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Abstract

Matrix completion problems arise in many applications including recommendation systems, computer
vision, and genomics. Increasingly larger neural networks have been successful in many of these appli-
cations, but at considerable computational costs. Remarkably, taking the width of a neural network to
infinity allows for improved computational performance. In this work, we develop an infinite width neural
network framework for matrix completion that is simple, fast, and flexible. Simplicity and speed come
from the connection between the infinite width limit of neural networks and kernels known as neural
tangent kernels (NTK). In particular, we derive the NTK for fully connected and convolutional neural
networks for matrix completion. The flexibility stems from a feature prior, which allows encoding rela-
tionships between coordinates of the target matrix, akin to semi-supervised learning. The effectiveness of
our framework is demonstrated through competitive results for virtual drug screening and image inpaint-
ing/reconstruction. We also provide an implementation in Python to make our framework accessible on
standard hardware to a broad audience.

1 Introduction
Matrix completion is a fundamental problem in machine learning, arising in a variety of applications from
collaborative filtering to virtual drug screening, and image inpainting/reconstruction. Given a matrix Y with
only a subset of coordinates observed, the goal of matrix completion is to impute the unobserved entries
in Y . For example, in collaborative filtering (Fig. 1a), matrix completion is used to infer the interests of
a user from the interests of other users. A prominent example is the Netflix challenge of inferring movie
preferences from sparsely-populated matrices of user ratings [1]. For virtual drug screening (Fig. 1b), matrix
completion is used to predict the effect of a drug on a cell type/state given other drug and cell type/state
combinations. For image inpainting (Fig. 1c) and image reconstruction (Fig. 1d), matrix completion is used
to restore missing pixels in a corrupted image.

Standard approaches to matrix completion such as nuclear norm minimization [44, 13, 14] or deep matrix
factorization [3] aim for a completion that yields a low rank matrix. While such methods can be effective in
applications like collaborative filtering, where low rank can capture user similarity, such an objective function
can lead to ineffective solutions for applications including drug response imputation, image inpainting, or
image reconstruction. For example, in the case of drug response imputation, imputing a new drug would
involve predicting the values of an entirely-missing vector of gene responses (in contrast to the aforementioned
Netflix problem, which involves imputing single scalar entries of the matrix). In this case, a low-rank
reconstruction would replace all missing entries with a fixed constant, thereby leading to poor predictive
performance. Similarly, for image inpainting and reconstruction, a low rank completion is generally ineffective
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Figure 1: An overview of matrix completion applications where ?’s in (a), (b) and zero (black) pixels in (c),
(d) represent unobserved entries. (a) Collaborative filtering example (the Netflix problem), where the goal
is to predict how a user would rate (on a scale of 1-5) an unseen movie. (b) Virtual drug screening, where
the problem is to predict the gene expression profile for an unobserved drug / cell type combination. In this
application entire columns are unobserved. (c,d) Image inpainting and reconstruction involves reconstructing
a corrupted region of an image (shown as black pixels). (e) Our NTK matrix completion framework is easily
adapted to solve all of the above problems by selecting a feature prior that represents an embedding of
application specific metadata.

since it does not take into account local image structure [32, 57]. Thus, there is a need for a more general
approach to matrix completion that can easily adapt to the structures in different applications.

In this work, we provide a simple, fast, and flexible framework for matrix completion. To accomplish
this, we view matrix completion as an inverse problem; given a matrix Y ∈ Rm×n such that a subset of
coordinates S = {(i, j)} ⊂ [m] × [n] are observed and the other entries are missing, we aim to construct
Ŷ ∈ Rm×n such that Ŷi,j ≈ Yi,j for all observed coordinates (i, j) ∈ S. We use neural networks to model the
observations in Y and use gradient descent to minimize:

L(W)=
∑

(i,j)∈S

(Yi,j−[Wdφ(Wd−1φ(. . .W2φ(W1Z) . . .))]i,j)
2
, (1)

where W = {W`}d`=1 are the weights of a neural network with each W` ∈ Rk`+1×k` and kd+1 = m, k1 = p;
φ : R→ R is a fixed element-wise nonlinearity; and Z ∈ Rp×n is a fixed application-dependent matrix, which
we call the feature prior (described in detail below). The completed matrix Ŷ is then obtained using the
forward model with the trained weights, i.e., Ŷ = Wdφ(Wd−1(. . .W2φ(W1Z) . . .)). The main contribution of
this work is showing that minimizing the loss in Eq. [1] when the width {k`}d`=2 of the neural network tends
to infinity, gives rise to a simple, fast, and flexible framework for matrix completion suitable for a range of
applications.

Superficially, the formulation in Eq. [1] appears similar to that of traditional supervised learning, where
a neural network is trained to map data (which would correspond to Z in our formulation) to corresponding
labels Y . However, it is important to note that in our formulation Z can be independent of the observations
Y (Z could for example be the identity matrix or a random matrix). Thus, Z should be interpreted as a
prior that can be chosen in an application-dependent manner. We will discuss the effect of this prior as well
as how to choose it for very different applications like virtual drug screening and image inpainting.

Simple and Fast Algorithm for Matrix Completion through Infinite Width Networks

A trend for improving neural network performance is to make models larger (in multiple respects) [28,
24, 45, 58]. Underscoring this trend, several recent works have empirically demonstrated the advantage of
larger (in particular, wider) networks with respect to generalization and performance for classification and
representation learning tasks [59, 7, 37, 43]. There is also an emerging theoretical understanding of the
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benefit of larger models [8, 23, 5]. The extreme case where network width approaches infinity, is what we
consider in this paper in the setting of matrix completion.

While generally larger neural networks require more computational resources for training, quite unin-
tuitively, the limit as network width approaches infinity may yield computational savings. Namely, it was
recently shown that training infinite width networks is equivalent to solving kernel regression with a par-
ticular kernel known as the neural tangent kernel (NTK) [27]. For fully connected networks, the NTK can
be computed efficiently in closed form [27], and thus training an infinite width network reduces to solving a
linear system. While this may still be computationally expensive when the number of examples is large, we
will use recent pre-conditioner methods [34, 35, 36] to overcome this limitation.

For convolutional networks no efficient computation of the NTK (the so-called CNTK) has been known [4,
15, 50]. A major contribution of this work is to provide a memory and runtime efficient algorithm for
computing the exact CNTK for matrix completion for a class of practical neural network architectures. As
a consequence, our framework can be used to inpaint or reconstruct high-resolution images with hundreds of
thousands of pixels. We also provide software for constructing the CNTK as well as pre-computed kernels.
The simplicity and speed of our framework is exhibited by the fact that most of the results in this work
require only a CPU and can be run efficiently on a laptop.

Flexibility through Feature Prior

The matrix Z in Eq. [1] is key to making our framework easily adaptable to different applications. Unlike
traditional supervised learning where the goal is to learn a mapping from data X to labels Y , the matrix Z
in our framework can be independent of the observations in Y . We refer to Z as a feature prior since, as
we will see, by minimizing the loss in Eq. [1], the entries of Z encode structure between the coordinates of
Y (see Fig. 1e).

We will demonstrate the flexibility of our framework by using it in two very different applications,
namely for drug response imputation and image inpainting/reconstruction. For drug response imputation,
we will select feature priors that encode information about cell and drug type combinations. For image in-
painting and reconstruction, we will select feature priors that encode information about image coordinates.
In addition to being flexible, we will show that our approach is competitive in terms of speed and accu-
racy with prior approaches that were specifically developed for drug response imputation [25, 33] or image
inpainting/reconstruction [17, 53, 52].

2 Matrix Completion with the NTK
In this section, we derive the NTK for matrix completion when using fully connected networks. Our derivation
provides a principled method for selecting the feature prior, Z; namely, we will show that Z should be an
embedding of coordinate metadata, i.e. information describing the coordinates of Y . For example in drug
response imputation, each column of Z could correspond to a different drug and two columns of Z should
be similar if the drug metadata is similar (e.g. the molecular structures are similar). The resulting method
is then equivalent to performing semi-supervised learning to map from the columns of Z to observed entries
in each row of Y . In Section 3, we will utilize this theoretical result to select an effective feature prior for
virtual drug screening.

Since the NTK forms the backbone of our framework, we start with the definition of the NTK [27]
and briefly review how solving kernel regression with the NTK connects to training infinitely wide neural
networks.

Definition 1 (NTK). Let f(w;x) : Rp × Rd → R denote a neural network with parameters w. The corre-
sponding neural tangent kernel, K : Rd × Rd → R, is a symmetric, continuous, positive definite function
given by:

K(x, x′) = 〈∇wf(w(0);x),∇wf(w(0);x′)〉,

where w(0) ∈ Rp are the network parameters at initialization.
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For a review of kernel regression and kernel functions see [47]. Given training data (x(i), y(i)) ∈ Rd × R
for i = 1, . . . , n, solving kernel regression with the NTK involves minimizing the loss:

L(α) = ‖y − αK̂‖22, (2)

where α ∈ R1×n, y = [y(1), . . . , y(n)]T , and K̂ ∈ Rn×n with K̂i,j = K(x(i), x(j)). The work of [27] established
that using kernel regression with the NTK is equivalent (under mild assumptions) to training a neural
network to map x(i) to y(i) using the mean squared error, in the limit as the network width tends to
infinity. Throughout this work, we will assume that w(0)

i
i.i.d∼ N (0, 1) and that the nonlinearity φ in Eq. [1]

is homogeneous (which includes, for example, the rectified linear unit (ReLU), a widely used nonlinearity)
so that the NTK corresponding to a fully connected network can be computed efficiently in closed form
[16, 27, 51]; see Appendix A for a short review of the relevant literature and notation.

Feature Prior Provides a Flexible Approach for Matrix Completion through
Connection with Semi-supervised Learning
A natural approach for imputing missing entries in a matrix, Y , is to first obtain an embedding of the
coordinates of Y (e.g. a map from coordinates (i, j) to Rp) and then learn a map from the coordinate
embedding to the observed entries in Y (e.g. a map from Rp to Yi,j ∈ R); see also [2, Ch.1]. For example, for
virtual drug screening, one could first embed the drugs based on their molecular properties and then learn a
map from this embedding to the measured output, such as gene expression. Such an approach in which a map
is learned from an embedding to the observed samples is referred to as semi-supervised learning [21, Ch.15].
In this section, we will prove that minimizing the loss in Eq. [1] is equivalent to using a semi-supervised
learning approach for matrix completion. Namely, we show that the columns of Z represent an embedding
of the coordinates of Y and that the NTK is used to map from the columns of Z to the entries in Y .

It is a priori unclear how to compute the NTK for matrix completion, since this requires training examples
and labels. For this, we note the following equivalent formulation of Eq. [1]:

L(W) =
∑

(i,j)∈S

(Yi,j − 〈fZ(W),M{(i,j)}〉)2, (3)

fZ(W) = W (d)Cdφ(W (d−1)Cd−1φ(. . .W (2)C2φ(W (1)Z)) . . .),

where C` = c/
√
k` for a constant c, 〈A,B〉 = tr(ATB) denotes the trace inner product, and M{(i,j)} is an

indicator matrix, i.e., it has a 1 in the (i, j) entry and zeros everywhere else. To ease notation, we will use
Mij to denote the indicator matrix M{(i,j)}. The formulation in Eq. [3] shows that we can view matrix
completion as a problem where the "training examples" are indicator matrices Mij and the "labels" are
the corresponding entries Yi,j . This reformulation yields the following closed form for the NTK for matrix
completion, where φ̌ : [−1, 1] → R denotes the dual activation function [18] to φ. To keep notation simple,
we here provide the theorem when φ is the ReLU activation function, but this result holds generally for
homogeneous nonlinearities; see Appendix B.

Theorem 1. Assume Z = {z(i)}ni=1 ∈ Rp×n, where each column is normalized with ‖z(i)‖2 = 1. Let fZ(W)
be a d layer fully connected network with nonlinearity φ(x) = max(x, 0) and c =

√
2 in Eq. [3]. Then, as

widths k2, k3, . . . , kd →∞, the NTK for matrix completion with fZ(W) is given by

K(Mij ,Mi′j′) =

κd(z(j)T z(j′)) if i = i′

0 if i 6= i′
,

where κd(ξ) = φ̌(d)(ξ) + κd−1(ξ)dφ̌dξ (φ̌(d−1)(ξ)), and φ̌(h)(ξ) = φ̌(φ̌(h−1)(ξ)) for h ≥ 1 and φ̌(0)(ξ) = ξ.

The proof as well as an example showing how Theorem 1 can be used in practice to compute the NTK for
matrix completion is presented in Appendix B. Since the kernel value between Mij and Mi′j′ is a function
of columns j and j′ of Z, Theorem 1 implies that the NTK for matrix completion maps columns of Z to
entries Yi,j , and thus the columns of Z encode structure between the coordinates of Y .
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Figure 2: Our infinite width neural network framework outperforms DNPP [25], FaLRTC [33], and mean
over cell types for drug response imputation on CMap. (a) We visualize the availability of cell type and
drug combinations of the subset from [25]. (b) Our method corresponds to first providing an embedding
of cell type and drug combinations as the feature prior and then applying the NTK. We show that: (1)
using a feature prior consisting of one-hot vectors for drugs corresponds to imputation by performing mean
across observations for each cell type and (2) using a feature prior that captures similarity between drugs
and cell types is effective for imputation. (c, d) Our infinite width neural network framework (denoted NTK)
outperforms DNPP and mean over cell type across three evaluation metrics. We use 5 rounds of 10-fold
cross validation to determine that the difference between our method and the next best method, DNPP, is
statistically significant (p-value less than 10−20).

By varying the nonlinearity φ, depth d, and feature prior Z, our framework encapsulates a variety of
semi-supervised learning approaches. To provide a non-trivial example, we prove in Appendix B that our
framework for matrix completion generalizes Laplacian-based semi-supervised learning [9]. This insight re-
garding the connection between our framework for matrix completion and semi-supervised learning represents
the backbone for a simple and competitive approach to virtual drug screening described in the next section.

