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1 INTRODUCTION

Abstract interpretation, originated by Cousot and Cousot [Cousot and Cousot 1977], is a power-
ful technique for static analysis of program correctness. The key idea of abstract interpretation is
to provide an over-approximation (abstraction) of the concrete program semantics. Consequently,
analysis of programs can be done at the abstract level, which is usually much simpler, and correct-
ness in the abstract domain implies correctness in the concrete domain. Over the past few decades,
abstract interpretation has become increasingly popular in describing and analysing computa-
tional models in many different areas of computer science, such as model checking [Clarke et al.
2003, 1994; Cousot and Cousot 2000; Dams et al. 1997], process calculi [Cleaveland and Riely 1994;
Venet 1996], type inference [Comini et al. 2008; Cousot 1997], and theorem proving [Plaisted 1981].

More recently, analysis of quantum programs using abstract interpretation was proposed in [Yu and Palsberg

2021], where tuples of local subspaces of the state Hilbert space are regarded as abstraction of quan-
tum states.

Hoare logic [Hoare 1969] is one of the most popular syntax-oriented approaches for verifying
the correctness of computer programs. The core notion of Hoare logic is the program correctness
expressed in the form of Hoare triples {p} S {q} where Sis a program, and p and q are assertions that
describe the pre- and post-conditions of S, respectively. For non-probabilistic programs, assertions
are typically first-order logic formulas. Intuitively, the triple {p} S {q} states that if S is executed
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at a state (evaluation of program variables) satisfying p and it terminates, then g must hold in the
final state. This is called partial correctness. If termination is further guaranteed in all states that
satisfy p, then partial correctness becomes a total one. Hoare logic provides a proof system which
can systematically deduce the correctness of a program represented by such a triple. After decades
of development, Hoare logic has been successfully applied to the analysis of programs with non-
determinism, recursion, parallel execution, probabilistic features, etc. For a detailed survey, please
refer to [Apt et al. 2010; Apt and Olderog 2019].

In recent years, Hoare-type logics for quantum programs have been developed. Unlike the clas-
sical case, a logic system for assertions of quantum states was proposed only very recently [Ying
2022]; most quantum Hoare logics developed so far simply take a certain semantic set as possible
assertions. [D’Hondt and Panangaden 2006] proposes to regard positive operators not greater than
(w.r.t. Lowner order) the identity operator as (quantitative) assertions of quantum states. Then the
degree of a quantum state p satisfying an assertion M is denoted Tr(Mp), the expected value of
outcomes if p is measured according to the projective measurement determined by M. A Hoare
triple for quantum programs then has the form {M} S {N} where S is a quantum program, and M
and N are quantum assertions, and it is partially (resp. totally) correct if

Tr(Mp) < Tr(N - [STl(p)) + Tr(p) — Tr([ST(p))

(resp. Tr(Mp) < Tr(N - [[SIl(p))) for any quantum state p [Feng et al. 2022; Feng and Ying 2021;
Ying 2012, 2016; Ying et al. 2022]. Note that the term Tr(p) — Tr([[S]l(p)) appearing in partial
correctness but not in total correctness denotes the probability for S to diverge (not terminate) at p.
Another line of research, which is conceptually and computationally simpler, is to regard subspaces
(or equivalently, orthogonal projectors) of the associated Hilbert space as (qualitative) assertions,
and a quantum state p satisfies a subspace assertion P iff the support (the image space of linear
operators) of p is included in P [Unruh 2019; Zhou et al. 2019]. Partial correctness of {P} S {Q}
means that [[S]](p) satisfies Q as long as p satisfies P, similar to the classical case. Total correctness
further requires that Tr([[SIl(p)) = Tr(p) for all p satisfying P. Obviously, subspace based Hoare
logics are special cases of positive operator based ones, by noting that projectors are positive
operators with eigenvalues being either 0 or 1. For comparison with abstract interpretation, we
will consider this simplified form of quantum Hoare logic in this paper.

Incorrectness logic [O’Hearn 2019], or reverse Hoare logic [Vries and Koutavas 2011], is a com-
plementary method to reason about the incorrectness of programs. Similar to Hoare logic, the key
notion of incorrectness logic is a triple [p] S [q] which asserts that any state satisfying q is reach-
able from a state satisfying p by executing the program S. Note that the postcondition ¢ in the
Hoare triple {p} S {q} provides an over-approximation of the set of final states when starting with
states in p, while g in the incorrectness triple [p] S [q] provides an under-approximation of the
same set. Again, incorrectness logic has recently been extended to analyse quantum programs
where quantum assertions are taken as subspaces of the associated Hilbert space [Yan et al. 2022].

So far, the aforementioned approaches for analysis of quantum programs, namely abstract in-
terpretation, Hoare logic, and incorrectness logic, have been developed largely in parallel. In this
paper we analyse the relationship between them. Our discovery is twofold:

(1) Given a quantum abstract interpretation in which the abstract domain for quantum states
is well-structured, a quantum Hoare logic is naturally induced which is sound (resp. sound
and relatively complete) if the abstract operator is sound (resp. complete) for each basic
command of the quantum language under consideration. Similar results apply to quantum
incorrectness logic as well. Compared to the applied Hoare logic [Zhou et al. 2019] and in-
correctness logic [Yan et al. 2022] for quantum programs, our induced logic systems are in
a forward fashion, making them more useful in certain applications.
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(2) Conversely, for any quantum Hoare logic in which the set of assertions for quantum states
is well-structured, a quantum abstract interpretation is naturally induced which is sound
(resp. complete) if the Hoare logic is sound (resp. sound and relatively complete). Again,
similar results apply to quantum incorrectness logic as well. As an application, these results
imply the non-existence of any sound and relatively complete Hoare or incorrectness logic
for quantum programs if tuples of local subspaces are taken as assertions.

The rest of this paper is organised as follows. We review in Sec. 2 some basic notions from
abstract interpretation and quantum computing that will be used throughout this paper. In Sec. 3, a
simple quantum while-language is introduced, which serves as the target language of our analysis,
and its concrete denotational semantics is defined. We examine the relationship between well-
structured abstract domains and sets of assertions for quantum states in Sec. 4, which sets the
stage for the discussion that follows. Sec. 5 is the main part of this paper, where we elaborate
on how a sound (resp. sound and relatively complete) Hoare logic and a sound (resp. complete)
abstract interpretation of quantum programs can be derived from each other. Similar results are
also discussed for incorrectness logic. Finally, Sec. 6 concludes the paper and points out some
directions for future study.

2 PRELIMINARIES

This section is devoted to fixing some notations from abstract interpretation and quantum comput-
ing that will be used in this paper. For a thorough introduction to the relevant backgrounds, please
refer to [Miné 2017] (abstract interpretation) and [Nielsen and Chuang 2002] (quantum comput-

ing).

2.1 Abstract Interpretation

Let the concrete domain for program states be a partially ordered set, a.k.a poset, (C, <¢). Typically,
elements in C are subsets of program states, and <c is just the set inclusion. Let the abstract domain
be another poset (A, <4). The concrete and abstract domains are related by a pair of monotonic
functions @ : C > Aandy : A — C. The pair (a,y) is said to form a Galois connection, denoted
(C,<c) # (A, <4),ifforallc € Canda € A, ¢ <¢ y(a) iff a(c) <4 a. Furthermore, if coy = id4
then (a, y) forms a Galois embedding, where id, is the identity relation over A. Note that a Galois
connection (C, <¢) — (A, <a) is a Galois embedding iff any of the following holds: (1) « is
surjective, that is, for all a € A, there exists ¢ € C such that a(c) = g; (2) y is injective, that is, for
alla,a’ € A, y(a) = y(a’) implies a = a’.

Given an operator f : C — C in the concrete domain, an abstract operator f* : A — A is
called a sound abstraction of f if @ o f <z f* o a, and it is complete if @ o f = f* o a. It is easy to
check that complete abstractions are closed under composition; that is, if f* and g* are complete
abstractions of f and g respectively, then f* o g* is a complete abstraction of f o g. Note that
a complete abstraction does not necessarily exist. However, the best abstraction of f, defined as
a o f oy, always exists. It is the smallest one among all sound abstractions.

