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Predicting biological joint moment during multiple ambulation tasks 
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A B S T R A C T   

Combining machine learning models with wearable sensing provides a key technique for understanding the 
biological effort, creating an alternative to inverse dynamics based on motion capture. In this study, we 
demonstrate a novel approach to not only estimate but predict the joint moment in advance for multiple 
ambulation modes. By combining electromyography (EMG), inertial measurement units (IMU), and electro
goniometers, we enable the prediction of the joint moment only from wearable sensors. We performed a forward 
feature selection to determine the best feature sets for different anticipation times of the intended moment 
generated at the hip, knee, and ankle, encompassing level walking on a treadmill and ascent/descent of stairs and 
ramps. We show that wearable sensors can predict the joint moment with an MAE of 0.06 ± 0.02 Nm/kg for 
direct estimation and an MAE of 0.10 ± 0.04 Nm/kg when predicting 150 ms in advance, corresponding to an 
MAE within 9.2% of the joint moment range. We found that the hip moment had a significantly lower error than 
the knee and ankle when anticipating the joint moment (Bonferroni test, p < 0.05). The accurate estimation of 
the joint moment could monitor user activity to reduce risk factors and inform the control of exoskeletons.   

1. Introduction 

Estimating the joint moments with wearable sensors allows the 
calculation of inverse dynamics on the fly, critical for outside of labo
ratory settings, where motion capture and force plates are not available. 
This information can be used in monitoring and reducing risk factors 
during locomotion, when lifting and handling materials, or during other 
physically demanding activities. Wearable robotics, such as exoskeleton 
technology, could use this information in real-time to improve controller 
decisions. The rationale is that devices operate at the joint level, and this 
output can inform the desired actuator torque. The instantaneous esti
mates of the user’s intended joint moment could be used to directly 
shape the assistance control reference signal (Lenzi et al., 2013; Seo 
et al., 2016) or to map the assistance to a pre-optimized profile (Ding 
et al., 2018; Witte et al., 2020; Zhang et al., 2017). This method would 
require fewer tuning efforts, providing a more dynamic response(Gas
parri et al., 2019). 

Recent efforts have shown that it is possible to accurately estimate 
lower limb joint moments based on wearable sensors. Buchanan et al. 
used a forward dynamics model of the musculoskeletal system that uses 
the EMG signal to estimate joint moments (Buchanan et al., 2005). 
Similarly, other works have relied on system modeling (Jacobs and 

Ferris, 2015; Khurelbaatar et al., 2015; Sartori et al., 2012), requiring 
ground reaction forces to solve the inverse dynamics equations and a 
detailed description of the biomechanical system. Thus, other re
searchers have explored machine learning to eliminate the need to 
model inverse dynamics and, importantly, remove the need to measure 
external forces. Similar to the regression of any walking state parameter 
like speed (Zihajehzadeh and Park, 2016), altitude (Xia and Shi, 2020), 
or slope (Kang et al., 2019; Li et al., 2009), the process consists of setting 
the joint moment as a target for the inference in a supervised learning 
algorithm. 

Wang et al. implemented a real-time estimation of the knee adduc
tion moment using Neural Networks (NN) and XGBoost based on inertial 
measurement units (IMUs) (Wang et al., 2020). Xiong et al. showed that 
a NN could predict the joint moments during treadmill walking for the 
hip, knee, and ankle from electromyography (EMG) and goniometers 
(GON) (Xiong et al., 2019). However, the applications should extend 
beyond treadmill walking, given that community ambulation involves 
locomotion across different modes. In this study, we used machine 
learning to predict lower limb joint moments in three settings: level- 
ground treadmill, stair ascent/descent, and ramp ascent/descent. We 
used windowed feature extraction and machine learning for the 
regression of joint moment estimation from EMG, GON, and IMU 
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spanning the entire lower limb. 
In addition to joint moment estimation, we included a novel goal: 

predicting the intended joint moment. Using the information from the 
previous state of the sensors at a time t, we created models that predict 
the moment at a future time t + τ, where the anticipation time τ rep
resents how much forward in time the intended joint moment is pre
dicted. The added benefit of predicting the joint moment forward in time 
is that potential controllers may include planning for the future torque 
requirements, rather than merely reacting, which allows for consider
ation of other factors, e.g., environmental and biological safety con
straints (Zhang and Huang, 2019), or lag in the low-level controllers (He 
et al., 2019; Lund et al., 2019). 