3 Virtual Drug Screening with the NTK
CMAP is a prominent, large-scale, publicly available drug screen that considers 20,413 different compounds
and 72 different cell lines [49]. Experiments in CMAP were performed on a subset of 201,484 drug/cell line
pairs; for each of these pairs the gene expression profile of 978 landmark genes was measured. CMAP has been
an important resource for computational approaches to drug discovery and drug repurposing [49, 10, 42]. In
these applications, the goal is to use a subset of observed drug/cell type pairs to predict the gene expression
profile of new drug/cell type pairs. These profiles are then used to identify drug candidates of interest that
can be tested experimentally [30, 55].

The CMAP dataset can be viewed as a 3-dimensional tensor (drugs, cell lines, genes), where many of
the entries are missing. In the following, we will use the same pre-processing of the data as in [25] to
filter out drug/cell line combinations with very few or inconsistent samples; a description and a link to
the dataset is provided in SI Appendix C. The resulting drug/cell line combinations are shown in Fig. 2a.
The 3-dimensional tensor can be flattened into a matrix, where the columns correspond to drug/cell line
combinations and the rows represent genes (see Fig. 2b); i.e., following the notation from Section 2, entry Yij
of the resulting flattened matrix is a real-valued number quantifying the gene expression of gene i in drug
and cell type combination j. This matrix has a missing column for every missing drug/cell line combination.
Classical low rank matrix factorization methods would prove ineffective in this setting since they would
replace each missing column by the same constant column. On the other hand, Theorem 1 suggests the
NTK as an effective way for imputing the missing gene expression profiles by selecting the feature prior Z
such that two columns of Z are similar if they correspond to similar drug/cell line pairs. In the following, we
discuss three different feature priors for this application; for a full description of these priors see SI Appendix
D.
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Feature Prior corresponding to the Mean Over Cell Type Baseline
A simple baseline is to impute the gene expression profiles for each missing drug for a given cell line by the
mean over all observed drugs for this cell line. Quite surprisingly, this simple approach gives rise to a strong
baseline [25, 48], since cell type is the dominant factor, while drugs have subtle effects on gene expression.

While it is generally nontrivial to improve upon this simple baseline without constructing a specialized
algorithm [25, 41, 26, 6], our NTK framework provides an easy way for doing so. In particular, our framework
makes it evident that the feature prior corresponding to the mean over cell type baseline is trivial, since it
corresponds to an embedding in which drugs are encoded via one-hot vectors (see Appendix E). Thus, to
improve upon this baseline, we select any feature prior that can capture similarities between drugs.

Feature Prior Corresponding to Previous Algorithms
We now demonstrate that our framework provides a direct approach to improve on previous methods for
virtual drug screening by using the output of previous methods as a feature prior in our framework. Namely,
if a method is used to produce an imputation, Ŷ , then the columns in Ŷ should represent an embedding of
drug and cell type combinations that captures their similarity. Hence, we can use Z = Ŷ as the feature prior
in our method. For illustration, we apply this approach to two state-of-the-art methods for virtual drug
screening: (1) Drug Neighbor Profile Prediction (DNPP) [25], which is a weighted nearest neighbor scheme,
and (2) Fast Low Rank Tensor Completion (FaLRTC) [33], which involves low rank matrix completion along
each slice of the CMAP tensor. We show that our framework using these feature priors yields an improvement
over the individual methods; see Appendix F.

Proposed Feature Prior for Drug Response Imputation
Observing the pattern of data availability in Fig. 2a, it is apparent that a subset of cell lines have observations
for many (> 150) drugs (dense regime), while many cell lines have observations for only few (≤ 150) drugs
(sparse regime). While previous methods such as DNPP are quite effective in the dense regime, they are not
as effective in the sparse regime; see Fig. 2c and Appendix G. This can be explained by the fact that in the
sparse regime DNPP roughly imputes using the simple mean over cell type baseline.

For effective drug response imputation in the sparse regime, our framework can be used to construct a
simple feature prior by concatenating embeddings for cell types and drugs. In particular, we can use the
gene expression values for a reference cell type for which there are a lot of drug observations (e.g. MCF7 in
CMAP) as the embedding of drugs and the mean gene expression across all observations for a given cell type
as the embedding of cell type. Fig. 2c shows that the NTK with this simple feature prior outperforms mean
over cell type, FaLRTC and DNPP in the sparse regime. We compare across Pearson r value, mean R2, and
mean cosine similarity. A description of all evaluation metrics is provided in Appendix H. By combining our
feature prior for the sparse regime with the FaLRTC based feature prior for the dense regime, we obtain
a drug imputation method that significantly outperforms DNPP, FaLRTC, and mean over cell type on the
full dataset; see Fig. 2d (p-value less than 10−20 based on 5 rounds of 10-fold cross validation, with an
improvement on every fold of every round across all metrics; see Appendix I).

4 Matrix Completion with the Convolutional NTK
While we have thus far derived and applied the NTK for matrix completion using fully connected networks,
these architectures are not nearly as effective as convolutional networks for matrix completion tasks in which
the target matrix is an image. Similar to the case of fully connected networks, a closed form for the NTK
corresponding to convolutional networks (the so-called CNTK) is known in the regression setting [4], but
it has not been considered in the setting of matrix completion. Moreover, the runtime for computing the
CNTK for regression scales quadratically with each image dimension. In this section, we derive the CNTK
for matrix completion and provide a computationally efficient method for computing the CNTK for matrix
completion for a class of feature priors that are effective for image inpainting and reconstruction.

We begin by deriving the CNTK for matrix completion for a simple class of convolutional networks,
when there are no downsampling or upsampling layers. We show that in this setting, the CNTK for matrix
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completion can be computed using terms from the CNTK for classification. In the following proposition
(proof in Appendix J), Θ(d) ∈ Rm×n×m×n denotes the tensor corresponding to the CNTK of a d layer
convolutional network in the classification setting [4, Sec. 4].

Proposition 1. Let fZ(W) be a d layer convolutional network used to map from feature prior, Z ∈ Rc×m×n,
to the target matrix, Y ∈ Rm×n. Then as the number of convolutional filters per layer approaches infinity,
the CNTK of fZ(W) is given by:

K(Mij ,Mi′j′) = [Θ(d)(Z,Z)]i,j,i′,j′ , (4)

where Mij ,Mi′j′ ∈ Rm×n denote indicator matrices.

CNTK Performs Semi-Supervised Learning using Image Coordinate Features
In Section 2, we established a connection between semi-supervised learning and matrix completion using
the NTK. We now establish a similar connection between semi-supervised learning and matrix completion
with the CNTK for a class of feature priors defined in Theorem 2 below. This class includes feature priors
that are heavily used in image inpainting applications, namely where the channels of Z are drawn i.i.d. from
a stationary distribution [15, 52]. The following theorem (proof in Appendix K), which is analogous to
Theorem 1 for the NTK, implies that using the CNTK for matrix completion is equivalent to mapping from
coordinate features to observed entries in the target matrix Y .

Theorem 2. Consider a convolutional network of depth d with homogeneous activation and in which all
filters have size q and circular padding. Let Z ∈ Rc×m×n satisfy:

c∑
`=1

∑
−α≤a,b≤α

Z`,i+a,j+bZ`,i′+a,j′+b = ψ(|i− i′|, |j − j′|)

for some ψ : R2 → R with maximum at (0, 0) and α = q−1
2 (odd q). Then as the number of convolutional

filters per layer goes to infinity, the CNTK simplifies to:

K(Mij ,Mi′j′) = ψ̃(|i− i′|, |j − j′|),

where ψ̃ : R2 → R is a function that can be computed from ψ (a recursive formula is provided in Appendix
K).

Since the function ψ̃ depends only on the positions of the coordinates, Theorem 2 shows that the CNTK
for matrix completion is equivalent to semi-supervised learning using kernels on features corresponding to
coordinates.

Closed Form for the CNTK of Modern Architectures for Matrix Completion
Unlike the convolutional networks considered thus far, state-of-the-art architectures for unsupervised image
inpainting such as [52, 15] incorporate a variety of layer structures including strided convolution, nearest
neighbor and bilinear upsampling, skip connections, and batch normalization. We derive (in Appendix L)
the CNTK for matrix completion using convolutional networks with the following layer structures: (1) Down-
sampling through Strided Convolution ; (2) Nearest Neighbor Upsampling ; and (3) Bilinear Upsampling.1

Efficient Computation of the CNTK of Modern Architectures for Matrix Com-
pletion
A key insight that we use to speed up the computation of the CNTK is that the kernel in Eq. [4] depends
only on the feature prior and not on the values of the observed pixels in an image. Hence, the CNTK need

1The impact of linear downsampling and upsampling on the CNTK is briefly described in Appendix F of [50], but the explicit
forms are not computed nor used in the experiments.
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only be computed once for all images of a given resolution. This enables a drastic speedup over recomputing
the kernel for every new image, as is currently required in classification.

However, using such a direct approach to compute the CNTK is still computationally prohibitive for
high resolution images. In particular, computing the CNTK for a network with d convolutional layers to
complete an image of size 2p × 2q, requires O(p2q2d) runtime and O(22p+2q) space. In order to overcome
these limitations, prior work [50] used the Nyström method [54] to approximate the kernel. Instead of relying
on such approximations, we here present an algorithm for computing the exact CNTK in a memory and
runtime efficient manner for any convolutional neural network with circular padding, strided convolution,
and nearest neighbor upsampling layers, when using a feature prior with i.i.d. random entries. Such networks
and feature priors are heavily used for image completion tasks [52].

Our main insight that enables such an algorithm is that for convolutional networks with strided convolu-
tion and nearest neighbor upsampling layers, the CNTK for low resolution images can be expanded to high
resolution images for any feature prior with i.i.d. random entries. In particular, if a neural network with s
downsampling and upsampling layers is used to inpaint images of resolution 2p × 2q, our algorithm requires
only an array of size 22s+p+q while storing the full CNTK requires an array of size 22p+2q. In practice, s
is exponentially smaller than p, q and so our method is significantly more memory efficient; see the follow-
ing specific example. In addition, since our method only requires computing the CNTK for images of size
2s+1× 2s+1, the runtime of our method is O(24s) instead of O(22p+2q), and thus, our method is significantly
faster than a direct computation. A detailed description and proof of our expansion algorithm is presented
in Appendix M.

Example. Let fZ(W) represent a convolutional neural network with circular padding, 3 layers of strided
convolution with a stride size of 2 in each direction, and 3 nearest neighbor upsampling layers with a feature
prior Z ∈ Rc×512×512 satisfying:

c∑
p=1

Zp,i,jZp,i′,j′ =

C1 i = i′ , j = j′

C2 otherwise
,

where C1, C2 > 0 are constants. Suppose fZ(W) is used to inpaint images of size 512 × 512. Then, by
computing the CNTK for 16× 16 resolution images, K` ∈ R162×162

, we can expand up to the exact CNTK
for 512× 512 images. Computing K` takes roughly 11 seconds when using a CPU with 1 thread and K̃ uses
less than 100MB of memory with floating point precision. On the other hand, even storing the true kernel
K ∈ R5122×5122

would require roughly 256GB memory when using floating point precision. This is twice the
amount of RAM available on our server and 16 times the amount of RAM available on most laptops.

5 Image Inpainting and Reconstruction with the CNTK
We now utilize the results of the previous section to perform large hole image inpainting and reconstruction.
As illustrated in Figs. 1c and 1d, large hole inpainting involves imputing a large contiguous region in an
image while image reconstruction involves imputing random missing pixels in an image. Recent work [52]
demonstrated that using convolutional neural networks with downsampling and upsampling layers to impute
the missing pixels in images leads to competitive results for these applications.

The methods from [52] are a special case of our framework in Eq. [1]; namely using convolutional layers
and letting the feature prior, Z, be a tensor with i.i.d. uniform random entries. Thus, we can use our
framework for performing image completion tasks, and instead of training deep networks, we can simply solve
kernel regression with the CNTK. We will demonstrate that this gives rise to a simple, fast, flexible, and
competitive alternative to training deep networks for high resolution image completion problems. Moreover,
we will demonstrate that our framework can be used to identify the role of architecture and feature prior on
image completion problems and aid in identifying effective architectures and feature priors.

Application 1: Large Hole Inpainting with the CNTK
We utilize the CNTK for large hole inpainting tasks from [15, 52]. We compute the CNTK for the architecture
used in [15] with 6 downsampling and nearest neighbor upsampling layers for the feature prior Z with
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Bicycle 27.67 28.57 28.67

Chair 29.87 29.88 27.81

Car Field 28.91 29.94 27.67

Rider 29.20 27.76 29.38
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Vase 31.75 31.51 28.96
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Average 29.36 28.99 27.89
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Figure 3: Large hole inpainting using (i) the CNTK, (ii) neural networks with sigmoid last layer and batch
normalization layers that are trained with Adam, and (iii) biharmonic functions. (a) Qualitative comparison
of inpainting results across the three methods. Results for all images are provided in Appendix Fig. 9. (b)
Comparison of peak signal-to-noise ratio (PSNR) across 3 methods with the CNTK providing the highest
average PSNR. Runtime and structural similarity index measure (SSIM) for the three methods are provided
in Appendix Fig. 8.

i.i.d. entries Z`,i,j ∼ U [0, .1], where c ∈ Z+ and i, j ∈ [m] × [n]. We compute the CNTK on 128 × 128
resolution images and then expand it to the CNTK for high resolution images via our expansion technique
in Section 4. We compare our method against neural networks of the same architecture using the training
procedures from [52, 15] (see Appendix N for details). We also compare our method against inpainting with
biharmonic functions [17], which is currently the default inpainting method in scikit-image [53].

Figure 3a shows examples of the resulting reconstructions, and Figure 3b shows the peak signal-to-noise
ratio (PSNR) across all methods. Our method on average outperforms both inpainting with finite width
neural networks and inpainting with biharmonic functions.2 In Appendix Fig. 8, we show that our method
also outperforms the other methods in terms of structural similarity index measure (SSIM), and that the
runtime is comparable (within 2 minutes on average) across all methods in this setting. The reconstructions
across all images and methods are provided in Appendix Fig. 9.

