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Abstract. The spatial organization of the DNA in the cell nucleus plays an important role
for gene regulation, DNA replication, and genomic integrity. Through the development of chromo-
some conformation capture experiments (such as 3C, 4C, Hi-C) it is now possible to obtain the
contact frequencies of the DNA at the whole-genome level. In this paper, we study the problem
of reconstructing the 3D organization of the genome from such whole-genome contact frequencies.
A standard approach is to transform the contact frequencies into noisy distance measurements and
then apply semidefinite programming (SDP) formulations to obtain the 3D configuration. However,
neglected in such reconstructions is the fact that most eukaryotes including humans are diploid and
therefore contain two copies of each genomic locus. We prove that the 3D organization of the DNA is
not identifiable from distance measurements derived from contact frequencies in diploid organisms.
In fact, there are infinitely many solutions even in the noise-free setting. We then discuss various
additional biologically relevant and experimentally measurable constraints (including distances be-
tween neighboring genomic loci and higher-order interactions) and prove identifiability under these
conditions. Furthermore, we provide SDP formulations for computing the 3D embedding of the DNA
with these additional constraints and show that we can recover the true 3D embedding with high ac-
curacy from both noiseless and noisy measurements. Finally, we apply our algorithm to real pairwise
and higher-order contact frequency data and show that we can recover known genome organization
patterns.

Key words. 3D genome organization; Hi-C; diploid organisms; Euclidean distance geometry;
semidefinite programming, systems of polynomial equations.
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1. Introduction. It is now well established that the spatial organization of the
genome in the cell nucleus plays an important role for cellular processes including gene
regulation, DNA replication, and the maintenance of genomic integrity [11, 39, 40].
Notably, a recent study [43] showed a causal link between three-dimensional (3D)
genome organization and gene regulation, where gene repositioning was induced and
subsequent changes in gene expression were observed. This motivates the development
of methods to reconstruct the 3D structure of the genome to study its functions.

The genetic information in cells is contained in the DNA, which is organized into
chromosomes and packed into the cell nucleus. Chromosome confirmation capture
techniques (such as 3C, 4C, Hi-C, Capture-C) have enabled the interrogation of the
contact frequencies between pairs of genomic loci at the whole-genome scale [12, 37, 24,
20]. In Hi-C, for example, interacting chromosome regions are crosslinked (i.e., frozen),

∗Submitted.
Funding: Anastasiya Belyaeva was supported by an NSF Graduate Research Fellowship

(1122374), the Abdul Latif Jameel World Water and Food Security Lab (J-WAFS) at MIT and
the MIT J-Clinic for Machine Learning and Health. Kaie Kubjas was supported by the European
Union’s Horizon 2020 research and innovation programme: Marie Sk lodowska-Curie grant agree-
ment No. 748354, research carried out at LIDS, MIT and Team PolSys, LIP6, Sorbonne Univer-
sity. Caroline Uhler was partially supported by NSF (DMS-1651995), ONR (N00014-17-1-2147 and
N00014-18-1-2765), IBM, and a Simons Investigator Award.

†Laboratory for Information and Decision Systems, Department of Electrical Engineering and
Computer Science, and Institute for Data, Systems and Society, Massachusetts Institute of Technol-
ogy, Cambridge, MA (belyaeva@mit.edu, sunl@mit.edu, cuhler@mit.edu).

‡Department of Mathematics and Systems Analysis, Aalto University, Espoo, Finland
(kaie.kubjas@aalto.fi).

1

ar
X

iv
:2

10
1.

05
33

6v
1 

 [q
-b

io
.G

N
]  

13
 Ja

n 
20

21



2 A. BELYAEVA, K. KUBJAS, L. J. SUN AND C. UHLER

Fig. 1. Schematic of the diploid genome. Nucleus with green, blue and red curves depicting
three homologous pairs of chromosomes. In the unphased setting, the measured distance between
loci i and j corresponds to the sum of the four distances (denoted in purple) between two pairs of
homologous loci xi, yi and xj , yj .

the DNA is then fragmented, the crosslinked fragments are ligated, and paired-end
sequencing is applied to the ligation products and mapped to a reference genome [24].
By binning the genome and ascribing each read pair into the corresponding bin, one
obtains a contact frequency matrix between genomic loci that is commonly of the size
106 × 106.

Different computational approaches for reconstructing the 3D genome organiza-
tion from contact frequency data have been considered. Distance-based approaches
convert contact frequencies Fij into spatial distances Dij and find a Euclidean embed-
ding of the points in 3D [14, 46, 23, 35]. Ensemble methods such as MCMC5C and
BACH [36, 19] learn a set of possible 3D structures by defining a probabilistic model
for contact frequencies and generating an ensemble of structures via MCMC sam-
pling. Other ensemble methods include molecular dynamics simulations that model
DNA as a polymer and output an ensemble of 3D structures [25, 27, 13, 32]. Finally,
statistical methods have also been proposed that directly model contact counts in-
stead of distances, using for example the Poisson distribution [42], and maximize the
log-likelihood of the data to infer the 3D genome organization.

Almost all existing methods make the simplifying assumption that the genome
is haploid, when in fact most organisms of interest including humans are diploid, i.e.
there are two copies of each chromosome known as homologous chromosomes. For
example, human cells contain two copies of 23 chromosomes each. The challenge is
that the contact frequency data from chromosome conformation capture experiments
is generally unphased, meaning that the copies of each chromosome cannot be dis-
tinguished. As a result, if the DNA is modeled as a string of beads containing two
copies of each bead i for 1 ≤ i ≤ n, then the measured contact frequencies result in an
n×n matrix, from which we would like to infer the 3D embedding of 2n points. This
problem cannot be solved by classical methods for 3D genome reconstruction methods
such as those mentioned above. With significant experimental efforts, phased data
can be obtained [7, 8] and used in order to reconstruct the 3D genome organization [4].
However, such data is rare and costly.

In this paper, we provide a computational method for inferring the 3D diploid
organization of the genome without relying on phased data. In particular, we consider
a distance-based approach and use Euclidean distance geometry to obtain the 3D
diploid structure of the genome. The precise mathematical problem considered in
this paper is as follows and illustrated in Figure 1. DNA is modeled as a string of
beads, that contains two copies of each bead i for 1 ≤ i ≤ n. We would like to infer the
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location of the two copies of each bead, which we denote by xi ∈ R3 and yi ∈ R3. Since
for unphased data, the two copies of each bead cannot be distinguished, the problem
is to identify the 3D configuration (2n × 3 matrix), i.e. x1, . . . xn, y1, . . . yn ∈ R3

(up to translation and rotation), from the composite distance measurements Dij ,
1 ≤ i 6= j ≤ n (n × n matrix), corresponding to the sum of the distances between
either copy of bead i and j, i.e.,

Dij = ‖xi − xj‖2 + ‖xi − yj‖2 + ‖yi − xj‖2 + ‖yi − yj‖2.

In the haploid or phased setting, this problem boils down to the standard Euclid-
ean distance geometry problem. This problem has a long history: in the classical
setting with no missing values, this problem can be solved via the classical multidimen-
sional scaling (cMDS) algorithm that is based on spectral decomposition followed by
dimensionality reduction; see [9] for an overview. Other approaches for the Euclidean
embedding and completion problems, including in the presence of missing values, are
non-convex formulations [15, 28] as well as semidefinite relaxations [1, 16, 5, 26, 44, 45].

A naive approach in the unphased diploid setting is to assume that the four
distances that make up our measured composite distance Dij are equal and solve the
corresponding Euclidean embedding problem. However, it is evident from single-cell
imaging studies that the four distances in Dij can be wildly different [3, 30]. Hence this
approach cannot provide realistic embeddings. While, a simple dimension argument
(6n variables versus

(
n
2

)
constraints) suggests that the 3D genome configuration is

uniquely identifiable, one of the main results of our paper is that the 3D diploid
genome configuration is not identifiable from unphased data. In fact, we show that
there are infinitely many configurations that satisfy the constraints imposed by Dij ,
even in the noiseless setting (section 2, Theorem 2.1).

We therefore consider additional biologically relevant and experimentally mea-
surable constraints and study identifiability of the 3D diploid structure under these
constraints. First, we take into account distances between neighboring beads, i.e. ‖xi−
xi+1‖2 and ‖yi − yi+1‖2 on each chromosome. While we show that this yields unique
identifiability for configurations in 2D, there are still infinitely many configurations
in 3D, which is of primary interest for genome modeling (section 3, Proposition 3.1,
Proposition 3.2). To obtain identifiability in 3D, we consider adding constraints based
on contact frequencies between three or more loci simultaneously. The measurement
of such higher-order contact frequencies has recently been enabled by experimental
assays such as SPRITE [33], C-walks [31] and GAM [2]. We prove that this infor-
mation can be used to uniquely identify the 3D genome organization from unphased
data in the noiseless setting (section 4, Theorem 4.1).

