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Combining machine learning models with wearable sensing provides a key technique for understanding the
biological effort, creating an alternative to inverse dynamics based on motion capture. In this study, we
demonstrate a novel approach to not only estimate but predict the joint moment in advance for multiple
ambulation modes. By combining electromyography (EMG), inertial measurement units (IMU), and electro-
goniometers, we enable the prediction of the joint moment only from wearable sensors. We performed a forward
feature selection to determine the best feature sets for different anticipation times of the intended moment
generated at the hip, knee, and ankle, encompassing level walking on a treadmill and ascent/descent of stairs and
ramps. We show that wearable sensors can predict the joint moment with an MAE of 0.06 + 0.02 Nm/kg for
direct estimation and an MAE of 0.10 + 0.04 Nm/kg when predicting 150 ms in advance, corresponding to an
MAE within 9.2% of the joint moment range. We found that the hip moment had a significantly lower error than
the knee and ankle when anticipating the joint moment (Bonferroni test, p < 0.05). The accurate estimation of

the joint moment could monitor user activity to reduce risk factors and inform the control of exoskeletons.

1. Introduction

Estimating the joint moments with wearable sensors allows the
calculation of inverse dynamics on the fly, critical for outside of labo-
ratory settings, where motion capture and force plates are not available.
This information can be used in monitoring and reducing risk factors
during locomotion, when lifting and handling materials, or during other
physically demanding activities. Wearable robotics, such as exoskeleton
technology, could use this information in real-time to improve controller
decisions. The rationale is that devices operate at the joint level, and this
output can inform the desired actuator torque. The instantaneous esti-
mates of the user’s intended joint moment could be used to directly
shape the assistance control reference signal (Lenzi et al., 2013; Seo
et al., 2016) or to map the assistance to a pre-optimized profile (Ding
et al., 2018; Witte et al., 2020; Zhang et al., 2017). This method would
require fewer tuning efforts, providing a more dynamic response(Gas-
parri et al., 2019).

Recent efforts have shown that it is possible to accurately estimate
lower limb joint moments based on wearable sensors. Buchanan et al.
used a forward dynamics model of the musculoskeletal system that uses
the EMG signal to estimate joint moments (Buchanan et al., 2005).
Similarly, other works have relied on system modeling (Jacobs and
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Ferris, 2015; Khurelbaatar et al., 2015; Sartori et al., 2012), requiring
ground reaction forces to solve the inverse dynamics equations and a
detailed description of the biomechanical system. Thus, other re-
searchers have explored machine learning to eliminate the need to
model inverse dynamics and, importantly, remove the need to measure
external forces. Similar to the regression of any walking state parameter
like speed (Zihajehzadeh and Park, 2016), altitude (Xia and Shi, 2020),
or slope (Kang et al., 2019; Li et al., 2009), the process consists of setting
the joint moment as a target for the inference in a supervised learning
algorithm.

Wang et al. implemented a real-time estimation of the knee adduc-
tion moment using Neural Networks (NN) and XGBoost based on inertial
measurement units (IMUs) (Wang et al., 2020). Xiong et al. showed that
a NN could predict the joint moments during treadmill walking for the
hip, knee, and ankle from electromyography (EMG) and goniometers
(GON) (Xiong et al., 2019). However, the applications should extend
beyond treadmill walking, given that community ambulation involves
locomotion across different modes. In this study, we used machine
learning to predict lower limb joint moments in three settings: level-
ground treadmill, stair ascent/descent, and ramp ascent/descent. We
used windowed feature extraction and machine learning for the
regression of joint moment estimation from EMG, GON, and IMU
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spanning the entire lower limb.

In addition to joint moment estimation, we included a novel goal:
predicting the intended joint moment. Using the information from the
previous state of the sensors at a time t, we created models that predict
the moment at a future time t + t, where the anticipation time t rep-
resents how much forward in time the intended joint moment is pre-
dicted. The added benefit of predicting the joint moment forward in time
is that potential controllers may include planning for the future torque
requirements, rather than merely reacting, which allows for consider-
ation of other factors, e.g., environmental and biological safety con-
straints (Zhang and Huang, 2019), or lag in the low-level controllers (He
et al., 2019; Lund et al., 2019).