We studied how the anticipation time affects the error of the esti
mated joint moment and which sensors and features produce a lower 
prediction error. It can be expected that when the algorithms attempt to 
predict further ahead in time, the models’ performance will decrease. 
However, we sought to determine what features would best mitigate this 
reduction in model performance. Given that some signals have a tem
poral correlation in terms of their causal interaction in the process of 
locomotion, we hypothesized that the anticipation of the joint moment 
would favor subsets of sensor signals. In particular, EMG data would be 
favored as it is a close measurement to the source of joint moment. 
Furthermore, as the EMG signal has a delay between muscle excitation 
and actual force production (Cavanagh and Komi, 1979) (i.e., electro
mechanical delay), we expect that anticipation time in the range of the 
electromechanical delay will increase the selection of EMG channels for 
predicting subject kinetics. Our work contributes to the field by: (1) 
showing that wearable sensors can predict the intended moment of 
multiple joints in different ambulation modes, (2) evaluating the influ
ence of types of wearable sensing on the prediction through a forward 
channel selection. 

2. Methods 

2.1. Data collection 

Data for biomechanics and wearable sensors from N = 12 subjects (8 

males, 4 females, age 20.6 ± 1.5 yr., mass 68.9 ± 13.6 kg, height 1.71 ±
0.08 m) were collected in a study approved by the Institutional Review 
Board at the Georgia Institute of Technology Protocol No.H17240. In
clusion criteria corresponded to able-bodied adults without conditions 
that affected mobility. The subjects were instrumented with wearable 
sensors measuring accelerometer and gyroscopic data from inertial 
measurement units (IMUs) sampled at 100 Hz (Yost LX embedded, Yost, 
Ohio, US), surface electromyography sampled at 1000 Hz (EMG) (Bio
metrics datalink DLK900, Biometrics Ltd, UK), joint angles and their 
change rate were measured with electrogoniometers sampled at 1000 
Hz (GON) (Biometrics datalink DLK900, Biometrics Ltd, UK). IMUs were 
placed on each segment of the lower limb and on the trunk. EMG sensors 
were attached to major muscle groups (Gluteus Medius, Vastus Lateralis 
and Medialis, Rectus Femoris, Biceps Femoris, Semitendinosus, Gracilis, 
Soleus, Tibialis Anterior, Gastrocnemius Medialis, and Right External 
Oblique) and electrogoniometers were attached to the hip, knee, and 
ankle, capturing sagittal plane angles as well as the frontal plane angle of 
the ankle (Fig. 1). Subjects performed 5 trials of ascent and descent on 
stairs with 4 different step heights of 10.16 cm (4in), 12.70 cm (5in), 
15.24 cm (6in), and 17.78 cm (7in) for a total of 20 stair trials. Subjects 
performed 5 trials of ramp ascent and descent on 6 different slopes of 
5.2◦, 7.8◦, 9.2◦, 11◦, 12.4◦, and 18◦ for a total of 30 ramp trials. 

Finally, subjects performed 15 min of walking on a treadmill at 28 
different speeds, from 0.5 to 1.85 m/s. Biomechanics data were 
computed from motion capture following the Helen Hayes Hospital 
using OpenSim (Delp et al., 2007). Forceplate data, including GRF and 
CoP, were recorded at 1000 Hz on the instrumented split treadmill 
(Bertec, Columbus, US) and forceplates inserts (4060-05, Bertec, Co
lumbus, US) placed in-ground at the mid-section of the ramp and each 
step of the staircase. Sensor data were synchronized with motion capture 
marker data using a Vicon Lock synchronization box (Vicon Motion 
Systems, UK). 

