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Abstract

Inferring graph structure from observations on the nodes is an important and popular
network science task. Departing from the more common inference of a single graph, we
study the problem of jointly inferring multiple graphs from the observation of signals at
their nodes (graph signals), which are assumed to be stationary in the sought graphs.
Graph stationarity implies that the mapping between the covariance of the signals and
the sparse matrix representing the underlying graph is given by a matrix polynomial. A
prominent example is that of Markov random fields, where the inverse of the covariance
yields the sparse matrix of interest. From a modeling perspective, stationary graph signals
can be used to model linear network processes evolving on a set of (not necessarily known)
networks. Leveraging that matrix polynomials commute, a convex optimization method
along with sufficient conditions that guarantee the recovery of the true graphs are provided
when perfect covariance information is available. Particularly important from an empirical
viewpoint, we provide high-probability bounds on the recovery error as a function of the
number of signals observed and other key problem parameters. Numerical experiments
demonstrate the effectiveness of the proposed method with perfect covariance information
as well as its robustness in the noisy regime.
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1. Introduction

Inferring the topology of a network (graph) from a set of nodal observations is a prominent
problem in statistics, network science, machine learning, and signal processing (SP) (Ko-
laczyk 2009; Sporns 2012), with applications including power, communications, and brain
networks (Ortega et al. 2018; Marques et al. 2020; Djuric and Richard 2018), to name
a few. Networks can exist as actual physical entities or can be convenient mathematical
representations describing parsimonious pairwise relationships between data. Transversal
to the particularities of the setup, the fundamental assumption in these network-inference
approaches is the formalization of a relation between the topology of the sought network
and the properties of the nodal observations. Notable approaches include correlation net-
works (Kolaczyk 2009, Ch. 7.3.1), partial correlations and (Gaussian) Markov random
fields (Meinshausen and Bühlmann 2006; Friedman et al. 2008; Kolaczyk 2009; Lake and
Tenenbaum 2010; Yuan and Lin 2007; Banerjee et al. 2008), structural equation models (Cai
et al. 2013; Baingana et al. 2014), graph-SP-based approaches (Mateos et al. 2019; Dong
et al. 2019; Mei and Moura 2015; Dong et al. 2016; Kalofolias 2016; Pavez and Ortega
2016; Segarra et al. 2017a; Pasdeloup et al. 2017), as well as their non-linear generaliza-
tions (Karanikolas et al. 2016; Shen et al. 2017).

While most of the existing works have looked at the problem of identifying a single
network, many contemporary setups involve multiple related networks, each of them with
a subset of available observations. Examples of this multi-graph setup arise in multi-hop
communication networks deployed in dynamic environments where links are created or
destroyed as nodes change their position, in brain analytics where observations for different
patients are available and the objective is to estimate their brain functional networks, in
gene-to-gene networks where the goal is to identify pairwise interactions between genes and
measurements for different tissues, or in social networks where the same set of users can
have different types of social interactions (Arroyo et al. 2021; Bindu et al. 2017; Murase
et al. 2014; Ricchi et al. 2021).

Arguably, in many contemporary applications, dealing with multiple networks may be
more the rule than the exception. Last but not least, one must also note that the joint
identification of multiple graphs can be useful even if the interest is only in one of the
networks, since joint formulations exploit additional sources of information and, hence, are
likely to give rise to better solutions.

Given the previous motivations, our goal in this paper is to develop new schemes for
the joint inference of multiple networks that build on recent results from graph SP (GSP)
and, in particular, on the notion of graph stationarity (Marques et al. 2017; Perraudin and
Vandergheynst 2017; Girault et al. 2015). In the last years, GSP has emerged as a way to
generalize tools originally conceived to process signals with regular supports (time or space)
to signals defined in heterogeneous domains represented by graphs (Ortega et al. 2018).
The systematic approach put forth relies on the definition of a graph shift operator (GSO),
which is a sparse square matrix capturing the local interactions (connections) between pairs
of nodes. Within the GSP framework, the GSO constitutes the basic signal operator in the
vertex domain, and its eigenvectors define the graph Fourier transform, which enables the
analysis and processing of graph signals in a proper frequency domain. The GSO (typically
assumed to have the form of an adjacency or Laplacian matrix) is also critical to define

2



Joint Inference of Multiple Graphs from Matrix Polynomials

the notion of graph stationarity (Marques et al. 2017; Perraudin and Vandergheynst 2017;
Girault et al. 2015), which generalizes the classical notion of time-stationarity to signals
defined on graphs and constitutes the fundamental GSP concept utilized in this paper.
Given the covariance matrix associated with a random graph process, graph stationarity
requires this covariance and the GSO representing the support of the process to have the
same eigenvectors. This requirement, which is equivalent to saying that there exists a
polynomial mapping between the sparse shift and the covariance matrix, is fairly general,
encompassing classical approaches such as correlation and conditional independent networks
(Mateos et al. 2019).

Leveraging those concepts, we can now describe more concretely the GSP-inspired ap-
proach put forth in this paper, which aims at inferring the topology of the multiple networks
by solving an optimization problem where we look for graph shift matrices that are sparse,
guarantee that the observed signals are stationary on the identified graphs, and force the
different shifts to be close to each other according to a pre-specified level of similarity. Our
formulation also takes into account additional structural information that may be available
(such as the GSOs corresponding to a particular type of Laplacian, or being an adjacency
matrix without self-loops). Together with the novel approach for the formulation of the
joint topology inference of multiple networks, the paper also identifies theoretical conditions
under which convex relaxations are able to find the optimal sparse structure in noiseless
settings (Theorem 1) as well as a detailed theoretical analysis of the probability of robust
recovery in the more practical noisy scenario (Theorem 2). 1

1.1 Related Work

Although noticeably less than its single-network counterpart, joint inference of multiple
networks—a structure oftentimes referred to as a multi-layer graph (Oselio et al. 2014;
Sardellitti et al. 2019)—has attracted attention for different versions of the problem. The
most widely studied one is that of inferring (tracking) the topology of time-varying networks.
The standard approach is to assume that the variation is smooth across time, so that
the graph-inference problem is regularized with a term that promotes changes between
consecutive graphs to be small in some pre-specified norm (Baingana and Giannakis 2017;
Ha et al. 2021; Kalofolias et al. 2017; Kao et al. 2017; Natali et al. 2021; Sardellitti et al.
2021; Yamada and Tanaka 2021; Yamada et al. 2019; Zhou et al. 2010).

A second cluster of works focuses on the joint inference of multiple Gaussian graphical
models, where conditional dependence among nodes for a particular graphical model is
represented by the precision matrix of a multivariate Gaussian distribution (Lauritzen 1996).
Each graph has its own subset of signal observations, and the goal is the joint recovery of
sparse precision matrices (Bilgrau et al. 2020; Cai et al. 2016; Chiquet et al. 2011; Danaher
et al. 2014; Gan et al. 2019; Guo et al. 2011; Honorio and Samaras 2010; Ma and Michailidis
2016; Mohan et al. 2014; Peeters et al. 2020; Price et al. 2021; Ryali et al. 2012; Tao et al.

1. This paper significantly expands on our conference precursor (Segarra et al. 2017). The precursor simply
presents the joint topology inference method for noiseless and robust settings and introduces but does
not prove Theorem 1. In contrast, here we prove Theorem 1, we introduce and prove our main theoretical
result (Theorem 2), we significantly enrich the discussion around our findings, and expand the numerical
experiments to illustrate the new results and to include real-world data.
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2016; Varoquaux et al. 2010; Wang et al. 2020; Yang et al. 2015, 2021; Zhu and Li 2018;
Zhu et al. 2014).

The formulated problems typically correspond to generalizations of the graphical lasso
formulation, a popular choice for estimation of Gaussian graphical models in the single
graph case (Meinshausen and Bühlmann 2006; Friedman et al. 2008; Kolaczyk 2009; Lake
and Tenenbaum 2010; Yuan and Lin 2007; Banerjee et al. 2008; Kumar et al. 2020). These
previous works form assumptions for either similarity or common structure across the mul-
tiple graphs to improve inference of the precision matrices or similar graph structure rep-
resentations. For example, Ma and Michailidis (2016) estimate multiple graphical models
by first estimating all structures by group lasso given structural relationship assumptions,
then applying graphical lasso given the previously estimated structure to refit the weights
of the matrices. Differently, instead of directly inferring the precision matrices, Lee and
Liu (2015) represent them as the sum of a common matrix and a matrix unique to each
graph and apply an `1 minimization problem to estimate the decomposed matrices. As
another example, Peterson et al. (2015) perform link estimation by Bayesian inference of
graph structures given structural knowledge in the form of a Markov random field prior to
encourage structural similarity in graphs that are more related. We refer the reader to the
review of joint Gaussian graphical model inference by Tsai et al. 2021.

A third class of more involved approaches looks at the case of signal mixtures, where the
assignment of each graph to observed signals is unknown; see, e.g. Lotsi and Wit (2016);
Hao et al. (2017) for sparse precision-matrices approaches and Araghi et al. (2019); Hong
and Dai (2021); Maretic and Frossard (2020) for GSP-based ones. In those cases, not only
the graphs but also the signal-to-graph assignments must be inferred. This results in re-
covery problems that are more challenging to solve, with Gaussianity being often assumed
to leverage expectation-maximization approaches. In most cases, the focus is on the prob-
lem formulation and algorithmic design, without characterizing the recovery performance
theoretically. The present paper is more closely related to the second cluster of works but
goes beyond sparse precision matrices and provides novel theoretical guarantees, as detailed
next.

1.2 Contributions

This paper’s contributions are fourfold:

(i) We propose an efficient optimization-based solution to the problem of joint inference
of sparse graphs from the observation of stationary graph signals.

(ii) We determine sufficient conditions under which the proposed efficient method is guar-
anteed to recover the underlying set of true sparse graphs (Theorem 1).

(iii) We show the robustness of our method by deriving tight high-probability upper bounds
on the recovery errors when imperfect covariance information is used to solve the joint
inference problem (Theorem 2).