We studied how the anticipation time affects the error of the esti-
mated joint moment and which sensors and features produce a lower
prediction error. It can be expected that when the algorithms attempt to
predict further ahead in time, the models’ performance will decrease.
However, we sought to determine what features would best mitigate this
reduction in model performance. Given that some signals have a tem-
poral correlation in terms of their causal interaction in the process of
locomotion, we hypothesized that the anticipation of the joint moment
would favor subsets of sensor signals. In particular, EMG data would be
favored as it is a close measurement to the source of joint moment.
Furthermore, as the EMG signal has a delay between muscle excitation
and actual force production (Cavanagh and Komi, 1979) (i.e., electro-
mechanical delay), we expect that anticipation time in the range of the
electromechanical delay will increase the selection of EMG channels for
predicting subject kinetics. Our work contributes to the field by: (1)
showing that wearable sensors can predict the intended moment of
multiple joints in different ambulation modes, (2) evaluating the influ-
ence of types of wearable sensing on the prediction through a forward
channel selection.

2. Methods
2.1. Data collection

Data for biomechanics and wearable sensors from N = 12 subjects (8
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males, 4 females, age 20.6 + 1.5 yr., mass 68.9 + 13.6 kg, height 1.71 +
0.08 m) were collected in a study approved by the Institutional Review
Board at the Georgia Institute of Technology Protocol No.H17240. In-
clusion criteria corresponded to able-bodied adults without conditions
that affected mobility. The subjects were instrumented with wearable
sensors measuring accelerometer and gyroscopic data from inertial
measurement units (IMUs) sampled at 100 Hz (Yost LX embedded, Yost,
Ohio, US), surface electromyography sampled at 1000 Hz (EMG) (Bio-
metrics datalink DLK900, Biometrics Ltd, UK), joint angles and their
change rate were measured with electrogoniometers sampled at 1000
Hz (GON) (Biometrics datalink DLK900, Biometrics Ltd, UK). IMUs were
placed on each segment of the lower limb and on the trunk. EMG sensors
were attached to major muscle groups (Gluteus Medius, Vastus Lateralis
and Medialis, Rectus Femoris, Biceps Femoris, Semitendinosus, Gracilis,
Soleus, Tibialis Anterior, Gastrocnemius Medialis, and Right External
Oblique) and electrogoniometers were attached to the hip, knee, and
ankle, capturing sagittal plane angles as well as the frontal plane angle of
the ankle (Fig. 1). Subjects performed 5 trials of ascent and descent on
stairs with 4 different step heights of 10.16 cm (4in), 12.70 cm (5in),
15.24 cm (6in), and 17.78 cm (7in) for a total of 20 stair trials. Subjects
performed 5 trials of ramp ascent and descent on 6 different slopes of
5.2°,7.8° 9.2°,11°, 12.4°, and 18° for a total of 30 ramp trials.

Finally, subjects performed 15 min of walking on a treadmill at 28
different speeds, from 0.5 to 1.85 m/s. Biomechanics data were
computed from motion capture following the Helen Hayes Hospital
using OpenSim (Delp et al., 2007). Forceplate data, including GRF and
CoP, were recorded at 1000 Hz on the instrumented split treadmill
(Bertec, Columbus, US) and forceplates inserts (4060-05, Bertec, Co-
lumbus, US) placed in-ground at the mid-section of the ramp and each
step of the staircase. Sensor data were synchronized with motion capture
marker data using a Vicon Lock synchronization box (Vicon Motion
Systems, UK).

We used the Gait2354_Simbody model, scaled to the segment di-
mensions of each subject. Then, we used subject models with the inverse
kinematics and inverse dynamics tools to generate the joint angles and
compute the joint moments from motion capture and force plate data
filtered with a 6 Hz Butterworth lowpass filter. Although the 3D kinetic
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Fig. 1. Sensor placement. EMG electrodes were placed on the lower limb, targeting the major muscle groups. Goniometers were placed at the hip, knee, ankle joint.

IMUs were placed on each segment of the lower limb and the torso.
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analysis generates abduction/adduction hip moment, our focus was the
prediction of the flexion/extension moments at the hip, knee, and ankle.
These joint moments were normalized by subject mass (Nm/kg) and
considered as the ground truth for the supervised training of the models.

2.2. Model selection

We limited the scope of the analysis to two types of models: feed-
forward NN and XGBoost. NNs are extensively used in locomotion
recognition and parameter estimation (Aminian et al., 1994; Mannini
and Sabatini, 2014). XGBoost is an algorithm based on gradient boosting
and ensemble learning (Chen and Guestrin, 2016). It has shown excel-
lent performance with low model complexity and training times (Bhakta
et al., 2020; Lu et al., 2019). The hyperparameters of XGBoost and the
NN architecture were selected based on previous work in which we
achieved biological hip moment estimation (Molinaro et al., 2020). We
used a maximum depth of 6 for the XGBoost, while we used a fully
connected network with 2 hidden layers (size 10) and tanh activation for
the NN models.