We used the Gait2354_Simbody model, scaled to the segment di
mensions of each subject. Then, we used subject models with the inverse 
kinematics and inverse dynamics tools to generate the joint angles and 
compute the joint moments from motion capture and force plate data 
filtered with a 6 Hz Butterworth lowpass filter. Although the 3D kinetic 

Fig. 1. Sensor placement. EMG electrodes were placed on the lower limb, targeting the major muscle groups. Goniometers were placed at the hip, knee, ankle joint. 
IMUs were placed on each segment of the lower limb and the torso. 

J. Camargo et al.                                                                                                                                                                                                                                



Journal of Biomechanics 134 (2022) 111020

3

analysis generates abduction/adduction hip moment, our focus was the 
prediction of the flexion/extension moments at the hip, knee, and ankle. 
These joint moments were normalized by subject mass (Nm/kg) and 
considered as the ground truth for the supervised training of the models. 

2.2. Model selection 

We limited the scope of the analysis to two types of models: feed
forward NN and XGBoost. NNs are extensively used in locomotion 
recognition and parameter estimation (Aminian et al., 1994; Mannini 
and Sabatini, 2014). XGBoost is an algorithm based on gradient boosting 
and ensemble learning (Chen and Guestrin, 2016). It has shown excel
lent performance with low model complexity and training times (Bhakta 
et al., 2020; Lu et al., 2019). The hyperparameters of XGBoost and the 
NN architecture were selected based on previous work in which we 
achieved biological hip moment estimation (Molinaro et al., 2020). We 
used a maximum depth of 6 for the XGBoost, while we used a fully 
connected network with 2 hidden layers (size 10) and tanh activation for 
the NN models. 

2.3. Feature engineering and selection 

We processed the raw time-series data using a sliding window 
scheme for feature extraction (Hudgins et al., 1993; Lotte, 2012). The 
process consists of using a fixed-size window to compute signal char
acteristics in an interval before the event to be predicted. For every 
window of data, we computed a total of 675 features, as described in 
Table 1. Data windows were updated with a sliding step of 10 ms for a 
targeted refresh rate of 100 Hz. We selected 250 ms as the window size 
based on a preliminary evaluation of the effect of window size on the 
moment error. We determined that window sizes between 100 ms and 
400 ms had no significant effect on the error. 

We defined the anticipation time as the difference between the time 
of the last sample in the window and the time when the joint moment is 
predicted (Fig. 2). For anticipation times between 0 ms and 250 ms with 
increments of 10 ms, we determined the error of the predicted moment 
for each of the three joints in the lower limb: hip, knee, and ankle. Our 
approach was to run a sequential forward feature selection to establish 
the features that optimally reduce the error using a greedy search. We 
independently ran the feature selection for each anticipation time to 
determine the best features and their corresponding performance, 
defined by the mean absolute error of the joint moment. Thus, our 
analysis encompassed the evaluation of the best features to predict the 
joint moment at each case of the independent variables: joints (hip, 
knee, ankle), ambulation modes (treadmill, stair, ramp), and anticipa
tion times (0 to 250 ms). 

To guarantee that testing data never included training data, cross- 
validation based on trial index was performed as follows. The 5 trials 
performed per condition in stairs and ramps were enumerated from 1 to 
5. The 15-minutes trial for treadmill walking was split into 5 sections of 
3 min and enumerated from 1 to 5. Then, we used each trial index from 1 

to 5 to create k = 5 folds for cross-validation. Within each fold i, feature 
tables from the trial of index i, were preserved as testing data and the 
remaining trials as training data. Models were trained per subject using 
the training data of each fold and evaluated with the corresponding 
testing data. On each inclusion step of the forward feature selection, we 
determine the next best feature to include, defined as the one that 
provided the least average error across subjects. 

Due to the significant computational demands of a forward feature 
selection process, we limited the maximum number of features to be 
included in the selection to 32. This number was established by evalu
ating 18 boundary cases of the independent variables (i.e., minimum 
and maximum anticipation time for each combination of joint and 
ambulation mode). No considerable reduction of the model error 
occurred when adding more than 32 features. 