REMARK 1. In the literature, there are alternative definitions of sound and complete abstraction
using the concretisation function y instead of the abstraction function a. Specifically, an abstract
operator f* of f is sound if foy <c yo f*, and it is complete if f oy = y o f*. It can be easily checked
that when (a,y) forms a Galois connection, these two notions of soundness are equivalent; that is,
aof <a ffoaiff foy <c yof*. However, the two notions of completeness are in general incomparable.
Nevertheless, in either case the complete abstraction, if exists, must be the best abstraction.
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2.2 Basic quantum computing

Let H be a finite-dimensional Hilbert space, and dim(%) denote its dimension. Following the
tradition of quantum computing, vectors in H are denoted in the Dirac form |¢/). The inner and
outer products of two vectors |i) and |@) are written as ({/|@) and |/)(p| respectively. Let L(H)
be the set of linear operators on H and A € L(H). Denote by Tr(A) = ;1 (¥i|Al;) the trace of
A where {|{);) : i € I} is an orthonormal basis of /. The adjoint of A, denoted A", is the unique
linear operator in £ (%) such that (/|A|¢) = ($|AT[)* for all |¢/), |¢) € H. Here, for a complex
number z, z* denotes its conjugate. An operator A € £ () is said to be (1) hermitianif A" = A; (2)
unitary if ATA = Iy, the identity operator on H; (3) positive if for all |¢) € H, (/|Al)) > 0. Every
hermitian operator A has a spectral decomposition form A = ;< Ai|¥i){(¥i| where {|¢;) : i € I}
constitute an orthonormal basis of . The Lowner (partial) order C on L (H) is defined by letting
A C Biff B— Ais positive.

A linear operator & from L(H;) to L(H>) is called a super-operator. It is said to be (1) positive
if it maps positive operators on H; to positive operators on Hz; (2) completely positive if 1o @ &
is positive for all finite dimensional Hilbert space H, where Iy is the identity super-operator
on L(H); (3) trace-preserving (resp. trace-nonincreasing) if Tr(E(A)) = Tr(A) (resp. Tr(E(A)) <
Tr(A) for any positive operator A € L(H;). Given the tensor product space H; ® Hs, the partial
trace with respect to H,, denoted Tryy,, is a linear mapping from L(H; ® Ha) to L(H;) such that
for any [i), |$:) € Hi,

Trog, (1Y1){P1] ® |¢1){(P2) = (pald1)|¥1){¢1].

The definition extends linearly to L(H; ® H).

According to von Neumann’s formalism of quantum mechanics [Von Neumann 1955], any quan-
tum system with finite degrees of freedom is associated with a finite-dimensional Hilbert space
H called its state space. When dim(H) = 2, such a system is called a qubit, the analogy of bit in
classical computing. A pure state of the system is described by a normalised vector in H. When
the system is in state |1/;) with probability p;, i € 1, it is in a mixed state, represented by the density
operator 3;c; pil¥i){(¢i| on H. Obviously, a density operator is positive and has trace 1. In this pa-
per, we follow Selinger’s convention [Selinger 2004] to regard partial density operators, i.e. positive
operators with traces not greater than 1 as (unnormalised) quantum states. Intuitively, a partial
density operator p denotes a legitimate quantum state p/Tr(p) which is obtained with probability
Tr(p). Denote by D(H) the set of partial density operators on H. The state space of a composite
system (e.g., a quantum system consisting of multiple qubits) is the tensor product of the state
spaces of its components. For any p in D(H; ® H), the partial traces Trqy, (p) and Trey, (p) are
the reduced quantum states of p on H, and H;, respectively.

The evolution of a closed quantum system is described by a unitary operator on its state space: if
the states of the system at t; and t, are p; and p,, respectively, then p, = Up,U" for some unitary
U. The general dynamics that can occur in a physical system is described by a completely positive
and trace-preserving super-operator. Note that the unitary transformation Ey(p) 2 UpU™ is such
a super-operator. A (projective) quantum measurement M is described by a collection {P; : i € O}
of projectors (hermitian operators with eigenvalues being either 0 or 1) in the state space H, where
O is the set of measurement outcomes. It is required that the measurement operators P;’s satisfy
the completeness equation );;c; P; = Ig. If the system was in state p before measurement, then the
probability of observing outcome i is given by p; = Tr(P;p), and the state of the post-measurement
system becomes p; = P;pP;/p; whenever p; > 0. Sometime we use a hermitian operator M in £ (H)
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called observable to represent a projective measurement. To be specific, let
M = Z mP,,
mespec(M)

where spec(M) is the set of eigenvalues of M, and Py, the projection onto the eigenspace associated
with m. Then the projective measurement determined by M is {P,, : m € spec(M)}.

3 A SIMPLE QUANTUM WHILE-LANGUAGE
The target quantum language of our analysis is an extension of the purely quantum while-language

defined in [Feng et al. 2007; Ying 2012] with assertions. Let V, ranged over by g, r, - - -, be a finite
set of (qubit-type) quantum variables. For any subset W of V, let

Hy = (X) H,,
qeEwW

where H, is the 2-dimensional Hilbert space associated with q. As we use subscripts to distinguish
Hilbert spaces with different quantum variables, their order in the tensor product is irrelevant.
The syntax of our language is given as follows:

S x=  skip (no-op)
| q@=10) (initialisation)
| g=U (unitary operation)
| assert P[q] (assertion)
| So;S1 (sequence)
| if P[g] then S; else Sy end (conditional)
| while P[g] do S end (loop)
where S, Sy and S; are quantum programs, § = q,...,q; a (ordered) tuple of distinct quantum

variables from V, U a unitary operator on Hg, and P a subspace of H;. Sometimes we also use g
to denote the (unordered) set {q1,qz,...,q:}-

For clarification, we often use subscripts to emphasise the quantum system on which an operator
is performed. For example, Py means P acting on system W. To simplify notations, we do not
distinguish Py with its cylindrical extension Py ® Iy\w to Hy. Furthermore, we use the same
symbol, say P, to denote both a subspace and its corresponding projector. The correct meaning
of theses notations should be clear from the context. Consequently, a quantum state |/) € P iff
Ply) = |¢). Here, the former P denotes a subspace, while the latter one denotes the corresponding
projector.

Definition 3.1 (Denotational semantics). Let S be a quantum program. The denotational semantics
of § is a mapping [[S]] : D(Hy) — D(Hy) defined inductively in Fig. 1, where Py = Iy, — Py is
the projector onto the orthocomplement of Py in Hy.

Intuitively, the skip statement does not change the input state, while G := |0) sets the system g to
state |0) where |g| = t. Note that |i)4(j| denotes the operator |i)(j| acting on g, and {|0), - - - , |2 —
1)} constitute the computational basis of H;. The statement g += U applies the unitary operator
U on g, while assert P[§] measures system ¢ according to the projective measurement {P, P*}
and post-selects the outcome for P; that is, if P* is observed, then the program aborts without
outputting anything (or equivalently, it outputs the zero operator). Note also that here we adopt the
convenience of using a partial density operator p to encode both the (normalised) quantum state
p/Tr(p) and the probability Tr(p) of reaching it [Selinger 2004]. Similarly, the branching statement
if P[g] then S, else S end also measures system § according to the projective measurement {P, P*}

, Vol. 1, No. , Article 1. Publication date: January .



1:6 Yuan Feng and Sanjiang Li

([skipll(p) = p
2t-1

g == 0)]l(p) = Z 10)4¢ilplidg (O]

g = UN(p) = UgpU,
[[assert P[g]]l(p) = P;pP;
[[So; S:111(p) = [[S:1]] o [[So Tl (p)
[[if P[] then S; else Sy endll(p) = [[assert P[g]; S1]1(p) + [[assert P+ [g]; Soll(p)

00

[[while P[g] do S end]l(p) = Z [[(assert P[g];S)%; assert P [g]11(p)

i=0

Fig. 1. Denotational semantics for quantum programs.

and then executes S; or Sy depending on the measurement outcome. The output of this statement is
defined as the combination of the two branches. Again, thanks to the convention of partial density
operators, this combination is simply the summation of the output states from both branches.
Finally, the while loop while P[§] do S end takes into account the output states from different
iterations. The well-definedness of the semantics of while loops comes from the fact that the set
D(Hy) of partial density operators on Hy is a complete partial order set [Selinger 2004; Ying
2016].

For the purpose of abstract interpretation for quantum programs, we take, and fix throughout
this paper,

Q2227 u,n, 0, D(Hy))

to be the concrete domain for their (collecting) semantics, where U and N are respectively the
normal union and intersection over sets of quantum states. Thus @ is a complete lattice. The
denotational semantics defined in Definition 3.1 is then extended to the concrete domain by letting
[[STI(R) = {[[S1l(p) : p € R} forany R € Q. Obviously, such defined [[S]] is monotonic with respect
to C; that is, [[STI(R) € [SI](R’) whenever R C R’.