Application 2: Image Reconstruction with the CNTK
We next analyze the performance of the CNTK on the image reconstruction tasks considered in [52]. While
the networks considered in [15, 52] make use of skip connections for image reconstruction, we only consider
architectures without skip connections for which we can derive the CNTK exactly (see Appendix N for
details). We again compare the CNTK to neural networks of the same architecture and to biharmonic
inpainting. For this comparison, we use networks with 128 filters per layer, as is done in [52, 15]. In
Appendix Fig. 10, we show that our model performs comparably to inpainting with biharmonic functions
and outperforms neural networks of the same architecture. In Appendix Fig. 10, we additionally show that
our method performs comparably to biharmonic inpainting in terms of SSIM and that our method is up to
10 times faster than using small width neural networks on the same hardware. While our method performs
comparably to inpainting with biharmonic functions in this application, our framework is more flexible, since
we can adjust architecture and feature prior, and it outperforms inpainting with biharmonic functions for
the problem of large hole inpainting (see above). Since methods such as Adam with Langevin dynamics [15]
have enabled performance boosts for neural networks (see Appendix Fig. 8 & 9), an interesting direction for
future work could be to incorporate such techniques for image completion applications using the CNTK.

2While the PSNR values for these images are also presented in [15], they appear to be computed without replacement of the
observed pixel values. We re-ran these experiments with replacement for fair comparison with biharmonic inpainting.
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Figure 4: We use the CNTK to understand the impact of architecture and input on image inpainting. (a)
Heatmap visualizations of the CNTK when varying the number of downsampling/upsampling layers and
input. The visualization makes clear that the uniform random feature prior, unlike other feature priors,
results in kernels that use the region surrounding a missing pixel value for imputation regardless of the
number of downsampling layers. (b) The heatmap visualizations of the CNTK make transparent which
observed pixels are being used to inpaint a given missing pixel when using the identity feature prior. (c) A
comparison between inpainting a 128× 128 resolution image of a rabbit with a finite width neural network
and with the CNTK when the feature prior is the identity. The CNTK is able to accurately predict the
unexpected behavior of the neural network.

Using Our Framework to Select Feature Prior and Architecture for Image Com-
pletion
In the following, we demonstrate that our framework provides a theoretical underpinning for understanding
how a given architecture and feature prior influence image completion. In particular, we use our framework
to explain why the uniform random feature prior and architectures with downsampling and upsampling layers
are effective for image completion while other feature priors such as the identity feature prior are ineffective
for this application.

The key observation enabling such interpretability is that for kernel methods, every prediction (a missing
pixel value) is a linear combination of training examples (observed pixel values). Hence, for each imputed
pixel, the CNTK can be used to provide a heatmap describing which observed pixels were most heavily
weighted in the linear combination. In order to generate such heatmaps, we reshape the CNTK into a 4
dimensional tensor. Namely, given a CNTK K ∈ Rmn×mn, we reshape K to a tensor KT ∈ Rm×n×m×n
where K(Mij ,Mi′j′) = KT (i, j, i′, j′). To generate a heatmap for a given a coordinate (i, j), we visualize
the matrix KT (i, j, :, :) ∈ Rm×n. This visualization allows us to decipher how architecture and feature prior
change the resulting imputation from a neural network.

The Uniform Random Feature Prior and Modern Architectures are Effective for Image Com-
pletion

In Fig. 4a, we visualize the kernel values K(104, 14, :, :) computed for a 128 × 128 image when varying the
number of down and upsampling layers and as well as the feature prior Z. Namely, we consider the cases
where Z is the identity, the meshgrid from [52], or the uniform random tensor used in large hole inpainting
experiments of [52]. A key observation is that the kernel values for the uniform random feature prior are
highest around the coordinate of interest regardless of the amount of down and upsampling, which is in stark
contrast to other feature priors.3 This implies that neighboring pixels are most heavily used when imputing
using the uniform random feature prior (see Appendix Fig. 11 for additional visualizations). Moreover, when
using the uniform random feature prior, the amount of down and upsampling increase (by powers of 2) the

3When there are no downsampling and upsampling layers, this follows immediately from Theorem 2.
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size of the region considered for imputation (see the first row of Fig. 4a). These heatmaps identify the
minimum amount of downsampling necessary for large hole inpainting: if there is an m×m region of missing
pixels (m ≥ 1), we need at least blog2(m + 1)c layers of downsampling to ensure that no pixel is filled in
as an average of all other pixels. This result explains the observation from [52], which showed that using
neural networks with four or fewer downsampling and upsampling layers led to worse large hole inpainting
performance on images with large missing regions.

The Identity Feature Prior is Ineffective for Image Completion

The standard feature prior for matrix completion is given by choosing Z to be the identity matrix [3, 13,
22]. As shown in Fig. 4a, unlike the uniform random feature prior, the identity feature prior uses pixel
observations from non-local regions for completion. Thus, we expect this feature prior to be ineffective for
image completion tasks.

Fig. 4b shows the result of using the CNTK for a network with 6 downsampling and upsampling layers
and the identity feature prior to impute a 128 × 128 rabbit image. The identity feature prior visually
appears to translate observed pixels from a non-local region to perform imputation. The regions that are
being translated are precisely those given by the corresponding heatmaps, e.g. the upper right quadrant is
imputed using the lower left quadrant in Fig. 4b.

We note that our framework accurately predicts the behavior of finite width neural networks used for
image inpainting. In Fig. 4c, we show the result of using a neural network with 6 downsampling and
upsampling layers, sigmoid activation on the last layer, and identity feature prior. We observe that the
neural network completes the image by translating observed pixels similarly to the imputation provided by
the corresponding CNTK. This example highlights the power of using our framework for rapidly prototyping
feature priors and architectures for image inpainting tasks.

6 Discussion
In this work, we presented a simple, fast, and flexible framework for matrix completion using the infinite
width limit of neural networks, i.e. the neural tangent kernel (NTK). Below, we highlight the aspects of our
framework that enable such simplicity, speed, and flexibility.

• Simple. Our framework is conceptually simple since we are using kernels to learn a map from features
of coordinates, (i, j), to entries in the target matrix, Yi,j . Our framework is computationally simple
since solving kernel regression involves solving a linear system of equations.

• Fast. Our framework is naturally fast when using the NTK of fully connected networks for matrix
completion due to the simple closed form of the kernel (Theorem 1). We develop a memory and
runtime efficient algorithm to compute and use the NTK of convolutional networks (the CNTK) for
matrix completion (Section 4).

• Flexible. Our framework is easily adapted to various applications by the choice of the feature prior,
thereby making our framework flexible. Moreover, we provided a principled approach for selecting the
feature prior by establishing a connection with semi-supervised learning (Theorems 1, 2) and providing
a visualization of the effect of the feature prior (Section 4).

The simplicity and speed of our framework is illustrated by the fact that many of our results (including
inpainting high resolution images) can be run on a CPU and even on a laptop (see Materials & Methods
for a link to our code). We demonstrated that our framework is flexible by using it to achieve competitive
results for virtual drug screening (Section 3) and image inpainting/reconstruction (Section 5). We envision
that our work provides a simple and accessible framework for producing strong baselines for several matrix
completion applications. We conclude with a discussion of possible future extensions and applications.

Future Applications of Our Framework

In this work, we demonstrated the flexibility of our framework by constructing feature priors for two different
applications, namely virtual drug screening and image completion. An interesting future direction is the
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extension of our framework to other modalities such as tensors, video, or audio data. For example, by using
a feature prior that captures the structure of coordinates in 3D images, we could apply our framework to
impute missing regions in three-dimensional data.

Efficient Computation of the CNTK

In classification and regression settings, a major hindrance for using the CNTK in practice is the computa-
tional complexity in computing the kernel for a large image dataset. In this work, we presented an expansion
technique to efficiently compute and store the exact CNTK for inpainting high resolution images, which
was previously considered infeasible [50, 15]. By understanding the properties of the CNTK that make it
effective for image problems, we envision that similar techniques could be applied to produce efficient kernel
machines for image classification.

Developing Techniques to Improve the Performance of the NTK

While a large number of techniques such as skip connections, batch normalization, etc. have been developed
to augment the performance of neural networks, such techniques have yet to be adapted to improve the
performance of kernels. The simplicity and effectiveness of the NTK and CNTK based on simple architectures
considered in this work motivates the development of techniques to further boost the performance of the
NTK and kernel methods in general.

Materials and Methods
For solving kernel regression with the NTK, we use the direct linear system solver from [39] when the number
of equations is fewer than 30,000, and we use EigenPro [35, 34] otherwise. For training neural networks, we
use the PyTorch library [40]. All methods requiring a GPU are run on a single NVIDIA Titan RTX GPU.
Our experiments are run on a shared server with 4 Titan RTX GPUs, 128GB CPU RAM, and 64 threads.

For the virtual drug screening experiments, we use the subset of the CMap dataset [49] provided in
[25]. A detailed description of all the methods (including random seeds and hyperparameters for DNPP and
FaLRTC) and evaluation metrics for the virtual drug screening experiments is provided in Appendices C-H.
A description of the t-test used for determining the significance of our results for virtual drug screening is
presented in Appendix I. We provide code to replicate our results for the virtual drug screening experiments
with the NTK, DNPP, FaLRTC, and mean over cell type in the footnote below4. We use the codebase from
[25] for performing imputation with FaLRTC.

For the image completion applications, we use the datasets from [15, 52]. The rabbit image used in Fig. 4
is from [46] and is provided in our codebase (linked above). For the neural network and NTK methods used
in our image inpainting and reconstruction experiments, we provide a description of all architectures and
training hyperparameters in Appendix N.

We provide a library for computing and using the CNTK for image inpainting and reconstruction appli-
cations in the codebase linked above. Our library lets the user define a custom neural network (similarly
to network definitions in PyTorch), and then provides a function to compute the CNTK from the given
architecture. Our method for computing the CNTK runs entirely on the CPU, and we enable parallelization
across CPU threads. Our library includes functions for computing the CNTK for networks with nearest
neighbor and bilinear upsampling layers, which are not readily available in the Neural Tangents library [38].
We additionally provide functions to solve kernel regression using the CNTK via a linear system solver or
EigenPro. A full description of the library and an example of how to use our library for image inpainting
is provided in Jupyter notebooks in our linked code. We additionally release several pre-computed kernels
that can be used for high resolution inpainting and reconstruction.

4https://github.com/uhlerlab/ntk_matrix_completion
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Appendix

A Preliminaries on the NTK
In this section, we review notation from prior literature on the NTK [27] that will be used throughout
this work. In particular, we review how the NTK can be computed in closed form using dual activation
functions [18]. We start by providing the definition of the NTK.

Definition 2 (NTK). Let f(W;x) : Rp×Rd → R denote a neural network with parameters W. The neural
tangent kernel, K : Rd × Rd → R, is a symmetric, continuous, positive definite function given by:

K(x, x′) = 〈∇Wf(W(0);x),∇Wf(W(0);x′)〉,

where W(0) ∈ Rp denotes the parameters at initialization.

In this section, we consider fully connected networks of the following form:

f(W;x) = W (L) c√
kL
φ

(
W (L−1) c√

kL−1

φ

(
. . .

c√
k1

φ
(
W (1)x

)
. . .

))
, (5)

where W = {W (i)}Li=1 with W (i) ∈ Rki×ki−1 and k0 = d, kL = 1; φ : R → R is an elementwise Lipschitz
nonlinearity; and c is a constant. The key finding of [27] is that when Wi

i.i.d.∼ N (0, 1), then as k1, k2, . . . kL →
∞, KL(x, x′) converges in probability to a deterministic kernel that does not change through training. Thus,
solving kernel ridge-less regression with kernel KL is equivalent to the solution given by training the neural
network. We present the case for fully connected networks from [27] below, but will also be using the results
for convolutional networks from [4] later on.

Theorem. Let f : Rd → R be a neural network defined in Eq. [5]. As k1, k2, . . . kL → ∞, then KL(x, x′)
converges in probability to a deterministic kernel given by the following recurrences in Σi, Σ̇i,Ki:

K0(x, x′) = Σ0(x, x′) = xTx′,

KL(x, x′) = ΣL(x, x′) +KL−1(x, x′)Σ′L−1(ΣL−1(x, x′)),

ΣL(x, x′) = c2E(u,v)∼N (0,ΛL−1(x,x′))[φ(u)φ(v)],

Σ̇L(x, x′) = c2E(u,v)∼N (0,ΛL−1(x,x′))[φ
′(u)φ′(v)],

ΛL(x, x′) =

[
ΣL−1(x, x) ΣL−1(x, x′)

ΣL−1(x′, x) ΣL−1(x′, x′)

]
.

Dual Activations. The expectations in the recurrences above can be simplified using the theory of dual
activation functions studied in [18]. Let φ̌ : [−1, 1]→ R such that:

φ̌(ξ) = c2E(u,v)∼N (0,Λ))[φ(u)φ(v)], Λ =

[
1 ξ

ξ 1

]
,

1√
2π

∫
R
φ(u)2 exp

(
−u

2

2

)
du =

1

c2
. (6)

The map F such that F(φ) = φ̌ is an operator mapping from activation functions to positive definite
functions5, and φ̌ is referred to as the dual activation [18]. The scaling factor c in Theorem A is typically
selected to satisfy the integral equation in Eq. [6]. As an example, when φ is the ReLU, the integral is
just 1

2 times the second moment of the standard Gaussian distribution. Hence, c =
√

2 for the ReLU. The
recurrence relation for the NTK can be drastically simplified for homogenous nonlinearities for which the
dual activation has a closed form. As shown in prior work [16, 51], this is the case for the commonly used
ReLU and LeakyReLU nonlinearities. In particular, the dual activation function for ReLU is well known
[16], and we next present its form (with its derivative):

5The map F is more precisely from the Hilbert space L2(µ) with µ the Gaussian measure to the space of positive definite
functions. The factor c is selected so that ‖φ‖L2(µ) = 1.
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Lemma. The dual activation φ̂ : [−1, 1]→ R of the ReLU is:

φ̌(ξ) =
1

π
(ξ(π − cos−1(ξ)) +

√
1− ξ2) (7)

dφ̌(ξ)

dξ
=

1

π
(π − cos−1(ξ))

As shown in [11, 19], the NTK recursion for ReLU networks can be simplified using the dual activation.
We provide this known simplification below for completeness.

