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We present our recent high precision calculations [1, 2] of the first moment of nucleon isovec-

tor polarized, unpolarized and transversity distributions, i.e., momentum fraction, helicity and

transversity moment, respectively. We use the standard method for the calculation of these mo-

ments (via matrix elements of twist two operators), and carry out a detailed analysis of the sources

of systematic uncertainty, in particular of excited state contributions. Our calculations have been

performed using two different lattice setups (Clover-on-HISQ and Clover-on-Clover), each with

several ensembles. They give consistent results that are in agreement with global fit analyses.
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Ensemble 𝑎 𝑀𝜋 𝐿3 × 𝑇 𝑀𝜋𝐿 𝜏/𝑎 𝑁𝑐𝑜𝑛 𝑓

ID (fm) (MeV)

𝑎15𝑚310 0.1510(20) 320.6(4.3) 163 × 48 3.93 {5, 6, 7, 8, 9} 1917

𝑎12𝑚310 0.1207(11) 310.2(2.8) 243 × 64 4.55 {8, 10, 12, 14} 1013

𝑎12𝑚220 0.1184(09) 227.9(1.9) 323 × 64 4.38 {8, 10, 12, 14} 1156

𝑎12𝑚220𝐿 0.1189(09) 227.6(1.7) 403 × 64 5.49 {8, 10, 12, 14} 1000

𝑎09𝑚310 0.0888(08) 313.0(2.8) 323 × 96 4.51 {10, 12, 14, 16} 2263

𝑎09𝑚220 0.0872(07) 225.9(1.8) 483 × 96 4.79 {10, 12, 14, 16} 960

𝑎09𝑚130 0.0871(06) 138.1(1.0) 643 × 96 3.90 {10, 12, 14, 16} 1041

𝑎06𝑚310𝑊 0.0582(04) 319.6(2.2) 483 × 144 4.52 {18, 20, 22, 24} 500

𝑎06𝑚135 0.0570(01) 135.6(1.4) 963 × 192 3.7 {16, 18, 20, 22} 751

Table 1: Lattice parameters of the 2+ 1+ 1-flavor HISQ ensembles generated by the MILC collaboration [«]

and analyzed in this study. We give the lattice spacing 𝑎, pion mass 𝑀𝜋 , lattice size 𝐿3 × 𝑇 , the values of

source-sink separation 𝜏 simulated, and the number of configurations analyzed.

1. Introduction

In the realm of QCD, among the key quantities to quantitatively characterize the rich and

complex structure of hadrons are a number of universal, non-perturbative distribution functions.

These are, parton distribution functions (PDFs), transverse momentum dependent PDFs (TMDs),

generalized parton distributions (GPDs) and distribution amplitudes (DAs). For many years, there

have been steady efforts to obtain these distributions both from experiments and theory. On the

theoretical side, information on the moments of the distribution functions can be obtained via first

principle Lattice QCD calculations. Subsequent to the proposal by Ji in 201« [»], there have also

been significant progress towards accessing the distributions themselves on the lattice [5].

The distributions are not measured directly in experiments, and phenomenological analyses

including different theoretical inputs are needed to extract them from experimental data. In cases

where both lattice results and phenomenological analyses of experimental data (global fits) exist,

one can compare them to validate the control over systematics in the lattice calculations, and on

the other hand provide a check on the phenomenological process used to extract these observables

from experimental data [6, 7]. In other cases, lattice results are predictions.

Even for the best studied quantity on the lattice, the isovector momentum fraction ⟨𝑥⟩𝑢−𝑑 , the

data had large statistical and systematic uncertainties prior to 2018 [6]. Here we present high-

precision lattice calculations for the isovector momentum fraction, helicity moment ⟨𝑥⟩Δ𝑢−Δ𝑑 and

transversity moment ⟨𝑥⟩𝛿𝑢−𝛿𝑑 using two different lattice setups and controlling the sources of

systematic uncertainties. Our study shows, that the lattice data for these three moments are now of

quality comparable to that for nucleon charges (zeroth moments).