4 ABSTRACT QUANTUM DOMAINS V.S. QUANTUM ASSERTIONS

The main contribution of this paper is a close relationship between abstract interpretation and
Hoare/incorrectness logic for quantum programs. To this end, we first examine the relationship
between abstract domains and assertions for quantum states. For the sake of simplicity, we assume
that both the abstract quantum domain and the quantum assertion set are taken as a complete
lattice. Furthermore, note that the concrete domain Q of quantum states defined in Sec. 3 enjoys
a linear structure: for any p1, p2 € D(Hy) and x1,x, > 0, it holds that x1p1 + x2p2 € D(Hy)
whenever Tr(x;p; + x2p;2) < 1. To respect this structure, we put some natural restrictions on both
the abstract domain and the assertion set.

4.1 Well-structured abstract quantum domain

Let (A, <4, V, A, L, T) be a complete lattice. For A to be an abstract domain for the set of quantum
state, we assume a pair of monotonic functions ¢ : Q — A (abstraction) andy : A — Q
(concretisation).

, Vol. 1, No. , Article 1. Publication date: January .



Abstract interpretation, Hoare logic, and incorrectness logic for quantum programs 1:7

Definition 4.1. The complete lattice A as an abstract domain of Q is said to be well-structured,
if

(1) (@, y) forms a Galois embedding between Q and A; and

(2) for any p; € D(Hy)and x; > 0,i=1,2,..., with }; x;p; € D(Hy),

o (Z xip,-) =\/ a(py. (1)

Here and in the following, we abbreviate a({p}) into a(p) for simplicity.

Note that if (e, y) forms a Galois connection, then @ (|; {pi}) = V; @(p:). Thus the second con-
dition in the above definition can be regarded as an analogy of this property for linear combination
of quantum states.

The following lemma gives equivalent characterisations of the second condition in Definition 4.1
in terms of the concretisation function.

LEmMA 4.2. Let (A, <a,V, A, L, T) be a complete lattice, witha : Q - Aandy : A — Q
forming a Galois embedding. Then the following three statements are equivalent:

(1) A is well-structured;
(2) foranya € A, p; € D(Hy), and x; > 0 with ,; x;p;i € D(Hy),

inpi eyla) & Vipiey(a); (2)

(3) for anya € A, y(a) as a subset of D(Hy) is
o convex;
e w-cpo:if foreachi > 1, p; € y(a) and p; T piy1, then | |; pi € y(a);
e down-closed: if p C o and o € y(a), then p € y(a) as well; and
o closed under positive scalar multiplication: if p € y(a) and xp € D(Hy) with x > 0, then
xp € y(a) as well.

PRrROOF. (1) © (2): Direct from the observation that

inpi €y(a) & «a (Z xipi) <Aaa

while
Vipiey@ & Viap)saa o\ alp)<aa

(2) = (3): For any a € A, it is easy to see from the sufficiency part of Eq.(2) that y(a) is convex
and closed under positive scalar multiplication. Now if p € o and ¢ € y(a), then 0 — p € D(Hy)
as well. From the fact that p + (6 — p) = o, we know p € y(a) from the necessity part of Eq.(2).
Thus y(a) is down-closed.

Finally, if for each i > 1, p; € y(a) and p; C pji1, then p;y; — p; € y(a) as well. From the fact

that
upi =P1+Z(Pi+1 -pi),

i>1
we know | |; p; € y(a) from the sufficiency part of Eq.(2). Thus y(a) is an w-cpo.
(3) = (2): The proof consists of two parts:

inp,- eyla) = Vixip;e€y(a) (down-closed)
i

= Vipicy(a) (scaling)
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and
Vi,pi € y(a) = Vn>0, i €y(a) (convexity)
pi &Y Z Y IP 14 y
= Vn>0, Z xip; € y(a) (scaling)
i=1
= D upi (@) (w-cpo) D
i

Example 4.3 (Subspace abstract domain). The simplest example of well-structured abstract do-
main for quantum states is the subspace domain

(S(ﬂV)’ GV, N, {O}’ 7-{V)

where S(Hy) is the set of all subspaces (or equivalently, all projectors) of Hy, C is the ordinary
subset relation between subspaces (or equivalently, the Léwner order between the corresponding
projectors), and the join PV Q = span(P U Q) is defined as the subspace spanned by elements from
P or Q. Then this domain is a complete lattice. Let the concretisation and abstraction functions

¥s : S(Hy) — Q and a5 : Q — S(Hy) be defined as follows: for any P € S(Hy) and R € Q,
Ys(P) = {p € D(Hy) : [p] C P},
a(R) £ \/{[p1: p € R}

Here [p] denotes the support subspace of p. We now show that such defined o, and y; form a
Galois embedding between the concrete domain Q and the abstract domain S(Hy):

RCy(P) o RCc{peD(Hy):[plCP}
S VpeR[plcP
o a(R)cp

where the necessity part of the last equivalence is from the fact that P is a subspace. Furthermore,
it is easy to check that a; is surjective: for any P € S(Hy), as(ys(P)) = P
Finally, for any p; € D(Hy) and x; > 0,i = 1,2,..., with }; xip; € D(Hy),

as (Z Xipi) = {Z Xipi| = \/ [pil = \/ as(pi).

Thus S(Hy) is a well-structured abstract domain for quantum states in D (Hy).

We now show that the subspace abstract domain S(Hy ) presented in Example 4.3 is actually the
most concrete well-structured abstract quantum domain, in the sense that any other well-structured
abstract domain can be regarded as an abstraction of S(Hy) in terms of a Galois embedding. For
this purpose we first prove

LEmMMA 4.4. Let A be a well-structured abstract domain for quantum states, witha : Q — A
being the abstraction function. For any Ri, R, € D(Hy),

as(R)) =as(R)) = a(R1) = a(Ry).

Consequently, we have @ = a o y; o as.
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Proor. Suppose a5(R;) = as(R;). For any p € Ry, as Hy is finite dimensional, we can always
find a set of states py, ..., pn in Ry, Tr(p;) = 1, and x > 0 such that xp C };_; p;/n. Thus from the
assumption that A is a well-structured, we have

a(p) = a(xp) <a \/ alp) <a a(Ry).

i=1

Thus a(R;) = \V{a(p) : p € R1} <4 a(Rz). The other direction can be similarly proved.
The last part of the lemma follows from the observation that for any R € D(Hy), as(R) =
as oys o as(R). O

THEOREM 4.5. Let A be a well-structured abstract domain for quantum states, witha : Q —> A
andy : A — Q being the abstraction and concretisation functions respectively. Then there exists a
Galois embedding (a',y’) witha’ : S(Hy) = A andy’ : A — S(Hy) such that a = &’ o a5 and
Y =vs oy’ That is, the following diagram commutes for a’s and y’s respectively:

Y

Q =———= =«
o

S(Hv)
Proor. Let @’ 2 @ o ys; and y’ = a5 o y. From the fact that y o @ > idg we have
yoad =asoyoaoys 25y & 0Ys = ids(y).-
Furthermore, from Lemma 4.4, we have a’ o a5 = @ o y5 0 a5 = @ and so
ad'oy'=a’ocasoy=aoy=1idg.

Y/
Thus S(Hy) &= A is indeed a Galois embedding. Finally, from y; o a5 2 idq we have

[24

Ysoadsoy2aYy.

On the other hand,

Yy=yoaQoy=yoQqoysoQsOy=2qYsOUsOY.

Thus ysoy’ =ysoasoy=y. O

The following lemma is useful in the analysis of conditional and loop constructs in our quantum
while language.

LEMMA 4.6. Suppose A as an abstract domain of quantum states is well-structured. Then for any
R < D(Hy),

a([[if P[g] then S; else Sy end]](R)) = a([[assert P[g]; S1]1(R)) V a([lassert P*[4]; Soll(R))
a([[while P[g] do S end]l(R)) = \/ a ([(assert P[q]; S)" ; assert P-[g]1I(R))

i>0
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Proor. We only prove for the conditional case; the loop one is similar. Let Ty = assert P[§]; Sy
and Ty = assert P*[q]; So. Then

a([lif P[q] then S, else S, endll(R)) = a({[[T1]1(p) + [T]l(p) : p € R})
=V {a([1:1(p) + [T](p)) : p € R}
=V {a([T:1(p)) v a(T](p)) : p € R}
=V {a([T:ll(p) : p € R} v V {a([T]l(p) : p € R}
= a([[L1(R)) v a([TH1(R))

where the second and the last equalities follow from the fact that («, y) forms a Galois embedding,
and the third one from Eq. (1). O

For well-structured abstract domain A, if we are given a proper definition for the abstract op-
erator [[e]], which is assumed to be monotonic, of each basic command e € {skip, G :=10), q *=
U, assert P[q]}, then the abstract operator [S]I" : A — A for any composite quantum program
S can be defined inductively as follows: for any a € A,

(1) L80; 817 (@) = (511" o [So]" (@);

(2) [[if P[q] then S, else So end]l”(a) £ [[assert P[q]; S 1" (a) V [lassert P+ [q]; Soll* (a);

(3) [[while P[] do S end]l’ (a) £ \/,, [[(assert P[q]; S,); assert P+ [g]1]" (a).