(iv) We rely on both synthetic and real-world data to compare the performance of joint and
separate inference, validate the conditions for guaranteed recovery, and demonstrate
the robustness of the proposed method in noisy settings.
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1.3 Paper Outline

The remainder of this paper is organized as follows. In Section 2, we describe the main
problem and the required assumptions, introduce some background on signal stationarity,
and discuss graph similarity notions. Section 3 first introduces the non-convex problem
of jointly inferring multiple graphs given covariance matrices. While true covariances are
not often available, this problem lays the foundation for more realistic problem setups.
The inference problem is further developed in Section 3.1, where we introduce the convex
relaxation of the sparse graph learning problem and show conditions that lead to perfect
recovery. In Section 4, we demonstrate the robustness of our method when only noisy or
imperfect covariance matrices are available, and we provide a novel bound on the recovery
error. Through experiments on synthetic and real-world data, we illustrate the performance
of the proposed joint graph inference method in Section 5. Finally, we discuss conclusions
and possible future research directions in Section 6.

1.4 Notation

The entries of a matrix X and a (column) vector x are denoted by Xij and xi, respectively.
The notation > and † stands for transpose and pseudo-inverse, respectively. With the size
clear from the context, 0 and 1 refer to the all-zero and all-one vectors, and ei refers to the
i-th canonical vector, i.e., a vector whose entries are all zero except the i-th one, which is
set to one. Sets are represented by calligraphic capital letters. Given an implicit set B and
a set A ⊆ B, the set Ac stands for the complement set of A, i.e., Ac = B \ A contains the
elements in B that do not belong to A. Moreover, XI denotes a submatrix of X formed by
selecting the rows of X indexed by I. The expression X>I denotes first selecting the rows
and then transposing, whereas [X>]I is used to denote the opposite order of operations. For
a vector x, diag(x) is a diagonal matrix whose i-th diagonal entry is xi; when applied to a
matrix, diag(X) is a vector with the diagonal elements of X. The vertical concatenation of
the columns of X is denoted as vec(X). The operators ◦, ⊗, and � stand for the Hadamard
(element-wise), Kronecker, and Khatri-Rao (column-wise Kronecker) matrix products, while
the operator ⊕ denotes the Kronecker matrix sum, so that X⊕Y = X⊗ I + I⊗Y, where
the size of each of the identity matrices is chosen to make the dimensions of the matrices
consistent. ‖X‖p is the matrix norm induced by the vector `p norm, not to be confused
with ‖vec(X)‖p. ker(X) and Im(X) refer to the null space and the span of the columns of
X, respectively. The notation O(·) and o(·) entail the usual asymptotic meaning and we
write that f � g if f = O(g) and g = O(f).

1.5 Fundamentals of Graph Signal Processing

Let us consider a generic weighted and undirected graph G consisting of a node set N of
known cardinality N , an edge set E of unordered pairs of elements in N , and edge weights
Aij ∈ R such that Aij = Aji 6= 0 for all (i, j) ∈ E . The edge weights Aij are collected as
entries of the symmetric adjacency matrix A and the node degrees in the diagonal matrix
D := diag(A1). These are used to form the combinatorial Laplacian matrix Lc := D −A
and the normalized Laplacian L := I − D−1/2AD−1/2. More broadly, one can define a
generic GSO S ∈ RN×N as any matrix whose off-diagonal sparsity pattern is equal to that
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of the adjacency matrix of G (Sandryhaila and Moura 2013). Although the choice of S can
be adapted to the problem at hand, most existing works set it to either A, Lc, or L. If
the GSO is symmetric, its normal eigendecomposition S = VΛV>, with V unitary and Λ
diagonal, exists. Suppose now that we associate a value (observation) with each node of
the graph. Those N values form a graph signal that can be conveniently represented as
the vector x = [x1, ..., xN ]> ∈ RN , with entry xn denoting the signal value at node n. A
key aspect when dealing with graph signals is the definition of meaningful operators able
to relate different signals while efficiently accounting for the topology of the graph. Linear
graph filters, which are defined as H =

∑∞
l=0 hlS

l, i.e., matrix polynomials of the GSO
(Sandryhaila and Moura 2013), are the most widely-adopted alternative. Graph filters
have shown to be useful not only to process graph signals (e.g., used for denoising and
interpolation), but also to model linear network dynamics and network processes (Djuric and
Richard 2018). To illustrate this latter point, consider a dynamic network setup where the
initial state (value) of most nodes is zero and only a few seeding nodes (sources) have non-
zero values. Suppose further that as time evolves, nodes communicate with their neighbors
according to some dynamics captured by h0, h1, ... , then the resultant state x can be
represented as x =

∑∞
l=0 hlS

lz = Hz, i.e., the output of a graph filter to a sparse input
graph signal z. The expression x =

∑∞
l=0 hlS

lz with ‖z‖0 � N has indeed been used to
model a number of network dynamics as well as to solve different inverse problems involving
observations of network processes (Segarra et al. 2017c; Djuric and Richard 2018; Segarra
et al. 2017b; Zhu et al. 2020a,b).

1.6 Stationary Graph Signals

Consider now a statistical GSP setup where the values in x are random, and use x̄ = E [x]
and C = E

[
(x− x̄)(x− x̄)>

]
to denote the mean and covariance of this random process.

In this setup, the random graph process x is said to be stationary in the GSO S if its co-
variance matrix C is diagonalized by V, the eigenvectors of the shift (Marques et al. 2017;
Perraudin and Vandergheynst 2017; Girault et al. 2015). Equivalently, a random graph
process is defined to be stationary in S if it can be represented as the output generated
after filtering a white input with a linear graph filter H =

∑∞
l=0 hlS

l. Note that, when
particularized to time-varying signals, the two aforementioned definitions boil down to the
classical definition of stationary in time. The first definition requires stationary time pro-
cesses to be uncorrelated in the Fourier domain, while the second one puts forth a generative
model stating that a stationary time process can be represented as the output of a linear
time-invariant filter to a white input (Marques et al. 2017). More importantly for the graph
context, the second definition reveals that covariance matrices of graph-stationarity signals
can be written as (positive-semidefinite) polynomials of the GSO. In other words, the set
of processes that are stationary on a (sparse) GSO S is formed by the random processes
whose covariances can be written as polynomials of S (Marques et al. 2017; Segarra et al.
2017a).

2. Problem Statement

To state our joint network topology inference problem, start by considering a scenario with
K different graphs {G(k)}Kk=1 defined over the same set N of nodes, but with possibly
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different sets of edges and weights. This implies that K different GSOs {S(k)}Kk=1 exist,
each represented by an N ×N matrix whose sparsity pattern and non-zero values may be
different across k. Suppose also that, associated with each of the graphs, we have access
to a set of graph signals collecting information attached to the nodes. Formally, we use

matrix X(k) := [x
(k)
1 , ...,x

(k)
nk ] ∈ RN×nk to denote the matrix containing the nk graph signals

associated with graph G(k). To simplify notation, we will assume that the signals are zero
mean and denote the sample covariance of the k-th set as

Ĉ(k) :=
1

nk
X(k)(X(k))>. (1)

The setup that we investigate in this paper is one where the graphs are unknown and we
want to use the observed signals to infer their topology. This is feasible under the assumption
that the properties of the signals are related to those of the underlying graph. Intuitively,
when there is no relation among the different graphs, each of the K topology inference
problems can be solved separately. However, if the graphs are related, joint inference can
be beneficial. In this context, our problem is stated as follows.

Problem 1 Given the observations {X(k)}Kk=1 find the graph structure encoded in {S(k)}Kk=1

under the assumptions that: (AS1) the signals in X(k) are realizations of a process that is
stationary in S(k) and (AS2) graphs k and k′ are “close” according to a particular distance
d(S(k),S(k′)).

Although relatively formal, the statement of the problem above can give rise to different
formulations. This issue will be resolved in Section 3, where an optimization problem
associated with Problem 1 is presented. Before that, several remarks on assumptions (AS1)
and (AS2) are provided.

(AS1) Stationarity: To better understand the implications of (AS1), let us recall that
stationarity requires the covariance of the graph process to be a polynomial of S. In other
words, (AS1) is tantamount to assuming that the mapping between the GSO S, which
represents pairwise relationships between the nodes, and the matrix C = E

[
xx>

]
, which

represents pairwise correlations between the nodes, is analytic (smooth), so that it can be
accurately represented by a matrix polynomial. At an intuitive level, this model assumes
that S encodes latent one-hop interactions between nodes and that each successive appli-
cation of the shift (i.e., higher-order powers of S) spreads the original information across
an iteratively increasing neighborhood, which ends up giving rise to indirect correlations
among all nodes in the graph (Djuric and Richard 2018). Put it differently, although the
correlation is given by the dense matrix C, the actual dependencies can be (more easily)
represented by the more parsimonious matrix S. Relevant relations between the shift and
the covariance matrices that fall within this model include

• C = S, as in correlation networks;

• C = S−1, as in conditionally independent Markov random fields; or

• C = (I−S)−1(I−S)−> = (I−S)−2, as in symmetric structural equation models with
white exogenous inputs.
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To elaborate on the third example, structural equation models postulate that the observed
signal x can be written as x = Ax + w, where w is the so-called exogenous input, and
A is an adjacency matrix without self-loops (Shen et al. 2017). Rewriting the previ-
ous expression as x = (I − A)−1w and using the fact that w is white, it follows that
E
[
xx>

]
= (I−A)−1E

[
ww>

]
(I−A)−> = (I−A)−1(I−A)−> = (I−A)−2, where for the

last step we have used that the graph is undirected. Note also that the second example,
which can be equivalently written as S = C−1, will allow us to establish meaningful links
between our approach and graphical lasso. Although graph stationarity does not require
Gaussianity, many of the works in the area assume that the graph signals at hand are not
only stationary but also Gaussian distributed (Djuric and Richard 2018). That is indeed the
case for, e.g., linear network diffusion processes whose initial condition is Gaussian. While
the algorithms presented in this paper can be applied regardless of the distribution of the
data, the theoretical result in Theorem 2 is the only point where Gaussianity is assumed.