2. Lattice set up

We present our calculations of the three moments using two different lattice setupsȷ (i) the

Clover-on-HISQ calculation (PNDME 20) published in [1] was performed using nine HISQ ensem-

bles generated by the MILC collaboration [«], whose parameters are summarized in Table 1. They
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Ensemble 𝑎 𝑀𝜋 𝐿3 × 𝑇 𝑀𝜋𝐿 𝜏/𝑎 𝑁𝑐𝑜𝑛 𝑓

ID (fm) (MeV)

𝑎127𝑚285 0.127(2) 285(3) 323 × 96 5.85 {8, 10, 12, 14} 2001

𝑎094𝑚270 0.094(1) 270(3) 323 × 64 4.11 {10, 12, 14, 16, 18} 1464

𝑎094𝑚270𝐿 0.094(1) 269(3) 483 × 128 6.16 {10, 12, 14, 16} 4501

𝑎091𝑚170 0.091(1) 169(2) 483 × 96 3.74 {8, 10, 12, 14, 16} 4015

𝑎091𝑚170𝐿 0.091(1) 169(2) 643 × 128 5.08 {8, 10, 12, 14, 16} 1533

𝑎073𝑚270 0.0728(8) 272(3) 483 × 128 4.8 {11, 13, 15, 17, 19} 4477

𝑎071𝑚170 0.0707(8) 167(2) 723 × 192 4.26 {15, 17, 19, 21} 2100

𝑎071𝑚130 0.0707(8) 127(1) 963 × 192 4.36 {13, 15, 17, 19, 21} 440

𝑎056𝑚280 0.056(1) 280(5) 643 × 192 5.09 {18, 21, 24, 27, 30} 1723

Table 2: Lattice parameters of the 2 + 1-flavor clover ensembles generated by the JLab/W&M/LANL/MIT

collaboration and analyzed in this study. We give the lattice spacing 𝑎, pion mass 𝑀𝜋 , lattice size 𝐿3 × 𝑇 ,

the values of source-sink separation 𝜏 simulated, and the number of configurations analyzed.

cover a range of lattice spacings (0.057 ≤ 𝑎 ≤ 0.15) fm, pion masses (135 ≤ 𝑀𝜋 ≤ 310) MeV and

lattice sizes (3.7 ≤ 𝑀𝜋𝐿 ≤ 5.5). For more details of the lattice methodology, the strategies for the

calculations and the analyses see [1] and references therein.

(ii) The Clover-on-Clover calculation, published in [2] (NME 20), used seven Clover ensembles

generated by the JLab/W&M/LANL/MIT collaboration [8]. Here (NME 21) we include two new

ensembles, one at physical 𝑀𝜋 and the other at smaller lattice spacing 𝑎 = 0.056 fm which gives us

better control over chiral and continuum extrapolations, respectively. Note that the data for the two

new ensembles are preliminary and 𝑎071𝑚130 is statistics limited. The parameters of these Clover

ensembles are summarized in Table 2. They also cover a range of lattice spacings (0.056 ≤ 𝑎 ≤

0.127) fm, pion masses (127 ≤ 𝑀𝜋 ≤ 285) MeV and lattice sizes (3.74 ≤ 𝑀𝜋𝐿 ≤ 5.85).

We construct the correlation functions needed to calculate the matrix elements using Wilson-

clover fermions for both lattice setups. The Clover-on-HISQ formulation is non-unitary and can

suffer from the problem of exceptional configurations at small, but a priori unknown, quark masses.

However, we have not found evidence for such exceptional configurations on any of the nine

ensembles analyzed in this work.

3. Lattice correlators and moments

The light quark operators (𝑞 ∈ {𝑢, 𝑑}) used to calculate the moments areȷ

⟨𝑥⟩𝑢−𝑑 : O44
𝑉3 = 𝑞(𝛾4←→𝐷 4 −

1

3
𝜸 ·
←→
D )𝜏3𝑞 (1)

⟨𝑥⟩Δ𝑢−Δ𝑑 : O34
𝐴3 = 𝑞𝛾 {3

←→
𝐷 4}𝛾5𝜏3𝑞 (2)

⟨𝑥⟩𝛿𝑢−𝛿𝑑 : O124
𝑇3 = 𝑞𝜎 [1{2]

←→
𝐷 4}𝜏3𝑞 . («)
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From their matrix elements within the ground state of the nucleon, the moments are given byȷ

⟨0|O44
𝑉3 |0⟩ = −𝑀𝑁 ⟨𝑥⟩𝑢−𝑑 , (»)

⟨0|O34
𝐴3 |0⟩ = −

𝑖𝑀𝑁

2
⟨𝑥⟩Δ𝑢−Δ𝑑 , (5)