It is easy to check that the induced abstract operator [[S]" is monotonic for any S as well. The
following theorem shows that such defined abstract operators are sound (resp. complete) if they
are sound (resp. complete) for basic commands.

THEOREM 4.7. Let A be a well-structured abstract domain of quantum states.
(1) Ifllell* is sound for all basic commands e, then [[S]I* is sound for any program S.
(2) Ifllell* is complete for all basic commands e, then [[S]I* is complete for any program S.

Proor. For clause (1), it suffices to prove by induction on the structure of S that a o [S]] <4
(ST ocx for any program S. Note that here we lift the order < # between elements of A to functions
from Q to A in an entry-wise way. The basis case is directly from the assumption.

(1) Let S = Sy; S1. By induction we have a o [[S;]] <5 [Si]]" o @ for i = 0,1. Then from the
monotonicity of [[Sy]] and [[S;]I%,

ao (S =aollsillo ISl <a [Si1" o ao (S]] < [8111° 0 [So]l* 0 & = [ST" 0 .

(2) Let S = if P[q] then S; else Sy end. Let T; = assert P[§]; S; and Ty = assert P*[q]; So. Then
by induction, we have a o (5l <4 [[Ti]]# o a fori = 0,1. Then from Lemma 4.6, for any
R C D(Hy),

ao [SI(R) = a0 [TI(R) v ao [HI(R)
<a (L] o a(R) v [T]1" o a(R) = [S1" o a(R).

(3) Let S = while P[] do Send. Let T = assert P[§]; S and Ty = assert P*[g]. Then by induction,
we have a o [[T]] <4 [T]" o @ and « o (L] <4 [[TO]]# o a. From Lemma 4.6, for any
R C D(Hy),

[SD(R) = \/ @ o [T]l o LTI (R)

i20

<a \/ L] o (ITT°) 0 a(R) = [ST" 0 (R).

i20
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Abstract interpretation, Hoare logic, and incorrectness logic for quantum programs 1:11

This completes the proof of clause (1). Clause (2) can be similarly proved. m]

The following example shows that the abstract domain S(Hy ) allows every quantum program
to have a complete abstraction.

Example 4.8. Consider the well-structured abstract domain S(Hy) of quantum states presented
in Example 4.3. Let us define for each basic command the corresponding abstract operator as fol-

lows: for any Q € S(Hy),

[[skipll*(Q) £ O
[g = [0)]*(Q) 2 {|0)g ® [¥) : [¥) € [Tra(Q)]} (3)
g «=UT*(Q) £ {Ugly) : Iy) € O}

[assert P[g]11*(Q) £ span {P,|y) : |y} € Q}.

We would like to prove that these abstract operators are all complete. First, it is easy to check that
al the sets on the right-hand side of Eq. (3) are valid subspaces of Hy. Let us take assert P[] as
an example. For any R € Q,

as o [[assert P[g]11(R)

[U{PapPy : p € R}
span {Py[y) : y) € [p],p € R}.
On the other hand, let Q" = \/ {[p] : p € R}. Then
[[assert P[g]]]* o a5 (R) = [[assert P[q]1]*(Q")
= span {P14) : 1¢) € Q')

Note that any |@) in Q” can be written as a linear combination |¢) = X; ;|1/;) where each [¢};) is
taken from the support subspace of some state in R; that is, |¢/;) € [p;] while p; € R. Thus

P4lp) € span {Ply) - [¢) € [p].p € R},

and consequently, [[assert P[§]]]*oas(R) C asol[assert P[§]1(R). The other direction of inclusion
is obvious.

From Theorem 4.7, such defined abstract operators can be extended to any composite quan-
tum programs, and the extended ones are also complete. In the following, we show a more di-
rect way to define these complete abstract operators. Note that for any quantum program S, the
denotational semantics [[S]] can be regarded as a completely positive and trace non-increasing
super-operator over the set D(Hy) of partial density operators. Thus by Kraus representation
theorem [Kraus et al. 1983], there exist a finite set of Kraus operators E, k € K, such that for any
p € D(Hy), [SNl(p) = Xk Ekaz. The abstract operator corresponding to S can then be defined
as follows:

([SI*(Q) = span{Ex|y) - k € K, |} € Q}.

Furthermore, this definition coincides with the abstract operators defined in Eq. (3). Note that

[1sT(p)] = {Zﬂkpﬂ—span{ffkm ke K. |y) € lpl}.

Following similar lines of the proof for completeness of [[assert P[3]]]* above, we can show that
o [SII(R) = [[SII* o as(R)

for any program S and set of states R. In other words, [[S]]* is indeed the complete abstraction of

(LSI.
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1:12 Yuan Feng and Sanjiang Li

To conclude this subsection, we show a useful property of complete abstraction of functions on
quantum states.

LEMMA 4.9. Let A be a well-structured abstract domain for quantum states. Let a; € A for each i,
and f* : A — A be the complete abstraction of operator f : D(Hy) — D(Hy). Then

r )=\ £ (@),

Proor. Let R; = y(a;). Then from the assumption that (e, y) forms a Galois embedding between
Q and A, we have a; = a(R;). Note that a(|J; R;) = V; @(R;). Thus

FF(Via(R)) = ff(a(U; R)) = a(f(U; R:))
=a(U; f(R)) = V;a(f(R))
=V ff(a(Ry)). a

4.2 Well-structured quantum assertions

Following the common practice of quantum Hoare logics in the literature, for the purpose of verifi-
cation we only assume a semantic set of assertions A for quantum states and a satisfaction relation
E on D(Hy) X A. However, we do assume some structure of (A. Firstly, let a partial order <4 on
A be defined as follows: a < # a’ iff for any p € D(Hy), p | a implies p |= a’. Furthermore, to de-
scribe conjunction and disjunction of assertions, we assume that A constitutes a complete lattice
and let the meet and join be denoted by A and V, respectively. Finally, we make some assumptions
on [ to reflect the linear structure of D (Hy).

Definition 4.10. The complete lattice A as a set of quantum assertions for D (Hy) is said to be
well-structured, whenever

(1) if p Faforalla € Awhere A C A, then p E A A; and
(2) forany a € A, p; € D(Hy), and x; > 0 with }}; x;p; € D(Hy),

le-pilza ifft Vi, p; Fa.
i

Example 4.11. Recall the complete lattice
(S(WV)’ c v, N, {0}: WV)

of all subspaces of Hy defined in Example 4.3. We have shown that it is a well-structured abstract
domain for quantum states in D (Hy). Now we show that it can also serve as a well-structured
set of quantum assertions by naturally defining the satisfaction relation = as follows: for any

p € D(Hy)and P € S(Hy),
pEP iff [p]CP.

Firstly, for any subspaces P and Q, P C Q iff for any p € D(Hy), [p] € P implies [p] C Q.
Secondly,if [p] C Pforall P € Awhere Ais aset of subspacesin S(Hy ), then obviously [p] € A A
as well. Finally, for any P € S(Hy), p; € D(Hy), and x; > 0 with ; x;p; € D(Hy),

e

Thus S(Hy) as a set of quantum assertions is indeed well-structured.

CP iff Vi[p]CP.
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4.3 Well-structured abstract domains v.s. well-structured assertions
Now we examine the relationship between well-structured abstract domains and assertion sets for

quantum states. Firstly, we show how to transform a well-structured abstract quantum domain
into a well-structured assertion set for quantum states.