(AS2) Similarity Among Graphs. Regarding (AS2), the two critical issues are the form
of the distance function d(·, ·) and determining the proximity degree among the different
graphs. To handle the second issue, let us define the weighted and directed graph GQ whose
node set Q collects the K GSOs and with Wk,k′ , the weight of edge (k, k′), representing
the similarity between S(k) and S(k′). Note that this graph GQ is not to be estimated
but is user-defined to represent the similarity relationship among the GSOs that are to
be estimated {S(k)}Kk=1. The particular form of GQ will depend on the application at
hand. In dynamic environments where the index k corresponds to time, a reasonable choice
is to set GQ to a directed path connecting the GSOs corresponding to consecutive time
instants (windows). Differently, if k indexes patients with a particular disease, then it is
reasonable to set GQ as a complete graph with the strength of the connection Wk,k′ depending
on the similarity between the corresponding patients. The weights in GQ can be known
beforehand or learned from the data after postulating a particular model (see, e.g., Oselio
et al. (2014) for a hierarchical approach). Regarding the form of d(S(k),S(k′)), reasonable
choices include ‖vec(S(k)−S(k′))‖0 and ‖vec(S(k)−S(k′))‖1, which will promote the pair of
shifts to have the same sparsity pattern and weights; and ‖vec(S(k) − S(k′))‖22, which will
promote similar weights. Several of these distances have been explored in the context of
joint identification of multiple sparse precision matrices C = S−1 giving rise to modified
graphical lasso formulations using regularized lasso (Danaher et al. 2014), regularized elastic
net (Ryali et al. 2012), and regularized `1,∞ group lasso (Honorio and Samaras 2010).

3. Convex Solution and Recovery Guarantees

Our goal is to provide an optimization-based solution to Problem 1. Because multiple
solutions satisfy the stationarity assumption (AS1), recovery includes the selection of a par-
ticular solution satisfying desirable structural characteristics. We encourage parsimonious
graph structure to obtain interpretable representations and minimize computation of poten-
tial downstream tasks. Specifically, our approach is to find the sparsest graphs {S(k)∗}Kk=1
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that satisfy assumptions (AS1) and (AS2) by solving

min
{S(k)}Kk=1

∑
k

αk‖vec(S(k))‖0 +
∑
k<k′

βk,k′ d(S(k),S(k′))

s. t. C(k)S(k) = S(k)C(k), S(k) ∈ S(k), for all k. (2)

In (2), the set S(k) specifies additional properties that S(k) must satisfy, with examples
including symmetry, zero diagonal elements (if the GSO is an adjacency matrix with no self-
loops), or non-positive off-diagonal elements and 0 = S(k)1 for the case of a combinatorial
Laplacian. Regarding the structure of the objective, the first term promotes sparsity on the
GSOs, the second one promotes the proximity postulated in (AS2), and {αk} and {βk,k′}
are parameters that allow a trade-off between the two terms in the objective. Finally,
the constraints C(k)S(k) = S(k)C(k) account for (AS1). Specifically, note that stationarity
implies that the eigenvectors of the covariance and those of the GSO are the same; hence,
the covariance and the shift must commute, as enforced in the constraint. As will be
apparent in Section 4, to take into account that in practice we have access to the sample
covariance Ĉ(k), it is reasonable to relax the equalities in C(k)S(k) = S(k)C(k), with the level
of tolerated violation depending on the number of samples available to form the estimates
Ĉ(k).

3.1 Relaxation for the Sparse Formulation

Consider the following convex optimization problem

min
{S(k)}Kk=1

∑
k

αk‖vec(S(k))‖1+
∑
k<k′

βk,k′ ‖vec(S(k) − S(k′))‖1

s. t. C(k)S(k) = S(k)C(k), S(k) = S(k)>, for all k

S
(k)
ii = 0, for all {k, i},

∑N
j=1 S

(1)
j1 = 1. (3)

Notice that from (2) to (3) we not only relax the objective function by replacing the `0-norm
with the `1-norm, but we also specify the distance d(·, ·) in the objective as a graph pair-
wise `1-norm difference and the feasibility set S(k) by requiring valid undirected adjacency
matrices without loops. Finally, the last constraint in (3) fixes the scale of the recovered
graphs and precludes the all-zero solution from belonging to the feasibility set. If we de-
note by {Ŝ(k)}Kk=1 the solution to (3), we now present conditions under which {Ŝ(k)}Kk=1 is

guaranteed to coincide with the corresponding solution {S(k)∗}Kk=1 to (2).
In order to formally define these conditions, a series of definitions must be put in place.

First, define matrices B(i,j) ∈ RN×N for i < j such that B
(i,j)
ij = 1, B

(i,j)
ji = −1, and all

other entries are zero. Based on this, we denote by B ∈ R(N2 )×N2
a matrix whose rows are

the vectorized forms of B(i,j) for all i, j ∈ {1, 2, . . . , N} where i < j. In this way, Bs(k) = 0
when s(k) is the vectorized form of a symmetric matrix. Similarly, define vectors z(i,j) ∈ RK

for i < j ≤ K such that z
(i,j)
i = 1, z

(i,j)
j = −1, and all other entries are zero. We build the

matrix Z ∈ R(K2 )×K whose rows are the vectors z(i,j)
>

. We consolidate the information of
all the covariances C(k) in the block diagonal matrix Σ defined as Σ := blockdiag(−C(1) ⊕
C(1), . . . ,−C(K) ⊕ C(K)) where, we recall, ⊕ denotes the Kronecker sum. With α and β
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collecting the values of {αk} and {βk,k′} respectively, and D′={1, N + 2, . . . , N2} denoting
the indices corresponding to the diagonal of an N×N matrix when vectorized, we define
the following two matrices

Ψ :=

[
diag(α)

diag(β)Z

]
⊗ IN2 , Φ :=


IK ⊗B

IK ⊗ [IN2 ]D′

Σ
(e1 ⊗ 1N )>

 . (4)

Denote by J the index set of the support of s∗, where s∗ ∈ RKN2
collects the vectorized

versions of {S(k)∗}Kk=1, and by I the index set of the support of Ψs∗. With this notation in
place, the following result holds.

Theorem 1 Assuming problem (3) is feasible, {Ŝ(k)}Kk=1 = {S(k)∗}Kk=1 if the two following
conditions are satisfied:
1) [Φ>]J is full row rank; and
2) There exists a constant δ > 0 such that

γ := ‖ΨIc(δ−2Φ>Φ + Ψ>IcΨIc)
−1Ψ>I ‖∞ < 1. (5)

Proof Denoting by s(k) = vec(S(k)) for all k, problem (3) can be reformulated as

min
{s(k)}Kk=1

∑
k

αk‖s(k)‖1 +
∑
k<k′

βk,k′ ‖s(k) − s(k
′)‖1

s. t. (IN ⊗C(k)−C(k) ⊗ IN )s(k)= 0,

Bs(k)=0, [IN2 ]D′ s(k) = 0, for all k

(e1 ⊗ 1N )>s(1) = 1, (6)

where, we recall, s(k) belonging to the null space of B ensures that S(k) is symmetric, and
the last equality imposes that the first column of S(1) sums up to 1 [cf. last constraint

in (3)]. Denoting by s = [s(1)
>
, . . . , s(K)>]> and leveraging the definitions in (4), problem

(6) can be compactly stated as

min
s
‖Ψs‖1 s. t. Φs = b, (7)

where b is a binary vector of length K(
(
N
2

)
+ N2 + N) + 1 with all its entries equal to 0

except for the last one that is a 1. Problem (7) is an instance of `1-analysis (Zhang et al.,
2016). It can be shown through Theorem 1 by Zhang et al. (2016) that the solution to (7)
coincides with the sparsest solution s∗ if:

a) ker(ΨIc) ∩ ker(Φ) = {0}; and

b) There exists a vector y ∈ RN
2(K+(K2 )) such that Ψ>y ∈ Im(Φ>), yI = sign(ΨIs

∗),
and ‖yIc‖∞ < 1.
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The remainder of the proof is devoted to showing that if conditions 1) and 2) in the
statement of the theorem hold, then a) and b) are satisfied.

We begin by showing that 1) implies a). In order to do this, we first provide some
insight on the specific form of ΨIc . Notice that the first KN2 rows of Ψ correspond
to the computation of the `1-norm cost of each entry of the K graph shifts whereas the
last

(
K
2

)
N2 rows of Ψ correspond to the cost of a discrepancy between corresponding

entries of two different graph shifts. Hence, the rows selected in ΨIc , i.e., the ones not
in the support of Ψ s∗, belong to two classes: i) among the first KN2 rows, Ic selects
the rows corresponding to elements in s∗ which are 0; and ii) among the last

(
K
2

)
N2, Ic

selects the rows corresponding to pairs of elements that are repeated in two different graph
shifts. Thus, for a generic vector w ∈ RKN2

to belong to ker(ΨIc) two conditions must
be satisfied (associated with the two aforementioned classes): i) if s∗i = 0 then wi = 0; and
ii) if s∗(k−1)N2+i = s∗(k′−1)N2+i for some k, k′, i then w(k−1)N2+i = w(k′−1)N2+i. For a) to be
satisfied, we need to guarantee that any such w cannot belong to the null space of Φ. A
sufficient condition for this is to require that columns i of Φ associated with values s∗i 6= 0
are linearly independent, which is exactly condition 1) in the theorem’s statement.