2.3. Feature engineering and selection

We processed the raw time-series data using a sliding window
scheme for feature extraction (Hudgins et al., 1993; Lotte, 2012). The
process consists of using a fixed-size window to compute signal char-
acteristics in an interval before the event to be predicted. For every
window of data, we computed a total of 675 features, as described in
Table 1. Data windows were updated with a sliding step of 10 ms for a
targeted refresh rate of 100 Hz. We selected 250 ms as the window size
based on a preliminary evaluation of the effect of window size on the
moment error. We determined that window sizes between 100 ms and
400 ms had no significant effect on the error.

We defined the anticipation time as the difference between the time
of the last sample in the window and the time when the joint moment is
predicted (Fig. 2). For anticipation times between 0 ms and 250 ms with
increments of 10 ms, we determined the error of the predicted moment
for each of the three joints in the lower limb: hip, knee, and ankle. Our
approach was to run a sequential forward feature selection to establish
the features that optimally reduce the error using a greedy search. We
independently ran the feature selection for each anticipation time to
determine the best features and their corresponding performance,
defined by the mean absolute error of the joint moment. Thus, our
analysis encompassed the evaluation of the best features to predict the
joint moment at each case of the independent variables: joints (hip,
knee, ankle), ambulation modes (treadmill, stair, ramp), and anticipa-
tion times (0 to 250 ms).

To guarantee that testing data never included training data, cross-
validation based on trial index was performed as follows. The 5 trials
performed per condition in stairs and ramps were enumerated from 1 to
5. The 15-minutes trial for treadmill walking was split into 5 sections of
3 min and enumerated from 1 to 5. Then, we used each trial index from 1

Table 1
Features computed per channel for each window of data.

Feature Description

Coefficients of the Levinson-Durbin recursion.
(levinson)

sum(abs(diff(diff(data window) > 0)))
sum(abs(diff(data window > 0)))

Autoregression Coefficients
(Order 6)

Slope Sign Changes

Zero Crossings

Mean sum(data_window) /numel(data window)
Root Mean Square (RMS) rms(data window)
Minimum min(data_window)
Maximum max(data_window)

Waveform Length
Mean Absolute Value
Standard Deviation

sum(abs(diff(data_window)))
sum(abs(data_window))/numel(data window)
std(data_window)
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to 5 to create k = 5 folds for cross-validation. Within each fold i, feature
tables from the trial of index i, were preserved as testing data and the
remaining trials as training data. Models were trained per subject using
the training data of each fold and evaluated with the corresponding
testing data. On each inclusion step of the forward feature selection, we
determine the next best feature to include, defined as the one that
provided the least average error across subjects.

Due to the significant computational demands of a forward feature
selection process, we limited the maximum number of features to be
included in the selection to 32. This number was established by evalu-
ating 18 boundary cases of the independent variables (i.e., minimum
and maximum anticipation time for each combination of joint and
ambulation mode). No considerable reduction of the model error
occurred when adding more than 32 features.

2.4. Statistical analysis

We used a t-test to evaluate the difference between XBGoost and NN
regarding the number of features needed. We used quadratic regression
to study the effects of the anticipation time on the error of moment
prediction per joint. We used repeated-measures ANOVA (RM-ANOVA)
to evaluate the effect of model types, joints and ambulation modes on
the prediction error. Main effect comparisons were performed with post-
hoc t-tests using the family-wise Bonferroni method to correct for mul-
tiple comparisons, reporting the p-value after correction. Finally, we
determined the sensors’ role by observing the number of different signal
types selected at each anticipation time and the contribution to error.
The statistical analyses were evaluated with a 95% confidence interval
and a significance level a = 0.05 using the software Minitab 19.

3. Results
3.1. Convergence of the feature selection process

For both model types, the feature selection showed convergence to a
minimum error when increasing the features (Fig. 3). No significant
difference was found for the number of features required between the
XGBoost model (10.3 £ 1.2 features) and the NN (10.1 + 1.8 features)
for convergence of MAE within 5% error (t-test, p = 0.12). With this
result, an input vector size of 11 features was used for the subsequent
analyses. The XGBoost algorithm did not suffer from a loss in accuracy
compared to the NN with a large number of features in the model.

3.2. Prediction of joint moment

For all the joints and modes, the trained models could predict the
joint moment using only 11 inputs, with an average MAE of 0.06 + 0.02
Nm/kg for XGBoost, and an average MAE of 0.07 + 0.01 Nm/kg for NN
in the 0 ms case. The prediction forward in time of the moment in-
troduces an increase in error proportional to the anticipation time. As an
example, Fig. 4 illustrates the tracking of the moment produced,
observing increased deviations from the ground truth as the prediction
increases. The highest error was found for the highest anticipation time
(250 ms) with an average MAE of 0.11 + 0.04 Nm/kg for XGBoost, and
an average MAE of 0.12 + 0.05 Nm/kg for NN. However, as observed in
Fig. 5, even though the error increased with the anticipation time, the
rate of increase in error with respect to the prediction for the hip (8, =
0.14 + 0.07 Nm/kg s) was consistently less than that of the knee (5, =
0.44 £+ 0.17 Nm/kg s) and ankle joint moment (f; = 0.38 = 0.18 Nm/kg
s).