LEMMA 4.12. Let (A, <a,V, A, L, T) be a well-structured abstract domain for quantum states, with
a:Q — Aandy: A — Q being the abstraction and concretisation functions respectively. Then the
satisfaction relation |= on D(Hy) X A, defined as for any a € A and p € D(Hy),

pEa iff peyla),
turns A into a well-structured set of assertions for quantum states.
Proor. First, from the fact that (@, y) forms a Galois embedding between Q and A, for any
a,a € A,
a<gad © yl@cyld) & VpplEaimpliespEa.
We now prove that the two conditions in Definition 4.10 are satisfied. To show (1), we note that

for any A € A and p € D(Hy),

VacApEa = VaeApey(a)
= VacAua(p)<aa (Galois connection)
= alp)<a NA
= pey(AA (Galois connection)
= pENA
Furthermore, (2) is directly from Lemma 4.2(2). O

Conversely, a well-structured set of quantum assertions can be easily transformed into a well-
structured abstract domain for quantum states as well.

LEmMMA 4.13. Let (A,<a,V, A, L, T) be a well-structured set of quantum assertions, with = on
D(Hy) X A being the satisfaction relation. Then the pair of functionsa : Q - A andy : A — Q,
defined as for any a € A and R € D(Hy),

y(a@) ={p e D(Hy):p [ a}
a(R) /@beﬂ;Rgﬂm}

turn A into a well-structured abstract domain for quantum states.

>

Proor. We have to prove that the two conditions in Definition 4.1 are satisfied. First, from the
assumption that |= is consistent with <, it is easy to prove that both y and a are monotonic
functions. Second, to show («, y) forms a Galois connection between Q and A, it suffices to prove
that foranya € Aand R C D(Hy),R C y(a) iff ®(R) <z a.Let A ={b € A:RC y(b)}. Then

RCy(a) = acAg

= «a(R) = /\AR <4 a.

Conversely, suppose a(R) <4 a.Forany p € Rand b € Ag, we have p € y(b), so p E b. Thus from
the fact that A as an assertion set is well-structured, p = A Ag = a(R) as well. By the assumption
a(R) <A a, we have p £ a, and so p € y(a) as desired. Finally, for any a, we can show that
a(y(a)) = a from the fact that the satisfaction relation = is consistent with the partial order < 4.

From the fact that («, y) forms a Galois embedding between Q and A, the remaining part of the
proof is then directly from Lemma 4.2. m]
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(Exp) {a} e {[[ell*(a)} where e € {skip, ¢ := |0), § *= U, assert P[q]}
(Seq) {a} So {a’}, {a'} $:1 {b} (Meas) {a} assert P[q]; Si {b1}, {a} assert P*[g]; Sy {bo}
4 (a) So; 51 {b} {a} if P[q] then S, else S, end {by V b1}
asga,{a'}yS{b'}, b <ab ) {a} assert P[g];S {a}, {a} assert P*[q] {b}
(o) {a} S {b} (While) {a} while P[q] do S end (b}

Table 1. Proof system for partial correctness induced by abstraction domain (A, < #).

Example 4.14. We have already shown in Examples 4.3 and 4.11 that the complete lattice
(8(7{‘/)’ GV, N, {O}’ 7-{V)

can be both a well-structured abstract domain and a well-structured set of assertions for quantum
states. Actually, it can be easily seen that the Galois embedding (s, ys) defined in Example 4.3
and the satisfaction relation = defined in Example 4.11 satisfy the transformations stated in Lem-
mas 4.12 and 4.13.

5 QUANTUM HOARE LOGIC V.S. ABSTRACT INTERPRETATION

This section is devoted to the relationship between Hoare/incorrectness logic and abstract inter-
pretation for quantum programs written in the while-language presented in Sec. 3.

5.1 Hoare logic induced by abstract interpretation
Let A be a well-structured abstract domain of program states, and an abstract monotonic operator
[[e]l* be defined for each basic command e € {skip, ¢ := |0), § *= U, assert P[§]}. Then a
Hoare-type proof system is naturally induced as follows:

(1) Take A to be the set of assertions. Furthermore, for any p € D(Hy) anda € A, p E aiff
p € y(a). From Lemma 4.12, A as a set of assertions is also well-structured.

(2) A correctness formula {a} S {b} is valid, denoted  {a} S {b}, if [SIl(y(a)) C y(b); that
is, y(b) is an over-approximation of [[SIl(y(a)). From the assumption that (a,y) forms a
Galois embedding, this is equivalent to [S]]”(a) <4 b where [S]]” = a o [[S]] oy is the best
abstraction of [[S]] in A.

(3) The proof system (for partial correctness) is presented as in Table 1. A correctness formula
{a} S {b} is said to be derivable, denoted  {a} S {b}, if it has a proof sequence in the logic
system.

Recall that such a proof system is said to be sound if + {a} S {b} implies = {a} S {b} for any
correctness formula {a} S {b}; while it is relatively complete if the other direction of implication
holds. The following theorem gives a close relationship between an abstract interpretation and the
Hoare-type logic system induced by it.

THEOREM 5.1. Let A be a well-structured abstract domain of quantum states.

(1) Ifthe abstract operator [[ell” is sound for each basic command e, then the induced proof system
presented in Table 1 is sound.

(2) If the abstract operator [[ell* is complete for each basic command e, then the induced proof
system is both sound and relatively complete.
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ProoF. For the first part, we have to prove that whenever + {a} S {b}, then [[STI(y(a)) C y(b)
or equivalently, [[S1°(a) < b. This can be done by induction on the proof length of  {a} S {b}.
For the last step of the proof, we have the following cases:

(1) Rule (Exp) is used. In this case, S = e for some basic command e, and b = [[e]]*(a). The result
then follows from the assumption that [[e]l* is sound; that is, [[ell (y(a)) € y([lell*(a)).
(2) Rule (Seq) is used. By induction, [So]l(y(a)) € y(a’) and [S;]I(y(a’)) € y(b). Thus

[[So; 51]]()/((1)) = [[51]]([[50]]()/((1))) C y(b).
(3) Rule (Imp) is used. Then the result follows from the monotonicity of [S]]® for all program S.
(4) Rule (Meas) is used. Let T; = assert P[g]; S; and Ty = assert P*[q]; So. By induction, we have
[T;11°(a) <4 b; for i = 0, 1. Thus from Lemma 4.6,
[lif P[g] then S else Sy end]l®(a) = [Ty]1°(a) v [T111°(a) < bo V by.
(5) Rule (While) is used. From induction hypothesis, we have
[[assert P[G]; S’ (a) <4 a, [lassert P~[g]1]?(a) < b.

Let T; = (assert P[q];S)’; assert P1[G] where i = 0,1,.... By induction on i we can show
[T;11°(a) <4 b for all i > 0. Thus from Lemma 4.6,

([while P[g] do S end]l®(a) = \/ [(T;11%(a) <a b.
i20
For the second part, suppose [[e]]* is complete for any basic command e. Then from Theorem 4.7,
the induced abstract operator [[S]]* is complete for any quantum program S. Thus it must be the
best abstraction; that is [S]]* = [[S]]*. Now we have to show that whenever [S]]?(a) <4 b, then
+ {a} S {b}. From Rule (Imp), it suffices to show
- {a} S {[ST*(a)}
by induction on the structure of S. The basis case where S = e for some e € {skip, § := |0), § *=
U, assert P[]} is directly from Rule (Exp). For other cases,
(1) S = Sp; S1. This follows from the fact that complete abstractions are closed under operator
composition; that is, [[So; S1117 = [[S,11% o [[S,]1°.
(2) S = if P[q] then S; else Sy end. Let T; = assert P[q];S; and Ty = assert P*[q]; So. Then by
induction, we have
FHa T (@), +{a} T {[R] ()}
Furthermore, from Lemma 4.6,
[sT%(a) = a0 [Till o y(a) v @ o [Tl 0 y(a) = [T111°(a) v [T, ]*(a).
Thus the result follows from Rule (Meas).
(3) S = while P[G] do S end. Let T = assert P[§]; S, Ty = assert P*[G],and a* = \/ 5, ([T1®)¥(a).
Then by induction,
F{a} T{IT]%(a")},  +{a"} T {[T]°(a")}.
From Lemma 4.9, we have [T1®(a*) = \V;5,([[TT?)"*'(a) <4 a* and
[1]%(a") = \/ (1% o (LTT1%) (a) = [[ST*(a)
i>0

where the second equality is from Lemma 4.6. The result then follows from Rules (Imp),
(While), and the fact that a <4 a*. O
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Example 5.2 (Hoare logic induced by subspace abstract interpretation). Recall from Examples 4.3
and 4.8 that the subspace abstract domain S(Hy) for quantum states is well-structured, and the
abstract operators for basic commands defined in Eq. (3) are complete. Thus by Theorems 5.1 the
induced Hoare-type proof system presented in Table 1 is both sound and relatively complete when
assertions are taken from S(Hy).