Finally, we provide an SDP formulation for obtaining the 3D diploid configura-
tion from noisy measurements (section 5) and show based on simulated data that our
algorithm has good performance and that it is able to recover known genome orga-
nization patterns when applied to real contact frequency data collected from human
lymphoblastoid cells (section 6).

2. Unidentifiability from pairwise distance constraints. In the remainder
of the paper we denote the true but unknown coordinates of the homologous loci by
x∗
i and y∗i and the corresponding noiseless distances by D∗

ij while the symbols xi and
yi denote the variables that we want to solve for. While from a biological perspective
the relevant setting is when xi, yi ∈ R3, results that hold more generally will be stated
in Rd. The main result of this section is Theorem 2.1, which characterizes the set of
solutions given by the constraints D∗

ij in dimension d ≤ 3. In particular, it establishes
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non-identifiability of the 3D genome structure from pairwise distance measurements
in the diploid unphased setting.

Theorem 2.1. Let d ≤ 3 and n ≥ 2d+ 3. Then (x1, . . . , xn, y1, . . . , yn) ∈ (Rd)2n

satisfies

(2.1) D∗
ij = ‖xi − xj‖2 + ‖xi − yj‖2 + ‖yi − xj‖2 + ‖yi − yj‖2 for all 1 ≤ i 6= j ≤ n

if and only if it satisfies

(2.2) xi + yi = x∗
i + y∗i and ‖xi‖2 + ‖yi‖2 = ‖x∗

i ‖2 + ‖y∗i ‖2 for all 1 ≤ i ≤ n

up to translations and rotations in Rd and permutations of xi and yi.

As a consequence, the measurements D∗
ij identify the location of each pair of

homologous loci (xi, yi) up to a sphere with center (x∗
i +y∗i )/2 and radius ‖x∗

i −y∗i ‖/2.
Namely, the points xi, yi lie opposite to each other anywhere on this sphere. Unless
x∗
i = y∗i for all i, i.e., all spheres have radius 0, this set is infinite in dimensions d > 1

and hence the configuration is unidentifiable.
In the remainder of this section, we will prove Theorem 2.1. The two inclusions

in Theorem 2.1 are proven in Lemma 2.2 and Lemma 2.4. In Lemma 2.3 it is shown
that the distance ‖xi − yi‖ within each homologous pair is fixed given the pairwise
distances D∗

ij . This result is used to prove Lemma 2.4.

Lemma 2.2. Let (x1, . . . , xn, y1, . . . , yn) ∈ (Rd)2n satisfy

(2.3) xi + yi = x∗
i + y∗i and ‖xi‖2 + ‖yi‖2 = ‖x∗

i ‖2 + ‖y∗i ‖2 for all 1 ≤ i ≤ n.

Then

‖xi − xj‖2 + ‖xi − yj‖2 + ‖yi − xj‖2 + ‖yi − yj‖2 = D∗
ij for all 1 ≤ i 6= j ≤ n.

Proof. Observe that for each pair xi, yi satisfying the equations (2.3), it holds
that

D∗
ij = 2 · (‖x∗

i ‖2 + ‖y∗i ‖2) + 2 · (‖x∗
j‖2 + ‖y∗j ‖2)− 2(x∗

i + y∗i ) · (x∗
j + y∗j )

= 2 · (‖xi‖2 + ‖yi‖2) + 2 · (‖xj‖2 + ‖yj‖2)− 2(xi + yi) · (xj + yj)

= ‖xi − xj‖2 + ‖xi − yj‖2 + ‖yi − xj‖2 + ‖yi − yj‖2.
This completes the proof.

Next we will show that the distance between homologous pairs is uniquely deter-
mined by the D∗

ij

Lemma 2.3. Let d ≤ 3 and n ≥ 2d + 3. Then for each 1 ≤ i ≤ n the quantity
‖xi − yi‖ is identifiable from the constraints imposed by the D∗

ij, i.e., for any solution

(x1, . . . , xn, y1, . . . , yn) ∈ (Rd)2n to the equations defined by the D∗
ij in (2.1), the

quantity ‖xi − yi‖ is constant.

The constraint d ≤ 3 is due to our proof technique. The condition n ≥ 2d+ 3 is
necessary for unique identifiability of the distance between homologous pairs of loci.

Proof. Without loss of generality we assume that i = 1 and show that ‖x1−y1‖ is
equal to some constant. First, we perform a shift on the solution so that x1 = −y1 = v.
Since shifts preserve distances, they in particular preserve the equality constraints
(2.1). Hence,

D∗
1j = ‖v − xj‖2 + ‖v − yj‖2 + ‖ − v − xj‖2 + ‖ − v − yj‖2.
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Expanding this out into dot products and simplifying yields

D∗
1j = 4‖v‖2 + 2(‖xj‖2 + ‖yj‖2).

Let j 6= k be both not equal to 1. Then substituting the above leads to

D∗
1j +D∗

1k −D∗
jk = 8‖v‖2 + 2(xj + yj) · (xk + yk).

Defining Tjk := D∗
1j +D∗

1k −D∗
jk and sj :=

√
2(xj + yj), this is equivalent to

Tjk − 8‖v‖2 = sj · sk.

Let T ′ be the (d+1)× (d+1) submatrix of T satisfying T ′
ij = Ti+1,j+d+2, i.e. the

rows of T ′ correspond to the rows 2, 3, . . . , d+2 of T and the columns of T ′ correspond
to the columns d+3, d+4, . . . , 2d+3 of T . We now show that for generic configurations
det(T ′) 6= 0. Since det(T ′) can be written as a polynomial in the coordinates xi and
yi, then det(T ′) 6= 0 for generic configurations as long as it does not identically vanish.
Hence it suffices to present one configuration where det(T ′) is nonzero. For d ≤ 3 we
can check this using random configurations.

Since T ′ has full rank, then the matrix determinant lemma implies that

(2.4) det(T ′ − 8J‖v‖2) = (1− 8‖v‖21T (T ′)−11) det(T ′),

where 1 denotes the all ones vector. Note that the scalar 1TT ′−11 is fixed and
(detT ′) 6= 0. Furthermore, since T ′−8J‖v‖2 is formed from the dot products between
d-dimensional vectors, it has rank at most d and therefore det(T ′−8J‖v‖2) = 0 due to
T ′−8J‖v‖2 being a (d+1)×(d+1) matrix. Hence, (1−8‖v‖21T (T ′)−11) det(T ′) = 0,
which is a linear equation in terms of ‖v‖2. As a consequence, it has a unique solution
for ‖v‖2 and thus the distance between the homologous pair x1, y1 is fixed as long as
n ≥ 2d+ 3.

We next characterize all solutions to the constraints imposed by the D∗
ij .

Lemma 2.4. Let d ≤ 3 and n ≥ 2d+ 3. Let (x1, . . . , xn, y1, . . . , yn) ∈ (Rd)2n be a
solution to

‖xi − xj‖2 + ‖xi − yj‖2 + ‖yi − xj‖2 + ‖yi − yj‖2 = D∗
ij for all 1 ≤ i 6= j ≤ n.

Then

xi + yi = x∗
i + y∗i and ‖xi‖2 + ‖yi‖2 = ‖x∗

i ‖2 + ‖y∗i ‖2 for all 1 ≤ i ≤ n

up to translations and rotations in Rd and permutations of xi and yi.

Proof. Without loss of generality we perform a translation on the solution such
that x1 = −y1 = v for some vector v. By Lemma 2.3 the quantity ‖xk − yk‖ is
constant for each 1 ≤ k ≤ n and thus also ‖v‖ is constant. Since for any j 6= 1 it
holds that D∗

1j = 4‖v‖2 + 2(‖xj‖2 + ‖yj‖2), also ‖xj‖2 + ‖yj‖2 is constant and hence

‖xi‖2 + ‖yi‖2 = ‖x∗
i ‖2 + ‖y∗i ‖2 for all 1 ≤ i ≤ n.

Similarly to the proof of Lemma 2.3, if we define Tjk = D∗
1j + D∗

1k − D∗
jk and

sj =
√
2(xj + yj), we find that

Tjk − 8‖v‖2 = sj · sk.
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Fig. 2. Distance constraints between neighboring beads. Green and blue curves depict two
homologous pairs of chromosomes. For the green curves distances between neighboring genomic
regions are shown by black lines.

Because we have access to the diagonal constraints now, this relationship holds for
all j, k and not just j 6= k. Thus T − 8J‖v‖2 is a symmetric (n− 1)× (n− 1) matrix
admitting a rank d factorization. Let S be the matrix formed with the vectors sj . We
then have T − 8J‖v‖2 = SST . There is a result on rank factorizations of symmetric
matrices that any other factorization T − 8J‖v‖2 = S′S′T satisfies S = S′Q for some
orthogonal matrix Q [22, Proposition 3.2]. Thus for any other solution s′j , we have
sj = s′jQ, implying all solutions are simply orthogonal transformations of each other
(rotations, reflections, etc.)