In general, the error of the predicted moment in the same order of
magnitude for all the joints and ambulation modes. Yet, the prediction of
the joint moment for treadmill walking was consistently more accurate
than ramp and stair ambulation (Bonferroni test, p < 0.05). No signifi-
cant difference was found between the NN and XGBoost models (RM-
ANOVA, p = 0.10).
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3.3. Channels selected

Since we found a slightly lower error for XGBoost models, we focused
on this model to observe the most important trends in the feature se-
lection as a function of the anticipation time. Fig. 6. presents the per-
centage of types of sensors (IMU, EMG, and GON) included by the
feature selection for each joint and ambulation mode, grouped by 50 ms
intervals of anticipation time. On average across all joints, ambulation
modes and anticipations, IMU and GON sensors encompassed 38.9% and
38.4% of the selected features, respectively. On the other hand, EMG
corresponded, on average, to 22.6% of the selected features. For greater
anticipation times (>150 ms), EMG was not selected to predict the hip
moment on treadmill and showed reduced influence in all ambulation
modes for the knee joint. On average, EMG comprised 26.3% of the
selected features for anticipation times up to 150 ms and only 16.8% of
the selected features for greater anticipation times.

The type of channels selected present variations depending on the
anticipation time (Fig. 6). The hip moment prediction was realized
mainly from the hip GON, knee GON, and thigh IMU gyroscopic signals
across all the anticipation times. The EMG of the soleus was included
throughout all anticipation times, and the EMG of the vastii muscles was
included only for the range of 0-150 ms. The prediction of the knee
moment had a spread distribution, including knee GON, hip GON, ankle
GON, and soleus EMG for all the anticipation times. The Vastii muscles
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to predict the torque further in time.
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were also selected in the range of 0-150 ms for this joint. The ankle
moment presents more influence from the EMG, including gastrocne-
mius medialis for the full range of the anticipation times. For this joint,
the foot IMU gyroscope was the channel predominantly selected. The
detailed distribution of channels selected is presented in Supplemental
Figs. S.1.1-S1.3.

4. Discussion

Online joint kinetics estimation has been achieved using different
methods, including inverse dynamics modeling and ground reaction
force measurements. This study used conventional sensors that are
common to wearable robotics without requiring the addition of instru-
mented insoles as a means to capture ground reaction forces (Jacobs and
Ferris, 2015; Khurelbaatar et al., 2015). Our work expands the ambu-
lation modes from previous literature to include predicting joint mo-
ments in ramps and stairs, demonstrating that this technique can work in
different settings. Furthermore, we proposed predicting the joint
moment forward in time so that potential wearable robotic controllers
benefit from planning instead of reacting to the user’s torque.

As expected, increasing the anticipation time came with the expense
of a rise in the error. However, the worst MAE up to 150 ms remained
below 0.10 Nm/kg, corresponding to the ankle in stairs locomotion and
representing 9.2% of the ankle moment range. This error level is com-
parable to modeling-based methods that do not anticipate the joint

moment. For reference, Forner-Cordero et al. used inverse dynamics
modeling from insole contact force, finding 0.15 Nm/kg RMSE (Forner-
Cordero et al., 2006); other methods included modeling the muscle state
and dynamics based on EMG (Sartori et al.: 0.20 Nm/kg MAE (Sartori
et al.,, 2012), Buchanan, et al.: 0.10 Nm/kg RMSE (Buchanan et al.,
2005)). Additionally, none of these methods attempted to predict future
joint moments as done in this study. Thus, the results suggest that the
machine learning-based approach offers lower error. For reference, our
0 ms prediction XGBoost MAE of 0.06 Nm/kg nearly halves the error
level of the reported methods based on dynamics modeling with
wearables.