2.4. Statistical analysis 

We used a t-test to evaluate the difference between XBGoost and NN 
regarding the number of features needed. We used quadratic regression 
to study the effects of the anticipation time on the error of moment 
prediction per joint. We used repeated-measures ANOVA (RM-ANOVA) 
to evaluate the effect of model types, joints and ambulation modes on 
the prediction error. Main effect comparisons were performed with post- 
hoc t-tests using the family-wise Bonferroni method to correct for mul
tiple comparisons, reporting the p-value after correction. Finally, we 
determined the sensors’ role by observing the number of different signal 
types selected at each anticipation time and the contribution to error. 
The statistical analyses were evaluated with a 95% confidence interval 
and a significance level α = 0.05 using the software Minitab 19. 

3. Results 

3.1. Convergence of the feature selection process 

For both model types, the feature selection showed convergence to a 
minimum error when increasing the features (Fig. 3). No significant 
difference was found for the number of features required between the 
XGBoost model (10.3 ± 1.2 features) and the NN (10.1 ± 1.8 features) 
for convergence of MAE within 5% error (t-test, p = 0.12). With this 
result, an input vector size of 11 features was used for the subsequent 
analyses. The XGBoost algorithm did not suffer from a loss in accuracy 
compared to the NN with a large number of features in the model. 

3.2. Prediction of joint moment 

For all the joints and modes, the trained models could predict the 
joint moment using only 11 inputs, with an average MAE of 0.06 ± 0.02 
Nm/kg for XGBoost, and an average MAE of 0.07 ± 0.01 Nm/kg for NN 
in the 0 ms case. The prediction forward in time of the moment in
troduces an increase in error proportional to the anticipation time. As an 
example, Fig. 4 illustrates the tracking of the moment produced, 
observing increased deviations from the ground truth as the prediction 
increases. The highest error was found for the highest anticipation time 
(250 ms) with an average MAE of 0.11 ± 0.04 Nm/kg for XGBoost, and 
an average MAE of 0.12 ± 0.05 Nm/kg for NN. However, as observed in 
Fig. 5, even though the error increased with the anticipation time, the 
rate of increase in error with respect to the prediction for the hip (β1 =

0.14 ± 0.07 Nm/kg s) was consistently less than that of the knee (β1 =

0.44 ± 0.17 Nm/kg s) and ankle joint moment (β1 = 0.38 ± 0.18 Nm/kg 
s). 

In general, the error of the predicted moment in the same order of 
magnitude for all the joints and ambulation modes. Yet, the prediction of 
the joint moment for treadmill walking was consistently more accurate 
than ramp and stair ambulation (Bonferroni test, p < 0.05). No signifi
cant difference was found between the NN and XGBoost models (RM- 
ANOVA, p = 0.10). 

Table 1 
Features computed per channel for each window of data.  

Feature Description 

Autoregression Coefficients 
(Order 6) 

Coefficients of the Levinson-Durbin recursion. 
(levinson) 

Slope Sign Changes sum(abs(diff(diff(data_window) > 0))) 
Zero Crossings sum(abs(diff(data_window > 0))) 
Mean sum(data_window)/numel(data_window) 
Root Mean Square (RMS) rms(data_window) 
Minimum min(data_window) 
Maximum max(data_window) 
Waveform Length sum(abs(diff(data_window))) 
Mean Absolute Value sum(abs(data_window))/numel(data_window) 
Standard Deviation std(data_window)  
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3.3. Channels selected 

Since we found a slightly lower error for XGBoost models, we focused 
on this model to observe the most important trends in the feature se
lection as a function of the anticipation time. Fig. 6. presents the per
centage of types of sensors (IMU, EMG, and GON) included by the 
feature selection for each joint and ambulation mode, grouped by 50 ms 
intervals of anticipation time. On average across all joints, ambulation 
modes and anticipations, IMU and GON sensors encompassed 38.9% and 
38.4% of the selected features, respectively. On the other hand, EMG 
corresponded, on average, to 22.6% of the selected features. For greater 
anticipation times (>150 ms), EMG was not selected to predict the hip 
moment on treadmill and showed reduced influence in all ambulation 
modes for the knee joint. On average, EMG comprised 26.3% of the 
selected features for anticipation times up to 150 ms and only 16.8% of 
the selected features for greater anticipation times. 