In summary, we have shown that once we have fixed x1 + y1 = 0 via translation,
then the quantities xj + yj are unique up to orthogonal transformations and the
quantities ‖xj‖2 + ‖yj‖2 are unique.

3. Distance constraints between neighboring loci. In section 2, we showed
that the 3D genome configuration is not identifiable from pairwise distance constraints
available from typical (unphased) contact frequency maps. In order to gain identifia-
bility, we next consider adding other biological constraints to the problem formulation
that are generally available or can be measured. In particular, since DNA can be
viewed as a string of connected beads, we use the distance between adjacent beads as
an additional constraint. The distance between neighboring beads can be derived em-
pirically for example from imaging studies [29, 21]; see also our experimental results
in section 6. The additional mathematical constraints are:

‖xi − xi+1‖ = ‖x∗
i − x∗

i+1‖ and ‖yi − yi+1‖ = ‖y∗i − y∗i+1‖ for 1 ≤ i ≤ n− 1,

where x∗
1, x

∗
2, . . . , x

∗
n and y∗1 , y

∗
2 , . . . , y

∗
n correspond to consecutive beads on homologous

chromosomes; see Figure 2.
In this section we show the following results: under the additional distance con-

straints between neighboring loci, we prove that identifiability can be obtained in the
2D setting (Proposition 3.1). However, in the 3D setting we prove that there are
still infinitely many 3D configurations even with these additional distance constraints
(Proposition 3.2).

For the proofs of Proposition 3.1 and Proposition 3.2 we recall from Theorem 2.1
that (xi, yi) and (x∗

i , y
∗
i ) are diametrically opposite points on the same sphere. Denote

the i-th sphere by Si and let it have center ci and radius ri. Then ‖ci − xi‖ = ri and
2ci − xi = yi.

Proposition 3.1. For n ≥ 3 and generic (x∗
1, . . . , x

∗
n, y

∗
1 , . . . , y

∗
n) ∈ (R2)2n, there
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is a unique point (x1, . . . , xn, y1, . . . , yn) ∈ (R2)2n satisfying the equations

(3.1)
xi + yi = x∗

i + y∗i and ‖xi‖2 + ‖yi‖2 = ‖x∗
i ‖2 + ‖y∗i ‖2 for 1 ≤ i ≤ n,

‖xi − xi+1‖ = ‖x∗
i − x∗

i+1‖ and ‖yi − yi+1‖ = ‖y∗i − y∗i+1‖ for 1 ≤ i ≤ n− 1.

Proof. We have y1 = 2c1 − x1 and y2 = 2c2 − x2. Plugging this into ‖y1 − y2‖ =
‖y∗1 − y∗2‖ gives

‖y∗1 − y∗2‖ = ‖(2c1 − x1)− (2c2 − x2)‖2
= ‖(2c1 − 2c2)− (x1 − x2)‖2
= ‖2c1 − 2c2‖2 + ‖x1 − x2‖2 − 2(2c1 − 2c2) · (x1 − x2).

The quantities ‖2c1 − 2c2‖2 and ‖x1 − x2‖2 are fixed. This implies that the quantity
(2c1−2c2)·(x1−x2) is fixed. Since we know ‖x1−x2‖ and c1 6= c2 holds by genericness,
then there are two possible angles for x1−x2 (this is where we use the 2D constraint)
and thus that there are two possible solutions for x1 − x2.

Because x1, x2 are constrained to lie on circles, the solutions for x1 are the in-
tersection points of the first circle and the second circle translated by x1 − x2 and
the solutions for x2 are the intersection points of the second circle and the first circle
translated by x2 − x1. Hence each solution for x1 − x2 leads to at most two possible
solutions for (x1, x2). In turn this implies there are at most four solutions for x2.

We now investigate the four solutions. The first two solutions are obtained by
translating the circle centered at c1 by x∗

2 − x∗
1 and intersecting it with the circle

centered at c2, see Figure 3. One of the two solutions is x∗
2. The other two solutions

are reflections of these two solutions over the line from c1 to c2.
Let x∗

1, x
∗
2, c1, c2 be fixed. They determine four possible solutions for x2. We

will show that these four solutions are different from the four solutions we get from
considering x∗

2, x
∗
3, c2, c3 for generic x∗

3, c3 (apart from x∗
2).

If either of the reflected solutions over the line from c2 to c3 coincides with one
of the four original solutions, then we can perturb c3 away from the line from c2 to
c3 to change these solutions. If the solution that is the intersection point of the circle
centered at c2 and the translation by x∗

2 − x∗
3 of the circle centered at c3 (different

from x∗
2) coincides with one of the four original solutions, then we can perturb x∗

3.

Fig. 3. Identifiability in the 2D setting with neighboring distance constraints. Two solutions
for x2 are obtained by translating the circle centered at c1 by x∗

2−x∗
1 (this new circle is colored blue)

and intersecting it with the circle centered at c2. The other two solutions are obtained by reflecting
the blue circle over the line through c1 and c2 (this new circle is colored green) and intersecting it
with the circle centered at c2. The true solution for x2 is colored black and the three alternative
solutions for x2 are colored red.
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This changes x∗
2 −x∗

3 and hence the second intersection point of the circle centered at
c2 and the translation by x∗

2 − x∗
3 of the circle centered at c3.

A similar argument can be used to show that x3, . . . , xn−1 have unique solutions.
Given a unique solution for x2, there are two solutions for x1 if and only if x∗

2 lies
on the line from c1 to c2. This is however not a generic configuration. A similar
argument applies for xn.

Despite having uniqueness in 2D, we do not have uniqueness in 3D as shown in
the following proposition.

Proposition 3.2. Let n ∈ N. For generic (x∗
1, . . . , x

∗
n, y

∗
1 , . . . , y

∗
n) ∈ (R3)2n, there

are infinitely many points (x1, . . . , xn, y1, . . . , yn) ∈ (R3)2n satisfying equations (3.1).

Proof. If n = 1, then x∗
1, y

∗
1 can be chosen randomly with the constraint that

x∗
1 6= y∗1 . Then x1 and y1 can be any points on the sphere S1 defined by x∗

1, y
∗
1 . Now

assume that n ≥ 2. Fix any x∗
1, y

∗
1 such that x∗

1 6= y∗1 . Choose two circles C1 and
C ′

1 on the sphere S1 defined by x∗
1, y

∗
1 that intersect at two points one of which is x∗

1.
The circle C1 is the intersection of S1 and another sphere T1. Let x∗

2 be the center
of the sphere T1. Let C ′′

1 be the circle on S1 that consists of points antipodal to C ′
1.

Then C ′′
1 is also an intersection of S1 and another sphere T ′′

2 . Let y
∗
2 be the center of

the sphere T ′′
2 . We use the same procedure to construct x∗

3 and y∗3 from x∗
2 and y∗2 ,

x∗
4 and y∗4 from x∗

3 and y∗3 etc.
The only condition on x∗

1 and y∗1 is x∗
1 6= y∗1 , hence (x∗

1, y
∗
1) is a generic point

in R3 × R3. The condition that C1 is a circle on the sphere S1 containing x∗
1 is

equivalent to x∗
2 being any point in R3 outside the line through x∗

1 and y∗1 . Similarly,
the condition that C ′

1 is a circle on the sphere S1 containing x∗
1 is equivalent to y∗2

being any point in R3 outside the line through x∗
1 and y∗1 . The condition that C1 and

C ′
1 intersect at two different points of S1 is equivalent to the normal vector of the

tangent plane of S1 at x∗
1 and the normal vectors of the planes defined by C1 and C ′

1

being linearly independent. Hence (x∗
1, x

∗
2, y

∗
1 , y

∗
2) is a generic point in (R3)4. Similar

arguments can be used to show that (x∗
1, x

∗
2, . . . , x

∗
n, y

∗
1 , y

∗
2 , . . . , y

∗
n) is a generic point

in (R3)2n.
Now consider points xn and yn in an ε-neighborhood of x∗

n and y∗n. Consider the
spheres that are centered at xn and yn and have radii ‖x∗

n−1 − x∗
n‖ and ‖y∗n−1 − y∗n‖.

The intersections of these spheres with Sn−1 give circles C̃n−1 and C̃ ′′
n−1 that are

perturbations of circles Cn−1 and C ′′
n−1. In particular, the intersection of the circle

C̃n−1 and the circle C̃ ′
n−1 that consists of points antipodal to C̃ ′′

n−1 consists of two
points for ε small enough. Choosing xn−1 to be the intersection point corresponding
to x∗

n−1 and yn−1 its antipodal gives points xn−1, yn−1 satisfying ‖xn−1 − xn‖ =
‖x∗

n−1 − x∗
n‖ and ‖yn−1 − yn‖ = ‖y∗n−1 − y∗n‖.