Proposition. Let f : Rd → R be a neural network defined in Eq. 5. Let φ be the ReLU activation and let
c =
√

2. As k1, k2, . . . kL →∞, then KL(x, x′) converges in probability to a deterministic kernel given by the
following recurrences in Σi,Ki:

K0(x, x′) = Σ0(x, x′) = xTx′,

ΣL(x, x′) = NL−1(x, x′)φ̌

(
ΣL−1(x, x′)

NL−1(x, x′)

)
,

KL(x, x′) = ΣL(x, x′) +KL−1(x, x′)
dφ̌

dξ

(
ΣL−1(x, x′)

NL−1(x, x′)

)
,

NL−1(x, x′) =
√

ΣL−1(x, x)ΣL−1(x′, x′).

This proposition follows from using the change of variables u =
√

ΣL(x, x)ũ and v =
√

ΣL(x′, x′)ṽ
and the homogeneity of ReLU when computing c2E(u,v)∼N (0,ΛL−1(x,x′))[φ(u)φ(v)] using integration [11]. In
this work, we will use the dual activation for both ReLU and LeakyReLU [56] in order to match popular
deep learning architectures as closely as possible. The derivation for the dual activation for LeakyReLU is
provided in [51].

B Proofs for Matrix Completion with the NTK
We present the statement of Theorem 1 for a general homogeneous (degree 1), Lipschitz nonlinearity below
and then present the proof. We again note that ReLU and LeakyReLU are commonly used nonlinearities
that satisfy these conditions. The results are easily extended to homogeneous nonlinearities of arbitrary
degree and for feature priors that have columns with arbitrary norm.

Theorem. Assume Z = {z(i)}ni=1 ∈ Rp×n, where each column is normalized with ‖z(i)‖2 = 1. Let fZ(W)
be a d layer fully connected network with Lipschitz nonlinearity φ that is homogeneous of degree 1 and c =
‖φ‖−1

L2(µ) where L2(µ) is the Hilbert space of square Lebesgue integrable functions under Gaussian measure.
Then as layer widths k1 →∞, k2 →∞, . . . , kd−1 →∞, the NTK for matrix completion with fZ(W) is given
by

Kd(Mij ,Mi′j′) =

κd(z(j)T z(j′)) if i = i′

0 if i 6= i′
,

where κd(ξ) = φ̌(d)(ξ) + κd−1(ξ)dφ̌dξ (φ̌(d−1)(ξ)), and φ̌(k)(ξ) = φ̌(φ̌(k−1)(ξ)) for k ≥ 1 and φ̌(0)(ξ) = ξ.

Proof. We proceed by induction and present the case for d = 1 first. Namely, we define gZ(M) as follows:

gZ(M) = tr(MTAφ(BZ)),

where A ∈ Rm×k, B ∈ Rk×p, Z ∈ Rp×n. To compute the kernel, we compute ∂gZ(M)
∂Aα,β

, ∂g(M)
∂Bα,β

directly. We
begin by expanding the matrix products in gZ(M). For a matrix U , we let Ui,: denote row i of U and U:,i
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denote column i of U . Note that

gZ(M) = tr

(
MTA

c√
k
φ(BZ)

)

=
c√
k
tr

MTA


φ(B1,:Z:,1) . . . φ(B1,:Z:,n)

... . . .
...

φ(Bk,:Z:,1) . . . φ(Bk:Z:,n)




=
c√
k
tr

MT


∑k
a=1A1,aφ(Ba,:X:,1) . . .

∑k
a=1A1,aφ(Ba,:Z:,n)

... . . .
...∑k

a=1Am,aφ(Ba,:X:,1) . . .
∑k
a=1Am,aφ(Ba,:Z:,n)




=
c√
k

m∑
i=1

n∑
j=1

Mi,j

k∑
a=1

Ai,aφ(Ba,:Z:,j).

We thus have that

∂gZ(M)

∂Aα,β
=

c√
k

n∑
j=1

Mα,jφ(Bβ,:Z:,j),

∂gZ(M)

∂Bα,β
=

c√
k

m∑
i=1

n∑
j=1

Mi,jAi,αφ(Bα,:Z:,j)Zβ,j .

The NTK is given by:

K1(M, M̃) = 〈∇gZ(M),∇gZ(M ′)〉

=
m∑
α=1

k∑
β=1

∂gZ(M)

∂Aα,β
· ∂gZ(M ′)

∂Aα,β
+

k∑
α=1

p∑
β=1

∂gZ(M)

∂Bα,β
· ∂gZ(M ′)

∂Bα,β
.

To simplify the computation, we note that we will only ever need the gradient at indicator matrices Mij and
Mi′j′ . Moreover, from the formula for the partial derivatives, we conclude that

∂gZ(Mij)

∂Aα,β
=

0 if α 6= i

c√
k
φ(Bβ,:Z:,j) otherwise

,

∂gZ(Mij)

∂Bα,β
=

c√
k
Ai,αφ(Bα,:Z:,j)Zβ,j .

Thus, we can simplify the NTK as follows:

lim
k→∞

K1(Mij ,Mi′j′) = lim
k→∞

c2

k

k∑
β=1

φ(Bβ,:Z:,j)φ(Bβ,:Z:,j′)1i=i′

+
c2

k

k∑
α=1

Ai,αAi′,α

p∑
β=1

φ′(Bβ,:Z:,j)φ
′(Bβ,:Z:,j′)Zβ,jZβ,j′

=

0 i 6= i′

κ1(z(j)T z(j′)) i = i′
,
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which completes the base case.
For the inductive step, we assume that

lim
kd−2→∞

. . . lim
k1→∞

Kd−1(Mij ,Mi′j′) =

0 i 6= i′

κd−1(z(j)T z(j′)) i = i′
.

We now show that Kd(Mij ,Mi′j′) has the desired form. For this, we define:

gZ(M) = MTA
c√
kd−1

φ(hZ(W)),

where A ∈ Rm×kd−1 and hZ(W) : Rp×n → Rkd−1×n is a d − 1 fully connected network operating on Z.
Following the computation for the 1 layer case, we obtain

∂gZ(M)

∂Aα,β
=

c√
kd−1

n∑
j=1

Mα,jφ(hZ(W))β,j ,

∂gZ(M)

∂Wα,β
=

c√
kd−1

m∑
i=1

n∑
j=1

Mi,j

kd−1∑
k=1

Ai,k
∂φ(hZ(W))k,j

∂Wα,β
.

Now we consider the case of indicator matrices Mij ,Mi′j′ . For Mij , we note that ∂gZ(M)
∂Aα,β

is only non-zero
for the terms

∂gZ(Mij)

∂Ai,β
=

c√
kd−1

φ(hZ(W))β,j .

Hence, if i 6= i′, we obtain that ∑
α,β

∂gZ(Mij)

∂Aα,β

∂gZ(Mi′j′)

∂Aα,β
= 0.

Similarly, for Mij , we have that

∂gZ(Mij)

∂Wα,β
=

c√
kd−1

kd−1∑
k=1

Ai,k
∂φ(hZ(W))k,j

∂Wα,β
.

If i 6= i′, as kd−1 →∞, by law of large numbers:∑
α,β

∂gZ(Mij)

∂Bα,β

∂gZ(Mi′j′)

∂Bα,β
→ 0.

Thus, if i 6= i′, we conclude that Kd(Mij ,Mi′j′) = 0. On the other hand, if i = i′, then we have that

∑
α,β

∂gZ(Mij)

∂Aα,β

∂gZ(Mi′j′)

∂Aα,β
=

c2

kd−1

kd−1∑
k=1

φ(hZ(W))k,jφ(hZ(W))k,j′ . (8)

Similarly, if i = i′, we have that

∑
α,β

∂gZ(Mij)

∂Bα,β

∂gZ(Mi′j′)

∂Bα,β
=

c2

kd−1

kd−1∑
k=1

Ai,kφ
′(hZ(W))k,j

∂hZ(W)k,j
∂Wα,β

kd−1∑
k=1

Ai,kφ
′(hZ(W))k,j′

∂hZ(W)k,j′

∂Wα,β


By the inductive hypothesis as k1, k2, . . . kd−2 →∞, the above converges in probability to:

lim
kd−2→∞

. . . lim
k1→∞

∑
α,β

∂gZ(Mij)

∂Bα,β

∂gZ(Mi′j′)

∂Bα,β
→ c2

kd−1

kd−1∑
k=1

φ′(hZ(W))k,jφ
′(hZ(W))k,j′Kd−1(Mk,j ,Mk,j′)

 .

(9)
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Therefore, when i = i′, adding Eqs. [8] and [9] and applying the inductive hypothesis yields:

lim
kd−1→∞

lim
kd−2→∞

. . . lim
k1→∞

Kd(Mij ,Mi′j′) = φ̌(φ̌(d−1)(〈z(j), z(j′))〉) +Kd−1
dφ̌

dξ

(
φ̌(d−1)(〈z(j), z(j′)〉))

)
,

which completes the proof.

We next provide an example showing how to compute the NTK for matrix completion.

Example. Suppose we have:

Y =

y11 .5 .3

.1 .2 y23

.4 y32 y33

 .
Assuming we read off the observed entries of Y in row major order and that Z = I (the 3×3 identity matrix),
then the NTK is given by:

K =



κ(1) κ(0) 0 0 0

κ(0) κ(1) 0 0 0

0 0 κ(1) κ(0) 0

0 0 κ(0) κ(1) 0

0 0 0 0 κ(1)


.

The solution to kernel regression is given by:

g̃(M) =
[
.5 .3 .1 .2 .4

]
K−1k(M),

where k(M) is the vector with entries k(Mij ,M) for (i, j) ∈ S. As an example, for M11, we have:

k(M11) =
[
κ(0) κ(0) 0 0 0

]T
.

This example demonstrates the key difference between the NTK of fully connected networks for matrix
completion and the usual multivariate NTK: namely, the former corresponds to solving a separate kernel
regression problem for each row of the target matrix Y . By modifying the nonlinearity φ and the feature
prior in Theorem 1, our framework encapsulates a broad class of semi-supervised learning approaches for
matrix completion. We provide a nontrivial example below.

Example (Semi-supervised Learning with the Graph Laplacian). The following corollary to Theorem 2
proves that semi-supervised learning using the graph Laplacian operator from [9] is a specific instance of
matrix completion with the NTK of a linear neural network used for matrix completion.

Corollary. Let X ∈ Rd×n denote a set of data points of which a subset XS ∈ Rd×s is labelled with labels
YS ∈ R1×s. Let Z ∈ Rp×n denote the projection of X onto the top p eigenvectors of the graph Laplacian.
Let gZ(M) = tr(MTA 1√

2k
BZ) for A ∈ R1×k, B ∈ Rk×p. Then as k →∞, the following are equivalent:

arg min
A,B

∑
(i,j)∈S

(Yij − gZ(Mij))
2 ⇐⇒ arg min

w∈Rp
‖YS − wZ‖22

in the sense that gZ(Mij) = wZ:,j.

The proof follows immediately from Theorem 1 and the fact that the dual activation for φ(x) = x is
φ̌(ξ) = ξ. The example above illustrates the generality of our framework for matrix completion. Moreover,
semi-supervised learning with the graph Laplacian can naturally be extended by using the NTK for a
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nonlinear neural network instead of a linear neural network. Namely, instead of using the eigenvectors of the
graph Laplacian, we can naturally extend the above corollary by using embeddings produced by autoencoders
(Ch. 14 of [21]).

Note that the flexibility to learn a low-rank imputation or imputation with other structures via our
framework is given by the feature prior, which incorporates the relationships between the coordinates of
the target matrix. Indeed, varying the feature prior can drastically change the imputation given by the
NTK, and the NTK with appropriate feature prior can even produce low-rank imputations, as shown by the
following example below.

Example. Consider the Netflix problem of movie rating imputation. Suppose the target matrix Y is of the
form

Y =

[
1 2 y13

1 2 3

]
,

where the rows of Y represent users, the columns represent movies, and the coordinate Yij represents the
rating (from 1 to 5 stars) a user i gave to movie j. By first flattening the matrix Y into Yv = [1, 2, y13, 1, 2, 3],
and then using our framework with feature prior,

Z =

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

 ,
leads to a low rank imputed matrix

Ŷ =

[
1 2 3

1 2 3

]
.

The above example is simplistic in that it produces a low rank imputation by assuming that the users
are identical and using a one-hot embedding for the movies. In practice, one would use a feature prior that
embeds users via external metadata (e.g. user age, gender, etc.) and our framework would predict similar
ratings for users with similar metadata.

C Experimental Details for Virtual Drug Screening in CMAP
For this application, we consider the 978 genes × 2,130 drugs × 71 cell types “large” tensor from [25]. From
this tensor, we extract the 15,855 non-null values, and leave out the cell types (‘SNU1040’, ‘HEK293T’,
‘HS27A’), as they have less than 10 drugs in the dataset (i.e. for these cell types, we would not be able to
perform 10-fold cross validation). We exclude MCF7 from the dataset when using our method, since we use
it to compute our feature prior, but we give all other methods training access to all MCF7 observations to
ensure a fair comparison. This leaves us with a dataset of 14,336 samples, which are used for imputation. A
link to download this dataset is given in [25], which we repeat here for convenience: https://github.com/
clinicalml/dgc_predict.

For training DNPP and FaLRTC, we use the same hyper-parameters as in [25]. We implemented DNPP,
mean over cell type, and our framework in Python in the above link. We use the Matlab code from [25] located
via the following link: https://github.com/clinicalml/dgc_predict/FaLRTC.m. In order to make our
results for FaLRTC accessible without Matlab, we provide the imputations from FaLRTC in the following
folder: https://www.dropbox.com/sh/w23viwbm3py1dq1/AADQD3Bi_bLx4Z7X2hcLoUzXa?dl=0.