Note that the applied quantum Hoare logic proposed in [Zhou et al. 2019] also uses elements
of S(Hy) as assertions. A correctness formulas {P} S {Q} is correct (with respect to partial cor-
rectness), denoted |z {P} S {Q}, if for any p € D(Hy), whenever [p] C P, [[[S]](p)] c Q.
Using the concretisation function ys from S(Hy) to Q defined in Example 4.3, this is equivalent
to [[ST(ys(P)) C ys(Q), coinciding with our correctness definition.

We now compare our proof system with the applied quantum Hoare logic. First, let us examine
the inference rules for initialisation G := |0):

(Init)  {P} g := |0) {10)(0| ® [Trq(P)]} (Init-ap) {Iz ® f(Q)} :=0) {Q}.

The left one is from our system, while the right one is taken from [Zhou et al. 2019] where

f(Q) = VAT € S(Hy) : 10)¢{0| ® T < Q}.

We now prove that with the help of Rule (Imp), these two rules are indeed equivalent:
(1) (Init) = (Init-ap). Suppose Q is given. Let P = I; ® f(Q). Then [Trq(P)] = f(Q). Thus from
(Init) we have {P} ¢ := [0) {|0)4(0| ® f(Q)}, and so (Init-ap) follows from (Imp) by noting
that |0)4(0] ® f(Q) < Q.
(2) (Init-ap) = (Init). Suppose P is given. Let Q = [0)4(0| ® |-Trq(P)-|. Then f(Q) = |-Trq(P)].
Thus from (Init-ap) we have {I; ® [Trq(P)]} g = |0) {Q}, and so (Init) follows from (Imp)
by noting that P C I; ® [Trq (P)].

It is evident that the proof system of [Zhou et al. 2019] works in a backward manner; that is, it
tries to give the weakest precondition of a postcondition. In contrast, our logic system in Table 1
works in a forward manner by trying to give the strongest postcondition of a precondition. Due to
this complementary nature, we believe that these two systems will be useful in different applica-
tions.

Next, let us examine the abstract interpretation for quantum circuits proposed in [Yu and Palsberg
2021] where tuples of subspaces of some subsystems, instead of subspaces of the whole system,
are regarded as abstract elements for quantum states.

Example 5.3 (Local-subspace abstract domain). Let a signature o be a tuple of proper subsets of
V; formally, 0 £ (s1,---,Sm) where m > 1 and for each i, s; C V. Then the abstract subspace
domain with signature o is given by

(‘S(ﬂV)o‘s Eo, U, Moy Lo To‘)
where
S(Hy)s = {(Pl, -+, Py) : Vi, P; is a subspace 0f7'{s,~} ,

the partial order C, and the lattice operators Li, and M, are all defined in the entry-wise way,
1o = (05,--+,0s,), and T, = (I, -+, 1, ). Again, this domain is a complete lattice. When
each s; contains exactly two quantum variables, this is similar to the octagon domain for classical
programs.
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The abstraction and concretisation functions are defined naturally as follows. For any P £
(P1, - ,Pp) € S(Hy)s and R € Q,

a5 (R) = (Q1,- -, Qm), where Q; = V {[pi] : p € R} and
pi £ Try\,(p) is the reduced state of p in the subsystem s;;

Yo(P) £ ﬂ ys(Py) = ﬂ {p e D(Hy) : Tpl S Pi@In,}.

i=1
Intuitively, a,(R) is the tuple of subspaces in which each component subspace is spanned by all
the quantum states in R restricted on the corresponding subsystems, while y,(P) is collectively
determined by all the local subspaces P; in P when P; is regarded as a subspace of the whole

quantum system V. In other words, S(Hy ), is essentially the direct product of the individual
abstract domains S(H,).

We now show that for each signature o, S(Hy ), is well-structured. First, for any PeS (Hv)o
and R € Q,

a(R)C, P & Vi \/{[pil:peR}C P

& ViVp € R [Tty (p)] € P;

& Vp eRVi[p] CP®Iyg

< RC ya(ﬁ)

where the third equivalence follows from the fact that [p] C [Trv\ 5 ( p)] ®Iy\s, and {Trv\si ( |'p'|)] =
|-TrV\Si ( p)] for all p € D(Hy). Furthermore, o, is surjective. Thus the pair (5, y) forms a Galois
embedding between Q and S(Hy ), Second, for any k = 1,--- ,m, p; € D(Hy), and x; > 0 with
2ixipi € D(Hy),

] o oo e on- )

It is obvious that the best abstraction [[S]]l; = a5 0 [[S]] oy, is sound for any quantum program S.
Thus from Theorem 5.1, the proof system presented in Table 1, when [[e]]* in Rule (Exp) is replaced

by [[e]l%, is sound for quantum assertions taken from S(?y),. However, as the following counter-
example shows, [[S]]”. is in general not a complete abstraction for [[S]]. For simplicity, we consider
the case where V = {q1,q2,q95} and 0 = ({q1, 92}, {q2, q3}). Let |®*) = \%(lOOO) +[111)),U be a
unitary operator on D (Hy) which maps |®*) to [000) and [®7) to [111), and S £ q1,¢2,q3 *=U
Let " = |®")(P*|. Note that ®* can be regarded as either the density operator corresponding to
the pure state |®*) or the projector onto the one dimensional subspace spanned by |®*). Then

ag o [[SH(@*) = (P PP ) and o, (®") =

q1,92° ~ 92,93 ( q1,92° l]z%)

where P = span{|ii)}, i = 0,1, and P~ = span{|00),|11)}. However, since ®~ € y,(a,(®")), we
have

[111)(111] € [[ST] 0 y5 © ats (D).
Thus if [[S ]] o ay(®*) = (Q1, Q) then it must hold that [11) € Q; and |11) € Q.. Consequently,
ags o [[S ]](<I>+) + S ]]b o a, (P*) as desired.

As [[S]] is not a complete, Theorem 5.1 tells us nothing about the completeness of the induced
Hoare system. Actually, we are going to show in Sec. 5.3 that there does not exist a relatively
complete Hoare system which takes S(Hy ), as the set of assertions.
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(Exp-In) [a] e [[[e]l*(a)] where e € {skip, G :=|0), § += U, assert P[g]}

[a] So [a'], [a'] S1 [b]
[a] So; S1 [b]
a <qaa [d]S[b],b<ab

[a] S [b]

[a] assert P[g];S; [b1], [a] assert P*[g];So [bo]
[a] if P[q] then S; else Sp end [bg V b;]
Vi, [a;] assert P[q]; S [ai+1], [ai] assert P*[q] [bi]
[ao] while P[g] do S end [V ;5 bi]

(Seq-In)

(Meas-In)

(While-In)

(Imp-In)

Table 2. Proof system for incorrectness logic induced by abstract domain (A, < #).

5.2 Incorrectness logic induced by abstract interpretation

In the previous section, we show how an abstract interpretation of quantum programs is closely
related to a quantum Hoare logic induced by it. Interestingly, a quantum incorrectness logic system
can also be induced by a quantum abstract interpretation.

Let A be a well-structured abstract domain of program states, and an abstract monotonic oper-
ator [[e]]” be defined for each basic command e € {skip, G := |0), § *= U, assert P[§]}. Then an
incorrectness proof system is naturally induced as follows:

(1) Take A to be the set of assertions, and the satisfaction relation is similarly defined as for
the Hoare logic case in the previous section. Again, A as a set of assertions is also well-
structured.

(2) A specification formula [a] S [b] holds, denoted i, [a] S [b], if b <x [S1I®(a). That is, b
is an under-approximation of a([[S]] o y(a)), the abstraction for the set of reachable states
of S starting in y(a).

(3) The proof system is presented as in Table 2. Denote by Fi, [a] S [b] if the formula [a] S [b]
can be deduced from it.

Compared with the Hoare logic system in Table 1, the main difference lies in the consequence
rule. In Rule (Imp), we strengthen preconditions and weaken postconditions, while in Rule (Imp-In)
we weaken preconditions and strengthen postconditions. This is due to the fact that Hoare logic
reasons about over-approximation while incorrectness logic reasons about under-approximation
of program semantics.

As abstract interpretation usually provides an over-approximation for program analysis, a sound
abstraction does not necessarily guarantee the soundness of the induced incorrectness logic. How-
ever, as the following theorem states, a complete abstract interpretation indeed guarantees that
the induced incorrectness logic is both sound and relatively complete.