Assuming that ε is small enough, then xn−1 and yn−1 are in small neighborhoods
of x∗

n−1 and y∗n−1, and we can continue the same procedure to find xn−2 and yn−2

from xn−1 and yn−1, xn−3 and yn−3 from xn−2 and yn−2 etc. In particular, we can
find x1, . . . , xn−1, y1, . . . , yn−1 satisfying equations (3.1) for every xn and yn in an
ε-neighborhood of x∗

n and y∗n.

The previous proposition suggests that there are two degrees of freedom for choos-
ing x1, . . . , xn, y1, . . . , yn on each homologous pair and thus that finite identifiability
requires two additional algebraically independent constraints per homologous pair.
Similarly this suggests that unique identifiability requires three additional algebrai-
cally independent constraints per homologous pair, where each endpoint of a chromo-
some needs to be included in at least one of the additional constraints.
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(a) (b)

Fig. 4. Higher-order distance constraints. (a) Three loci xi1 , xi2 , xi3 , located on the same
chromosome, are depicted. In the phased setting, the higher-order distance Dxi1

xi2
xi3

is defined

as the sum of the distances (pink dashed lines) of the three loci xi1 , xi2 , xi3 to their centroid (pink
point). Green and blue curves depict two different chromosomes. (b) Illustrates the definition of
Di1i2i3 in the unphased setting. Green, blue and red curves depict neighborhoods around three
homologous loci (xi1 , yi1 ), (xi2 , yi2 ) and (xi3 , yi3 ). From these homologous loci 8 possible higher-
order distances can be defined (colored dashed lines) based on the 8 centroids depicted in the figure.
The higher-order distance Di1i2i3 is defined as the minimum of these 8 distances (achieved here by
the three black dashed line segments).

4. Identifiability from higher-order contact constraints. In section 3, we
showed that considering distances between neighboring beads only yields identifiabil-
ity in 2D but not in 3D. In the following, we consider adding further constraints that
are becoming widely available from experimental data, namely higher-order contact
frequencies between three or more loci as measured by experimental assays such as
SPRITE [33], C-walks [31] and GAM [2]. We express these constraints mathematically
by letting F ∈ Rm×m×···×m be a contact frequency tensor, where Fxi1

,xi2
,...,xik

mea-
sures the contact frequency between loci i1, i2, . . . , ik with coordinates xi1 , xi2 , . . . , xik .
In the unphased setting, we can only measure a combination of contact frequencies
over the homologous loci {xi1 , yi1} × {xi2 , yi2} × . . . × {xik , yik}, which we denote
by Fi1i2...ik . In addition, as for 2-way interactions, we turn contact frequencies into
“distances” by defining Di1i2...ik := 1/Fi1i2...ik .

In the following, we provide our interpretation of distances in the higher-order
setting. For simplicity, we first describe the higher-order distances for three loci in
the phased setting. Since Fxi1

xi2
xi3

counts how often the three loci come together,
we interpret Dxi1

xi2
xi3

as the sum of the distances of the three loci xi1 , xi2 , xi3 to
their centroid (Figure 4a). We next provide a generalization to the unphased setting.
For three homologous loci (xi1 , yi1), (xi2 , yi2) and (xi3 , yi3), their contact frequency
can be formed by 8 possible triples, namely (xi1 , xi2 , xi3), (xi1 , xi2 , yi3), (xi1 , yi2 , xi3),
(yi1 , xi2 , xi3), (xi1 , yi2 , yi3), (yi1 , yi2 , xi3), (yi1 , xi2 , yi3), and (yi1 , yi2 , yi3). We will as-
sume that one of the triples constitutes the majority of the observed contact frequency
count and hence we define Di1i2i3 as the minimum over all 8 higher order distances.
This is illustrated in Figure 4b. Generalizing from three to k loci, our higher-order
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distance definition then becomes

Di1i2...ik = min
zij∈{xij

,yij
}




k∑

j=1

‖zij − (zi1 + . . .+ zik)/k‖2

 .

In the following, we prove our main result; namely we show that the distance
constraints of order 3 (3-way distances) together with the previously considered pair-
wise distance constraints and distance constraints among consecutive beads results
in unique identifiability of the 3D genome configuration (Theorem 4.1). In fact, only
very few order 3 distance constraints are required for unique identifiability. As we
show in Theorem 4.1 it is sufficient that the first and last bead of each chromosome be
contained in an order 3 distance constraint. This is a reasonable constraint given that
methods such as SPRITE, C-walks and GAM measure higher-order interactions over
the whole genome. These insights are of interest experimentally since they suggest
that the methods can restrict the measurement of such higher order constraints to
first and last beads of each chromosome, known as telomeres.

Theorem 4.1. Let m be the number of chromosome pairs, let n1, n2, . . . , nm be
the number of domains on chromosomes 1, 2, . . . ,m and define n = n1+n2+ . . .+nm.
Let I ⊆ [n] × [n] × [n] be such that each of 1, n1, n1 + 1, n1 + n2, . . . , n1 + n2 + . . . +
nm−1+1, n (labels of domains at the beginning and at the end of each chromosome) is
contained in at least one triple in I. Let x∗

1, . . . , x
∗
n, y

∗
1 , . . . , y

∗
n ∈ R3 be fixed such that

min
z∗
i ∈{x∗

i ,y
∗
i } for i=k1,k2,k3


 ∑

j∈{k1,k2,k3}
‖z∗j − (z∗k1

+ z∗k2
+ z∗k3

)/3‖2

 = 0

for (k1, k2, k3) ∈ I.

Consider the polynomial system:

(4.1)

xi + yi = x∗
i + y∗i and ‖xi‖2 + ‖yi‖2 = ‖x∗

i ‖2 + ‖y∗i ‖2 for 1 ≤ i ≤ n,

‖xi − xi+1‖ = ‖x∗
i − x∗

i+1‖ and ‖yi − yi+1‖ = ‖y∗i − y∗i+1‖
for i ∈ [n]\{n1, n1 + n2, . . . , n},

min
zi∈{xi,yi} for i=k1,k2,k3


 ∑

j∈{k1,k2,k3}
‖zj − (zk1

+ zk2
+ zk3

)/3‖2

 = 0

for (k1, k2, k3) ∈ I.

Then for generic x∗
1, . . . , x

∗
n, y

∗
1 , . . . , y

∗
n, this system has a unique solution in (R3)2n.

To prove Theorem 4.1, we will need two lemmas. Lemma 4.2 states that for a
fixed solution (x∗

1, y
∗
1) on a sphere S1 and given distances between solutions on S1

and S2, there are finitely many solutions (x2, y2) on the sphere S2. Lemma 4.3 is an
extension of Lemma 4.2. It states that if one has finitely many solutions on a sphere
Si, then given distances between neighboring beads, there are finitely many solutions
on any sphere connected to Si.

Lemma 4.2. Let x∗
1, x

∗
2, y

∗
1 , y

∗
2 ∈ R3 be fixed. Consider the polynomial system:

(4.2)
x2 + y2 = x∗

2 + y∗2 , ‖x2‖2 + ‖y2‖2 = ‖x∗
2‖2 + ‖y∗2‖2,

‖x∗
1 − x2‖ = ‖x∗

1 − x∗
2‖ and ‖y∗1 − y2‖ = ‖y∗1 − y∗2‖.
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For generic x∗
1, x

∗
2, y

∗
1 , y

∗
2 , this system has finitely many solutions in (R3)2n.

Proof. The first two equations of (4.2) say that x2, y2 and x∗
2, y

∗
2 are pairs of

antipodal points on the same sphere. We denote this sphere by S2. The third equation
says that x2 is the same distance from x∗

1 as x∗
2 is from x∗

1. Hence x2 must lie on
the circle Cx2

that is the intersection of S2 and the sphere centered at x∗
1 and with

radius ‖x∗
1 −x∗

2‖. The last equation says that y2 must lie on the circle Cy2
that is the

intersection of S2 and the sphere centered at y∗1 with radius ‖y∗1 − y∗2‖. We consider
the circle C ′

x2
that consists of antipodal points to the circle Cy2 on the sphere S2.

The intersection of the circles Cx2
and C ′

x2
gives the solutions for x2. Unless the two

circles are equal, they intersect at at most two points. Since y2 is antipodal to x2,
then for each x2 there is a unique y2. The circles coincide if and only if x∗

1, y
∗
1 and

the center of S2 are collinear.

Lemma 4.3. Let x∗
1, . . . , x

∗
n, y

∗
1 , . . . , y

∗
n ∈ R3 be fixed. Consider the polynomial

system:

xi + yi = x∗
i + y∗i and ‖xi‖2 + ‖yi‖2 = ‖x∗

i ‖2 + ‖y∗i ‖2 for 2 ≤ i ≤ n,

‖x∗
1 − x2‖ = ‖x∗

1 − x∗
2‖, ‖y∗1 − y2‖ = ‖y∗1 − y∗2‖,

‖xi − xi+1‖ = ‖x∗
i − x∗

i+1‖ and ‖yi − yi+1‖ = ‖y∗i − y∗i+1‖ for 2 ≤ i ≤ n− 1.