The next step is to show that condition 2) implies b). For this, consider the following
`2 norm minimization problem

min
{y,r}

δ2‖r‖22 + ‖y‖22 s. t. Ψ>y = Φ>r, yI = sign(ΨIs
∗), (8)

where δ is a positive tuning constant. Including the term δ2‖r‖22 in the objective guarantees
the existence of a closed-form expression for the minimizing argument, while preventing
numerical instability when solving the optimization. We now show that the solution y∗

of (8) satisfies the requirements imposed in condition b). The two constraints in (8) en-
force the fulfillment of the first two requirements in b), hence, we are left to show that
‖y∗Ic‖∞ < 1. Since the values of yI are fixed, the constraint Ψ>y = Φ>r can be rewritten
as Ψ>I sign(ΨIs

∗) = −Ψ>IcyIc + Φ>δ−1δr. Then, by defining the vector t := [δr>,−y>Ic ]
>

and the matrix Q := [δ−1Φ>,Ψ>Ic ], (8) can be rewritten as

min
t
‖t‖22 s. t. Ψ>I sign(ΨIs

∗) = Qt. (9)

The minimum-norm solution to (9) is given by t∗ = (Q)†Ψ>I sign(ΨIs
∗) from where it

follows that

y∗Ic =−ΨIc(δ
−2Φ>Φ + Ψ>IcΨIc)

−1Ψ>I sign(ΨIs
∗). (10)

Condition a) guarantees the existence of the inverse in (10). Since ‖sign(ΨIs
∗)‖∞ = 1,

we may bound the `∞ norm of y∗Ic as ‖y∗Ic‖∞ ≤ ‖ΨIc(δ−2Φ
>Φ + Ψ>IcΨIc)

−1Ψ>I ‖∞ = γ.
Hence, condition 2) in the theorem guarantees ‖y∗Ic‖∞ < 1 as wanted.

Theorem 1 provides sufficient conditions under which the relaxation in (3) is guaranteed
to recover the true sparse GSOs {S(k)∗}Kk=1. Numerical experiments in Section 5 reveal that
the bound imposed on γ in (5) is tight by providing examples where γ = 1 and for which
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recovery fails. In the statement of the theorem, condition 1) ensures that the solution to (3)
is unique, a necessary requirement to guarantee sparse recovery. Condition 2) is derived
from the construction of a dual certificate designed to ensure that the unique solution
to (3) also has minimum `0 (pseudo-)norm (Zhang et al. 2016). Details within the proof
of the theorem reveal why condition 2) is sufficient but not necessary. In a nutshell, the
condition guarantees that a specific judicious candidate for the dual certificate (obtained
by minimizing a relevant `2 norm) satisfies a bound on its `∞ norm. However, when this
specific candidate fails, one cannot rule out the existence of better dual certificates that
can ensure sparse recovery. To gain further intuition on (5), notice that condition 2) is
always satisfied whenever Φ>Φ is invertible. Indeed, for small values of δ we have that
γ ≈ δ2‖ΨIc(Φ>Φ)−1Ψ>I ‖∞, which can be made smaller than 1 by selecting arbitrarily
small values of δ. This should not be surprising since Φ>Φ being invertible implies that
Φ has full column rank which, in turn, implies that the feasibility set of our problem is a
singleton [cf. (7)]. Thus, in this extreme case, the `1 relaxation (and any other objective)
is guaranteed to recover the true GSOs. Notice that the guarantees for exact recovery
provided by Theorem 1 strongly rely on the fact that all constraints in (3) are equality
constraints. This, in turn, is enabled by the assumption that we have perfect knowledge of
the covariances C(k). Thus, the more practical scenario where the covariances are estimated
requires a robust reformulation of the recovery problem, as we discuss next.

4. Robust Recovery and Sample Complexity

Following the formal description of Problem 1, we do not have access to the covariance
matrices C(k) but rather to signals {X(k)}Kk=1. Hence, we reformulate (3) to account for

the fact that we can only have access to sample estimates Ĉ(k) of the covariances [cf. (1)].
More specifically, the commutativity constraint in (3), C(k)S(k) = S(k)C(k), is relaxed and
instead we bound the difference between Ĉ(k)S(k) and S(k)Ĉ(k), giving rise to the following
optimization problem

min
{S(k)}Kk=1

∑
k

αk‖vec(S(k))‖1+
∑
k<k′

βk,k′ ‖vec(S(k) − S(k′))‖1

s. t.

K∑
k=1

‖S(k)Ĉ(k) − Ĉ(k)S(k)‖2F ≤ ε2n

S(k) = S(k)>, for all k

S
(k)
ii = 0, for all {k, i},

∑N
j=1 S

(1)
j1 = 1. (11)

Our goal is to bound the distortion between the real GSOs {S(k)∗}Kk=1 and the esti-

mated ones {Ŝ(k)}Kk=1 obtained by solving (11), where εn is selected large enough to ensure
feasibility. To formally state this bound, a series of definitions must be put in place.

Recalling that s∗ ∈ RKN2
collects the vectorized versions of the true GSOs, {S(k)∗}Kk=1,

we denote by D, L, and U the indices in s∗ corresponding to the diagonal, lower triangular,
and upper triangular elements of S(k)∗ for k = 1, . . . ,K. Analogous to the definition of
Σ, we define the block diagonal Σ̂ that combines the sample covariance matrices Ĉ(k) as
Σ̂ := blockdiag(−Ĉ(1) ⊕ Ĉ(1), . . . ,−Ĉ(K) ⊕ Ĉ(K)). Define matrices M := [Σ̂]>L + [Σ̂]>U ∈

12
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RKN
2×K(N2 ), R := [Ψ>]>L ∈ R(K+(K2 ))N2×K(N2 ), and let

∑
k nk = n. We let K represent

the support of Rs∗L. Finally, we define the constant ω := maxk=1,...,K ωk where ωk :=

max{maxi[C
(k)]ii,maxi[S

(k)∗C(k)S(k)∗]ii}. With this notation in place, we state our main
result on the performance of the proposed robust recovery scheme.

Theorem 2 If the following five conditions are satisfied:
1) M is full column rank.
2) K = o(logN).
3) n1 � n2 � . . . � nK .
4) logN = o(min{n/(K7(log n)2), (n/K7)1/3}).
5) εn ≥ CNω

√
(K logN)/n, for some constant C > 0.

For each graph k, we observe graph signals as realizations of a Gaussian white noise process
that is stationary in S(k). Then, with probability at least 1 − e−C′ logN for some constant
C ′ > 0 we have that

K∑
k=1

‖vec(Ŝ(k) − S(k)∗)‖1 ≤ γεn,

where γ =
4
√
|K|σmax(R)‖R†‖1
σmin(M)

(
2 +

√
|K|
)
.

(12)

Proof We first state the following lemma, which characterizes the eigenvalues of a matrix
after performing a rank-one update and that will be instrumental in showing our main
result.

Lemma 1 Golub (1973) Let C = D + uu> where D = diag(d) is a diagonal matrix of size
m × m such that di ≤ di+1. We denote the eigenvalues of C by λi such that λi ≤ λi+1.
Then, for i = 1, . . . ,m− 1 it holds that di ≤ λi ≤ di+1.

Recalling that s = [vec(S(1))>, . . . , vec(S(K))>]>, we may reformulate (11) as

min
s

‖(diag(α)⊗ IN2) s‖1 + ‖(diag(β)Z ⊗ IN2) s‖1

s. t. ‖Σ̂ s‖2 ≤ εn, sD = 0, sL = sU ,

(e1 ⊗ 1N )>s = 1, (13)

where the second, third, and fourth constraints correspond to the feasibility conditions in
(11). Decomposing s into sD, sL, and sU , we may write the first constraint in (13) as
‖[Σ̂]>D sD + [Σ̂]>L sL + [Σ̂]>U sU‖2 ≤ εn. This enables us to restate (13) only in terms of sL as
follows

ŝL = argmin
sL

‖RsL‖1

s. t. ‖M sL‖2 ≤ εn, (e1 ⊗ 1N−1)
>sL = 1,

(14)

where we have assumed that N is even to simplify the notation in the last constraint in (14).
We now introduce a slight variation on problem (14) parametrized by q > 0, where we relax
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the equality constraint as follows

ŝ
(q)
L = argmin

sL
‖RsL‖1

s. t.

∥∥∥∥[ M
q (e1 ⊗ 1N−1)

>

]
sL −

[
0
q

]∥∥∥∥
2

≤ εn.
(15)

Notice that parameter q controls the admissible level of violation of the original equality

constraint in (14). In particular, for large q the equality must hold, i.e., limq→∞ ŝ
(q)
L =

ŝL. For notational convenience, let us define tq = q (e1 ⊗ 1N−1), Φq = [M>, tq]
>, and

bq = [0>, q]>, where we explicitly state their dependence on the parameter q. In Claim 1
we prove recovery conditions for problem (15), where the parameter q plays a central role.

More precisely, we bound the distance between the solution ŝ
(q)
L for (15) and the true graph

s∗L. The proof of this claim is deferred to the appendix.

Claim 1 If the following two conditions are satisfied:
l1) Φq is full column rank.
l2) ‖Φqs

∗
L − bq‖2 ≤ εn.

Then, we have that

‖ŝ(q)L − s∗L‖1 ≤ γqεn,

where γq =
2
√
|K|σmax(R)‖R†‖1
σmin(Φq)

(
2 +

√
|K|
)
.

(16)

We now show that requirements 1)-5) in the statement of Theorem 2 imply conditions l1)
and l2) in Claim 1 as q →∞. That 1) implies l1) follows from a simple argument. Indeed,
given that Φq is generated from M by adding the row corresponding to q (e1 ⊗ 1N−1)

>,
the column rank of Φq cannot be smaller than that of M. Since M is full column rank, Φq

must be as well. That 2)-5) imply l2) is shown in the following claim, whose proof is also
deferred to the appendix.

Claim 2 If conditions 2)-5) in the statement of Theorem 2 hold, then with probability at
least 1− e−C′ logN for some constant C ′ > 0 we have that ‖Φqs

∗
L − bq‖2 ≤ εn as q →∞.

