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The fluctuations in thermodynamic and transport properties in many-body systems gain import-
ance as the number of constituent particles is reduced. Ultracold atomic gases provide a clean
setting for the study of mesoscopic systems; however, the detection of temporal fluctuations is
hindered by the typically destructive detection, precluding repeated precise measurements on the
same sample. Here, we overcome this hindrance by utilizing the enhanced light–matter coupling
in an optical cavity to perform a minimally invasive continuous measurement and track the time
evolution of the atom number in a quasi two-dimensional atomic gas during evaporation from a
tilted trapping potential. We demonstrate sufficient measurement precision to detect atom number
fluctuations well below the level set by Poissonian statistics. Furthermore, we characterize the non-
linearity of the evaporation process and the inherent fluctuations of the transport of atoms out of the
trapping volume through two-time correlations of the atom number. Our results establish coupled
atom–cavity systems as a novel testbed for observing thermodynamics and transport phenomena
in mesosopic cold atomic gases and, generally, pave the way for measuring multi-time correlation
functions of ultracold quantum gases.

I. INTRODUCTION

Tracking out-of-equilibrium dynamical processes and
their fluctuations in mesoscopic systems is central to
thermodynamics at intermediate scales [1, 2] and trans-
port in solid state systems [3]. For example, cur-
rent fluctuations in mesoscopic electronic devices re-
veal the charge quantization of elementary or emergent
particles, shedding light on the underlying microscopic
physics [4, 5]. Advanced experimental control and precise
measurements make ultracold atomic gases an ideal test-
bed for studying transport phenomena with solid-state
analogs and beyond [6–8]. Furthermore, the achievable
system sizes, ranging from single to millions of atoms in
different setups, naturally provide access to explore the
mesoscopic domain with ensembles of cold atoms.
However, solid-state and ultracold-atom mesoscopic sys-
tems differ in their fragility against measurement. Solid-
state devices are coupled to large thermal reservoirs,
which rapidly dissipate the backaction of measurement,
and are refreshed with large particle reservoirs. In
contrast, ultracold-atom systems are well isolated from
thermal environments. Technical and backaction disturb-
ance from measurement, such as from optical force fluc-
tuations caused by light scattering, is absorbed within
the mesoscopic system itself and can change the prop-
erties of the system significantly. Thus, the measured
fluctuations within a mesoscopic cold-atom system can
be strongly altered by continuous or stroboscopic meas-
urements performed on the system. Accessing real-time
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information in such systems therefore requires strategies
to maximize the extracted information for a given heat-
ing rate associated with the measurement.
The enhanced atom–light interaction in high-finesse op-
tical cavities [9] provides a means for performing min-
imally invasive, extremely sensitive measurements on
atomic gases. Demonstrations span from recording tran-
sient signals of single or few atoms passing through
an optical cavity [10, 11] to measurements on static
and dynamically evolving mesoscopic trapped atomic en-
sembles [12–17], or the probing of dynamical evolution
of novel states of matter realized in the cavity [18–20].
Cavity-enhanced dispersive atom number measurements
have been proposed as a non-invasive probe for dynamical
and transport phenomena in mesoscopic samples [21–23].
The achievable precision surpasses that of stroboscopic
free-space dispersive measurements, which have been per-
formed on macroscopic atomic gases with greater capa-
city than mesoscopic gases to absorb backaction disturb-
ance [24–27]. Cavity-enhanced atom-number readout
with single-atom precision has been demonstrated, but
was accompanied by strong disturbance that precluded
repeated measurement on the gas [13].
In this work, we employ cavity-enhanced measurements
to continuously track the non-equilibrium process of
evaporative cooling [28–32] of a mesoscopic sample for
long evolution times, which allows us to probe temporal
correlations at all times under observation. Evaporat-
ive cooling occurs in a gas of temperature T and atom
number N when collisions drive atoms to energies above
the finite trap depth U , whereupon these atoms escape
the trap, reducing the number of atoms remaining as
well as their temperature. The ensuing dynamics de-
pend on dimensionality, atom number, and temperature
of the gas, all features also at the heart of transport phe-
nomena studied with destructive measurements [21]. A
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Figure 1. Experimental setup and measurement imprecision. a Schematic of the tilted evaporation of atoms (red)
with temperature T in the trap potential (blue) with dynamically lowered depth U . Atoms with energies exceeding the trap
depth are spilled. b The atoms dispersively couple to the cavity, resulting in an atom-number-dependent shift ∆N of the
transmission line shape (blue solid traces) compared to an empty cavity (blue dashed line). Tracking the side of fringe (marked
by red dot and line) provides a dynamical measurement of atom number. c The cavity resonance is tracked using a feedback
loop involving the cavity-coupled atomic cloud (dark red), located at the intensity maximum of a probe beam in the cavity
(light red). The transmitted intensity of probe light is detected using a heterodyne receiver with local oscillator (LO) and
a radiofrequency power detector (Det). This power is kept constant using a feedback loop (PID) adjusting the frequency of
probe and LO through an acousto-optic modulator (AO). The atom number is derived from an in-loop measurement of the
voltage used to adjust a voltage controlled oscillator driving the AO. d A single unfiltered trace of equivalent atom number
N vs. time with the filter procedure indicated (gray shaded areas). e The Allan deviation ∆N is dominated by photonic shot
noise for small integration times τ and by dynamics of the atom number for large τ . A low pass filter of the traces with optimal
integration time τ̃ minimizes the noise associated with both effects. The solid lines represent guides to the eye. Larger photon
number n (orange: n = 1.9(1), blue: n = 3.2(1), red: n = 6.0(1) and green: n = 9.7(1)) results in reduced shot noise, but also
faster loss of the atoms and therefore increased imprecision at longer integration times. The colored ticks mark the noise level
set by Poissonian statistics for our lowest measured mean atom number for each n. The light symbols show a reduced Allan
deviation, where the average dynamics has been subtracted from each trace before calculating ∆N .