For generic x∗
1, . . . , x

∗
n, y

∗
1 , . . . , y

∗
n, this system has finitely many solutions in (R3)2n−2.

Proof. By Lemma 4.2, there are finitely many antipodal pairs (x2, y2) ∈ R3 ×R3

on S2 such that ‖x∗
1−x2‖ = ‖x∗

1−x∗
2‖ and ‖y∗1−y2‖ = ‖y∗1−y∗2‖. Similarly, for each of

these antipodal pairs (x2, y2) ∈ R3×R3 on S2, there are finitely many antipodal pairs
(x3, y3) ∈ R3 ×R3 on S3 satisfying ‖x2 − x3‖ = ‖x∗

2 − x∗
3‖ and ‖y2 − y3‖ = ‖y∗2 − y∗3‖

etc.

Proof of Theorem 4.1. We recall that the first line of the polynomial system (4.1)
gives that xi, yi are antipodal points on a sphere Si. Consider a triple (k1, k2, k3) ∈ I
that contains 1 and the equation on the last line of the polynomial system (4.1)
corresponding to this triple. This equation gives that zk1

, zk2
, zk3

, where zi ∈ {xi, yi},
coincide. Hence zk1

, zk2
, zk3

lie on the intersection of Sk1
, Sk2

, Sk3
. Generically, if the

intersection of three spheres is non-empty in R3, then it consists of two points P and
P ′. This gives four possible solutions for x1, y1: the points P, P ′ and their antipodals
on S1. By Lemma 4.3, there are finitely many solutions for x2, . . . , xn1

, y2, . . . , yn1

given these fixed solutions x1, y1 on S1. In the next two paragraphs we will show that
generically these finitely many solutions do not contain antipodal points on any of
the spheres S2, . . . , Sn1

.
If there are two antipodal solutions on Si, then we may assume that they come

either from the same solution on S1 or antipodal solutions on S1, because we can
perturb Sk1

, Sk2
, Sk3

slightly to change the other pair of solutions. First we will show
that generically a solution for xi on Si does not give a pair of antipodal solutions for
xi+1 on Si+1. If this was the case, then both the solution for xi and its antipodal
would have to lie on the plane that is perpendicular to the line through the antipodal
pair of solutions for xi+1 on Si+1. This plane contains the centers of Si and Si+1.
Hence for a solution for xi, there is only one antipodal pair on solutions on Si+1.
Thus for a generic distance between the solutions on Si and Si+1, a solution on Si

does not give an antipodal pair of solutions on Sn+1.
Secondly, suppose that two different solutions on Si give a pair of antipodal

solutions on Si+1. We will show that when we perturb the distance between solutions
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on Si and Si+1, then we do not get an antipodal pair anymore. Let xi and x′
i be two

different solutions on Si that give solutions xi+1 and 2ci+1 − xi+1 on Si+1. Hence
‖2ci+1 − xi+1 − x′

i‖2 = ‖xi+1 − xi‖2. We want to show that generically

‖2ci+1 − (xi+1 + ε)− x′
i‖2 6= ‖xi+1 + ε− xi‖2,

where xi+1 + ε is the perturbed solution. Indeed, using the identity ‖xi+1 − xi‖2 =
‖2ci+1 − xi+1 − x′

i‖2 gives

‖2ci+1 − (xi+1 + ε)− x′
i‖2 − ‖xi+1 + ε− xi‖2 = 2ε(xi + x′

i − 2ci+1).

This quantity is equal to zero if and only if ε = 0 or ci+1 is the middle point of the
line segment from xi to x′

i. This is generically not the case.
Using a triple (k′1, k

′
2, k

′
3) ∈ I containing n1 and the equation for this triple, we

get four possible solutions for xn1 , yn1 . Generically, only one of them coincides with
the finitely many solutions on Sn1 that we get from the solutions on S1, because
perturbing the spheres slightly (with keeping the coinciding points fixed) perturbs
the second intersection point of the three spheres and we know that generically the
finitely many points do not contain antipodal points.

The unique solution on Sn comes from one solution on each of the spheres
S1, . . . , Sn1−1: If this was not the case then two different solutions on Si give the same
solution on Si+1. By the proof of Proposition 3.1, the dot product (ci−ci+1)·(xi−xi+1)
is fixed. Hence for a fixed xi+1, all possible solutions for xi lie on a hyperplane and
this hyperplane is perpendicular to ci−ci+1. Therefore, if two solutions on Si give the
same solution on Si+1, then they lie on a hyperplane perpendicular to ci − ci+1. By
slightly perturbing the sphere Si+1, this is not the case anymore, and hence generically
a solution on Si+1 comes from a unique solution on Si.

5. Algorithms and implementation. So far, we derived a theoretical frame-
work to establish when we have unique and finite identifiability of the 3D configuration
in the noiseless setting. However, a unique solution does not necessarily mean that
we can find it efficiently, as in many cases finding the solution may be NP-hard.
In addition, we have so far not yet considered the noisy setting. In this section, we
show how to construct an optimization formulation to determine the 3D configuration
efficiently.

We frame the 3D reconstruction problem as a Euclidean embedding problem,
where the coordinates x1, . . . xn, y1, . . . yn ∈ R3 are inferred from distances. Similar
to ChromSDE [46], we formulate all distances in terms of entries in the Gram matrix
G, which tracks the dot products between the 2n genomic regions. Namely, letting
the column/row i of G correspond to xi and the column/row n+ i correspond to its
homologous locus yi, then the distances are given by ‖xi −xj‖2 = Gi,i +Gj,j − 2Gi,j ,
‖xi − yj‖2 = Gi,i + Gn+j,n+j − 2Gi,n+j and ‖yi − yj‖2 = Gn+i,n+i + Gn+j,n+j −
2Gn+i,n+j . It is natural to work with the Gram matrix G, since it is rotation invari-
ant. By imposing the constraint

∑
i,j Gi,j = 0 we can also fix the translational axis.

Also the additional distance constraints that we introduced in the previous sections
(Theorem 2.1, Proposition 3.1, Theorem 4.1) can be represented as linear constraints
in terms of entries in G as follows:

• Pairwise distances:

gij(G) := Gi,i+Gj,j+Gn+i,n+i+Gn+j,n+j−Gi,j−Gn+i,j−Gi,n+j−Gn+i,n+j

• Distances between homologous pairs:

gii(G) := Gi,i +Gn+i,n+i − 2Gi,n+i
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• Distances between neighboring beads:

gi+(G) := Gi,i +Gi+1,i+1 − 2Gi,i+1

• Distances of order 3 (can be generalized to higher orders):

gijk(G) := min
l
(gijkl : l = 1, . . . , 8)

where

gijk1(G) :=Gi,i +Gj,j +Gk,k −Gi,j −Gi,k −Gj,k,

gijk2(G) :=Gi,i +Gj,j +Gn+k,n+k −Gi,j −Gi,n+k −Gj,n+k,

gijk3(G) :=Gi,i +Gn+j,n+j +Gk,k −Gi,n+j −Gi,k −Gn+j,k,

gijk4(G) :=Gi,i +Gn+j,n+j +Gn+k,n+k −Gi,n+j −Gi,n+k −Gn+j,n+k,

gijk5(G) :=Gn+i,n+i +Gj,j +Gk,k −Gn+i,j −Gn+i,k −Gj,k,

gijk6(G) :=Gn+i,n+i +Gj,j +Gn+k,n+k −Gn+i,j −Gn+i,n+k −Gj,n+k,

gijk7(G) :=Gn+i,n+i +Gn+j,n+j +Gk,k −Gn+i,n+j −Gn+i,k −Gn+j,k,

gijk8(G) :=Gn+i,n+i +Gn+j,n+j +Gn+k,n+k

−Gn+i,n+j −Gn+i,n+k −Gn+j,n+k.

Our objective is to determine a rank 3 solution of G, satisfying the above con-
straints. However, this optimization problem is non-convex due to the rank constraint,
and we instead consider the standard relaxation: we minimize the trace of the Gram
matrix as an approximation to matrix rank [17]. The resulting optimization problem
then becomes the following semidefinite program (SDP):

(5.1)

minimize
G

tr(G)

subject to gii(G) = D∗
ii, 1 ≤ i ≤ n,

gij(G) = D∗
ij , 1 ≤ i < j ≤ n,

gi+(G) = D∗
i+, i ∈ Ω1,

gijk(G) = D∗
ijk, (i, j, k) ∈ Ω2,∑

1≤i,j≤2n

Gi,j = 0,

G � 0.