Recall that the solution ŝL of problem (14) coincides with ŝ
(q)
L for q → ∞. Hence,

from Claims 1 and 2, it follows that under the conditions of Theorem 2 it holds with high
probability that ‖ŝL− s∗L‖1 ≤ γ∞εn, where γ∞ := limq→∞ γq. Moreover, in terms of the full
matrices (instead of just the lower triangular components), this implies that

K∑
k=1

‖vec(Ŝ(k) − S(k)∗)‖1 ≤ 2 γ∞εn. (17)

Consequently, if we show that 2 γ∞ ≤ γ as defined in (12) the proof concludes. More
specifically, we want to show that

lim
q→∞

4
√
|K|σmax(R)‖R†‖1
σmin(Φq)

(
2 +

√
|K|
)
≤

4
√
|K|σmax(R)‖R†‖1
σmin(M)

(
2 +

√
|K|
)
. (18)
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This boils down to showing that limq→∞ σmin(Φq) ≥ σmin(M). To prove this, we use
Lemma 1. Let us denote the eigendecomposition of the real and symmetric matrix M>M =
VDV>. Notice that the singular values of M are then given by

√
di. From the definition

of Φq it readily follows that Φ>q Φq = M>M + tqt
>
q . We may rewrite this equality in a

form more amenable to Lemma 1 as V>Φ>q ΦqV = D + V>tqt
>
q V. Equating V>Φ>q ΦqV

to C and V>tq to u in Lemma 1, we obtain that σmin(Φq) ≥ σmin(M) for all q > 0. In
particular, limq→∞ σmin(Φq) ≥ σmin(M) as we wanted to show, concluding the proof of the
theorem.

Theorem 2 provides a high-probability bound on the error incurred when solving (11)
for graph signals resulting from a Gaussian white noise process. The fact that the result
is probabilistic in nature is expected. Indeed, since we are estimating the covariances from
observed signals, there is always a small chance that the estimates are too noisy to enable
approximate recovery of the GSOs. Let us now analyze the five conditions required in
the statement of the theorem. Condition 1) is akin to requiring the feasibility set to be a
singleton when perfect covariances are available. To see this, notice that if in (14) we make
εn = 0 and M is full column rank, then sL is completely determined. Relating this back to
Theorem 1, recovery in the noiseless case is guaranteed in this setting [cf. discussion after
Theorem 1]. However, the current theorem describes how this recovery degrades with noise
in the estimated covariances. Condition 3) imposes the reasonable requirement that the
amount of signals observed from each graph is comparable. Intuitively, since our objective
is to gain inference power by pooling signals together, the case where only a vanishing
number of signals are associated with a specific graph is detrimental to the estimation of
that graph. Conditions 2) and 4) impose relations between the size of the graphs N , the
number of signals available n, and the number of graphs K. The number of graphs should
be small in relation to the number of nodes in each of those graphs [cf. condition 2)] and
the number of nodes cannot be too large compared with the number of observed signals [cf.
condition 4)]. Condition 5) provides a direct handle on the recovery error by determining
the minimum admissible εn. More precisely, if εn is too small then the problem might
become infeasible or no approximate solution might be included in the feasibility set. On
the other hand, if εn is chosen too large then the bound in (12) would be too loose. In this
context, condition 5) guides the choice of εn so that it is large enough for the result to hold
while trying to minimize the upper bound on the estimation error. Consistent with our
discussion of condition 1), whenever n → ∞, we have that εn → 0 and (12) guarantees a
perfect recovery. More interestingly, Theorem 2 reveals the behavior of this error for finite
values of n. Indeed, for fixed K and N , εn decreases as 1/

√
n and the only term in γ

dependent on n is σmin(M). The revealed functional dependence arises in practice, as we
illustrate in the next section.

5. Numerical Experiments

Through synthetic and real-world graphs, we validate our theoretical claims and illustrate
the performance of the proposed method for joint inference of networks.
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Figure 1: (a) Experimental validation of Theorem 1. For every realization where γ in (5) is strictly
less than 1, perfect recovery is achieved. (b) Experimental validation of Theorem 2. The
scaled sum of the `1-norm recovery errors decreases as 1/

√
n as larger numbers of signals

are observed. (c) Recovery error for three social networks with similar structure as a
function of the number of signals in the computation of the sample covariance. The joint
inference method in (11) achieves lower overall error than the separate inference of each
network. (d) Recovery error for three networks with no common structure as a function
of the number of signals in the computation of the sample covariance. By enforcing
a non-existent similarity between networks, the joint inference method underperforms
compared to the separate inference.

5.1 Conditions for Noiseless Recovery

In this numerical experiment, we illustrate the theoretical guarantees in Theorem 1 by
jointly inferring pairs of networks from perfect knowledge of the covariances of graph sta-
tionary processes. More specifically, we generate 500 pairs of graphs where one graph in
each pair is generated from an Erdős-Rényi model (Bollobás 2001) of size N=20 and edge-
formation probability p = 0.1, and the other graph is obtained by randomly rewiring 3
edges of the first one. Notice that this procedure ensures that both graphs in each pair
are similar, thus motivating our joint inference method. Covariance matrices of stationary
processes in each graph are generated randomly by constructing filters H (see Section 1.5)
of size L = 3 with normally distributed coefficients, and then setting Cx = HH>. Our goal
is to recover the adjacency matrices of each pair of graphs by solving 500 instances of (3),
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where we set α1 = α2 = β1,2 = 1. For each of these 500 attempts we record whether the
recovery was successful or not, whether condition 1 in Theorem 1 was satisfied or not—it
was satisfied in all cases—, and the value of γ in (5). In Figure 1(a) we plot the histogram
of γ discriminating by recovery performance. The figure clearly depicts the result of Theo-
rem 1 in that, for all cases in which γ < 1, relaxation (3) achieves perfect recovery. Equally
important, Figure 1(a) reveals that the bound stated in (5) is tight since some realizations
with γ = 1 led to failed recoveries as indicated by the yellow portion of the bar to the right
of the dashed line.

5.2 High-Probability Error Bound

We next demonstrate the upper bound for the recovery error in Theorem 2 in the case of
fixed nodes N and graphs K. We generate one graph from an Erdős-Rényi model with
N = 20 and edge-formation probability p = 0.4, and the remaining K − 1 graphs are
obtained by rewiring the edges of the first graph with probability q = 0.3. Graph filters are
constructed as in the previous experiment. In this case, we are demonstrating robust graph
inference using sample covariance matrices obtained from an increasing number of observed
graph signals. Since K and N are fixed, we would expect the `1-norm recovery errors to be
dependent on C/

√
n through the constant εn and C ′/σmin(M) through γ for proper choices

of the constants C and C ′ [cf. (12)]. Scaling the sum of the `1-norm recovery errors by
σmin(M) would be expected to be upper bounded by C/

√
n, where C is the appropriately

selected constant. This is observed in practice, as portrayed in Figure 1(b), where we plot
the recovery error of K ∈ {2, 4, 6, 8} graphs as the number of signals increases. The error
shown in the figure corresponds to the sum in (12) normalized by the `1-norm sum of the
true GSOs and scaled by σmin(M), i.e., σmin(M)

∑K
k=1 ‖Ŝ(k) − S(k)∗‖1/

∑K
k=1 ‖S(k)∗‖1. In

both cases, the scaled `1-norm error exhibits the expected monotonic descent as C/
√
n, as

illustrated by the dashed line in Figure 1(b).

5.3 Joint Inference of Social Networks

Consider three graphs defined on a common set of nodes representing 32 students from the
University of Ljubljana in Slovenia. The networks encode different types of interactions
among the students, and were built by asking each student to select a group of preferred
college mates for a number of situations, e.g., to discuss a personal issue or to invite to
a birthday party2. The considered graphs are unweighted and symmetric, and the edge
between i and j exists if either student i picked j in the questionnaire or vice versa. Notice
that the obtained networks are naturally similar to each other since the choices of friends
across different situations do not vary greatly. We test the recovery performance of the
robust formulation in (11) where the sample covariances are estimated from varying numbers
of graph signals, and εn is chosen as small as possible while ensuring feasibility. The graph
signals are synthetically generated following covariance matrices obtained from the GSOs
as explained in the previous numerical experiment. Figure 1(c) portrays the joint recovery
errors for the three networks as the number of observed signals varies, and compares them
to the corresponding errors obtained from inferring the networks separately. The error of

2. Access to the data and additional details are available at http://vladowiki.fmf.uni-lj.si/doku.php?
id=pajek:data:pajek:students
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an estimator Ŝ is quantified as ‖S− Ŝ‖F /‖S‖F , where S denotes the true GSO. First notice
that for an increasing number of observed signals we see a monotonous decrease in recovery
error. For instance, when going from 103 to 104 observations the error when inferring
Network 1 is (approximately) divided by three. This is expected since a larger number of
observations entails a more reliable estimate of the covariance matrix. More interestingly, we
see an overall positive effect of the joint inference compared to the corresponding separate
inferences. This effect is more conspicuous for Network 2, for which the inference based
exclusively on its sample covariance has proven to be more challenging.

Finally, we repeat the above experiment but for three synthetically generated networks
that model a scenario where the students choose their college mates completely at random.
In this way, the similarity across the networks to be inferred is lost. Consequently, imposing
this similarity in the joint inference problem is actually detrimental to the recovery perfor-
mance as depicted in Figure 1(d). Indeed, from the figure it can be seen that for the three
networks and for almost any possible number of observed signals the separate inference
outperforms the joint method.

5.4 Varying the Number of Graphs and the Sparsity Level

We demonstrate the superiority of our proposed joint inference method in comparison with
separate network inference over different settings by varying: (i) the number of graphs
and (ii) the sparsity of the graphs. In Figure 2(a) we compare joint and separate network
inference as the number of graphs to be estimated increases for K ∈ {2, 3, . . . , 8}. Networks
are generated by sampling an Erdős-Rényi graph with a fixed edge probability p = 0.3, and
the K networks are generated by rewiring edges from the first network with probability
q = 0.1. The total number of graph signals n is preserved for all sets of estimated graphs,
so that the number of observed signals per graph is n/K. Correspondingly, we observe that
the recovery error increases for larger K.

In the second experiment, we compare joint and separate network inference as the
underlying network sparsity varies. The networks to be estimated are generated similarly
as in previous experiment; one network is a sampled Erdős-Rényi network, and the K
synthetic graphs are rewired versions of the first graph, where three edges are rewired in
all cases. To vary the sparsity of the sets of graphs, the edge probability is observed in a
range p ∈ {0.1, 0.2, . . . , 0.9}. Estimation is performed for both joint and separate inference
with the true covariance matrices to remove dependencies on noisy signals.