In comparison to the knee and ankle joints, the predictions of the hip
moment have less increase in error when anticipating further in time.
This finding is potentially explained by the reduced variability in the
kinematics and kinetics of the hip joint during locomotion as opposed to
the other joints (Smith, 1993). The same effect occurs when comparing
the moment prediction on the treadmill with respect to stairs and ramps.
We found that the treadmill error was 40% less than the error in the
other ambulation modes. This can be explained since the consistent
speed reduces the variability across steps, as reported in previous studies
that evaluate spatiotemporal and kinematic parameters (Dingwell et al.,
2001; Terrier, 2012; Wiens et al., 2019). For example, Dingwell et al.
reported a significant reduction of the standard deviation of lower ex-
tremity kinematics on the treadmill versus walking overground (Ding-
well et al., 2001).
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We did not find any significant difference in model error between
XGBoost and NN. Observing that these general-purpose algorithms can
predict joint moments with as little as 11 inputs is promising, as it re-
duces the size of the required training datasets and eliminates the need
for synthetic data, as opposed to more complex techniques such as
Convolutional Neural Networks (Dorschky et al., 2020). The algorithms
did not show any significant improvement when increasing the number
of inputs, showing a feature selection convergence within 1% for 23
features. In fact, for the NN models, exceeding the number of features
caused increased model error due to overfitting.

We evaluated the most influential channels of sensor data that are
required to predict joint moments, finding a substantial effect from the
anticipation time, the target joint, and ambulation mode. Primarily, the
prediction of ankle moment favored EMG data, with the soleus and
gastrocnemius used across all anticipation times. On the other hand, the
hip and knee joint moment predictions were influenced less by the EMG
for the greater anticipation times (over 150 ms).

As it creates a lag between the muscle activation and the actual force
production, the electromechanical delay affects the channel selection
and may explain the lack of model preference for EMG channels for
greater anticipation times. For example, the vastus lateralis, with in vivo
electromechanical delay of around 90 ms (Vos et al., 1990), would
provide more direct information for the estimation of the hip and knee
moment around 90 ms in advance. This was observed in the consistent
inclusion of the vastus lateralis for knee moment estimation within 50 to
150 ms in all the ambulation modes (Supplemental Figs. S1.1-S1.3).
Another aspect of interest is that the channels that carry information
from other segments and joints get selected more as the anticipation
time was increased, whereas 0 ms prediction tended to favor more local
sensing at the joint. For example, predicting future moment at the knee
involved signals such as forward foot acceleration and ankle sagittal
angle. This is a potential effect of the model effort to exploit the system
dynamics’ coupling.

This study provides an overview of the influence of various sensors to
predict the joint moment, finding trends that are shared across subjects.
While this analysis allows the reduction of the features and sensor sets
for a particular joint or ambulation mode, the results showed that
combining multiple sensor types is still required to achieve lower error.
This could hinder the deployment in applications outside of research
laboratories. We consider that developments in smart textiles and low-
profile wearable sensing could mitigate this limitation (Wicaksono
et al., 2020).

Another limitation of this study is that the models were trained on a
subject-by-subject basis per ambulation mode. Thus, the error metrics
obtained may not be representative of testing pre-trained models on
novel users or dynamic mode changes. Furthermore, the moment esti-
mation could be beneficial in clinical settings to inform assistive devices
in populations with balance impairments. However, these populations
may exhibit ambulation patterns that differ from the healthy subject
population evaluated in this work and require further study, neverthe-
less applying similar analysis to the reported here. Additionally,
including robotic assistance from a wearable device can alter biome-
chanical patterns and signal levels, influencing the model’s perfor-
mance. Future work will focus on evaluating the moment prediction
response in applications of robotic assistance and exploring the imple-
mentation of subject-independent models.

CRediT authorship contribution statement

Jonathan Camargo: Conceptualization, Data curation, Formal
analysis, Investigation, Methodology, Visualization, Writing — original
draft, Writing — review & editing. Dean Molinaro: Conceptualization,
Data curation, Formal analysis, Writing — original draft, Writing — re-
view & editing. Aaron Young: Writing — review & editing, Supervision,
Resources, Project administration, Methodology, Funding acquisition,
Conceptualization.

Journal of Biomechanics 134 (2022) 111020
Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This work was supported by a Fulbright fellowship awarded to
Jonathan Camargo-Leyva. The NSF NRI Award also funded this research
under No. 1830215, the National Science Foundation Graduate
Research Fellowship under Grant No. DGE-1650044, and the NRT:
Accessibility, Rehabilitation, and Movement Science (ARMS) Award No.
1545287.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.
0rg/10.1016/j.jbiomech.2022.111020.

References

Aminian, K., Robert, P., Jéquier, E., Schutz, Y., 1994. Estimation of speed and incline of
walking using neural network. Conference Proceedings - 10th Anniv., IMTC 1994:
Advanced Technologies in I and M. 1994 IEEE Instrumentation and Measurement
Technology Conference, 44(3), 160-162. https://doi.org/10.1109/
IMTC.1994.352073.

Bhakta, K., Camargo, J., Donovan, L., Herrin, K., Young, A., 2020. Machine Learning
Model Comparisons of User Independent & Dependent Intent Recognition Systems
for Powered Prostheses. IEEE Rob. Autom. Lett. 5 (4), 5393-5400. https://doi.org/
10.1109/LRA.2020.3007480.