simple model captures the interplay between temperat-
ure and atom number in an evaporatively cooled atomic
ensemble [30]: To evaporate from the trap, atoms have
to be collisionally transferred to the high-energy tail of
the Maxwell–Boltzmann distribution, such that the av-
erage evaporation rate, Ṅ ∝ −ηe−η, depends exponen-
tially on η = U/kBT . This implies that samples with ini-
tially higher temperature evaporate atoms more quickly
than samples with lower temperature. Moreover, due
to the density-dependent thermalization rate of an evap-
oratively cooled gas [29, 30] and the presence of three-
body collisions [33], the evaporation dynamics can be ex-
pected to be non-linear in atom number. In the course
of evaporative cooling, thermodynamic properties of the
trapped atomic gas also undergo stochastic fluctuations.
For example, a linear single-particle loss process results
in a binomial partition of the gas between trapped and
untrapped populations, with fluctuations described by
the binomial distribution. Non-linearity associated with
few-body loss processes, and also the non-linear depend-
ence of evaporative cooling on instantaneous atom num-
ber and temperature, can be expected to modify these

fluctuations, which are particularly pronounced in meso-
scopic systems.
Here, we observe the non-equilibrium dynamics of an ul-
tracold quantum gas during forced evaporation in a tilted
trap potential by collecting real-time traces of the atom
number dynamics (see Fig. 1a). We utilize the enhanced
optical cross section of atoms coupled to a single mode of
a high-finesse optical cavity to perform minimally invas-
ive high-precision atom number measurements. In par-
ticular, we reveal two distinct dynamical regimes dur-
ing evaporation: first, a super-linear regime driven by
temperature variations early in the evaporation process,
and, second, a sub-linear regime when these variations
are damped away. Furthermore, we directly observe the
temporal growth of stochastic fluctuations inherent in the
evaporative cooling process itself.

II. DISPERSIVE ATOM NUMBER READOUT

The principle of continuous dynamical dispersive atom
number readout of our atomic cloud is illustrated in
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Figure 2. Two-time correlations of atom numbers from real-time trajectories. a Traces of equivalent atom number N
vs. observation time t, calculated from the number-dependent cavity shift, for varying intracavity photon number n (indicated
in the upper right corner). The bright curves represent individual runs of the experiment (approximately 150 per panel).
Selected traces are shown in slightly darker color to illustrate their stochastic character. The dark curves are the mean over
all traces. The traces were filtered using their corresponding optimal integration time; see Fig. 1e. The vertical lines mark
the two times t2 = 25 ms (t2 = 275 ms) used to produce the scatter plots shown above the time traces. They illustrate the
standardized atom number N2,s measured at the earlier (later) t2 vs. N1,s measured at t1 = 5 ms. The diagonal (dashed line)
and the slope extracted from a linear ordinary least squares fit to the data (dash-dotted line) are indicated in all scatter plots.
The corresponding measurement noise is indicated by the ellipse in the center.