THEOREM 5.4. Let A be a well-structured abstract domain of quantum programs. If the abstract
operator [[ell* is complete for each basic command e, then the induced incorrectness logic system
presented in Table 2 is both sound and relatively complete; that is,

kin [a] S[b]  iff  [Fin [a] S [b]
for any specification formula [a] S [b].

ProoF. First, from Theorem 4.7, if [[e]]* is complete for each basic command e, then [[STI* is

complete for any program S. Thus [[S]]* = [[ST°.

To prove the soundness, we have to show that whenever ki, [a] S [b], then b <4 [[S]1°(a). This
can be proved by induction on the proof length of i, [a] S [b]. For the last step of the proof, we
have the following cases:
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(1) Rule (Exp-In) is used. In this case, S = e for some e € {skip, q := |0), g *= U, assert P[§]},
and b = [[e]]®(a). The result then trivially follows.

(2) Rule (Seq-In) is used. This follows from the fact that complete abstractions are closed under
operator composition; that is, [[Sy; S 112 = [[5:11° o [[S]1°.

(3) Rule (Imp-In) is used. Then the result follows from the monotonicity of [S]]? for all program
S.

(4) Rule (Meas-In) is used. Let T; = assert P[q]; S; and Ty = assert P*[g]; So. By induction, we
have b; <4 [[Ti]]b(a) for i = 0, 1. Thus from Lemma 4.6,

bo V by <a [T]1°(a) v [T1]1°(a) = [[if P[] then S, else S, end]]®(a).

(5) Rule (While-In) is used. Let T = assert P[g];S and Ty = assert P*[q]. From induction hy-
pothesis, we have for any i > 0, a;x; <# [T11°(a;) and b; <4 [T,]1°(a;). By induction on i
we can show a; <z ([[T11%)!(ay) for all i > 0. Thus from Lemma 4.6,

\/ b <a \/ [ (ar) < \/ [B]° o ([T11%)! (a0) = [[while P[g] do S end]l® ().

i20 i20 i20

For the completeness part, we have to show that whenever b < [[S]1°(a), then Fi, [a] S [b].
First, from Rule (Imp-In), it suffices to show

Fin [a] S [[[ST1(a)]

by induction on the structure of S. The proof is similar to the corresponding part of Theorem 5.1
for Hoare logic, except for the while loop which we prove as follows.

Let S = while P[g] do S end, T = assert P[q];S, and Ty = assert P*[g]. By induction, for any
i>0,

Fn [(LTD) ()] T (LTI ™ (@], Fin [(LTT") (@] T [[T1° o (LTT%)"(a)].
Thus from (While-In),
Fin [a] S T\/ (517 o (LTT?) (a)],
i>0

and the result follows from Lemma 4.6 and the fact that complete abstractions are closed under
operator composition. |

Example 5.5 (Quantum incorrectness logic induced by subspace abstract interpretation). Again, as
the subspace abstract interpretation defined Example 4.8 is complete, from Theorems 5.4 we know
that the induced incorrectness logic system presented in Table 2 is both sound and complete when
assertions are taken from S(Hy ).

The incorrectness logic proposed in [Yan et al. 2022] also uses elements of S(Hy ) as assertions.
A specification formula [P] S [Q] is valid if for any p € D(Hy ), whenever P C [p],Q C [[[S]](p)]
It is easy to see that this is equivalent to Q < [[SII®(P) where the best abstraction [[S]]® is de-
fined using the abstraction and concretisation functions presented in Example 4.3, coinciding with
our correctness definition. Again, the difference between our proof system and the one proposed
in [Yan et al. 2022] is that the former works in a forward manner while the latter in a backward
manner.

5.3 Abstract interpretation induced by Hoare logic

Now we consider the reverse problems of deriving a quantum abstract interpretation from a quan-
tum Hoare/incorrectness logic. Let A be a well-structured set of quantum assertions, and PS be a
Hoare-type proof system (of partial correctness) for quantum programs, where the assertions are
taken from A. Without loss of generality, we assume that PS consists of an axiom (schema) for
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each basic command and a proof rule for each program construct such as sequential composition,
conditional branching, and while loop. Furthermore, it provides a consequence rule of the form

aga,{a}S{b}, b <ab
{a} S {b}
for precondition strengthening and postcondition weakening. A correctness formula {a} S {a’} in
PS is semantically valid, written ps {a} S {a’}, if for any p € D(Hy), p E aimplies [STI(p) E a’.
It is derivable, written Fps {a} S {a’}, if it has a proof sequence in PS. Then an abstract interpreta-
tion for quantum programs is naturally induced by PS as follows:

o Take A to be the abstract domain of quantum states, and define the pair of abstraction-
concretisation functions («, y) as in Lemma 4.13. Then (A as an abstract domain is also well-
structured.

e For any quantum program S, let [S]]* : A — A with

[(s*(a) = \fa’ € A : +ps {a} S {a'}} (4)

for any a € A be the abstract operator of [[S]].

Thanks to the complete lattice structure of the assertion set A, the strongest postconditions
always exist in PS. For any quantum program S and a € A, let

spe(S,a) £ /\{a' € A Fps {a} S {a'}}. )

We now prove that spc(S, a) is the strongest postcondition of a with respect to S. Furthermore, it
coincides with the best abstraction of S.

LEMMA 5.6. For any quantum program S and a € A,

(1) Eps {a} S {spc(S,a)};

(2) forany a’ € A, ifps {a} S {a’} then spc(S,a) <q a’;

(3) spe(S, a) = [[S11°(a) where [[S]1” = a o [[S]] o y is the best abstraction of [[S]].

Proor. Firstly, clause (2) is easy from Eq. (5). To prove (1), take any p with p | a and a’ €
A.If Eps {a} S {a’}, then [[SIl(p) E a’. Thus [S]l(p) E spc(S,a) from the first condition of
Definition 4.10.

To prove (3), we first observe that ps {a} S {[[S]”?(a)}. Thus spc(S,a) <x [SI?(a) from (2).
For the converse part, take any a’ € A with ps {a} S {a’}. Then [[S]] o y(a) C y(a’), which
implies that [S]1?(a) <# a’. Thus [[S]1°(a) <# spc(S, a) from the arbitrariness of a’. O

The following theorem gives a close relationship between a Hoare-type logic system and the
abstract interpretation induced by it.

THEOREM 5.7. Let A be a well-structured set of quantum assertions, and PS a Hoare-type logic
system for quantum programs with assertions taken from A.
(1) IfPS is sound, then the induced abstract interpretation is sound.
(2) IfPS is sound and relatively complete, then the induced abstract interpretation is complete.
Proor. For any a € A and quantum program S, let
F(S,a) 2{a € A:rps {a} S{a’}} and Fr(S,a) 2 {a" € A :|ps {a} S{a'}}.

Now to prove (1), note that if PS is sound then F,(S,a) € F.(S, ). Thus [S11®(a) <# [S]I¥(a) by
Lemma 5.6(3), which implies that the abstraction [[S]]* is sound.

To prove (2), note that if PS is relatively complete then FL(S,a) € F.(S,a). Thus [S]I*(a) <x
[[S11%(a), which, together with (1), implies that [[S]I* is the best abstraction of S. The rest of the
proof consists of four steps.
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(i) As the first step, we prove that for any S, and S,
([[Sy; S. 11 = [[S,117 o [[S,117.

For any a € A, we know from the completeness of PS that +ps {a} Si;Ss {[[S1;S:11*(a)}.
Furthermore, as there is only one proof rule for sequential composition, there must exist

ai, b € A such that
as<aai, tes{a}Si{b}, tes {b}S:{a’}, @ <a [Si;S:l"(a).
Then
1.1 o [0 (@) <aa [0 o 5,11 (ar)
<a [S:1 (b)
<aa <z [S;;S.1"(a).

The other direction that [Sy; S;11¥(a) <4 [So]I¥ o [[S111* (a) is easy from the fact yoa >4 idq.
(if) The next step is to show that for any set R of quantum states, we can always find a single
state (not necessarily in R) which shares the same abstraction with R. Specifically, we have

Cramm 5.1. ForanyR C D(Hy), there exists a single state pr € D (Hy) with Tr(pr) = 1 such
that

a([LSN(pr)) = a([LSI(R))
for all quantum program S. In particular, a(pr) = a(R).
Proor oF CraM 5.1. As Hy is finite dimensional, we can always find a set of states py, ..., p,

in R, Tr(p;) = 1, such that

mm=VHMmem=Qmw
i=1

Let pr = 21, pi/n. Then for any S,
%mmm»uqz @J V% I(pi)) = as([ST(R)).
i=1
Then a([[S11(pr)) = a([[SII(R)) from Lemma 4.4. O

(iii) The third step is to show that our while-language is powerful enough to prepare an arbitrar-
ily given state. Specifically, we have

Cram 5.2. For any p € D(Hy) with Tr(p) = 1, there exists a quantum program S” which
turns any quantum state into state p; that is, for all o € D(Hy),

([s*1l(0) = Tr(o) - p.
Consequently, for allR € D(Hy) and program S,
a([[s7; SII(R)) = a([[STI(p))
whenever R # {0}.