D Feature Prior for Drug Response Imputation
DNPP performs well for imputing the effect of drugs on cell types that have many observations in the training
set, but performs poorly when imputing the effect of drugs on cell types with few observations in the training
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set. Thus, to improve on DNPP, we use a dual feature prior: one for imputing the effect of drugs on cell
types with many (at least 150) observations in the training set (the dense regime), and another for imputing
the effect of drugs on cell types with few (at most 150) observations in the training set (the sparse regime).

Since DNPP and FaLRTC both yield an imputation that captures similarity between cell type and drug
combinations in the large observation regime, we can use the output of one of these methods as the feature
prior for those cell types that had greater than 150 drugs in the training set. In particular, we chose the
output of FaLRTC for the feature prior in the dense regime since applying our method with this feature
prior yielded superior results. For all observed examples that were in the training set, we use the gene
expression for the observation itself as the encoding. For all feature priors, we additionally concatenated a
constant (1.5) times the identity matrix to ensure that the corresponding kernel is positive definite6. We
then solved kernel regression exactly (using the numpy solve function [39]) for the NTK of a 1-hidden layer
ReLU network.

For those cell types with few (less than 150 observations) in the training set, we used a feature prior that
concatenates an embedding of the cell type and an embedding of the drug type. For the drug embedding,
we used the gene expression of MCF7 treated with the same drug as the drug embedding, if available in
the training set. If this vector was not available in the training set, we simply used the mean of all MCF7
observations. For the cell type embedding, we used the mean of all observations for the corresponding cell
type available in the training set. We then normalized each cell embedding to have the same norm as the
drug embedding to balance their contributions to dot products computed for the kernel. We re-scaled the
embedding for the cell type by a factor of 1.25 to give the cell type additional weight over drug type7.
Lastly, we normalized the concatenation of the embeddings and solved kernel regression via the closed form
in Theorem 1. We refer to this feature prior as the MCF7 reference prior.

The code for computing our feature priors is available at https://github.com/uhlerlab/ntk_matrix_
completion.

E One-hot Encoding for Drugs is Equivalent to Imputation with
Mean Over Cell Type

The following result shows that using a feature prior consisting of a one-hot embedding for drugs leads to
performing imputation using the mean over all observations for a given cell type.

Proposition 2. Let Y ∈ Rm×n denote the gene expression vectors for cell type c with drugs {dj}nj=1,
such that columns {y(j)}`i=1 are observed and columns {y(j)}ni=`+1 are missing. Let A ∈ Rm×k, B ∈ Rk×p,
φ(x) = max(x, 0), g : Rm×n → R such that:

g(M) = tr

(
MTA

√
2√
k`
φ(BZ)

)
,

where Z = In×n (i.e. a one-hot encoding of the drug). Then for i ∈ [m], j > `, the solution to kernel
ridge-less regression with the NTK for g is:

g̃(Mij) =

(
1

2π − 1
− `

(2π − 1)(2π − 1 + π`)

)1

`

∑̀
j=1

y
(j)
i

 .

Proof. The proof relies on the fact that the kernel matrix K for g is a block diagonal matrix. In particular,
as shown in the example in Section 3, there is one block, KBi ∈ R`×`, for each row of Y (i.e. m blocks), and
KBi has diagonal entries κ(1) = 2 and off-diagonal entries κ(0) = 1

π . Hence, each block of the kernel matrix
can be written as:

KBi =
1

`

((
2− 1

π

)
I`×` +

1

π
J

)
,

6We chose the constant 1.5 by tuning this parameter to give highest Pearson r value on seed 512. We then used this constant
for all other random seeds.

7This hyperparameter was selected to maximize Pearson r value for seed 512 and then fixed across all other random seeds.
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where J ∈ R`×` is the all ones matrix. By the Sherman-Morrison formula,

K−1
Bi

=
1

`

(
π

2π − 1
I − π

(2π − 1)(2π − 1 + π`)
J

)
,

and thus

g̃(Mij) =
[
y

(1)
i y

(2)
i . . . y

(`)
i

]
K−1
Bi

1
1

π`
,

where 1 ∈ R` is the all ones vector. Hence,

g̃(Mij) =

(
1

2π − 1
− `

(2π − 1)(2π − 1 + π`)

)1

`

∑̀
j=1

y
(j)
i

 ,

which completes the proof.

F Feature Prior Corresponding to Previous Algorithms
As discussed in Section 2 of the main text, our framework provides a direct approach for improving upon
previous methods for virtual drug screening. Using the output of DNPP and FaLRTC as the feature prior
in our framework leads to an improvement; namely, across every round and fold in 5 rounds of 10-fold cross
validation (using seeds 149, 10, 53, 77, 1928), we find that our method with the DNPP output as a feature
prior outperforms DNPP and that our method with the FaLRTC output as a feature prior outperforms
FaLRTC. This is demonstrated in Figs. 5 and 6.

G Performance of Methods on Sparse versus Dense Subsets
We demonstrate in Fig. 7 that DNPP is effective for imputation on the dense regime (i.e. for those drug/cell
type pairs with over 150 profiles), but not as effective in the sparse regime (i.e. for those drug/cell type
pairs with less than 150 profiles). FaLRTC seems to perform comparably between the dense and the sparse
regime, but under-performs DNPP on the full dataset.

H Metrics for Evaluation in Drug Response Imputation

Let Ŷ ∈ Rm×n denote the concatenatation of the test predictions for all 10 folds and let Y ∗ ∈ Rm×n denote
the ground truth. We use y∗(i) to denote the ith column of Y ∗. Let ȳ(i) = ci1 where ci =

∑m
j=1 y

(i)
j . For

A ∈ Ra×b, let Av ∈ Ra·b denote the vectorized version of A. We use the following 3 metrics for evaluating
the effectiveness of a given imputation method. All evaluation metrics have a maximum value of 1.

1. Pearson r value: This evaluation metric was used in [25] and is given by:

v =
〈Ŷv, Y ∗v 〉
‖Ŷv‖2‖Y ∗v ‖2

.

2.Mean R2: This evaluation metric is given by:

v =
1

n

n∑
i=1

(
1−

∑m
j=1(ŷ

(i)
j − y∗j

(i))2∑m
j=1(y∗j

(i) − ȳ(i)
j )2

)
.

3. Mean Cosine Similarity : This evaluation metric is given by:

v =
1

n

n∑
i=1

〈ŷ(i), y∗(i)〉
‖ŷ(i)‖2‖y∗(i)‖2

.
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I Statistical Significance of NTK on Drug Response Imputation
In experiments on the full dataset, we use 10-fold cross validation and 5 random seeds (149, 10, 77, 53, 1928)
for comparing our method to DNPP from [25]. For each fold, we ensure that 10% of the drugs for each cell
type are present in the test set. To determine the statistical significance of our method for improving over
DNPP, we use a one-sided test with the following corrected repeated k-fold cv test statistic for r rounds of
k-fold cross validation (as described in Section 3.3 of [12]):

t =
1
kr

∑k
i=1

∑r
j=1 dij(

1
kr + n2

n1

)
σ̂2

,

where dij is the difference between the evaluation metric for our method (the output of FaLRTC as the
feature prior for the dense regime and the MCF7 reference feature prior for the sparse regime) and that of
the DNPP for fold k of round j, σ̂ is the estimated variance of the differences dij , and n1 is the number of
samples used for training and n2 is the number of samples used for testing (i.e. n2

n1 ≈
1
9 for our setting).

This statistic is distributed according to a t-distribution with kr − 1 degrees of freedom. For the mean R2,
we obtain t = 18.29 and a corresponding p-value of 7.7 · 10−24. For the mean cosine similarity, we obtain
t = 14.75 and a p-value of 5.9 · 10−20. Thus, at a significance level of .01, we reject the null hypothesis that
our method and DNPP have the same performance.

J Matrix Completion with the CNTK
We repeat Proposition 1 from the main text and present the proof below. The tensor Θ ∈ Rm×n×m×n was
defined and used in the computation of the CNTK for classification in [4].

Proposition. Let fZ(W) be a d layer convolutional network used to map from the feature prior Z ∈ Rc×r×s
to the target matrix Y ∈ Rm×n. Then as the number of convolutional filters per layer tends to infinity, the
CNTK of fZ(W) is given by:

K(Mij ,Mi′j′) = [Θ(d)(Z,Z)]i,j,i′,j′ , (10)

where Mij ,Mi′j′ ∈ Rm×n denote indicator matrices.

Proof. The proof follows almost immediately from the derivation of the CNTK for classification provided in
[4]. Namely, let g(M) = MT fZ(W) for M ∈ Rm×n. Then, we have that:

∂g(M)

∂Wα,β
=

m∑
i=1

n∑
j=1

Mi,j
∂fZ(W)i,j
∂Wα,β

.

Thus, the kernel at the indicator matrices Mij ,Mi′j′ is given by:

K(Mij ,Mi′j′) =
∂g(Mij)

∂Wα,β

∂g(Mi′j′)

∂Wα,β
=
∂fZ(W)i,j
∂Wα,β

∂fZ(W)i′,j′

∂Wα,β
= [Θ(Z,Z)]i,j,i′,j′ ,

which completes the proof.

Below we additionally present an explicit derivation for the 1 hidden layer case for ReLU networks. This
derivation will be useful in understanding the connection between the CNTK for matrix completion with
semi-supervised learning from coordinate embeddings (i.e. Theorem 2 of the main text).

Proposition (1 Hidden Layer Convolutional Network). Let Z ∈ Rc×m×n denote the feature prior. Let ∗
denote the neural network convolution operator and let fZ(W) = A ∗

√
c

q
√
k
φ(B ∗ Z) denote a 1 hidden layer

convolutional network where B has k filters of size q×q×c with circular padding, A has 1 filter of size q×q×k
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with circular padding for odd q, φ is a homogeneous activation function of degree 1, and c2 = 1
Eu∼N(0,1)[φ(u)2] .

Let K(0), K̃(0),Σ(0) ∈ Rm×n×m×n such that:

Σ(0)(i, j, i′, j′) = K(0)(i, j, i′, j′) =
c∑
`=1

∑
− q+1

2 ≤m,n≤
q+1
2

Z`,i+m,j+nZ`,i′+m,j′+n.

If Mij and Mi′j′ are indicator matrices, then as k →∞, the CNTK for fZ(W) is given by:

K(Mij ,Mi′j′) =
1

q2

∑
− q+1

2 ≤a,b≤
q+1
2

Σ(1)(i+ a, j + b, i′ + a, j′ + b)

+ Σ̇(1)(i+ a, j + b, i′ + a, j′ + b)K(0)(i+ a, j + b, i′ + a, j′ + b),

where

Σ(1)(i, j, i′, j′) =
√

Σ(0)(i, j, i, j)Σ(0)(i′, j′, i′, j′)φ̂

(
Σ(0)(i, j, i′, j′)√

Σ(0)(i, j, i, j)Σ(0)(i′, j′, i′, j′)

)
,

Σ̇(1)(i, j, i′, j′) =
dφ̂

dξ

(
Σ(0)(i, j, i′, j′)√

Σ(0)(i, j, i, j)Σ(0)(i′, j′, i′, j′)

)
.

Proof. We provide the proof for the case of 1 input channel (c = 1) below. The proof follows analogously for
the case of multiple input channels. Let g(M) = tr(MT fZ(W)). Let Y (`) denote channel ` of 2√

k
φ(B ∗ Z)

and let H = A ∗
√

2
q
√
k
φ(B ∗ Z). We thus have that

Y
(`)
ij =

√
c

q
√
k
φ

 ∑
− q+1

2 ≤a,b≤
q+1
2

Zi+a,j+bB
(`)
a,b

 ,

Hij =
k∑
`=1

∑
− q+1

2 ≤a,b≤
q+1
2

Y
(`)
i+a,j+bA

(`)
a,b,

g(M) =
∑

1≤i,j≤d

MijHij .

Now we compute the partial derivatives of f with respect to the parameters A(`)
a,b and B

(`)
m,n:

∂g(Mij)

∂A
(`)
a,b

= Y
(`)
i+a,j+b,

∂g(Mij)

∂B
(`)
m,n

=
∑

− q+1
2 ≤a,b≤

q+1
2

A
(`)
a,b

√
c

q
√
k
φ′

 ∑
− q+1

2 ≤a′,b′≤
q+1
2

Zi+a+a′,j+b+b′B
(`)
a′,b′

Zi+a+m,j+b+n.

As k →∞, the CNTK converges in probability to:

K(Mij ,Mi′j′) = E
A

(`)
a,b,B

(`)
m,n∼N (0,1)

 k∑
`=1

∑
a,b

∂g(Mij)

∂A
(`)
a,b

∂g(Mi′j′)

∂A
(`)
a,b

+

k∑
`=1

∑
m,n

∂g(Mij)

∂B
(`)
m,n

∂g(Mi′j′)

∂B
(`)
m,n

 . (11)

This expression can be simplified as follows:

K(Mij ,Mi′j′) =
∑

− q+1
2 ≤a,b≤

q+1
2

Σ(1)(i+ a, j + b, i′ + a, j′ + b)

+ Σ̇(1)(i+ a, j + b, i′ + a, j′ + b)K(0)(i+ a, j + b, i′ + a, j′ + b),
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where we have:

Σ(1) =
c

q2
E
B

(`)

a′,b′

∑
a,b

φ

 ∑
− q+1

2 ≤a′,b′≤
q+1
2

Zi+a+a′,j+b+b′B
(`)
a′,b′

φ

 ∑
− q+1

2 ≤a′,b′≤
q+1
2

Zi′+a+a′,j′+b+b′B
(`)
a′,b′


Σ̇(1) =

c

q2
E
B

(`)

a′,b′

∑
a,b

φ′

 ∑
− q+1

2 ≤a′,b′≤
q+1
2

Zi+a+a′,j+b+b′B
(`)
a′,b′

φ′

 ∑
− q+1

2 ≤a′,b′≤
q+1
2

Zi′+a+a′,j′+b+b′B
(`)
a′,b′


Lastly, we reduce the above expressions by substituting in the values for Σ(0) from the statement of the
proposition. Namely, let

u =
∑
a,b

φ

 ∑
− q+1

2 ≤a′,b′≤
q+1
2

Zi+a+a′,j+b+b′B
(`)
a′,b′

 ,

v =
∑
a,b

φ

 ∑
− q+1

2 ≤a′,b′≤
q+1
2

Zi′+a+a′,j′+b+b′B
(`)
a′,b′

 .