Here, D∗
ii denote the distances between homologous pairs computed from the pairwise

distances using Lemma 2.3, D∗
ij denote the pairwise distances, D∗

i+ denote the dis-
tances between neighboring beads, and D∗

ijk denote the distances between three loci
(while one could also consider 4 or higher order distance constraints, in our imple-
mentation we only used 3-way distance constraints since higher-order contacts are ex-
tremely sparse). The index set Ω1 = [2n]\{n1, n1+n2, . . . , n, n+n1, n+n1+n2, . . . , 2n}
corresponds to all beads that are not the last bead on a chromosome. The index set
Ω2 ⊆ [n]3 corresponds to all triples of beads with non-zero contact frequencies.

In the noisy setting, which is relevant for biological data, we replace the equality
constraints by penalties in the loss function. Namely, using D∗ for the noiseless and D
for the noisy distances, we replace the equality constraints of the form g(G) = D∗ by
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adding (g(G)−D)2 to the objective function. For the higher-order distance constraints
of the form D∗

ijk = min(gijk1(G), . . . , gijk8(G)) for (i, j, k) ∈ Ω2 we use slack variables
and a convex relaxation using an atomic norm that combines the `2- and `1-norms.
More precisely, we propose the use of the following transformation in the noisy setting,

Dijk + λijkl = gijkl(G) + sijkl for l = 1, 2, . . . , 8,

where λijkl, sijkl ≥ 0 for all i, j, k, l act as slack variables. In general, for each triple
(i, j, k) we want one of the λijkl to be close to 0 and the sum over all sijkl to be small.
Naively this can be done by placing

∑
sijkl +

∑
λijkl into the objective function.

However, this would not enforce for each (i, j, k) at least one λijkl to be close to 0.
Instead we propose to use

∑

(i,j,k)∈Ω2,1≤l≤8

sijkl +

√√√√√
∑

(i,j,k)∈Ω2


 ∑

1≤l≤8

λijkl




2

.

The `2-norm will push down the
∑

l λijkl for each (i, j, k), while the `1 norm will drive
at least one of the λijkl to zero, which is precisely the desired behavior. The quantity√∑

i,j,k (
∑

l λijkl)
2
is an atomic norm as defined in [6] with the set of atoms

A = {(λijkl) :
∑

i,j,k

(∑

l

λijkl

)2

= 1 and

∑

i,j,k

λ2
ijklijk

= 1 for lijk = 1, . . . , 8, (i, j, k) ∈ Ω2}.

Then the optimization problem in the noisy setting becomes:

(5.2)

minimize
G,s,λ

ρ tr(G) +
∑

1≤i≤n

(gii(G)−Dii)
2 +

∑

1≤i<j≤n

(gij(G)−Dij)
2

+
∑

i∈Ω1

(gi+(G)−Di+)
2 +

∑

(i,j,k)∈Ω2,1≤l≤8

sijkl

+

√√√√√
∑

(i,j,k)∈Ω2


 ∑

1≤l≤8

λijkl




2

subject to Dijk + λijkl = gijkl(G) + sijkl, (i, j, k) ∈ Ω2, 1 ≤ l ≤ 8,

sijkl ≥ 0, (i, j, k) ∈ Ω2, 1 ≤ l ≤ 8,

λijkl ≥ 0, (i, j, k) ∈ Ω2, 1 ≤ l ≤ 8,
∑

1≤i,j≤2n

Gi,j = 0,

G � 0.

We use a tuning parameter ρ for the trace in the objective function, which can be
used to balance obtaining a low-rank solution versus satisfying the constraints. The
tuning parameter ρ can be chosen using cross-validation or by selecting it so that the
resulting solution has small (d+1)th eigenvalue. As shown in section SM3 and section
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SM7, we observe on synthetic and real data that the solution is robust to the choice
of ρ.

The theoretical results from Lemma 2.3 allow us to compute the distances between
homologous pairs from the pairwise distances Dij . We recall that we need to compute
‖v‖2 such that

det(T ′ − 8J‖v‖2) = 0,

where T ′ is an invertible matrix constructed from the pairwise distance matrix by
selecting a set of 2d+2 indices. One step of computing ‖v‖ involves inverting T ′. Even
if the error in the measurements is small, noise can propagate and severely impact
this computation. In order to obtain a robust estimate of homolog-homolog distances,
for each locus i, we sample 100 T ′ matrices and obtain 100 solutions to the equation
for ‖v‖2. We then take the median of the solutions to be the homolog-homolog
distance for locus i and use these homolog-homolog distances for the evaluation of
our algorithms on synthetic and real data in the following section.

To solve the two convex optimization problems presented in this section for the
noiseless and noisy setting, we make use of the solver MOSEK implemented in CVX
within MATLAB. This results in the Gram matrix. In order to reconstruct the coor-
dinates of the genomic regions from the Gram matrix, we use an eigenvector decom-
position as also done in [46], namely: letting γ1, . . . , γd be the top d eigenvalues and
ν1, . . . , νd the corresponding eigenvectors of G, then

xi = (
√
γ1 ·ν1,i, . . . ,

√
γd ·νd,i) and yi = (

√
γ1 ·ν1,n+i, . . . ,

√
γd ·νd,n+i) for i = 1, . . . , n.

Since we are interested in recovering the genome configuration in 3D, we use d = 3,
thereby obtaining the desired 3D diploid configuration. We provide the code for our
algorithm at https://github.com/uhlerlab/diploid-3D-reconstruction.

6. Evaluation on synthetic and real data.

6.1. Synthetic data. We start by testing our method on simulated data. For
this we construct three different types of 3D structures: (a) a Brownian motion model
using a standard normal distribution to generate successive points; (b) points sam-
pled uniformly along a spiral with random translations sampled uniformly within
(0, 0.5) range and orientations sampled uniformly within (−π

4 ,
π
4 ); (c) points sampled

uniformly in a unit sphere.

Performance of our method in the noiseless setting. For the 1D setting
we deduced in section 2 that the pairwise distance constraints by themselves are suf-
ficient to identify the underlying 3D configuration. For the 2D setting we proved in
section 3 that knowing additionally the distances between neighboring beads leads to
uniqueness. We here perform simulations in 3D since this is the biologically relevant
setting. These results are depicted in Figure 5 with additional examples in Figure
SM1. The input to our algorithm are the pairwise distances (which are summed over
homologs), all 3-way distances, the distances between homologous loci, and the dis-
tances between neighboring beads. In the noiseless setting considered here we solve
the SDP formulation in Equation (5.1). Figure 5 and Figure SM1 show that the true
and reconstructed structures highly overlap, thereby indicating that our optimization
formulation is able to recover the 3D structure of the full diploid genome in the noise-
less setting. When the 3-way distance constraints are removed, the reconstructions
are less aligned with the true structures. This is shown in Figure 6, where we measure
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the root-mean-square deviation (RMSD) between true and reconstructed 3D coordi-
nates over 20 trials. In line with our theoretical results, these experimental results in
the noiseless setting indicate the importance of higher-order contact frequencies for
recovering the 3D diploid configuration, especially when the number of chromosomes
is larger.

(a) (b) (c)

Fig. 5. Examples of true and reconstructed points on simulated data. (a) Brownian motion
model. (b) Spirals. (c) Random points in a sphere. We generate six chromosomes with in total
of 120 domains, corresponding to three homologous pairs with 20 domains per chromosome in the
noiseless setting. Solid lines / points correspond to true 3D coordinates and dashed lines / unfilled
points to reconstructions via our method. Each color represents a different chromosome.

(a) (b) (c)

Fig. 6. Performance of our method in the noiseless setting. Root-mean-square deviation
(RMSD) between true and reconstructed structure computed with and without higher-order distance
constraints. Simulated data was generated using a Brownian motion model with (a) one (b) two and
(c) three chromosomes. Mean and standard deviation over 20 trials are shown.

Performance of our method in the noisy setting. Next, we consider
noisy distance observations Dij = D∗

ij(1 + δ) and noisy 3-way distance observations
Di1i2...ik = D∗

i1i2...ik
(1+δ) by sampling δ uniformly within (−ε, ε) as in [46], where ε is

a given noise level. For our simulations we sample a maximum of 1000 3-way distance
constraints. As shown in Figure SM2, we observe that the number of constraints
does not have a major effect on the reconstruction accuracy. While for all simulations
shown in this section, we set the tuning parameter ρ = 0.000001, Figure SM3 shows
that the performance is not significantly different when using different choices of ρ.

In Figure 7 we numerically assess the accuracy of our predicted structure for the
Brownian motion model for different number of chromosomes (one, two, or three) and
different number of domains per chromosome (10 or 20) by computing the Spearman
correlation between reconstructed and true pairwise distances, similar to [46]. As
expected, Figure 7 shows that when the noise level increases, then the Spearman
correlation between the original and reconstructed configuration decreases. For the
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simulations with one chromosome, the Spearman correlation is higher for 20 domains
than 10.

(a) (b) (c)

Fig. 7. Performance of our method in the noisy setting. Spearman correlation under different
noise levels for (a) one, (b) two and (c) three chromosomes. Simulated data was generated using
a Brownian motion model where each chromosome has 10 or 20 domains. Mean and standard
deviation over 20 trials are shown.