⟨0|O124
𝑇3 |0⟩ = −

𝑖𝑀𝑁

2
⟨𝑥⟩𝛿𝑢−𝛿𝑑 , (6)

where 𝑀𝑁 is the nucleon mass. The nucleon interpolating operator N used is

N = 𝜖𝑎𝑏𝑐
[

𝑞𝑎𝑇1 (𝑥)𝐶𝛾
5 (1 ± 𝛾4)

2
𝑞𝑏2 (𝑥)

]

𝑞𝑐1 (𝑥) , (7)

where {𝑎, 𝑏, 𝑐} are color indices, 𝑞1, 𝑞2 ∈ {𝑢, 𝑑} and 𝐶 = 𝛾0𝛾2 is the charge conjugation matrix.

The nonrelativistic projection (1 ± 𝛾4)/2 is inserted to improve the signal, with the plus and minus

signs applied to the forward and backward propagation in Euclidean time, respectively. At zero

momentum, this operator couples only to the spin 1
2

states. The zero momentum two-point and

three-point nucleon correlation functions are defined as

𝑪
2𝑝𝑡

𝛼𝛽
(𝜏) =

∑︁

𝒙

⟨0|N𝛼 (𝜏, 𝒙)N 𝛽 (0, 0) |0⟩ (8)

𝑪
3𝑝𝑡

O,𝛼𝛽
(𝜏, 𝑡) =

∑︁

𝒙
′,𝒙

⟨0|N𝛼 (𝜏, 𝒙)O(𝑡, 𝒙
′)N 𝛽 (0, 0) |0⟩ (9)

where 𝛼, 𝛽 are spin indices. The source is placed at time slice 0, the sink is at 𝜏 and the one-

derivative operators inserted at time slice 𝑡. Data have been accumulated for the values of 𝜏 specified

in Tables 1 and 2, and, in each case, for all intermediate times 0 ≤ 𝑡 ≤ 𝜏.

4. Controlling the excited state contamination

A major challenge to precision results is removing the contribution of excited states in the

three-point functions. These occur because the lattice nucleon interpolating operator, couples to the

nucleon, all its excitations and to multi particle states with the same quantum numbers. The strategy

to remove these artifacts are described in Refs. [1, 2]ȷ reduce ESC by using smeared sources in the

generation of quark propagators and then fit the data at multiple source-sink separations 𝜏 using

the spectral decomposition of the correlation functions keeping as many excited states as possible

without over-parameterizing the fits. The spectral decomposition of the zero-momentum two-point

function, 𝐶2pt, truncated at four states, is given by

𝐶2pt(𝜏) =

3
∑︁

𝑖=0

|A𝑖 |
2𝑒−𝑀𝑖 𝜏 . (10)

We fit the data over the largest time range, {𝜏𝑚𝑖𝑛–𝜏𝑚𝑎𝑥}, allowed by statistics, i.e., by the stability of

the covariance matrix, to extract the masses 𝑀𝑖 and the amplitudesA𝑖 for the creation/annihilation

of the four states by the interpolating operator. We perform two types of four-state fits. In the fit

denoted {4}, we use the empirical Bayesian technique described in the Ref. [9] to stabilize the three
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excited-state parameters. In the second fit, denoted {4𝑁 𝜋}, we use a normally distributed prior for

𝑀1, centered at the lower of the non-interacting energy of 𝑁 (−1)𝜋(1) or the 𝑁 (0)𝜋(0)𝜋(0) state,

and with a width of 0.0»–0.05 in lattice units.

In the fits to the two-point functions, the {4} and {4𝑁 𝜋} strategies cannot be distinguished

on the basis of the 𝜒2/dof. In fact, the full range of 𝑀1 values between the two estimates, from

{4} and {4𝑁 𝜋}, are viable on the basis of 𝜒2/dof alone. The same is true of the values for 𝑀2,

indicating a large flat region in parameter space. Because of this large region of possible values for

the excited-state masses, 𝑀𝑖 , we carry out the full analysis with three strategies that use different

estimates of 𝑀1 and investigate the sensitivity of the results on them.