Buchanan, T.S., Lloyd, D.G., Manal, K., Besier, T.F., 2005. Estimation of muscle forces
and joint moments using a forward-inverse dynamics model. Med. Sci. Sports Exerc.
37 (11), 1911-1916. https://doi.org/10.1249/01.mss.0000176684.24008.6f.

Cavanagh, P.R., Komi, P.V., 1979. Electromechanical delay in human skeletal muscle
under concentric and eccentric contractions. Eur. J. Appl. Physiol. 42 (3), 159-163.
https://doi.org/10.1007/BF00431022.

Chen, T., Guestrin, C., 2016. XGBoost: A Scalable Tree Boosting System. Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
1(1), 785-794.

Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E.,
Thelen, D.G., 2007. OpenSim: Open-Source Software to Create andAnalyze Dynamic
Simulations of Movement. IEEE Trans. Bio-Med. Eng. 54 (11), 1940-1950. https://
doi.org/10.1109/TBME.2007.901024.

Ding, Y., Kim, M., Kuindersma, S., Walsh, C.J., 2018. Human-in-the-loop optimization of
hip assistance with a soft exosuit during walking. Sci. Rob. 3 (15), 1-9. https://doi.
org/10.1126/scirobotics.aar5438.

Dingwell, J.B., Cusumano, J.P., Cavanagh, P.R., Sternad, D., 2001. Local dynamic
stability versus kinematic variability of continuous overground and treadmill
walking. J. Biomech. Eng. 123 (1), 27-32. https://doi.org/10.1115/1.1336798.

Dorschky, E., Nitschke, M., Martindale, C.F., van den Bogert, A.J., Koelewijn, A.D.,
Eskofier, B.M., 2020. CNN-Based Estimation of Sagittal Plane Walking and Running
Biomechanics From Measured and Simulated Inertial Sensor Data. Front. Bioeng.
Biotechnol. 8 (June), 1-14. https://doi.org/10.3389/fbioe.2020.00604.

Forner-Cordero, A., Koopman, H.J.F.M., Van Der Helm, F.C.T., 2006. Inverse dynamics
calculations during gait with restricted ground reaction force information from
pressure insoles. Gait Posture 23 (2), 189-199. https://doi.org/10.1016/j.
gaitpost.2005.02.002.

Gasparri, G.M., Luque, J., Lerner, Z.F., 2019. Proportional Joint-Moment Control for
Instantaneously Adaptive Ankle Exoskeleton Assistance. IEEE Trans. Neural Syst.
Rehabil. Eng. 27 (4), 751-759. https://doi.org/10.1109/TNSRE.2019.2905979.

He, B., Thomas, G.C., Paine, N., Sentis, L., 2019. Modeling and loop shaping of single-
joint amplification exoskeleton with contact sensing and series elastic actuation.
Proceedings of the American Control Conference, 2019-July, 4580-4587. https://doi.
org/10.23919/acc.2019.8814421.

Hudgins, B., Parker, P., Scott, R.N., 1993. A New Strategy for Multifunction Myoelectric
Control. IEEE Trans. Biomed. Eng. 40 (1), 82-94. https://doi.org/10.1109/
10.204774.

Jacobs, D.A., Ferris, D.P., 2015. Estimation of ground reaction forces and ankle moment
with multiple, low-cost sensors. J. NeuroEng. Rehabil. 12 (1), 1-12. https://doi.org/
10.1186/512984-015-0081-x.

Kang, 1., Kunapuli, P., Hsu, H., Young, A.J., 2019. Electromyography (EMG) signal
contributions in speed and slope estimation using robotic exoskeletons. IEEE
International Conference on Rehabilitation Robotics, 2019-June, 548-553. https://doi.
org/10.1109/ICORR.2019.8779433.

Khurelbaatar, T., Kim, K., Lee, S.K., Kim, Y.H., 2015. Consistent accuracy in whole-body
joint kinetics during gait using wearable inertial motion sensors and in-shoe pressure
sensors. Gait Posture 42 (1), 65-69. https://doi.org/10.1016/j.
gaitpost.2015.04.007.