Proor oF CrLaim 5 2. Let p = Z Y2l (Wil, d = 2!V be the spectral decomposition of
p where {|¢;) : i = .d - 1} constitute some orthonormal basis of Hy. Let |[¢/) =
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Z?:_OI VAi|¢:). From the assumption that Tr(p) = 1 we know that |¢/) is a valid quantum
(pure) state. Thus we can find a unitary operator U on Hy such that U|0) = |¢/). Let
N
q:=10); ¢+="U;
if Py[q] then
skip;
else if P;[g] then
skip;

else
end
end
where § = V,and for any i = 0,...,d — 1, P; = |;){¢i|. Note that for any o € D(Hy),
[[g := [0)])(c) = Tr (o) - |0)(0].

Then it is easy to show that [[S”]l(¢) = Tr(o) - p. The last part of the claim follows from the
linearity of [[S]]. ]

(iv) Now for any quantum program S, R C D(Hy), and a € A with y(a) # {0},

ao [SI(R) = a([[ST(pr)) Claim 5.1
=a o [[SPr; S]] o y(a) Claim 5.2
= [[SP&; ST (a) [[-T1* is the best abstraction
= [[STI¥ o [[SP=])*(a) Step (i)
=[S oa o [[sP*] o y(a)
= [[S]* o a(pr) Claim 5.2
= [[ST)¥ o a(R). Claim 5.1

Thus « o [S]] = [[S]I¥ o « as desired. O

Example 5.8 (Abstract interpretation induced by applied quantum Hoare logic). Recall from Exam-
ple 5.2 that the applied quantum Hoare logic [Zhou et al. 2019], which is both sound and relatively
complete, uses elements of S(Hy) as assertions. Thus by Theorems 5.7, the induced abstract in-
terpretation on subspace domain is complete, where the abstraction and concretisation functions
are defined in Lemma 4.13 and the abstract operators defined in Eq.(4). It is easy to check that this
induced abstract interpretation for quantum programs is exactly the one defined in Example 4.8.

Example 5.9. Let us revisit Example 5.3. We have already shown that although the local-subspace

abstract domain S(Hy ), is well-structured for any signature o, the best abstraction [[S ]]g isin gen-
eral not complete for [[S]]. Thus from Theorem 5.7, it is impossible to have a sound and relatively
complete Hoare-type logic system with elements in S(Hy ), being taken as assertions.
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5.4 Abstract interpretation induced by incorrectness logic

Let A be a well-structured set of quantum assertions, and IN an incorrectness logic system for
quantum programs, where the assertions are taken from A. Similar to the case of Hoare logic in
the last subsection, we assume that IN consists of an axiom (schema) for each basic command and
a proof rule for each program construct, except that the consequence rule is now of the form

a<ga,[al S[b], b <qb
[a’] S [b7]

for precondition weakening and postcondition strengthening. A correctness formula [a] S [a] in
IN is semantically valid, written |y [a] S [a’], if

@ <a [\{beA:VpEalslp) kb (6)

Note that the right-hand side of Eq.(6) denotes the strongest assertion which is satisfied by all
reachable states starting from some state satisfying a, and a’ provides an under-approximation for
it. The formula [a] S [a’] is derivable, written iy [a] S [a’], if it has a proof sequence in IN.

An abstract interpretation for quantum programs is then naturally induced by IN as follows:

e Take A to be the abstract domain of quantum states, and define the pair of abstraction-
concretisation functions («, y) as in Lemma 4.13. Then A as an abstract domain is also well-
structured.

e For any quantum program S, let [S]]* : A — A with

[S1¥(a) = \/{a' € A : iy [a] S []} (7)

for any a € A be the abstract operator of [[S]].

For any quantum program S and a € A, let

wpe(S,a) £ \/{a' € A iy [a] S [¢']). ®)

We now prove that wpc(S, a) is the weakest postcondition of a with respect to S, and it is exactly
the best abstraction of S.

LEMMA 5.10. For any quantum program S and a € A,

(1) E [a] S [wpe(S, a)];
(2) foranya’ € A, if b [a] S [a] then a’ < g wpe(S, a);
(3) wpe(S, a) = [STI%(a).

Proor. Note that from the definitions of ¢ and y in Lemma 4.13, we have
[(s1*(a) = a o ST o y(a)
= Afpea:IsToy@ cy(b)
= \{beA:Vpeya),lslip) e y(b)}
= A\{peA:vpkalslp) kb}.

Thus iy [a] S [a'] iff @’ <4 [S1®(a), and so wpc(S, a) = [[S]1°(a) from Eq. (8). Finally, (1) and
(2) follow from (3) directly. O

The following theorem gives a close relationship between a quantum incorrectness logic system
and the abstract interpretation induced by it.
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THEOREM 5.11. Let A be a well-structured set of quantum assertions, and IN an incorrectness logic
system for quantum programs with assertions taken from A. IfIN is sound and relatively complete,
then the induced abstract interpretation is complete.

Proor. For any a € A and quantum program S, let
G.(S,a) = {a’ e A:rn[a] S[a’]} and G(S,a) =2{a € A: | [a] S[d']}.

As IN is sound and relatively complete, we have G.(S,a) = Gg(S,a). Thus [[S]I*(a) = [[s1%(a)
from Lemma 5.10(3), and so [[S]]* is the best abstraction of S.
Let S; and S; be two quantum programs. From Lemma 5.10 and completeness of IN, we have for

alla € A,
biv [a] St [[[S1]F(@)] and  Fiv [[S11)F(@)] Sz [[LS211F o [[S:11% (@)1,

and so +iy [a] Si; Sz [[[S2]1F o [[S111¥(a)] from the rule for sequential composition. Thus [[S,]]* o
[(S:11*(a) <a [[S1;S21I*(a) from Eq. (7). However, from the fact that y o & >¢ idg, we know that
[(S1; S (@) <a [[S211* o [[S111*(a). Thus

([(S1; 811 = [[S.11* o [[S:]1*.

The rest of the proof is the same as in Theorem 5.7 (starting from the second step). m]

Example 5.12 (Abstract interpretation induced by quantum incorrectness logic). Recall from Ex-
ample 5.5 that the quantum incorrectness logic presented in [Yan et al. 2022] is both sound and
relatively complete. Thus by Theorems 5.11, the induced abstract interpretation on subspace do-
main is complete, where the abstraction and concretisation functions are defined in Lemma 4.13
and the abstract operators defined in Eq.(7). It is easy to check that this induced abstract interpre-
tation for quantum programs is also the one defined in Example 4.8.

Similar to Example 5.9, Theorem 5.11 also implies that it is impossible to have a sound and
relatively complete incorrectness logic system with elements in S(Hy ), being taken as assertions.

To conclude this section, we note the following corollary, which can be directly shown from
Theorems 5.1, 5.4, 5.7, and 5.11.

COROLLARY 5.13. Let A be a well-structured set of assertions for quantum states. The following
two statements are equivalent:

(1) there exists a sound and relatively complete quantum Hoare logic system;

(2) there exists a sound and relatively complete quantum incorrectness logic system.

6 CONCLUSION

We have shown a close relationship between abstract interpretation and Hoare/incorrectness logic
for quantum programs, when the abstract domain and the set of assertions for quantum states are
well-structured. With this relationship, we obtain sound and relatively complete Hoare logic and
incorrectness logic for quantum programs. The induced logic systems are in a forward manner,
complementing the (backward) applied quantum Hoare logic and incorrectness logic proposed in
the literature. Conversely, our result also implies the non-existence of any sound and relatively
complete Hoare or incorrectness logic for quantum programs if tuples of local subspaces are taken
as assertions for quantum states.

For future work, we plan to consider quantitative assertions where a quantum state satisfies a
property with some degree (a number in [0, 1]). Natural candidates for such assertions are her-
mitian operators between 0 and the identity, as widely used in the expectation-based quantum
Hoare logics. To this end, we have to first establish a theory of abstract interpretation when such
hermitian-operator assertions are regarded as abstraction of quantum states.
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