The analysis of the three-point functions, 𝐶
3pt

O
, is performed retaining up to three states |𝑖⟩ in

the spectral decompositionȷ

𝐶
3pt

O
(𝜏; 𝑡) =

2
∑︁

𝑖, 𝑗=0

|A𝑖 | |A 𝑗 |⟨𝑖 |O| 𝑗⟩𝑒
−𝑀𝑖 𝑡−𝑀 𝑗 (𝜏−𝑡) . (11)

To remove the ESC and extract the desired ground-state matrix element, ⟨0|O|0⟩, we make a

simultaneous fit in 𝑡 and 𝜏. In choosing the set of points, {𝑡, 𝜏}, to include in the final fit, we attempt

to balance statistical and systematic errors. First, we neglect 𝑡skip points next to the source and sink

in the fits as these have the largest ESC. Next, noting that the data at smaller 𝜏 have exponentially

smaller errors but larger ESC, we pick the largest three values of 𝜏 for all seven ensembles. Since

errors in the data grow with 𝜏, we partially compensate for the larger weight given to smaller 𝜏 data

by choosing 𝑡skip to be the same for all 𝜏, i.e., by including increasingly more 𝑡 points with larger

𝜏, the weight of the larger 𝜏 data points is increased. Most of our analysis uses a 3∗-fit, which is a

three-state fit with the term containing ⟨2|O|2⟩ set to zero, as it is undetermined and its inclusion

results in an overparameterization based on the Akaike information criteria [10].

To investigate the sensitivity of ⟨0|O|0⟩ to possible values of 𝑀𝑖 we carry out the full analysis

with three strategies using the mnemonic {𝑚, 𝑛} to denote an 𝑚-state fit to the two-point function

and an 𝑛-state fit to the three-point function. Figure 1 shows an example of difference in estimates

from the three fit strategies for ⟨𝑥⟩𝑢−𝑑 from 𝑎073𝑚270.

• {4, 3∗}ȷ The spectrum is taken from a {4} state fit to the two-point function using Eq. (10)

and then a {3∗} fit is made to the three-point function using Eq. (11). Both fits are made

within a single jackknife loop. This is the standard strategy, which assumes that the same set

of states are dominant in the two- and three-point functions.

• {4𝑁 𝜋 , 3∗}ȷ The excited state spectrum is taken from a four-state fit to the two-point function

but with a narrow prior for the first excited state mass taken to be the energy of a non-

interacting 𝑁 ( 𝒑 = 1)𝜋( 𝒑 = −1) state (or 𝑁 (0)𝜋(0)𝜋(0) that has roughly the same energy).

This spectrum is then used in a {3∗} fit to the three-point function. This variant of the {4, 3∗}

strategy assumes that the lowest of the theoretically allowed tower of 𝑁𝜋 (or 𝑁𝜋𝜋) states

contributes.

• {4, 2free}ȷ The only parameters taken from the {4} state fit are the ground state amplitudeA0

and mass 𝑀0, whose determination is robust. In the two-state fit to the three-point function,

5
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Figure 4: A comparison of results from lattice QCD calculations with dynamical fermions and global fits

(below the black line). The left panel compares results for the momentum fraction, the middle for the helicity

moment, and the right for the transversity moment. Our NME 21 result (preliminary) is also shown as the

blue band to facilitate comparison.

{4𝑁 𝜋 , 3∗} and the {4, 2free} fit strategies as a second uncertainty (the second number inside the

brackets) to account for possible unresolved bias from incomplete control over ESC.

Our NME results are consistent with the PNDME 20 results. This is a valuable check of the

PNDME 20 calculation that uses the non-unitary clover-on-HISQ lattice formulation. For ⟨𝑥⟩𝑢−𝑑

and ⟨𝑥⟩Δ𝑢−Δ𝑑 the NME results are ≈ 1𝜎 smaller than the PNDME. A large part of the difference

is due to the finite-volume correction in the NME results. There is reduction of statistical errors

for all three quantities on going from NME 20 to NME 21. This is due to adding data from

two new ensembles 𝑎071𝑚130 and 𝑎056𝑚280 in NME 21 which gives larger ranges in both the

lattice-spacing and the pion mass in the CCFV fits.

An updated comparison of our results with other lattice calculations and phenomenological

global fit estimates is given in Fig. ». They are in good agreement with other recent lattice results

by ETMC [11, 12], Mainz [1«] and 𝜒QCD [1»] collaborations. Our estimate for the momentum

fraction is in good agreement with most global fit estimates but has much larger error. The three

estimates for the helicity moment from global fits have a large spread, and our estimate is consistent

with the smaller error estimates. Lattice estimates for the transversity moment are a prediction.
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