Then, the above expressions for Σ(1), ˙Σ(1) simplify to:

Σ(1) =
c

q2
E
B

(`)

a′,b′
[φ(u)φ(v)] ,

Σ̇(1) =
c

q2
E
B

(`)

a′,b′
[φ′(u)φ′(v)] .

Hence, we can use the formula for the dual activation of the ReLU to conclude that:

Σ(1)(i, j, i′, j′) =
1

q2

√
Σ(0)(i, j, i, j)Σ(0)(i′, j′, i′, j′)φ̌

(
Σ(0)(i, j, i′, j′)√

Σ(0)(i, j, i, j)Σ(0)(i′, j′, i′, j′)

)
,

Σ̇(1)(i, j, i′, j′) =
1

q2

dφ̌

dξ

(
Σ(0)(i, j, i′, j′)√

Σ(0)(i, j, i, j)Σ(0)(i′, j′, i′, j′)

)
.

Lastly, we complete the proof by substituting these expressions for Σ(1), Σ̇(1) into the expression forK(Mij ,Mi′j′)
above.

As implied by Proposition 1 above, the CNTK is a functional of pairs of coordinates of images, while the
usual CNTK for classification operates on pairs of images [4]. To be more specific, consider the setting where
the target matrix Y is in Rm×n. Then, the CNTK for matrix completion that we compute lies in Rmn×mn.
On the other hand, when given n images for classification, the CNTK computed in [4] lies in Rn×n and does
not depend on the image size.

K Equivalence with Semi-Supervised Learning for the CNTK
In the following, we present the statement and proof of Theorem 2 from the main text with the precise form
for ψ̃.

Theorem. Consider a convolutional network, fZ(W), with d hidden layers with homogeneous activation of
degree 1 and in which all filters have size q and circular padding. Let Z ∈ Rc×m×n satisfy:

c∑
`=1

∑
−α≤a,b≤α

Z`,i+a,j+bZ`,i′+a,j′+b = ψ(|i− i′|, |j − j′|)
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for some ψ : R2 → R with maximum at (0, 0) and α = q−1
2 (odd q). Then as the number of convolutional

filters per layer goes to infinity, the CNTK is given by:

Kd(Mij ,Mi′j′) = ψ̃(|i− i′|, |j − j′|)

= φ̌(d)

(
ψ(|i− i′|, |j − j′|)

ψ(0, 0)

)
ψ(0, 0) +Kd−1(Mij ,Mi′j′)

dφ̌

dξ

(
φ̌(d−1)

(
ψ(|i− i′|, |j − j′|)

ψ(0, 0)

))
,

where φ̌ is the dual activation of φ, φ̌(d)(ξ) = φ̌(φ̌(d−1)(ξ)) with φ̌(0)(ξ) = ξ, and K0(Mij ,Mi′j′) = ψ(|i −
i′|, |j − j′|).

Proof. We prove this by induction on the number of hidden layers d. We begin with the base case for d = 1:
The proof for this case follows from the proof of the Proposition for 1 hidden convolutional networks in
Appendix J. Namely, we have:

K(Mij ,Mi′j′) =
∑

− q−1
2 ≤a,b≤

q−1
2

Σ(1)(i+ a, j + b, i′ + a, j′ + b)

+ Σ̇(1)(i+ a, j + b, i′ + a, j′ + b)K(0)(i+ a, j + b, i′ + a, j′ + b),

where

Σ(1)(i, j, i′, j′) =
1

q2

√
Σ(0)(i, j, i, j)Σ(0)(i′, j′, i′, j′)φ̌

(
Σ(0)(i, j, i′, j′)√

Σ(0)(i, j, i, j)Σ(0)(i′, j′, i′, j′)

)
,

Σ̇(1)(i, j, i′, j′) =
1

q2

dφ̌

dξ

(
Σ(0)(i, j, i′, j′)√

Σ(0)(i, j, i, j)Σ(0)(i′, j′, i′, j′)

)
.

Now since Σ(0)(i, j, i′, j′) = ψ(|i− i′|, |j − j′|), we conclude that

Σ(1)(i, j, i′, j′) =
1

q2
ψ(0, 0)φ̌

(
ψ(|i− i′|, |j − j′|)

ψ(0, 0)

)
,

Σ̇(1) =
1

q2

dφ̌

dξ

(
ψ(|i− i′|, |j − j′|)

ψ(0, 0)

)
.

Substituting the above into the expression for K(Mij ,Mi′j′), we obtain

K(Mij ,Mi′j′) =
1

q2

∑
− q+1

2 ≤a,b≤
q+1
2

ψ(0, 0)φ̌

(
ψ(|i− i′|, |j − j′|)

ψ(0, 0)

)

+ ψ(|i− i′|, |j − j′|)dφ̌
dξ

(
ψ(|i− i′|, |j − j′|)

ψ(0, 0)

)
Note that the summand no longer depends on a, b, and thus we conclude that

K(Mij ,Mi′j′) = ψ(0, 0)φ̌

(
ψ(|i− i′|, |j − j′|)

ψ(0, 0)

)
+
dφ̌

dξ

(
ψ(|i− i′|, |j − j′|)

ψ(0, 0)

)
ψ(|i− i′|, |j − j′|),

which completes the base case.
For the inductive step, we assume that the following holds for depth d− 1:

Σ(d−1)(Mij ,Mi′j′) =
1

q2
φ̌(d−1)

(
ψ(|i− i′|, |j − j′|)

ψ(0, 0)

)
ψ(0, 0),

Σ̇(d−1)(Mij ,Mi′j′) =
1

q2

dφ̌

dξ

(
φ̌(d−2)

(
ψ(|i− i′|, |j − j′|)

ψ(0, 0)

))
,

Kd−1(Mij ,Mi′j′) = q2Σ(d−1)(Mij ,Mi′j′) + q2Kd−2(Mij ,Mi′j′)Σ̇
(d−1)(Mij ,Mi′j′),
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and assume that Kd−1(Mij ,Mi′j′) = Kd−1(Mi+a,j+b,Mi′+a,j′+b) for any a, b ∈ Z satisfying i+a, i′+a ∈ [m]
and j + b, j′ + b ∈ [n] (i.e. assume that Kd−1 is shift invariant). Now, let S(d−1)(Mij ,Mi′j′) be defined as
follows:

S(d−1)(Mij ,Mi′j′) =
∑

− q−1
2 ≤a,b,≤

q−1
2

Σ(d−1)(Mi+a,j+b,Mi′+a,j′+b) = φ̌(d−1)

(
ψ(|i− i′|, |j − j′|)

ψ(0, 0)

)
ψ(0, 0).

Then, by the derivation of the CNTK in [4], we obtain

Σ(d)(Mij ,Mi′j′) =
1

q2
φ̌

(
S(d−1)(Mij ,Mi′j′)√

S(d−1)(Mij ,Mij)S(d−1)(Mi′j′ ,Mi′j′)

)√
S(d−1)(Mij ,Mij)S(d−1)(Mi′j′ ,Mi′j′)

=
1

q2
φ̌

(
φ̌(d−1)

(
ψ(|i− i′|, |j − j′|)

ψ(0, 0)

))
ψ(0, 0),

where the last equality follows from the fact that φ̌(1) = 1. Following an analogous derivation for Σ̇(d−1),
we obtain that

Σ̇(d)(Mij ,Mi′j′) =
1

q2

dφ̌

dξ

(
φ̌(d−1)

(
ψ(|i− i′|, |j − j′|)

ψ(0, 0)

))
.

Hence, the CNTK Kd(Mij ,Mi′j′) is given by:

Kd(Mij ,Mi′j′) =
∑

− q−1
2 ≤a,b,≤

q−1
2

Σ(d)(Mi+a,j+b,Mi′+a,j′+b)

+Kd−1(Mi+a,j+b,Mi′+a,j′+b)Σ̇
(d)(Mi+a,j+b,Mi′+a,j′+b)

= q2Σ(d)(Mij ,Mi′j′) + q2Kd−1(Mij ,Mi′j′)Σ̇
(d)(Mij ,Mi′j′),

where the last line follows from the shift invariance of Kd−1. Lastly, we have that Kd is shift invariant since
all of the terms Σ(d), Σ̇(d) and Kd−1 are shift invariant. Hence, the induction is complete and the theorem
follows.

L Derivation of the CNTK for Matrix Completion with Modern
Architectures

Below, we derive the CNTK for networks with fixed linear transformations. We note a similar formula appears
in the Appendix of [50], but does not appear to be derived for the cases of nearest neighbor upsampling,
nearest neighbor downsampling, and bilinear upsampling.

Proposition. Let g(M) = tr(MTAfZ(W)) denote a neural network where A ∈ Rmn×pq is a fixed (i.e. non-
trainable) linear transformation and fZ(W) is a convolutional network under the NTK parameterization8.
Then the CNTK, K ∈ Rmn×mn, for g is given by:

K = AKfA
T =⇒ K(Mij ,Mi′j′) =

pq∑
a=1

pq∑
b=1

Av(i,j),aAv(i′,j′),bKf (Mv−1
1 (a),v−1

2 (a),Mv−1
1 (b),v−1

2 (b)),

where v : R2 → R is the bijective map from a coordinate (i, j) in a matrix B to its position in the vectorized
version of B and Kf ∈ Rpq×pq is the CNTK for f .

8We assume A operates on the vectorized version of fZ(W) and then the output is reshaped to sizem×n before multiplication
by MT .
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Proof. Let wp denote a weight in f and let w denote the vector of all weights in f . We thus have that

∂g(M)

∂wp
=
∑
m,n

Mm,n

∂[AfZ(W)]v(m,n)

∂wp
=
∑
m,n

Mm,n

pq∑
`=1

Av(m,n),`
∂fZ(W)`
∂wp

=⇒ K(Mij ,Mi′j′) =

〈
pq∑
a=1

Av(i,j),a
∂fZ(W)a

∂w
,

pq∑
b=1

Av(i′,j′),b
∂fZ(W)b

∂w

〉
= AKgA

T ,

which completes the proof.

While the Proposition above generally implies that a a linear transformation requires evaluating a
quadratic form when computing the CNTK, the matrix A corresponding to layers used in practice is typi-
cally extremely sparse. Hence, the required computation is simplified drastically, as is demonstrated by the
following corollaries (the proofs follow directly from the proposition above).

Corollary (Downsampling through Strided Convolution). Let Σ(`), Σ̇(`),K(`) ∈ Rd×d×d×d correspond to the
tensors used in the CNTK for a depth ` convolutional network. Then, using downsampling with a stride of
2 at step `+ 1 maps the tensors to Σ(`+1), Σ̇(`+1),K`+1 ∈ R d

2×
d
2×

d
2×

d
2 as follows: ∀ i, j, i′, j′ ≡ 0 (mod 2),

Σ(`+1)

(
i

2
,
j

2
,
i′

2
,
j′

2

)
= Σ(`)(i, j, i′, j′),

Σ̇(`+1)

(
i

2
,
j

2
,
i′

2
,
j′

2

)
= Σ̇(`)(i, j, i′, j′),

K(`+1)

(
i

2
,
j

2
,
i′

2
,
j′

2

)
= K(`)(i, j, i′, j′).

Corollary (Nearest Neighbor Upsampling). Let Σ(`), Σ̇(`),K(`) ∈ R d
2×

d
2×

d
2×

d
2 correspond to the tensors used

in the CNTK for a depth ` convolutional network. Then, using nearest neighbor upsampling with a scale
factor of 2 at step `+ 1 transforms the tensors to Σ(`+1), Σ̇(`+1),K(`+1) ∈ Rd×d×d×d as follows:

Σ(`+1) (i, j, i′, j′) = Σ(`)

(⌊
i

2

⌋
,

⌊
j

2

⌋
,

⌊
i′

2

⌋
,

⌊
j′

2

⌋)
,

Σ̇(`+1) (i, j, i′, j′) = Σ̇(`)

(⌊
i

2

⌋
,

⌊
j

2

⌋
,

⌊
i′

2

⌋
,

⌊
j′

2

⌋)
,

K(`+1) (i, j, i′, j′) = K(`)

(⌊
i

2

⌋
,

⌊
j

2

⌋
,

⌊
i′

2

⌋
,

⌊
j′

2

⌋)
.

The computation for bilinear upsampling (Ch. 2.4 of [20]) is presented below. We primarily use the
structure of the updates to Σ, Σ̇,K to efficiently compute the CNTK when the channels of X are drawn i.i.d.
from a stationary distribution.

When bilinearly upsampling (Ch. 2.4 of [20]) an image A ∈ Rd×d to an image Ã ∈ R2d×2d, each coordinate
of Ã is a linear combination of four coordinates of A. Namely for α = d−1

2d−1 ,

Ãi,j =
∑

a,b∈{0,1}

λ
(i,j)
a,b Abαic+a,bαjc+b,

and λi,ja,b is selected as follows. Let r = bαic, c = bαjc and let:

`r =
r

α
, ur =

r + 1

α
, `c =

c

α
, uc =

c+ 1

α
,

X = [ur − r, r − `r], Y = [uc − c, c− `c], C =
1

(ur − `r)(uc − `c)
.