https://doi.org/10.1016/j.jbiomech.2022.111020
https://doi.org/10.1016/j.jbiomech.2022.111020
https://doi.org/10.1109/LRA.2020.3007480
https://doi.org/10.1109/LRA.2020.3007480
https://doi.org/10.1249/01.mss.0000176684.24008.6f
https://doi.org/10.1007/BF00431022
https://doi.org/10.1109/TBME.2007.901024
https://doi.org/10.1109/TBME.2007.901024
https://doi.org/10.1126/scirobotics.aar5438
https://doi.org/10.1126/scirobotics.aar5438
https://doi.org/10.1115/1.1336798
https://doi.org/10.3389/fbioe.2020.00604
https://doi.org/10.1016/j.gaitpost.2005.02.002
https://doi.org/10.1016/j.gaitpost.2005.02.002
https://doi.org/10.1109/TNSRE.2019.2905979
https://doi.org/10.1109/10.204774
https://doi.org/10.1109/10.204774
https://doi.org/10.1186/s12984-015-0081-x
https://doi.org/10.1186/s12984-015-0081-x
https://doi.org/10.1016/j.gaitpost.2015.04.007
https://doi.org/10.1016/j.gaitpost.2015.04.007

J. Camargo et al.

Lenzi, T., Carrozza, M.C., Agrawal, S.K., 2013. Powered hip exoskeletons can reduce the
user’s hip and ankle muscle activations during walking. IEEE Trans. Neural Syst.
Rehabil. Eng. 21 (6), 938-948. https://doi.org/10.1109/TNSRE.2013.2248749.

Li, Q., Young, M., Naing, V., Donelan, J.M., 2009. Walking speed and slope estimation
using shank-mounted inertial measurement units. 2009 IEEE International Conference
on Rehabilitation Robotics, ICORR 2009, 839-844. https://doi.org/10.1109/
ICORR.2009.5209598.

Lotte, F., 2012. A new feature and associated optimal spatial filter for EEG signal
classification: Waveform Length. Pattern Recognition (ICPR), 2012 21st International
..., Icpr, 2-5. https://doi.org/10.0/Linux-x86_64.

Lu, H., Pinaroc, M., Lv, M., Sun, S., Han, H., Shah, R.C., 2019. Locomotion recognition
using XGboost and neural network ensemble. UbiComp/ISWC 2019- - Adjunct
Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous
Computing and Proceedings of the 2019 ACM International Symposium on Wearable
Computers, 757-760. https://doi.org/10.1145/3341162.3344870.

Lund, S.H.J., Billeschou, P., Larsen, L.B., 2019. High-bandwidth active impedance
control of the proprioceptive actuator design in dynamic compliant robotics.
Actuators 8 (4), 1-33. https://doi.org/10.3390/ACT8040071.

Mannini, A., Sabatini, A.M., 2014. Walking speed estimation using foot-mounted inertial
sensors: Comparing machine learning and strap-down integration methods. Med.
Eng. Phys. 36 (10), 1312-1321. https://doi.org/10.1016/j.
medengphy.2014.07.022.

Molinaro, D.D., Kang, 1., Camargo, J., Young, A.J., 2020. Biological Hip Torque Estimation
using a Robotic Hip Exoskeleton. 791-796. https://doi.org/10.1109/
biorob49111.2020.9224334.

Sartori, M., Reggiani, M., Farina, D., Lloyd, D.G., Gribble, P.L., 2012. EMG-Driven
Forward-Dynamic Estimation of Muscle Force and Joint Moment about Multiple
Degrees of Freedom in the Human Lower Extremity. PLoS ONE 7 (12), €52618.
https://doi.org/10.1371/journal.pone.0052618.

Seo, K., Lee, J., Lee, Y., Ha, T., Shim, Y., 2016. Fully autonomous hip exoskeleton saves
metabolic cost of walking. Proceedings - IEEE International Conference on Robotics and
Automation, 2016-June, 4628-4635. https://doi.org/10.1109/ICRA.2016.7487663.

Smith, A., 1993. Variability in human locomotion: are repeat trials necessary? Australian
J. Physiotherapy 39 (2), 115-123. https://doi.org/10.1016/5S0004-9514(14)60476-
1.

Terrier, P., Thomas, A.LR., 2012. Step-to-Step Variability in Treadmill Walking: Influence
of Rhythmic Auditory Cueing. PLoS ONE 7 (10), e47171. https://doi.org/10.1371/
journal.pone.0047171.

Journal of Biomechanics 134 (2022) 111020

Vos, E.J., Mullender, M.G., van Ingen Schenau, G.J., 1990. Electromechanical delay in
the vastus lateralis muscle during dynamic isometric contractions. Eur. J. Appl.
Physiol. 60 (6), 467-471. https://doi.org/10.1007/BF00705038.

Wang, C., Chan, P.P.K., Lam, B.M.F., Wang, S., Zhang, J.H., Chan, Z.Y.S., Chan, R.H.M.,
Ho, K.K.W., Cheung, R.T.H., 2020. Real-Time Estimation of Knee Adduction Moment
for Gait Retraining in Patients with Knee Osteoarthritis. IEEE Trans. Neural Syst.
Rehabil. Eng. 28 (4), 888-894. https://doi.org/10.1109/TNSRE.2020.2978537.