The type of channels selected present variations depending on the 
anticipation time (Fig. 6). The hip moment prediction was realized 
mainly from the hip GON, knee GON, and thigh IMU gyroscopic signals 
across all the anticipation times. The EMG of the soleus was included 
throughout all anticipation times, and the EMG of the vastii muscles was 
included only for the range of 0–150 ms. The prediction of the knee 
moment had a spread distribution, including knee GON, hip GON, ankle 
GON, and soleus EMG for all the anticipation times. The Vastii muscles 

Fig. 2. Prediction of the joint moment. At the instant t, the feature vector x(t) is computed using the last window of samples. Models are trained to produce ŷ as 
predictions of the ground truth joint moment. The models can be trained to anticipate the joint moment signal at a future time t + τ, where τ is defined as the 
anticipation time. 

Fig. 3. Convergence of the error in the feature selection process. The bold line 
shows the normalized error, defined as the error of each iteration divided by the 
minimum error obtained in the feature selection process. The shaded area 
represents the standard deviation. Including more features in the model reduces 
the error with an improvement of less than 5% after 11 features and an 
improvement of 1% after 23 features. 

Fig. 4. Single stride examples of the prediction of joint moments during locomotion in multiple ambulation modes and different anticipation times using XGBoost. 
Note that the predicted moments were aligned to the corresponding future time of the ground truth signal. The error of the prediction increases as the model attempts 
to predict the torque further in time. 
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were also selected in the range of 0–150 ms for this joint. The ankle 
moment presents more influence from the EMG, including gastrocne
mius medialis for the full range of the anticipation times. For this joint, 
the foot IMU gyroscope was the channel predominantly selected. The 
detailed distribution of channels selected is presented in Supplemental 
Figs. S.1.1-S1.3. 

4. Discussion 

Online joint kinetics estimation has been achieved using different 
methods, including inverse dynamics modeling and ground reaction 
force measurements. This study used conventional sensors that are 
common to wearable robotics without requiring the addition of instru
mented insoles as a means to capture ground reaction forces (Jacobs and 
Ferris, 2015; Khurelbaatar et al., 2015). Our work expands the ambu
lation modes from previous literature to include predicting joint mo
ments in ramps and stairs, demonstrating that this technique can work in 
different settings. Furthermore, we proposed predicting the joint 
moment forward in time so that potential wearable robotic controllers 
benefit from planning instead of reacting to the user’s torque. 

As expected, increasing the anticipation time came with the expense 
of a rise in the error. However, the worst MAE up to 150 ms remained 
below 0.10 Nm/kg, corresponding to the ankle in stairs locomotion and 
representing 9.2% of the ankle moment range. This error level is com
parable to modeling-based methods that do not anticipate the joint 

moment. For reference, Forner-Cordero et al. used inverse dynamics 
modeling from insole contact force, finding 0.15 Nm/kg RMSE (Forner- 
Cordero et al., 2006); other methods included modeling the muscle state 
and dynamics based on EMG (Sartori et al.: 0.20 Nm/kg MAE (Sartori 
et al., 2012), Buchanan, et al.: 0.10 Nm/kg RMSE (Buchanan et al., 
2005)). Additionally, none of these methods attempted to predict future 
joint moments as done in this study. Thus, the results suggest that the 
machine learning-based approach offers lower error. For reference, our 
0 ms prediction XGBoost MAE of 0.06 Nm/kg nearly halves the error 
level of the reported methods based on dynamics modeling with 
wearables. 

In comparison to the knee and ankle joints, the predictions of the hip 
moment have less increase in error when anticipating further in time. 
This finding is potentially explained by the reduced variability in the 
kinematics and kinetics of the hip joint during locomotion as opposed to 
the other joints (Smith, 1993). The same effect occurs when comparing 
the moment prediction on the treadmill with respect to stairs and ramps. 
We found that the treadmill error was 40% less than the error in the 
other ambulation modes. This can be explained since the consistent 
speed reduces the variability across steps, as reported in previous studies 
that evaluate spatiotemporal and kinematic parameters (Dingwell et al., 
2001; Terrier, 2012; Wiens et al., 2019). For example, Dingwell et al. 
reported a significant reduction of the standard deviation of lower ex
tremity kinematics on the treadmill versus walking overground (Ding
well et al., 2001). 