Then, λ(i,j)
a,b = CXaYb for a, b ∈ {0, 1}. The CNTK tensors are now transformed as follows.
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Corollary 1 (Bilinear Upsampling). Let Σ(`), Σ̇(`),K(`) ∈ R d
2×

d
2×

d
2×

d
2 correspond to the tensors used in the

CNTK for a depth ` convolutional network. Then, using bilinear upsampling with a scale factor of 2 at step
`+ 1 transforms the tensors to Σ(`+1), Σ̇(`+1),K`+1 ∈ Rd×d×d×d as follows:

Σ(`+1) (i, j, i′, j′) =
∑

a,b∈{0,1}

∑
a′,b′∈{0,1}

λ
(i,j)
a,b λ

(i′,j′)
a′,b′ Σ(`) (bαic+ a, bαjc+ b, bαi′c+ a′, bαj′c+ b′) ,

Σ̇(`+1) (i, j, i′, j′) =
∑

a,b∈{0,1}

∑
a′,b′∈{0,1}

λ
(i,j)
a,b λ

(i′,j′)
a′,b′ Σ̇(`) (bαic+ a, bαjc+ b, bαi′c+ a′, bαj′c+ b′) ,

K(`+1) (i, j, i′, j′) =
∑

a,b∈{0,1}

∑
a′,b′∈{0,1}

λ
(i,j)
a,b λ

(i′,j′)
a′,b′ K

(`) (bαic+ a, bαjc+ b, bαi′c+ a′, bαj′c+ b′) .

M Efficient Computation of the CNTK for High Resolution Images
Computing and storing the CNTK exactly for high resolution images is computationally prohibitive when
using a naive approach. In particular, [15] notes that the kernel K for a 500× 500 (K ∈ R500×500×500×500)
resolution image requires roughly 233GB of memory, which is infeasible on common hardware. In order to
overcome these computational limitations, [50] uses the Nyström method [54] to approximate the kernel. In
this section, we will demonstrate that we can compute the exact CNTK in a memory and run-time efficient
manner for any convolutional neural network with circular padding, strided convolution, and nearest neighbor
upsampling layers by using a feature prior Z that has infinitely many channels.

Our key insight is that once architecture is fixed, the the CNTK for low resolution images can be expanded
to that for high resolution images. In particular, when the convolutional architecture can be applied to both
images of resolution d1 and d2 with d2 > d1, we can expand the kernel for resolution d1, Kd1 ∈ Rd1×d1×d1×d1 ,
to a tensor of size Rd1×d1×d2×d2 , which can be indexed to match the entries of the kernel for resolution d2,
Kd2 ∈ Rd2×d2×d2×d2 .

In order to expand the kernel for low resolution images to the one for high resolution images, we need
only pad and permute the rows and columns of the low resolution matrix. We define the required operations
formally below (using zero indexing for our matrices).

Definition 3 (Row and Column Rotation). Let Πi,j : Rd×d → Rd×d such that Πi,j(A) = PπiAPπj where
Pπ` is a permutation matrix with permutation π`(i) = (i+ `) mod d.

Definition 4 (Minimum Padding). Let M : Rd1×d1 → Rd2×d2 with d2 ≥ d1 such that M(A) = Ã, where

Ãi,j =

Ai,j i < d1, j < d1

mina,b∈[d1]Aa,b otherwise
.

Example. The operator Πi,j rotates the rows of A down by i and rotates the columns of A right by j as
follows:

A =

A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

 =⇒ Π1,2(A) =

A3,2 A3,3 A3,1

A1,2 A1,3 A1,1

A2,2 A2,3 A2,1

 .
Minimum padding M : R2×2 → R4×4 expands a matrix as follows:

A =

[
0.1 0.2

0.3 0.4

]
=⇒ M(A) =


0.1 0.2 0.1 0.1

0.3 0.4 0.1 0.1

0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1

 .
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The theorem below demonstrates how to construct the kernel for a high resolution image by expanding
and indexing a low resolution kernel. We assume that all strided convolutional layers have a stride size of 2 in
each direction and all upsampling layers have a scaling factor of 2. For the following theorem, we also write
the kernel K ∈ Rmn×mn as a 4 dimensional tensor K ∈ Rm×n×m×n, where K(i, j, i′, j′) := K(Mij ,Mi′j′).

Theorem (CNTK Expansion). Let g denote a convolutional neural network with circular padding, s down-
sampling with strided convolution layers and s nearest neighbor upsampling layers used to inpaint images in
R2s+1×2s+1

. Define the feature prior Z(`) = {Z(`)
p }∞p=1 ⊂ R2`×2` for ` ∈ Z+ such that:

∞∑
p=1

Z
(`)
p,i,jZ

(`)
p,i′,j′ =

C1 i = i′ , j = j′

C2 otherwise
. (12)

Let d2 = 2p2 such that p2 > s+ 1. For α = 2β, let Kα denote the CNTK for g when used to inpaint images
in Rα×α with feature prior Z(β). Let p = 2s, i′ = i mod p, j′ = j mod p. Then for i, j ∈ [d2], we compute
K̃ ∈ Rp×p×d2×d2 as follows:

K̃(i′, j′, :, :) = Πi′−p,j′−p(M(Πp−i′,p−j′(Ks+1[i′, j′, :, :]))),

and we have:

Kd2(i, j, :, :) = Πi−i′,j−j′K̃(i′, j′, :, :).

Proof. To provide intuition for the general case, we first prove the result for s = 0. Using the Proposition
from Appendix J and the conditions on Z(`), we obtain

Σ(0)(i, j, i′, j′) = K(0)(i, j, i′, j′) =

q2C1 if i = i′, j′ = j′

q2C2 otherwise
.

Hence for any `, `′ ≥ 1 with `′ < `, we conclude that K`(i, j, i
′, j′) = K`′(a, b, a

′, b′) when (i, j) 6= (i′, j′)
and (a, b) 6= (a′, b′), and K`(i, j, i, j) = K`′(a, b, a, b) for all i, j ∈ [2`] and a, b ∈ [2`

′
]. Hence, by permuting

rows, columns and minimum padding K`′ , we can recover the kernel for K`. Note that for ` = 0, we do not
ever record a kernel entry for the case where (i, j) 6= (i′, j′) and so minimum padding would pad with the
incorrect minimum value of K0(0, 0, 0, 0). This is why we need to expand up from the kernel for images of
dimension 2s+1 and not just from the kernel for images of dimension 2s.

For s > 0, we rely on the nearest neighbor upsampling and downsampling corollaries from Appendix L to
understand which entries of K`(i, j, i

′, j′) are equal to K`′(a, b, a
′, b′). Since Z(`), Z(`′) have the same range

{C1, C2} of channel-wise products, it suffices to identify the elements of K`′ that are equal. These elements
will then naturally be equal in K` after minimum padding.

From [15], we have that down-sampling through strided convolution preserves stationarity, and so after
t downsampling and convolutional layers, we again have that K(t)

` (i, j, i′, j′) = K
(t)
`′ (a, b, a′, b′) when (i, j) 6=

(i′, j′) and (a, b) 6= (a′, b′), and K(t)
` (i, j, i, j) = K

(t)
`′ (a, b, a, b) for all i, j ∈ [2`] and a, b ∈ [2`

′
].

In general, upsampling (including nearest neighbor upsampling) does not preserve stationarity, as is
discussed in [15]. However, nearest neighbor upsampling preserves equality (up to permutation) between
K`(i, j, :, :) and K`(i

′, j′, :, :) provided that i ≡ i′ (mod 2s) and j ≡ j′ (mod 2s). This follows immediately
from analyzing the output after nearest neighbor upsampling in the original image space. In the following,
we provide an example.

Example. Consider the output of nearest neighbor upsampling a single channel Y ∈ R2×2 to Ỹ ∈ R4×4 :

Y =

[
Y0,0 Y0,1

Y1,0 Y1,1

]
=⇒ Ỹ =


Y0,0 Y0,0 Y0,1 Y0,1

Y0,0 Y0,0 Y0,1 Y0,1

Y1,0 Y1,0 Y1,1 Y1,1

Y1,0 Y1,0 Y1,1 Y1,1

 .
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From the stationarity of Z(`) and since convolution and downsampling layers preserve stationarity, we have
that the CNTK for the above output K2(i, j, :, :) equals (up to permutation) K2(i′, j′, :, :) whenever i ≡ i′ (
mod 2) and j ≡ j′ (mod 2) since the corresponding entries in Ỹ have identical patterns of neighbors (i.e. a
row or column permutation by 2s does not affect the sums involved in the kernel computation).

Thus, we conclude that the range of entries in K`′(a, b, :, :) and K`(i, j, :, :) are equal whenever both i ≡ a (
mod 2s) and b ≡ j (mod 2s). To complete the proof, we just permute and minimum pads the entries of
K`′(a, b, :, :) to align the expanded matrix such that entry K`′(a, b, a, b) corresponds to K`(i, j, i, j) in the
expanded matrix.

Remarks. Note that the expansion trick provided in the theorem above solely depends on (1) the number
of downsampling and nearest neighbor upsampling layers; (2) the feature prior Z having special structure as
described in (12); and (3) the convolutional layers using circular padding. It importantly does not depend
on the number of layers, type of homogeneous activation function (i.e. ReLU or leakyReLU), or size of the
convolutional filters used. Hence our expansion technique can be used on a range of architectures, as we also
demonstrate in Section 4 of the main text. The permutations Πp−i′,p−j′ ,Πi′−p,j′−p used to compute K̃ are
essentially used to ensure that we perform minimum padding appropriately for kernel values at the kernel’s
edges. Lastly, when there are s downsampling and upsampling layers, the smallest image size we can expand
from is an image of size 2s+1× 2s+1. We cannot use images of size 2s since the corresponding kernel will not
contain the same minimum value as that for images of size 2s+1.

N Experimental Details for Image Inpainting
In the following, we describe the hyperparameters used for training neural networks and solving kernel
regression with the CNTK on the considered image inpainting and image reconstruction tasks.

N.1 Large Hole Inpainting
For all large hole inpainting experiments, we used the autoencoder architecture from [15] that has 6 down-
sampling and upsampling layers with no skip connections. On all images other than the “library” image, we
trained using the Adam optimizer [29] for 1000 epochs with a learning rate 10−2. For the “library” image,
we trained using the Adam optimizer for 6000 epochs with a learning rate of 10−2. We used a random seed
of 15 for all libraries. For implementing Adam with Langevin dynamics, we used the code and data from
[15] directly. We performed optimal early stopping for all neural networks, i.e. we chose the reconstruction
that has the closest match in PSNR to the ground truth. While impossible to perform in practice, optimal
early stopping allows us to compare the CNTK with the best possible result from the neural network.

For solving kernel regression with the CNTK, we trained using EigenPro [34, 35] for 10 epochs, i.e., we did
not early stop for large hole inpainting tasks. We scaled all kernels by a factor of 0.5 to ensure convergence
with EigenPro.

N.2 Image Reconstruction
Below we list the architectures and training procedure for each image. For the neural networks, we always
trained for 6000 epochs using Adam with a learning rate of 10−3, which is the learning rate used in [52]. All
neural networks have 128 convolutional filters per layer as is the case in [52]. We trained the CNTK for the
corresponding architecture with EigenPro for 50 epochs, unless otherwise specified. The architectures used
nearest neighbor upsampling, unless otherwise specified. We observed that training longer or, ideally, direct
solving kernel regression with the CNTK for networks with nearest neighbor upsampling led to the best PSNR
results for image reconstruction tasks. This is consistent with [52] in which networks for image reconstruction
are trained twice as long as those for large hole inpainting. A direct solve was only computationally feasible
on 256× 256 resolution images.

• “Barbara”: We use a network with 2 downsampling and upsampling layers.
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• “Boat”: We use a network with 6 downsampling and upsampling layers. We train the CNTK for 100
epochs.

• “Camera Man”: We use a network with 6 downsampling and upsampling layers. We train the CNTK
for 100 epochs.

• “Couple”: We use a network with 6 downsampling and upsampling layers. We train the CNTK for 100
epochs.

• “Finger”: We use a network with 3 downsampling and upsampling layers. We train the CNTK for 100
epochs.

• “Hill”: We use a network with 6 downsampling and upsampling layers.

• “House”: We use a network with 6 downsampling and upsampling layers. We solve kernel regression
exactly using the numpy solve function.

• “Lena”: We use a network with 6 downsampling and upsampling layers.

• “Man”: We use a network with 6 downsampling and upsampling layers.

• “Montage”: We use a network with 6 downsampling and upsampling layers. We solve kernel regression
exactly using the numpy solve method.

• “Peppers”: We use a network with 5 downsampling and upsampling layers with bilinear upsampling.
We solve kernel regression exactly using the numpy solve method, but add diagonal regularization from
[31]. In particular, for kernel K ∈ Rp×p, we add 4·10−5

p tr(K)Ip×p to the kernel before using the numpy
solve function.
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SEED 149 DNPP Ours (DNPP Prior) DNPP Ours (DNPP Prior)

CV Round \ Metric Mean R2 Mean R2 Mean Cos. Sim. Mean Cos. Sim.

1 0.298 0.302 0.544 0.548
2 0.288 0.291 0.534 0.538
3 0.296 0.298 0.541 0.545
4 0.289 0.292 0.535 0.539
5 0.290 0.293 0.535 0.539
6 0.304 0.308 0.546 0.551
7 0.293 0.296 0.540 0.545
8 0.289 0.291 0.537 0.541
9 0.308 0.311 0.552 0.556
10 0.312 0.316 0.554 0.559

DNPP Ours (DNPP Prior)

Pearson r Pearson r

0.556 0.559

SEED 10 DNPP Ours (DNPP Prior) DNPP Ours (DNPP Prior)

CV Round \ Metric Mean R2 Mean R2 Mean Cos. Sim. Mean Cos. Sim.

1 0.299 0.301 0.545 0.549
2 0.306 0.309 0.550 0.554
3 0.292 0.294 0.538 0.542
4 0.305 0.309 0.549 0.554
5 0.284 0.286 0.531 0.535
6 0.283 0.286 0.530 0.535
7 0.298 0.302 0.542 0.547
8 0.297 0.299 0.543 0.547
9 0.303 0.306 0.545 0.550
10 0.302 0.305 0.545 0.550

DNPP Ours (DNPP Prior)

Pearson r Pearson r

0.556 0.559

SEED 53 DNPP Ours (DNPP Prior) DNPP Ours (DNPP Prior)

CV Round \ Metric Mean R2 Mean R2 Mean Cos. Sim. Mean Cos. Sim.