Observe that for both presented problem settings in Figures 2(a) and 2(b), increasing
the number of graphs and varying the level of edge sparsity results in consistent superiority
of joint network inference over separate inference. This illustrates the generality of the
benefits of considering the joint estimation formulation.

5.5 Model Selection

The formulation of the problem in (3) presents a general case with freedom of different
choices of αk and βk,k′ respectively for each graph and pair of graphs. These free parameters
can be used to incorporate prior knowledge of the different levels of sparsity or graph
similarities. In the example of time-varying network estimation, an appropriate choice of
βk,k′ may be to encourage networks adjacent in time to be more similar. In the absence of
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Figure 2: (a) Recovery error for multiple networks with similar structure as a function of the number
of networks. The joint inference method consistently outperforms the separate inference
method. (b) Recovery error for three similar networks as a function of the sparsity level
of the networks. As the edge probability increases and the network sparsity decreases,
the joint inference method continues to demonstrate a greater estimation performance.
(c) Recovery error for three networks as a function of the tuning parameter determining
the tradeoff between network sparsity and similarity. As the networks become more
similar, increasing the parameter β/α to encourage pairwise network similarity results in
greater estimation accuracy.

this prior knowledge, we implement the same value αk = α for all graphs k and the same
value for βk,k′ = β for all pairs of graphs (k, k′). In this case, note that there is only one
degree of freedom determining the tradeoff between sparsity and similarity given by the
ratio β/α. We now illustrate the effects of selecting different values of this ratio.

We jointly estimate K = 3 networks while observing effects on recovery performance as
a function of β/α. The first graph is generated from an Erdős-Rényi model with N = 25
and edge-formation probability p = 0.3, and the remaining two graphs are obtained by
rewiring a number of edges in the first graph. We emphasize the tradeoff between sparsity
and similarity in our method by observing the varying parameter β/α as networks to be
estimated become less similar. In particular, we present results for sets of networks that
differ by an increasing number of edges, where we vary the number of edges that are rewired
as {3, 10, 30, 80, 100}. When fewer edges are rewired, the true networks are more similar
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(d) Jointly inferred

Figure 3: (a) Mean recovery error over ten trials for three senate networks as a function of the
number of signals considered in the computation of the sample covariance. Joint in-
ference demonstrates less overall recovery error than separate inference of each senate
network. (c) True graph of senate network for 114th congress with top-200 edges sorted
by weight. Red nodes correspond to states with two Republican senators, blue nodes
with two Democratic senators, and yellow nodes with senators from differing parties.
(d) Separately recovered senate network for 114th congress with top-200 edges sorted
by weight. Network recovery for a limited number of signals shows a mixed structure
when each network is estimated alone. (e) Jointly recovered senate network for 114th
congress with top-200 edges sorted by weight. A more similar structure to the true graph
is observed when joint inference is applied for three similar senate networks.

thus a larger β/α leads to superior performance. The reverse also holds true, where graphs
that differ by a greater number of edges cannot easily capitalize on the pairwise similarity
penalty, thus a smaller β/α results in improved estimation accuracy.

5.6 Senate Networks

The comparison of joint and separate graph inference is also performed with real-world data
of U.S. congress roll-call votes (Lewis et al. 2020). We observe the votes of 3 congresses,
113th (2013 to 2015), 114th (2015 to 2017), and 115th (2017 to 2019), from 2 senators per
state (100 total). All K = 3 congresses are represented as networks, where senator opinions
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per state are combined for N = 50 nodes shared by each graph. Nodal values for each
state consist of the sum of the votes of both senators, where yea, nay, and other cases (such
as abstention) are represented by 1, -1, and 0, respectively. The total number of roll-calls
(graph signals) for the 113th, 114th, and 115th congresses are respectively 657, 502, and
599. Each state is separated into one of three categories based on the party affiliation of
its senators. States are labeled as (i) D if both senators are in the Democratic Party, (ii)
R if both senators are in the Republican Party, and (iii) M if senators are from different
(mixed) parties.

In the absence of ground-truth senate networks, we deem as true underlying graphs
those separately inferred for each congress when considering all the available graph signals.
Moreover, to recover graphs on which the observed signals are not only stationary but also
smooth, we add a regularization term ‖S ◦Z‖ to the optimization objective, where Z is the
pairwise distance matrix Zij = ‖xi − xj‖22, and xi contains the value of all signals at the
i-th node; see Kalofolias (2016). Having established the ground-truth baselines, we perform
joint and separate inference from limited observations and compare the estimation accuracy
when gradually increasing the number of signals considered in the covariance computation.
Subsets are randomly selected from all available votes, and ten trials of randomized subsets
are performed to observe their mean behavior; see Figure 3(a).

Although the true networks were inferred separately, joint inference of senate networks
markedly outperforms separate inference when a limited number of signals are available.
This further reinforces our intuition that pooling observations from similar networks is
especially relevant in data scarce settings. To better illustrate the difference in the inferred
networks, in Figures 3(b) through 3(d) we provide spring layout plots of the true, separately
inferred, and jointly inferred networks for congress 114th when 350 signals are observed.
For clarity, only the top-200 edges sorted by weight are drawn. From the figures it becomes
evident that the joint inference helps preserve the partisan structure of the true network
whereas this important network feature is not recovered when performing separate inference.

6. Conclusions

We presented a method for jointly estimating multiple graphs from observed graph signals.
The inference task was posited as a sparse recovery optimization problem regularized by the
differences between the recovered graphs and subject to algebraic constraints derived from
the assumption that the observed signals are stationary on the underlying graphs. A convex
relaxation of the aforementioned optimization problem was presented and its tightness was
shown under sufficient conditions for the case of perfect knowledge on the signal covariances.
Furthermore, for the more relevant case where the covariances are estimated, a robust
variation of the optimization problem is presented along with a high-probability bound on
the recovery error. Finally, the results and intuition discussed throughout the paper were
illustrated via numerical experiments on synthetic and real-world data.

Regarding potential avenues for future research, two generalizations of the setting here
presented are of special interest. 1) It would be of interest to relax the assumption that we
know on which graph each signal is defined. This case would require clustering the signals
based on their estimated source graph and, most probably, an iterative formulation where
the graphs are inferred and the signals reassigned between the graphs until convergence. 2)
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It would be of interest to consider setups where the node sets (and their cardinality) are
not the same across the graphs to be inferred. The rising popularity of graphons (Avella-
Medina et al. 2020) may contribute to solving this setting, where the association of multiple
graphs with a graphon presents a potential direction for joint graph inference with the
underlying similarity between graphs dictated by the probability of being generated by a
common graphon.

Acknowledgments

Research was supported by NSF (DMS-1651995 and CCF-2008555), and the Spanish Federal
grants KLINILYCS (TEC2016-75361-R) and SPGraph (PID2019-105032GB-I00).

Appendix A. Proofs of Claims 1 and 2

We first state the following two lemmas that will be used to prove Claim 2.

Lemma 2 (Cai et al., 2016, Lemma 2) Suppose r1, · · · , rn are K-dimensional random
vectors satisfying E [ri] = 0 and ‖ri‖2 ≤M for 1 ≤ i ≤ n. We have for any s > 0 and r > s

P

(∥∥∥∥∥
n∑
i=1

ri

∥∥∥∥∥
2

≥ r

)
≤ P

(
‖z‖2 ≥ (r − s)/λ1/2max

)
+ L, (19)

where L = c1K
5/2 exp(−c2K−5/2s/M), λmax is the largest eigenvalue of Cov(

∑n
i=1 ri), z is

a K-dimensional standard normal random vector and c1, c2 are positive constants.

Lemma 3 Denoting by a(k) independent realizations of the random variable a ∼ N (0, σ2),
the following tail bound holds

P

(
1

m

m∑
k=1

(a(k))2 − E[a2] ≥ σ2 t

)
≤ exp

(
−m

8
min(t2, t)

)
. (20)

Lemma 2 bounds in probability the sum of the norm of bounded random vectors whereas
Lemma 3 is a standard result about tail bounds of chi-squared random variables. Having
introduced these results, we can now show the two claims.

A.1 Proof of Claim 1

This proof has been partially inspired by Theorem 2 by Zhang et al. (2016). We are first

going to show that condition l1) guarantees the existence of a vector y ∈ R(K+(K2 ))N2
—

that will be denominated dual certificate—such that R>y ∈ Im(Φ>q ), yK = sign(RKs∗L),
and ‖yKc‖∞ < 1. In fact, we show here that we may attain that yKc = 0. Indeed, consider
the vector y given by

y = I>K sign(RKs∗L). (21)

That yK = sign(RKs∗L), and ‖yKc‖∞ = 0 follow immediately from (21). Moreover, we
have that R>y ∈ Im(Φ>q ) by realizing that R>y = Φ>q Φq(Φ

>
q Φq)

−1R> I>K sign(RKs∗L),
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where condition l1) guarantees the existence of the inverse. Now that we have established
the existence of the dual certificate y, it is helpful to notice that ‖Rs∗L‖1 = y>Rs∗L.

We are ready to show the bound in (16). Consider an arbitrary vector u ∈ R(K+(K2 ))N2

such that supp(u) ⊆ K. Letting ρ = Rŝ
(q)
L −Rs∗L, ρ1 = Rŝ

(q)
L − u, and ρ2 = Rs∗L − u, we

have that

‖ρ‖1 ≤ ‖ρ1‖1 + ‖ρ2‖1. (22)

We first focus on bounding the second summand in (22). By leveraging the fact that
the support of ρ2 is contained in K we may write that

‖ρ2‖1 ≤
√
|K| ‖ρ2‖2

≤
√
|K| ‖ρ‖2 +

√
|K| ‖ρ1‖2

≤
√
|K| σmax(R)‖s∗L − ŝ

(q)
L ‖2 +

√
|K| ‖ρ1‖1

≤
√
|K|σmax(R)

σmin(Φq)
‖Φq(s

∗
L − ŝ

(q)
L )‖2 +

√
|K| ‖ρ1‖1,

(23)

where in the third inequality we used that for an arbitrary vector x it holds that ‖x‖2 ≤
‖x‖1, and in the last inequality we used that ‖x‖2 ≤ ‖Ax‖2/σmin(A), for every full column
rank matrix A. Condition l1) guarantees the validity of this operation.