Fig. 5. Mean absolute error (MAE) for estimating the joint moment at different levels of prediction and three different ambulation modes (stair, ramp, treadmill). The 
best accuracy is produced when no prediction is attempted (average MAE 0.06Nm/kg for XGBoost, 0.07Nm/kg for NN). The prediction of the hip moment is less 
sensitive to the anticipation time compared to the prediction of the knee and ankle moments, The moment prediction is significantly more accurate for walking on 
treadmill than on ramps or stairs (Bonferroni test, p < 0.05). 

Fig. 6. Distribution of the 11 selected inputs for XGBoost among the categories: IMU, EMG, GON. The results are aggregated in intervals of 50 ms in the anticipation 
time. Features related to EMG were consistently influential in the ankle moment’s prediction, comprising 27.2% of the selected features on average. Fewer EMG 
features were selected as the anticipation time increased for the knee and hip, observing 24.6% of EMG features for anticipation time under 150 ms and 13.3% EMG 
features for anticipation time over 150 ms. 
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We did not find any significant difference in model error between 
XGBoost and NN. Observing that these general-purpose algorithms can 
predict joint moments with as little as 11 inputs is promising, as it re
duces the size of the required training datasets and eliminates the need 
for synthetic data, as opposed to more complex techniques such as 
Convolutional Neural Networks (Dorschky et al., 2020). The algorithms 
did not show any significant improvement when increasing the number 
of inputs, showing a feature selection convergence within 1% for 23 
features. In fact, for the NN models, exceeding the number of features 
caused increased model error due to overfitting. 

We evaluated the most influential channels of sensor data that are 
required to predict joint moments, finding a substantial effect from the 
anticipation time, the target joint, and ambulation mode. Primarily, the 
prediction of ankle moment favored EMG data, with the soleus and 
gastrocnemius used across all anticipation times. On the other hand, the 
hip and knee joint moment predictions were influenced less by the EMG 
for the greater anticipation times (over 150 ms). 

As it creates a lag between the muscle activation and the actual force 
production, the electromechanical delay affects the channel selection 
and may explain the lack of model preference for EMG channels for 
greater anticipation times. For example, the vastus lateralis, with in vivo 
electromechanical delay of around 90 ms (Vos et al., 1990), would 
provide more direct information for the estimation of the hip and knee 
moment around 90 ms in advance. This was observed in the consistent 
inclusion of the vastus lateralis for knee moment estimation within 50 to 
150 ms in all the ambulation modes (Supplemental Figs. S1.1-S1.3). 
Another aspect of interest is that the channels that carry information 
from other segments and joints get selected more as the anticipation 
time was increased, whereas 0 ms prediction tended to favor more local 
sensing at the joint. For example, predicting future moment at the knee 
involved signals such as forward foot acceleration and ankle sagittal 
angle. This is a potential effect of the model effort to exploit the system 
dynamics’ coupling. 

This study provides an overview of the influence of various sensors to 
predict the joint moment, finding trends that are shared across subjects. 
While this analysis allows the reduction of the features and sensor sets 
for a particular joint or ambulation mode, the results showed that 
combining multiple sensor types is still required to achieve lower error. 
This could hinder the deployment in applications outside of research 
laboratories. We consider that developments in smart textiles and low- 
profile wearable sensing could mitigate this limitation (Wicaksono 
et al., 2020). 

Another limitation of this study is that the models were trained on a 
subject-by-subject basis per ambulation mode. Thus, the error metrics 
obtained may not be representative of testing pre-trained models on 
novel users or dynamic mode changes. Furthermore, the moment esti
mation could be beneficial in clinical settings to inform assistive devices 
in populations with balance impairments. However, these populations 
may exhibit ambulation patterns that differ from the healthy subject 
population evaluated in this work and require further study, neverthe
less applying similar analysis to the reported here. Additionally, 
including robotic assistance from a wearable device can alter biome
chanical patterns and signal levels, influencing the model’s perfor
mance. Future work will focus on evaluating the moment prediction 
response in applications of robotic assistance and exploring the imple
mentation of subject-independent models. 
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