1 0.306 0.310 0.549 0.554
2 0.287 0.290 0.532 0.537
3 0.299 0.302 0.544 0.548
4 0.292 0.295 0.538 0.542
5 0.288 0.291 0.535 0.540
6 0.302 0.304 0.546 0.550
7 0.293 0.296 0.539 0.544
8 0.295 0.298 0.541 0.546
9 0.304 0.307 0.546 0.551
10 0.294 0.297 0.538 0.543

DNPP Ours (DNPP Prior)

Pearson r Pearson r

0.555 0.559

SEED 77 DNPP Ours (DNPP Prior) DNPP Ours (DNPP Prior)

CV Round \ Metric Mean R2 Mean R2 Mean Cos. Sim. Mean Cos. Sim.

1 0.310 0.313 0.552 0.557
2 0.285 0.288 0.533 0.537
3 0.289 0.292 0.537 0.542
4 0.296 0.299 0.539 0.543
5 0.303 0.307 0.548 0.552
6 0.297 0.300 0.541 0.546
7 0.290 0.292 0.536 0.540
8 0.306 0.309 0.549 0.554
9 0.301 0.304 0.545 0.550
10 0.283 0.285 0.531 0.535

DNPP Ours (DNPP Prior)

Pearson r Pearson r

0.555 0.559

SEED 1928 DNPP Ours (DNPP Prior) DNPP Ours (DNPP Prior)

CV Round \ Metric Mean R2 Mean R2 Mean Cos. Sim. Mean Cos. Sim.

1 0.302 0.305 0.546 0.551
2 0.299 0.302 0.543 0.547
3 0.302 0.305 0.546 0.550
4 0.293 0.295 0.539 0.543
5 0.301 0.304 0.543 0.548
6 0.295 0.298 0.540 0.544
7 0.301 0.304 0.544 0.549
8 0.300 0.302 0.544 0.548
9 0.286 0.288 0.535 0.539
10 0.290 0.294 0.538 0.543

DNPP Ours (DNPP Prior)

Pearson r Pearson r

0.556 0.559

Figure 5: Comparison between DNPP and using the output of DNPP as a feature prior. Using our method
with the output of DNPP as a feature prior leads to an improvement in all metrics across every round of
10-fold cross validation in 5 seeds.
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SEED 149 FaLRTC Ours (FaLRTCPrior) FaLRTC Ours (FaLRTCPrior)

CV Round \ Metric Mean R2 Mean R2 Mean Cos. Sim. Mean Cos. Sim.

1 0.290 0.313 0.541 0.562
2 0.281 0.304 0.530 0.550
3 0.285 0.307 0.535 0.556
4 0.279 0.301 0.528 0.548
5 0.281 0.304 0.530 0.551
6 0.293 0.317 0.542 0.563
7 0.280 0.303 0.532 0.553
8 0.287 0.310 0.536 0.556
9 0.294 0.317 0.545 0.565
10 0.285 0.310 0.542 0.565

DNPP Ours (DNPP Prior)

Pearson r Pearson r

0.544 0.569

SEED 10 FaLRTC Ours (FaLRTCPrior) FaLRTC Ours (FaLRTCPrior)

CV Round \ Metric Mean R2 Mean R2 Mean Cos. Sim. Mean Cos. Sim.

1 0.289 0.312 0.541 0.561
2 0.290 0.313 0.541 0.561
3 0.284 0.307 0.533 0.553
4 0.294 0.317 0.543 0.564
5 0.276 0.299 0.525 0.545
6 0.275 0.298 0.525 0.546
7 0.287 0.311 0.536 0.557
8 0.288 0.311 0.536 0.558
9 0.290 0.313 0.541 0.562
10 0.285 0.309 0.540 0.561

DNPP Ours (DNPP Prior)

Pearson r Pearson r

0.545 0.570

SEED 53 FaLRTC Ours (FaLRTCPrior) FaLRTC Ours (FaLRTCPrior)

CV Round \ Metric Mean R2 Mean R2 Mean Cos. Sim. Mean Cos. Sim.

1 0.290 0.313 0.544 0.565
2 0.277 0.299 0.525 0.546
3 0.288 0.310 0.537 0.557
4 0.283 0.306 0.533 0.554
5 0.279 0.302 0.529 0.550
6 0.289 0.312 0.542 0.562
7 0.284 0.308 0.535 0.556
8 0.288 0.311 0.539 0.559
9 0.293 0.316 0.543 0.564
10 0.287 0.311 0.535 0.556

DNPP Ours (DNPP Prior)

Pearson r Pearson r

0.545 0.570

SEED 77 FaLRTC Ours (FaLRTCPrior) FaLRTC Ours (FaLRTCPrior)

CV Round \ Metric Mean R2 Mean R2 Mean Cos. Sim. Mean Cos. Sim.

1 0.292 0.315 0.545 0.565
2 0.280 0.303 0.532 0.552
3 0.285 0.308 0.536 0.556
4 0.288 0.311 0.537 0.556
5 0.294 0.318 0.543 0.564
6 0.288 0.311 0.538 0.558
7 0.281 0.304 0.530 0.551
8 0.292 0.316 0.544 0.565
9 0.290 0.313 0.539 0.560
10 0.271 0.294 0.521 0.542

DNPP Ours (DNPP Prior)

Pearson r Pearson r

0.545 0.570

SEED 1928 FaLRTC Ours (FaLRTCPrior) FaLRTC Ours (FaLRTCPrior)

CV Round \ Metric Mean R2 Mean R2 Mean Cos. Sim. Mean Cos. Sim.

1 0.285 0.308 0.539 0.560
2 0.286 0.310 0.538 0.559
3 0.288 0.311 0.537 0.559
4 0.281 0.304 0.530 0.551
5 0.288 0.311 0.537 0.558
6 0.285 0.308 0.533 0.553
7 0.289 0.312 0.537 0.558
8 0.284 0.307 0.533 0.555
9 0.288 0.310 0.536 0.556
10 0.279 0.303 0.532 0.553

DNPP Ours (DNPP Prior)

Pearson r Pearson r

0.544 0.569

Figure 6: Comparison between FaLRTC and using the output of FaLRTC as a feature prior. Using our
method with the output of FaLRTC as a feature prior leads to an improvement in all metrics across every
round of 10-fold cross validation in 5 seeds.
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SEED 10 FaLRTC DNPP FaLRTC DNPP

CV Round \ Metric Mean R2 Mean R2 Mean Cos. Sim. Mean Cos. Sim.

1 0.289 0.279 0.541 0.533
2 0.290 0.270 0.541 0.526
3 0.284 0.261 0.533 0.519
4 0.294 0.290 0.543 0.543
5 0.276 0.273 0.525 0.525
6 0.275 0.277 0.525 0.528
7 0.287 0.283 0.536 0.535
8 0.288 0.281 0.536 0.534
9 0.290 0.285 0.541 0.537
10 0.285 0.296 0.540 0.544

FaLRTC DNPP

Pearson r Pearson r

0.545 0.539

Sparse Regime ( < 150 profiles per cell type)

SEED 512 FaLRTC DNPP FaLRTC DNPP

CV Round \ Metric Mean R2 Mean R2 Mean Cos. Sim. Mean Cos. Sim.

1 0.292 0.310 0.522 0.550
2 0.290 0.307 0.517 0.545
3 0.289 0.304 0.518 0.545
4 0.286 0.301 0.513 0.542
5 0.290 0.310 0.518 0.550
6 0.290 0.304 0.519 0.545
7 0.270 0.282 0.499 0.526
8 0.299 0.309 0.526 0.549
9 0.287 0.305 0.515 0.545
10 0.274 0.287 0.503 0.530

FaLRTC DNPP

Pearson r Pearson r

0.542 0.560

Dense Regime ( > 150 profiles per cell type)

Figure 7: Comparison between DNPP and FaLRTC in (a) the sparse regime (< 150 profiles per cell type)
and (b) the dense regime (> 150 profiles per cell type). We observe that FaLRTC outperforms DNPP in
almost every fold for all performance metrics in the sparse regime. On the other hand DNPP outperforms
FaLRTC in the dense regime in every fold for all performance metrics. This result demonstrates that DNPP
can be improved drastically in the sparse regime.

Image CNTK Neural Network
+ Sigmoid Last Layer

+ BatchNorm

Biharmonic Neural Network
+ Sigmoid Last Layer

+ BatchNorm
+Adam + LD

Museum 31.90 30.69 30.03 34.40

White Car 28.66 28.73 26.20 28.87

Bicycle 27.67 28.57 28.67 30.89

Chair 29.87 29.88 27.81 32.81

Car Field 28.91 29.94 27.67 30.11

Rider 29.20 27.76 29.38 29.71

Library 21.73 20.76 17.71 21.79

Vase 31.75 31.51 28.96 32.27

Pool 34.51 33.08 34.62 35.70

Average 29.36 28.99 27.89 30.73

Image CNTK Neural Network
+ Sigmoid Last Layer

+ BatchNorm

Biharmonic Neural Network
+ Sigmoid Last Layer

+ BatchNorm
+ Adam + LD

Museum 0.915 0.919 0.915 0.929

White Car 0.922 0.924 0.913 0.921

Bicycle 0.955 0.962 0.914 0.968

Chair 0.954 0.946 0.934 0.964

Car Field 0.887 0.887 0.883 0.887

Rider 0.940 0.930 0.921 0.938

Library 0.884 0.864 0.860 0.900

Vase 0.977 0.977 0.976 0.979

Pool 0.974 0.971 0.967 0.968

Average 0.934 0.931 0.920 0.939

PSNR Comparison* SSIM Comparison**

*Higher is better with a max of 100. *Higher is better with a max of 1.

Image CNTK
(Time) 

Neural Network
+ Sigmoid Last Layer

+ BatchNorm
(Time)

Biharmonic
(Time)

Neural Network
+ Sigmoid Last Layer

+ BatchNorm
+ Adam + LD

(Time)
Museum 102 91 133 3213

White Car 78 75 34 2947

Bicycle 78 69 28 2699

Chair 76 78 52 5340

Car Field 73 69 86 2885

Rider 78 75 27 2558

Library 341 122 141 3734

Vase 45 56 4 2358

Pool 260 108 30 2699

Average 125 83 59 3159

Runtime Comparison(A) (B) (C)

Figure 8: A comparison of PSNR, SSIM, and runtime for large hole image inpainting using our framework
(CNTK), corresponding finite width neural networks, and biharmonic inpainting. We observe that the CNTK
outperforms (in PSNR and SSIM) on average both biharmonic inpainting and finite neural networks with
sigmoid last layer and batch normalization layers while maintaing a runtime that is comparable to these
methods. The last column illustrates that using more advanced techniques such as Adam with Langevin
dynamics [15] can be used to boost the performance of neural networks, but at additional computational
cost.
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BiharmonicMasked imaage Neural Network
+ Sigmoid Last Layer

+ BatchNorm

CNTK Neural Network
+ Sigmoid Last Layer

+ BatchNorm
+ Adam + LD

Figure 9: A qualitative comparison of large hole image inpainting using our framework (CNTK), correspond-
ing finite width neural networks, and biharmonic inpainting. See Fig. 8 for the corresponding quantitative
comparison.
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Image CNTK Neural Network 
+ Sigmoid Last Layer 

+ BatchNorm

Biharmonic

Barbara 26.61 24.78 26.75

Boat 31.99 31.39 32.07

Camera Man 27.65 27.28 28.04

Couple 32.65 31.46 32.27

Finger 31.71 28.46 33.49

Hill 33.46 32.02 33.39

House 36.10 34.00 35.60

Lena 34.96 35.07 36.08

Man 32.15 31.39 32.91

Montage 29.98 28.71 28.39

Peppers 32.25 32.25 30.33

Average 31.77 30.62 31.76

Image CNTK Neural Network 
+ Sigmoid Last Layer 

+ BatchNorm

Biharmonic

Barbara 0.843 0.673 0.865

Boat 0.873 0.883 0.882

Camera Man 0.888 0.812 0.896

Couple 0.904 0.905 0.898

Finger 0.957 0.947 0.969

Hill 0.886 0.876 0.889

House 0.936 0.903 0.920

Lena 0.911 0.933 0.921

Man 0.894 0.894 0.902

Montage 0.924 0.886 0.933

Peppers 0.922 0.941 0.915

Average 0.903 0.878 0.908

Image CNTK Neural Network 
+ Sigmoid Last Layer 

+ BatchNorm

Biharmonic

Barbara 673 407 446

Boat 1463 7827 444

Camera Man 100 2270 37

Couple 1463 7845 446

Finger 1371 1963 443

Hill 1463 7826 485

House 140 2260 38

Lena 1467 7828 442

Man 1468 7833 441

Montage 157 2253 37

Peppers 124 1273 36

Average 899 4511 300

PSNR Comparison* SSIM Comparison**

*Higher is better with a max of 100. *Higher is better with a max of 1.

Runtime Comparison(A) (B) (C)

Figure 10: A comparison of PSNR, SSIM, and runtime for image reconstruction using our framework
(CNTK), corresponding finite width neural networks, and biharmonic inpainting. We observe that the
CNTK performs (in PSNR and SSIM) on average comparably to biharmonic inpainting and outperforms
corresponding finite neural networks with sigmoid last layer and batch normalization layers. While our
method is slower than biharmonic inpainting, it is more flexible than this method (see Fig. 8), and it is in
average much faster than training finite width neural networks for this application.
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Figure 11: Visualizing the CNTK of a neural network with nearest neighbor downsampling and upsampling
layers and a uniform random feature prior illustrates that this kernel is akin to a kernel that uses different
norms for image completion. In the above figure, we visualize the CNTK heatmap for coordinate (64, 64)
of the CNTK for a neural network with 5 nearest neighbor downsampling and upsampling layers operating
on 128 × 128 images. In each subfigure, we zero out the x percentile (provided below each image) of pixel
values. For example, the image on the bottom right corresponds to zeroing out all pixels with values below
the 90th percentile. We observe that balls of varying norms appear in this visualization: e.g., the `∞ ball
appears in the upper left and an `p ball with 1 < p < 2 on the upper right.
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