hyper—parameter tuning

Values for Re = 100

‘ Values for Re = 1000

Solver
Size
Degree
Radius
Input scaling o
Dynamics length
Regularization 7

Noise level per mill

Pseudoinverse
200
10
0.99
{0.5,1,2}
100
{0.0,0.001, 0.0001, 0.00001 }

{10}

Pseudoinverse
200
10
0.99
{0.5,1,2}
100
{0.0,0.001,0.0001,0.00001 }

{10}

TABLE 17: SINDy hyper-parameters and training times (in CNN-SINDy) for flow behind a cylinder example

Training times [minutes]

’ Min‘ Mean ‘ Max

|

[12] 14 [ 192

|

’Hyper—parameter tuning‘ Values for Re = 100 ‘ Values for Re = 1000 ‘

Library
Degree
Threshold

Polynomials
{1,2,3}
{0.001, 0.0001, 0.00001}

Polynomials
{1,2,3}
{0.001, 0.0001, 0.00001}

Training times [minutes]

’ Min ‘ Mean ‘ Max

|

(114155 205

|
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E. Alanine Dipeptide Dynamics

The efficiency of LED in capturing complex molecular dynamics is demonstrated in the dynamics of a molecule of
alanine dipetide in water, a benchmark for enhanced sampling methods. The molecule is simulated with molecular
dynamics with a time-step dt = 1fs, to generate data of total length 38.4ns for training, 38.4ns for validation, and
100ns for testing. The time-step of LED is set to At = 0.1ps. In this case, LED utilizes an MD decoder, and an
MD-LSTM in the latent space, to model the stochastic, non-Markovian latent dynamics. The latent space dimension
is set to d, = 1. As shown in Figure 14, LED identifies a meaningful one dimensional latent space, and reproduces
statistics of the system. In our recent work [40], we demonstrate that LED also captures the time-scales between the
meta stable states and samples realistic protein configurations while being three orders of magnitude faster than the
molecular dynamics solver.
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FIG. 14: A) Ramachadran plot of the alanine dipeptide data, i.e. state density on the space spanned by two backbone
dihedral angles (¢,v). B) Ramachadran plot of the state evolution data predicted by LED with 7, =0 and d, = 1.
LED captures the three mostly visited meta-stable states {Cs, Pr;,ar}. C) Projection of the state evolution data to
the free energy on the one dimensional latent space unraveled by LED, i.e. F/kgT = —log p(z;). Low energy (high
probability) regions on the latent space are mapped to known metastable state configurations of alanine dipeptide.