Wicaksono, 1., Tucker, C.I., Sun, T., Guerrero, C.A., Liu, C., Woo, W.M., Pence, E.J.,
Dagdeviren, C., 2020. A tailored, electronic textile conformable suit for large-scale
spatiotemporal physiological sensing in vivo. NPJ Flexible Electron. 4 (1) https://
doi.org/10.1038/541528-020-0068-y.

Wiens, C., Denton, W., Schieber, M.N., Hartley, R., Marmelat, V., Myers, S.A., Yentes, J.
M., 2019. Walking speed and spatiotemporal step mean measures are reliable during
feedback-controlled treadmill walking; however, spatiotemporal step variability is
not reliable. J. Biomech. 83, 221-226. https://doi.org/10.1016/j.
jbiomech.2018.11.051.

Witte, K.A., Fiers, P., Sheets-Singer, A.L., Collins, S.H., 2020. Improving the energy
economy of human running with powered and unpowered ankle exoskeleton
assistance. Sci. Rob. 5 (40) https://doi.org/10.1126/scirobotics.aay9108.

Xia, M., Shi, C., 2020. Autonomous Pedestrian Altitude Estimation Inside a Multi-Story
Building Assisted by Motion Recognition. IEEE Access 8, 104718-104727. https://
doi.org/10.1109/ACCESS.2020.3000313.

Xiong, B., Zeng, N., Li, H., Yang, Y., Li, Y., Huang, M., Shi, W., Du, M., Zhang, Y., 2019.
Intelligent Prediction of Human Lower Extremity Joint Moment: An Artificial Neural
Network Approach. IEEE Access 7, 29973-29980. https://doi.org/10.1109/
ACCESS.2019.2900591.

Zhang, J., Fiers, P., Witte, K.A., Jackson, R.W., Poggensee, K.L., Atkeson, C.G., Collins, S.
H., 2017. Human-in-the-loop optimization of exoskeleton assistance during. Sci.
Rob. 1284 (June), 1280-1284.

Zhang, T., Huang, H.e., 2019. Design and Control of a Series Elastic Actuator with Clutch
for Hip Exoskeleton for Precise Assistive Magnitude and Timing Control and
Improved Mechanical Safety. IEEE/ASME Trans. Mechatron. 24 (5), 2215-2226.
https://doi.org/10.1109/TMECH.2019.2932312.

Zihajehzadeh, S., Park, E.J., Song, H., 2016. Regression model-based walking speed
estimation using wrist-worn inertial sensor. PLoS ONE 11 (10), e0165211. https://
doi.org/10.1371/journal.pone.0165211.


https://doi.org/10.1109/TNSRE.2013.2248749
https://doi.org/10.3390/ACT8040071
https://doi.org/10.1016/j.medengphy.2014.07.022
https://doi.org/10.1016/j.medengphy.2014.07.022
https://doi.org/10.1371/journal.pone.0052618
https://doi.org/10.1016/S0004-9514(14)60476-1
https://doi.org/10.1016/S0004-9514(14)60476-1
https://doi.org/10.1371/journal.pone.0047171
https://doi.org/10.1371/journal.pone.0047171
https://doi.org/10.1007/BF00705038
https://doi.org/10.1109/TNSRE.2020.2978537
https://doi.org/10.1038/s41528-020-0068-y
https://doi.org/10.1038/s41528-020-0068-y
https://doi.org/10.1016/j.jbiomech.2018.11.051
https://doi.org/10.1016/j.jbiomech.2018.11.051
https://doi.org/10.1126/scirobotics.aay9108
https://doi.org/10.1109/ACCESS.2020.3000313
https://doi.org/10.1109/ACCESS.2020.3000313
https://doi.org/10.1109/ACCESS.2019.2900591
https://doi.org/10.1109/ACCESS.2019.2900591
http://refhub.elsevier.com/S0021-9290(22)00076-8/h0175
http://refhub.elsevier.com/S0021-9290(22)00076-8/h0175
http://refhub.elsevier.com/S0021-9290(22)00076-8/h0175
https://doi.org/10.1109/TMECH.2019.2932312
https://doi.org/10.1371/journal.pone.0165211
https://doi.org/10.1371/journal.pone.0165211

	Predicting biological joint moment during multiple ambulation tasks
	1 Introduction
	2 Methods
	2.1 Data collection
	2.2 Model selection
	2.3 Feature engineering and selection
	2.4 Statistical analysis

	3 Results
	3.1 Convergence of the feature selection process
	3.2 Prediction of joint moment
	3.3 Channels selected

	4 Discussion
	CRediT authorship contribution statement

	Declaration of Competing Interest
	Acknowledgments
	Appendix A Supplementary material
	References