6.2. Application to 3D diploid genome reconstruction. We apply our al-
gorithm to the problem of reconstructing the diploid genome from contact frequency
data derived from experiments. We obtain pairwise and 3-way contact frequencies
collected via SPRITE in human lymphoblastoid cells from [33]. Since we aim to re-
construct the whole diploid genome, which consists of approximately 6 billion base
pairs, for computational reasons we bin the contact frequencies in the SPRITE dataset
into 10 Mega-base pair (Mb) regions. While some previous studies considered higher
resolutions, the majority of the studies [4, 19, 36, 42, 46] did not attempt to recon-
struct the whole diploid genome and focused only on reconstructing one chromosome,
thus enabling them to consider higher resolutions.

After filtering out regions with a small number of total contacts, we obtain 514
unphased points on the chromosomes. We convert the pairwise contact frequencies

to pairwise distances using the previously observed relationship Dij = F
−1/2
ij [36]

and use Lemma 2.3 to obtain the distances between homolog pairs from this data.
As in our simulations in the noisy setting, we randomly sample 1000 3-way distance
constraints from all nonzero 3-way contact frequencies (for the transformation from
3-way contact frequencies to 3-way distances, see section 4). Finally, we obtain the
distances between neighboring 10Mb beads by empirically evaluating the 3D recon-
structions under different input distances; see section SM4 and Figure SM4, Figure
SM5.

Using the pairwise constraints, homolog-homolog constraints, neighboring bead
constraints, and 3-way distance constraints, we solve the SDP problem in Equa-
tion (5.2) for the noisy setting and analyze the corresponding 3D coordinates. Our
diploid reconstruction is shown in Figure 8a. We compare this diploid genome recon-
struction to the 3D structure obtained via ChromSDE, shown in Figure 8b obtained
under the assumption that the observed contact frequencies and the corresponding
distances are a sum of four equal quantities, i.e., ‖xi−xj‖2, ‖xi−yj‖2, ‖yi−xj‖2, and
‖yi − yj‖2 are equal. In Figure SM6, we show that the reconstruction obtained using
ChromSDE with equal distances does not recapitulate known biology as described in
the following paragraphs.

Experimental (imaging) studies have shown that chromosomes are organized by
size within the nucleus, with small chromosomes in the interior and larger chromo-
somes on the periphery [3]. We colored each chromosome according to its size and
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Fig. 8. 3D Diploid Genome Reconstruction. Estimated 3D positions of all chromosomes and
their corresponding homologs at 10Mb resolution. 3D positions obtained using (a) our method and
(b) using ChromSDE with chromosomes colored according to chromosome number. (c) Whole diploid
organization obtained via our method, colored by chromosome size. (d) Mean chromosome size as
the distance from the center increases. (e) The number of A compartments as the distance from the
center increases.

computed the mean chromosome size versus distance away from the center. The
results of the 3D configuration obtained using our method are shown in Figures 8c
and 8d and recapitulate prior studies: smaller chromosomes are preferentially located
in the center, whereas larger chromosomes are preferentially on the periphery; see also
section SM6, Figure SM7. This is especially apparent for chromosomes 2 and 4, which
are some of the largest chromosomes, and in our reconstruction they are located on
the periphery as expected.

Experimental studies on the spatial organization of the genome have also shown
that the center of the nucleus is enriched in active compartments (known as A com-
partments), while the periphery contains inactive compartments (known as B com-
partments) [38]. From previously published data on the location of A and B compart-
ments along the genome in human lymphoblastoid cells [34], we counted the number
of A compartments per 10Mb bin. Then dividing our 3D reconstruction into con-
centric circles of increasing radius away from the center, we found the mean number
of A compartments in each concentric circle. Figure 8e shows that with increasing
distance away from the center, the number of A compartments decreases. Thus, our
reconstruction recovers the experimentally observed trend for A compartments to be
preferentially located near the nucleus center. As shown in Figures SM8 and SM9 in
section SM7, we note that our results are robust to the choice of the tuning parameter
ρ resulting in biologically plausible configurations independent of the choice of ρ.

Currently, many studies such as [35] simply ignore the fact that the genome is
diploid and infer the 3D genome organization as if the data was collected from a
haploid organism, assuming that the homologous loci have the same 3D structure.



3D GENOME ORGANIZATION IN DIPLOID ORGANISMS 19

However, we show in section SM8, Figure SM10 that the haploid distance matrices,
computed by including only one copy of each of the homologous loci, are different be-
tween the two copies with a mean Spearman correlation of only 0.08. This shows that
modeling the diploid aspect of the genome provides valuable information regarding
the 3D structure of each of the homologs, which may be substantially different.

7. Discussion. In this paper, we proved that for a diploid organism the 3D
genome structure is not identifiable from pairwise distance measurements alone. This
implies that applying any algorithm for the reconstruction of the 3D genome structure
from typical chromosome conformation capture data for a diploid organism can result
in any of the infinitely many configurations with the same pairwise contact frequencies.
We showed that unique idenfiability is obtained using distance constraints between
neighboring genomic loci as well as 3-way distance constraints in addition to the
pairwise distance constraints that can be obtained from typical contact frequency
data. Distances between neighboring genomic loci can be obtained empirically, e.g.
from imaging studies, while 3-way distance constraints can be obtained from the most
recently developed sequencing-based methods for obtaining contact frequencies such
as SPRITE [33], C-walks [31] and GAM [2]. We also presented SDP formulations
for determining the 3D genome reconstruction both in the noiseless and the noisy
setting. Finally, we applied our algorithm to contact frequency data from human
lymphoblastoid cells collected using SPRITE and showed that our results recapitulate
known biological trends; in particular, in the 3D configuration identified using our
method, the small chromosomes are preferentially situated in the interior of the cell
nucleus, while the larger chromosomes are preferentially situated at the periphery of
the cell nucleus. In addition, in the 3D configuration identified using our method the
number of A domains is higher in the interior versus the periphery, which is in line
with experimental results. Our work shows the importance of higher-order contact
frequencies that can be measured using SPRITE [33], C-walks [31] and GAM [2] for
obtaining the 3D organization of the genome in diploid organisms. This is particularly
relevant for the reconstruction of cancer genomes, where copy number variations are
frequent and hence the genome may contain even more than two copies of each locus.

We conjecture that identifiability of the 3D genome structure can also be achieved
by replacing the higher-order contact constraints by distance constraints to the center
of the cell nucleus. Such constraints are also biologically relevant, since these distances
can be measured via imaging experiments, or inferred by measuring whether a partic-
ular locus is in a lamin-associated domain or a telomere, both of which tend to lie at
the boundary of the cell nucleus [10, 18, 41]. Another future research direction is the
development of specialized solvers to enable reconstruction of the genome at higher
resolution. In this study we used a 10Mbp resolution due to the computational con-
straints imposed by SDP solvers. Finally, the theoretical results in this paper build on
the assumption that distances are inverses of square roots of pairwise and higher-order
contact frequencies. An interesting future research direction is to develop a method
for estimating the map between higher-order contact frequencies and distances, and
then prove identifiability as well as build reconstruction algorithms for these different
maps.
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SUPPLEMENTARY MATERIALS: IDENTIFYING 3D GENOME
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SM1. Simulations: reconstructions in the noiseless setting. Figure SM1
shows additional reconstructions of simulated data in the noiseless setting. The true
structures are consistently recovered under different data generation models.

Fig. SM1. Additional examples of true and reconstructed points on simulated data. True points
were generated using Brownian motion model (first row), spirals (second row) and random points
in a sphere (third row). We generated six chromosomes, corresponding to three homologous pairs
with 20 domains per chromosome in the noiseless setting. Solid lines / points correspond to true
3D coordinates and dashed lines / unfilled points to reconstructions via our method. Each color
represents a different chromosome.
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SM2. Simulations: impact of the number of 3-way distance constraints.
Figure SM2 shows the impact of the number of 3-way distance constraints on the so-
lution in the noisy setting. We explored the impact of the number of 3-way distance
constraints specifically when the number of chromosomes is higher (three chromo-
somes) since higher-order constraints seem to play a more critical role in that setting.
We evaluate the performance when 500, 1000 or all (4060 for 30 domains) 3-way dis-
tance constraints are used. Figure SM2 shows that the choice of the number of 3-way
distance constraints has little impact on the accuracy of reconstruction, so we used
1000 3-way distance constraints (or all possible triplets if that number was smaller)
for the simulations and the real data analysis.

(a) (b)

Fig. SM2. The impact of the number of 3-way distance constraints in the noisy setting. Boxplots
showing Spearman correlation and root-mean-square deviation (RMSD) for different number of 3-
way distance constraints over 20 trials. Simulated data was generated using Brownian motion model
with three chromosomes, where each chromosome had 10 domains. Noise level of 0.5 was added.
We used ρ = 0.000001 to solve the SDP. Green triangles and lines indicate the mean and median
performance respectively.