We now find an upper bound for ‖ρ1‖1 for the vector u that minimizes this norm.
More precisely, we want to bound ξ := minu|supp(u)⊆K ‖ρ1‖1. We may rewrite the support
constraint on u as IKcu = 0. Thus, the Lagrangian L(u,v) of the minimization problem
becomes

L(u,v) = ‖ρ1‖1 + v>IKcu

= ‖ρ1‖1 + v>IKc(u−Rŝ
(q)
L ) + v>IKcRŝ

(q)
L .

(24)

From duality theory we have that ξ = maxv minu L(u,v). Moreover, if we define w := I>Kcv,
we have that

ξ = max
w|supp(w)⊆Kc

min
u
‖ρ1‖1 + w>(u−Rŝ

(q)
L ) + w>Rŝ

(q)
L . (25)

By minimizing with respect to u, for (25) not to result in −∞, it must be that ‖w‖∞ ≤ 1.
Otherwise, if |wr| > 1 for some index r, the corresponding entry ur can take a −∞ value
resulting in an unbounded minimization of ξ. In the case where ‖w‖∞ ≤ 1, the minimum

for u is attained when u = Rŝ
(q)
L . It thus follows that

ξ = max
w| supp(w)⊆Kc, ‖w‖∞≤1

w>Rŝ
(q)
L . (26)

Recalling that y is the previously introduced dual certificate [cf. (21)], we may write that

ξ = max
w| supp(w)∈Kc, ‖w‖∞≤1

(y + w)>Rŝ
(q)
L − y>Rŝ

(q)
L . (27)
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Moreover, since ‖y‖∞ = 1, ‖w‖∞ ≤ 1 and the supports of y and w do not intersect,

it readily follows that ‖y + w‖∞ ≤ 1. Consequently, (y + w)>Rŝ
(q)
L ≤ ‖Rŝ

(q)
L ‖1. By

substituting this in (27) we obtain that

ξ ≤ ‖Rŝ
(q)
L ‖1 − y>Rŝ

(q)
L . (28)

Leveraging the fact that ‖Rs∗L‖1 = y>Rs∗L, we may write

ξ ≤ ‖Rŝ
(q)
L ‖1 − ‖Rs∗L‖1 + y>R(s∗L − ŝ

(q)
L ) ≤ y>R(s∗L − ŝ

(q)
L ), (29)

where the inequality follows from ‖Rŝ
(q)
L ‖1 ≤ ‖Rs∗L‖1 since ŝ

(q)
L is a minimizer of (15)

whereas s∗L is a feasible solution of (15) due to condition l2). Lastly, since we know that
R>y can be written as R>y = Φ>q Φq(Φ

>
q Φq)

−1R> I>K sign(RKs∗L), we may rewrite (29) as
(recalling the definition of ξ)

‖ρ1‖1 ≤ sign(RKs∗L)>IKR(Φ>q Φq)
−1Φ>q Φq(s

∗
L − ŝ

(q)
L ) ≤

√
|K|σmax(R)

σmin(Φq)
‖Φq(s

∗
L − ŝ

(q)
L )‖2,

(30)

where the second inequality follows from the fact that every positive scalar is equal to its
`2 norm. By substituting (30) back in (23) and then back in (22), we obtain that

‖ρ‖1 ≤
(

2 +
√
|K|
) √|K|σmax(R)

σmin(Φq)
‖Φq(s

∗
L − ŝ

(q)
L )‖2. (31)

Two observations are sufficient to obtain (16) from (31). First, notice that since s∗L and

ŝ
(q)
L both belong to the feasibility set of (15), we must have that ‖Φq(s

∗
L − ŝ

(q)
L )‖2 ≤ 2εn.

Second, from compatibility of matrix induced norms and the fact that R is full column rank

we have that ‖s∗L − ŝ
(q)
L ‖1 = ‖R†R(s∗L − ŝ

(q)
L )‖1 ≤ ‖R†‖1‖ρ‖1.

A.2 Proof of Claim 2

Since
∑N

j=1 S
(1)
j1

∗
= 1 , then (e1 ⊗ 1N )>s∗ = 1. Thus, having that ‖Φqs

∗
L − bq‖2 ≤ εn

is equivalent to ‖Ms∗L‖2 ≤ εn for all q. From (11) this is equivalent to requiring that∑K
k=1 ‖S(k)∗Ĉ(k) − Ĉ(k)S(k)∗‖2F ≤ ε2n. Hence, we will show that this inequality holds with

probability at least 1− e−C′ logN for some constant C ′ > 0 when conditions 2)-5) in Theo-
rem 2 hold.

Begin by noting that condition 4) in particular implies that logN = o(n). This will be
used throughout the proof. Leveraging the fact that S(k)∗C(k) = C(k)S(k)∗, and making use
of the well-known inequality (a+b)2 ≤ 2a2+2b2, we denote by T(k) = S(k)∗Ĉ(k)−Ĉ(k)S(k)∗,

T
(k)
1 = S(k)∗Ĉ(k) − S(k)∗C(k), and T

(k)
2 = C(k)S(k)∗ − Ĉ(k)S(k)∗ so that

∣∣∣[T(k)]ij

∣∣∣2 ≤ 2
∣∣∣[T(k)

1 ]ij

∣∣∣2 + 2
∣∣∣[T(k)

2 ]ij

∣∣∣2
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for all i, j. In terms of the Frobenius norm of interest, this implies that

K∑
k=1

‖T(k)‖2F ≤ N2 max
i,j

K∑
k=1

∣∣∣∣[T(k)
]
ij

∣∣∣∣2

≤ 2N2 max
i,j

K∑
k=1

∣∣∣∣[T(k)
1

]
ij

∣∣∣∣2 + 2N2 max
i,j

K∑
k=1

∣∣∣∣[T(k)
2

]
ij

∣∣∣∣2 .
(32)

We now focus bounding maxi,j
∑K

k=1

∣∣∣∣[T(k)
1

]
ij

∣∣∣∣2. This is sufficient, since an analogous

procedure can be followed to bound the second summand in (32). In order to bound the
first summand in (32), we are going to show that the random event

A :=

{
K∑
k=1

∣∣∣∣[T(k)
1

]
ij

∣∣∣∣2 ≤ c2εω2K
logN

n
, for all i, j

}

holds with high probability for some constant cε > 0. Notice that we can regard event A as
the intersection of events specific to the entries (i, j), and consider the events

Aij :=

{
K∑
k=1

∣∣∣∣[T(k)
1

]
ij

∣∣∣∣2 ≤ c2εω2K
logN

n

}
.

Recall that X(k) ∈ RN×nk contains the signals x
(k)
i as columns. We denote as (z

(k)
j )> ∈

Rnk the j-th row of X(k), i.e., the vector collecting the value in the j-th position of each of
the graph signals associated with the k-th GSO. Moreover, for simplicity we will denote by

(s
(k)
i )> ∈ RN the i-th row of S(k)∗. From (1), we then have that∣∣∣∣[T(k)

1

]
ij

∣∣∣∣ =
1

nk

∣∣∣(s(k)i )>X(k)(z
(k)
j )− E[(s

(k)
i )>X(k)(z

(k)
j )]

∣∣∣ , (33)

where, under a slight abuse of notation, we are now considering X(k) and z
(k)
j as random

variables instead of specific realizations. Given that the columns of X(k) are i.i.d., we

have that (y
(k)
i )> := (s

(k)
i )>X(k) ∼ N (0, (s

(k)
i )>C(k)s

(k)
i I) and, by definition, (z

(k)
j )> ∼

N (0, [C(k)]jjI). It then follows that each term in the sum (y
(k)
i )>(z

(k)
j ) =

∑nk
t=1(y

(k)
i )t(z

(k)
j )t,

is i.i.d. Leveraging this decomposition, we may write∣∣∣∣[T(k)
1

]
ij

∣∣∣∣ =

∣∣∣∣∣ 1

nk

nk∑
t=1

y
(k)
i,t z

(k)
j,t − E[y

(k)
i z

(k)
j ]

∣∣∣∣∣ ,
where we denote by y

(k)
i a scalar random variable representing the elements of y

(k)
i (since

they are all i.i.d.) and as y
(k)
i,t a specific realization of this random variable. The same

applies for z
(k)
j with respect to z

(k)
j . We denote random variables w

(k)
i+j = y

(k)
i + z

(k)
j and
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w
(k)
i−j = y

(k)
i − z

(k)
j . By subsequently applying the identity 4ab = (a+ b)2 − (a− b)2 and the

inequality (a+ b)2 ≤ 2a2 + 2b2 we obtain that∣∣∣∣[T(k)
1

]
ij

∣∣∣∣2 ≤1

8

∣∣∣∣∣ 1

nk

nk∑
t=1

(w
(k)
i+j,t)

2 − E[(w
(k)
i+j)

2]

∣∣∣∣∣
2

+
1

8

∣∣∣∣∣ 1

nk

nk∑
t=1

(w
(k)
i−j,t)

2 − E[(w
(k)
i−j)

2]

∣∣∣∣∣
2

. (34)

Observe that, since both y
(k)
i and z

(k)
j are Gaussian random variables, we have that w

(k)
i+j

and w
(k)
i−j are also Gaussian with variance at most 4ωk. We define ρk := nk/n and, for fixed

i, j, we define u
(k)
t := (ρ

1/2
k /nk)

(
(w

(k)
i+j,t)

2 − E[(w
(k)
i+j)

2]
)

if t ≤ nk and u
(k)
t = 0 if t > nk.

Also, let ut := (u
(1)
t , · · · , u(K)

t )>. By definition, we can then write

K∑
k=1

ρk

(∣∣∣∣∣ 1

nk

nk∑
t=1

(w
(k)
i+j,t)

2 − E[(w
(k)
i+j)

2]

∣∣∣∣∣
)2

=

∥∥∥∥∥
n∑
t=1

ut

∥∥∥∥∥
2

2

.