SM3. Simulations: impact of the tuning parameter ρ. Figure SM3 ex-
plores the impact of the tuning parameter ρ in the noisy setting. Figure SM3 shows
that the choice of ρ has little impact on the accuracy of the reconstruction. For the
simulations in the noisy setting and for real data we chose ρ = 0.000001.

(a) (b)

Fig. SM3. The impact of ρ in the noisy setting. Boxplots showing Spearman correlation and
root-mean-square deviation (RMSD) for different values of ρ over 20 trials. Simulated data was
generated using a Brownian motion model with one chromosome and 10 domains per chromosome
as well as noise level of 0.5. We used the maximum number of triplet tensor constraints (120) to
solve the SDP. Green triangles and lines indicate the mean and median performance respectively.
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SM4. Distance between neighboring beads. We consider different values
for the distance between neighboring beads as input to our algorithm. If the distance
between neighboring beads is chosen to be too small, the resulting 3D diploid recon-
struction of the data results in the homologous loci x1, . . . xn (copy A) and y1, . . . yn
(copy B) being completely separated as shown in Figure SM4a. We gradually in-
creased the values for the distance between neighboring beads and quantified the
separation between x1, . . . xn and y1, . . . yn as follows: We obtained the hyperplane
separating x1, . . . xn and y1, . . . yn by fitting a support-vector machine (SVM) clas-
sifier. Next, we identified the k points among x1, . . . xn as well as among y1, . . . yn
that are closest to the hyperplane and computed their centroids. Figure SM4b shows
the sum of the distances of the two centroids to the separating hyperplane, thereby
quantifying the separation of the copy A points from the copy B points. This distance
should approach 0 as the copy A and copy B points come closer together. Indeed,
Figure SM4b shows that using a parameter of 0.65, the distance between the k closest
points stabilizes close to 0 and thus we used 0.65 as the distance between neighboring
beads.

(a) (b)

(c) (d)

Fig. SM4. Empirical choice of parameter for the distance between neighboring beads. (a) The
3D genome reconstruction with parameter for the distance between neighboring beads set to 0.5. The
homologous loci x1, . . . xn (copy A) and y1, . . . yn (copy B), colored by red and blue are completely
separated. (b) The distance of centroids corresponding to k closest points to the SVM hyperplane
separating copy A from copy B (red and blue points) for different parameter settings. The black
dashed line corresponds to the chosen parameter of 0.65. (c) Confusion matrix quantifying how
often points clustered via k-means (predicted label) were assigned their true label (copy A or copy B)
when parameter of 0.5 was used. (d) Same as (c) for the chosen parameter 0.65. Higher confusion
across labels indicates that points belonging to copy A and copy B are not clearly separated, as
desired.

We provide additional quantification regarding the separation of points in copy
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A and copy B by clustering the 3D structure using k-means into two clusters and
computing a confusion matrix, where the true labels are given by copy A and copy B.
If the points x1, . . . xn and y1, . . . yn are completely separated, then k-means would
result in near perfect accuracy of separation of all points into copy A and copy B.
Figure SM4c shows that this is indeed the case when using a distance parameter of
0.5. For the chosen parameter of 0.65, the confusion matrix is shown in Figure SM4d,
reinforcing the observation that indeed copy A and copy B are getting mixed.

We note that our observations are robust to the exact choice of the distance
between neighboring beads. In Figure SM5 we show the resulting 3D reconstruction
as well as chromosome size and A compartment trends when using a parameter of 0.7
as the distance between neighboring beads.
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Fig. SM5. 3D diploid genome reconstruction with a different parameter (0.7 instead of 0.65) for
the distance between neighboring beads. (a) Estimated 3D positions of all chromosomes and their
corresponding homologs with chromosomes colored according to chromosome number. (b) Whole
diploid organization obtained via our method, colored by chromosome size. (c) Mean chromosome
size as the distance from the center increases. (d) The number of A compartments as the distance
from the center increases.

SM5. Comparison with ChromSDE. We compare our whole genome recon-
struction to the reconstruction inferred by ChromSDE [SM3]. Since ChromSDE does
not account for the fact that the measured contact frequencies and corresponding ob-
served distances are a sum of four different distances, i.e. ‖xi−xj‖2, ‖xi− yj‖2, ‖yi−
xj‖2, and ‖yi − yj‖2, we converted frequencies to distances using Dij = F

−1/2
ij and

used Dij/4 for each of the four distances so that the diploid configuration of the
genome could be computed. We assumed that homologous loci are far apart, as has
been observed in imaging studies [SM1, SM2], and thus set ‖xi − yi‖2 = ∞. Given
the described distance constraints, we solved the SDP for the Gram matrix and ob-
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tained the 3D coordinates using eigenvector decomposition, similar to our method.
Figure SM6 shows the corresponding solution and quantification of the mean chro-
mosome size and number of A compartments as the radius from the center increases.
The computed 3D diploid genome configuration obtained via ChromSDE does not
recapitulate that chromosome size increases with distance away from the center and
that the number of A compartments decreases with distance away from the center.
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Fig. SM6. 3D diploid genome reconstruction with ChromSDE. ChromSDE was run using a
distance matrix where the distances for ‖xi−xj‖2, ‖xi−yj‖2, ‖yi−xj‖2, and ‖yi−yj‖2 were set to
Dij/4. (a) Estimated 3D positions of all chromosomes and their corresponding homologs at 10Mb
resolution colored by chromosome size. (b) Mean chromosome size as the distance from the center
increases. (c) The number of A compartments as the distance from the center increases.

SM6. Analysis of 3D diploid genome reconstruction. We provide further
analysis of the 3D diploid genome reconstruction obtained using our algorithm from
contact frequency data. Figure SM7 shows that chromosome size is correlated with
the distance of the chromosome to the center of the cell nucleus, whihc is in line known
biological trends.

Fig. SM7. Chromosome size (normalized by the size of the largest chromosome) versus the
mean distance of the chromosome and its homolog away from the center.

SM7. Real data: impact of the tuning parameter ρ. Figure SM8 ex-
plores the impact of the tuning parameter ρ on the results of the real data analy-
sis. We compute the RMSD between the 3D genome reconstruction computed with
ρ = 0.000001 and the 3D genome reconstructions computed with other choices of
ρ ∈ (0.00001, 0.0001, 0.001, 0.01, 0.1, 10, 1) to quantify how much the 3D structure
changes when increasing ρ. As shown in Figure SM8, the RMSD is low across dif-
ferent choices of the tuning parameter. In Figure SM9, we provide the 3D genome
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reconstruction and trends for mean number of A compartments and mean chromo-
some size versus the distance away from the center for the 3D reconstruction computed
with ρ = 10 since the RMSD was the highest for this choice of the tuning parameter.
We observe that the trends remain the same also for this choice of ρ.

Fig. SM8. The impact of ρ in real data. Root-mean-square deviation (RMSD) between the 3D
genome reconstruction computed with ρ = 0.000001 and the 3D genome reconstructions computed
with other choices of ρ ∈ (0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10).
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Fig. SM9. 3D diploid genome reconstruction with ρ = 10. Estimated 3D positions of all chro-
mosomes and their corresponding homologs at 10Mb resolution. Chromosomes are colored according
to (a) chromosome number and (b) chromosome size. (c) Mean chromosome size as the distance
from the center increases. (d) The number of A compartments as the distance from the center
increases.

SM8. Haploid distance matrices. To show that modeling the diploid aspect
of the genome is critical and provides valuable information regarding the 3D organiza-
tion of the genome, we randomly labeled each homolog of a particular chromosome to
correspond to either copy A or copy B of the chromosome and computed the Euclidean
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distances between all loci belonging to copy A, i.e. ||xi − xj || to obtain one haploid
distance matrix and the Euclidean distances between all loci belonging to copy B,
i.e. ||yi − yj || to obtain the second haploid distance matrix. Figure SM10a and Fig-
ure SM10b show the haploid distance matrices where the points 1, . . . , n are assigned
to copy A and points n + 1, . . . , 2n are assigned to copy B. We were interested in
comparing the two haploid distance matrices to see whether the two haploid matrices
were the same or if modeling the diploid aspect of the genome also allowed us to
learn about each homolog. Inspection of the two matrices reveals that the distances
are different in these two haploid matrices, suggesting that modeling the genome
as a diploid structure is important and indeed provides additional information. We
quantify the difference by computing the Spearman correlation between the distance
matrices over 100 different samplings of assignments of chromosomes to either copy
A or B. Figure SM10c shows the histogram of the calculated Spearman correlations
with mean Spearman correlation of 0.08.

(a) (b) (c)

Fig. SM10. Haploid distance matrices. (a) Haploid distance matrix for points belonging to
copy A and (b) its corresponding homologous haploid distance matrix for points belonging to copy
B. (c) Spearman correlation between haploid distance matrices over 100 different assignments of
each homolog to either copy A or copy B.
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