Consider now a new event A′ij based on the newly introduced variable ut, namely

A′ij :=


∥∥∥∥∥

n∑
t=1

ut

∥∥∥∥∥
2

2

≤ c′2ε ω2 logN

n

 ,

for some constant c′ε. We now briefly show that there exists a constant c′ε such that the
probability of A′ij occurring is not larger than the probability of occurrence of Aij . Indeed,
from condition 3) we know that there exists some constant cw such that ρk ≥ cw/K. Hence,
when A′ij occurs, it is also satisfied that

K∑
k=1

∣∣∣∣∣ 1

nk

nk∑
t=1

(w
(k)
i+j,t)

2 − E[(w
(k)
i+j)

2]

∣∣∣∣∣
2

≤ (c′2ε /cw)ω2K
logN

n
. (35)

A similar analysis can be used to bound the above expression but for w
(k)
i−j instead of w

(k)
i+j .

Hence, we substitute these bounds in the expression obtained by summing (34) over all
k = 1, . . . ,K, to see that Aij also occurs, where the constant cε in Aij depends on c′ε and
cw. Consequently, if we show that P(A′ij) ≥ 1−c′e−c logN for some constants c > 2 and c′, it

would then follow that P(Aij) ≥ 1− c′e−c logN . Moreover, a union bound over all (i, j) then
guarantees the existence of a constant C ′ > 0 such that P(A) ≥ 1 − e−C′ logN . It follows
from the discussion after (32) that this would complete the proof.

Consequently, we are left to show that under conditions 2)-5) we have that P(A′ij) ≥ 1−
c′e−c logN for some constants c > 2 and c′. The remainder of the proof of Claim 2 is devoted
to proving this statement. We are going to prove this by showing that P(¬A′ij) ≤ c′e−c logN .

Notice that we cannot directly use Lemma 2 to bound ‖
∑n

t=1 ut‖22, since we would need
‖ut‖2 to be bounded by some constant M . We therefore split A′ij into two subevents and
estimate the bound for the probability of each of the two subevents. The basic intuition is
that, if we are on the random event

Ea :=
{
|u(k)t | ≤ (n logN)−1/2K1/2−a ω, for all t, k

}
,
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then the `2 norm of ut would always be smaller than

‖ut‖2 ≤Ma := (n logN)−1/2K1−a ω, (36)

where a is a free parameter that will be fixed later in the proof.
In particular, if we split the complement of A′ij as

P(¬A′ij) ≤ P(¬A′ij |Ea)P(Ea) + P(¬Ea), (37)

we can use Lemma 2 to bound P(¬A′ij |Ea) and then use Lemma 3 to bound P(¬Ea). Let
us introduce a new variable

û
(k)
t :=u

(k)
t I

{
|u(k)t | ≤ (n logN)−1/2K1/2−aω

}
− E

[
u
(k)
t I

{
|u(k)t | ≤ (n logN)−1/2K1/2−aω

}]
and ût := (û

(1)
t , · · · , û(K)

t )>.
Notice that if we are on the random event Ea, then ut and ût follow the same distribution

except for a shift v
(k)
t := E

[
u
(k)
t I

{
|u(k)t | ≤ (n logN)−1/2K1/2−aω

}]
. Putting it differently,

the distribution of u
(k)
t − û

(k)
t is a constant v

(k)
t when we are on the random event Ea.

We can use Lemma 3 to estimate the scale of v
(k)
t with respect to N and n. To do this,

first notice that u
(k)
t is a chi-squared random variable with one degree of freedom. Thus,

for some constant η we can apply Lemma 3 for σ2 =
√
Kω
8ηn , t = 8ηnl√

Kω
and m = 1, to obtain

the tail bound

P(u
(k)
t ≥ l) ≤ exp

(
−η nl√

Kω

)
with l�

√
Kω

n
. (38)

Moreover, since u
(k)
t has mean zero for all t and k, we have that

|v(k)t | =
∣∣∣E [u(k)t I

{
|u(k)t | ≤ (n logN)−1/2K1/2−aω

}]∣∣∣
=
∣∣∣E [u(k)t I

{
|u(k)t | ≥ (n logN)−1/2K1/2−aω

}]∣∣∣ . (39)

It follows from the definition of u
(k)
t that u

(k)
t ≥ −ρ

1/2
k (4ω/nk). From the fact that logN =

o(n), we have that

ρ
1/2
k

4ω

nk
<< (n logN)−1/2K1/2−aω. (40)

Then, combining both previous facts, when u
(k)
t satisfies that |u(k)t | ≥ (n logN)−1/2K1/2−aω,

it must be that u
(k)
t is positive. Therefore, the right hand side of (39) can be further

rewritten as E
[
u
(k)
t I

{
u
(k)
t ≥ (n logN)−1/2K1/2−aω

}]
, where we have deleted the absolute

value of u
(k)
t . We let θ := (n logN)−1/2K1/2−aω and γ := η n√

Kω
. Consequently, we may

bound |v(k)t | as follows

|v(k)t | = E
[
u
(k)
t I

{
u
(k)
t ≥ (n logN)−1/2K1/2−aω

}]
≤
∫ ∞
θ

exp(−γ`) d` =
1

γ
exp(−γθ)

=

√
Kω

ηn
exp

(
−η(n/ logN)1/2K−a

)
,
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where we have used (38) in the computation of the expected value. Clearly, |v(k)t | decays

exponentially with respect to n/ logN . Therefore, we have that n|v(k)t | = o(
√

(logN)/n)
for all k = 1, . . . ,K. In addition, when we are on the random event Ea, we have that∑n

t=1 u
(k)
t =

∑n
t=1 û

(k)
t + nkv

(k)
t and therefore (

∑n
t=1 u

(k)
t )2/2 ≤ (

∑n
t=1 û

(k)
t )2 + (nkv

(k)
t )2.

By summing the previous expression over all k = 1, . . . ,K, we further have that

1

2

∥∥∥∥∥
n∑
t=1

ut

∥∥∥∥∥
2

2

≤
K∑
k=1

(nk v
(k)
t )2 +

∥∥∥∥∥
n∑
t=1

ût

∥∥∥∥∥
2

2

. (41)

By combining (41) with the fact that n|v(k)t | = o(
√

(logN)/n) for all k, we further have
that there exists some 0 < δ < 1 such that if we are on the event Ea, then ‖

∑n
t=1 ut‖2 ≥

c′εω
√

logN
n indicates that ‖

∑n
t=1 ût‖2 ≥ (1 − δ)c′εω

√
logN
n . Equivalently, there exists some

constant 0 < δ < 1 such that, given the event,

B =

{∥∥∥∥∥
n∑
t=1

ût

∥∥∥∥∥
2

≥ (1− δ)c′εω
√

logN

n

}
,

the following inequality holds

P(¬A′ij |Ea)P(Ea) ≤ P(B | Ea)P(Ea) ≤ P(B), (42)

where the second inequality follows readily from Bayes’ theorem. Given that ût is obtained
from ut by cutting the tails, we have that λmax {Cov(

∑n
t=1 ût)} ≤ λmax {Cov(

∑n
t=1 ut)}.

In addition, as u
(k)
t are i.i.d. for all t, we have that

λmax

{
Cov

(
n∑
t=1

ût

)}
= max

k
Var

(
n∑
t=1

u
(k)
t

)
= (nkρk/n

2
k)Var

(
(w

(k)
i+j)

2
)
≤ 16ω2/n.

We may thus apply Lemma 2 to further bound (42) by setting r = (1 − δ)c′εω
√

logN
n ,

s = 1
2(1− δ)c′εω

√
logN
n , λmax = 16ω2/n and M = Ma as defined in (36) to get that

P (B) ≤ P(‖z‖2 ≥ C2

√
logN) + C3 exp

{
2

5
logK − C4K

a−7/2 logN

}
, (43)

where C2 and C4 are constants that increase with increasing cε and z is a K-dimensional
standard normal random vector. Note that the constant δ is also absorbed into C2 and C4.
From condition 2) and the tail bound in Lemma 3 we get that

P(‖z‖2 ≥ C2

√
logN) ≤ C1 exp(−C ′2(logN −K)),

where C ′2 is a constant that increases with increasing of cε. Replacing the above expression
into (43) we obtain

P(B)≤exp{−C ′2 logN}+ C3 exp

{
2 logK

5
− C4 logN

K7/2−a

}
,
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where C ′2 and C4 are the constants that would increase with the increment of cε. In this
case, by choosing a = 7/2, with constant cε big enough, there exists some constant c1 > 2
such that

P (B) ≤ exp(−c1 logN). (44)

Replacing (44) into (42) gives us the sought exponential bound for the first summand
in (37). We are now left with the task of finding a bound for P(¬Ea).

Given event B′(k) =

{
|u(k)t | ≥

(
K1−2a

n logN

)1/2
ω

}
, from the definition of the event Ea it

follows that

P(¬Ea) ≤ K
(

max
1≤k≤K

nk

)
max

1≤k≤K
P
(
B′(k)

)
. (45)

From the relationship in (40) we obtain that the probabilities P
(
u
(k)
t ≥

(
K1−2a

n logN

)1/2
ω

)
and

P
(
|u(k)t | ≥

(
K1−2a

n logN

)1/2
ω

)
are the same. Plus, from the tail bound in (38) we get

P
(
B′(k)

)
≤ e
−η

√
n

K2a logN = e
−η

√
n

K7 logN ,

where the last equality follows from recalling that we have fixed a = 7/2 in order to write
(44). Condition 3) guarantees the existence of some constant cw such that nk ≤ ncw/K for
all k, thus

P(¬Ea) ≤ cwne
−η

√
n

K7 logN ≤ cwe
logn−η

√
n

K7 logN . (46)

From condition 4) it follows that log n = o(
√
n/(K7 logN)) and logN = o(

√
n/(K7 logN)),

which immediately implies that logN = o

(√
n

K7 logN
− log n

)
. Combining this expression

with (46) reveals that
P(¬Ea) ≤ cwe−c2 logN (47)

for some constant c2 > 2, thus obtaining an exponential bound for the second summand
in (37). To conclude, from the combination of (44) and (47) we get that P(¬A′ij) ≤
c′ exp(−c logN) for some c > 2, as wanted.
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