Fig. 1b and c. We consider a cloud of atoms that is
localized at the intensity maximum of the standing wave
formed by a probe beam coupled into the TEM00 mode
of a Fabry–Perot optical cavity. The cavity resonance
is at a frequency ωc in the absence of atoms, which are
coupled to the cavity with a single-atom vacuum Rabi
coupling g on an optical transition with frequency ωa,
linewidth Γ and atom-cavity detuning ∆ca = ωc − ωa.
In the dispersive limit |∆ca| �

√
N g � Γ , the pres-

ence of N atoms causes a frequency shift of the light-like
mode of the coupled atom-cavity system by an amount
proportional to the atom number [12–14],

∆N = N
g2

∆ca
. (1)

We detect this dispersive shift by feedback-stabilizing the
frequency of the weak cavity probe to the side of fringe of
the cavity transmission, realizing a continuous quantum
non-demolition measurement of atom number [14]. Dur-
ing the measurement, the probe power in the cavity is
held constant at a level characterized by the intracavity
photon number n = P/(2~ωcκεc), where κ denotes the
cavity half linewidth, P is the power transmitted through
the cavity and εc quantifies the photon extraction effi-
ciency. The frequency shift of the cavity resonance is
extracted through the feedback signal; see Fig. 1b and
Fig. 5. We use knowledge of g [12, 16, 34] and ∆ca to cal-
culate the dispersive cavity shift due to a single atom, ∆1,
and estimate the instantaneous “equivalent atom num-
ber” N(t) = ∆N(t)/∆1, see Fig. 1d, where “equivalent”

reflects a slight reduction of the vacuum Rabi coupling
in our experiment (see Appendix A) and is implied if not
stated explicitly otherwise.
We monitor the evolution of the intracavity gas dur-
ing evaporation dynamics initiated by an applied mag-
netic field gradient [35]; see Fig. 1a. In the following,
we discuss different quantities used to extract dynam-
ics, measurement noise and intrinsic fluctuations from
our data. Commonly adopted measures to quantify
the imprecision in the real-time measurement for differ-
ent integration times are the Allan deviation ∆N(τ) =

(〈(Nτ (ti+1)−Nτ (ti))
2〉/2)1/2 [12, 13] or the correspond-

ing Allan variance ∆N2. Here, the trace Nτ (ti) is ob-
tained by low-pass filtering the full trace N(t) with an
integration time τ and then resampling at discrete times
ti separated by time intervals of length τ . The angle
brackets denote the average over all i. Photon shot
noise limits the measurement precision of the dispers-
ive cavity shift for short integration times; see Fig. 1e.
For integration times above approximately 1 ms, the dy-
namics of the evaporation process start dominating the
Allan deviation. Choosing such a long integration time
leads to a loss of information about the dynamical sys-
tem under observation. As a consequence, the dynamics
set an upper bound on the achievable integration times
and therefore suppression of photonic shot noise in the
measurement; see Appendix D. Despite this, the minimal
imprecision and therefore the measurement noise of our
cavity-assisted detection is well below the level set by
Poissonian fluctuations of size

√
N for N atoms for all
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measured traces and all times presented in the following;
see Fig. 1e. The effect of dynamics on the optimal in-
tegration time can be mitigated by subtracting the aver-
age dynamics from each trace. The reduced Allan devi-
ation calculated from these subtracted traces lacks the
strong increase towards longer integration times, such
that, in this case, the optimal integration times are typ-
ically longer; see Fig. 1e. As described in detail below,
a generalization of this method with an adjusted time
separation between the two integration intervals detects
the intrinsic stochastic fluctuations inherent in a dynam-
ically evolving system.
We started our experiment with an atomic cloud of about
2200 87Rb atoms with a mean temperature of approx-
imately T0 = 2.6µK. The gas was prepared in its hy-
perfine state |F, mF 〉 = |2, 2〉 and was trapped predom-
inantly in a single well of a far-detuned optical lattice
potential with an initial depth U0/kB = 31(1)µK in an
optical cavity [16, 34, 36]. The lattice provided strong
confinement in the z-direction with a trapping frequency
of ωz/2π = 91(2) kHz, putting the gas in the quasi
two-dimensional regime ~ωz > kBT0. At these para-
meters, we estimate the phase-space density to be 0.3,
close to the quantum degenerate regime. Crucially, ac-
curate positioning of the atomic cloud along the cavity
axis at the peak of the probe standing wave maximized
the atom-cavity coupling, rendered it nearly identical
for all atoms, and minimized optomechanical backac-
tion heating [36, 37]. The cavity length was stabil-
ized such that its resonance frequency was kept at a
near-constant red detuning ∆ca/2π ≈ −42 GHz with re-
spect to the D2 line of 87Rb, for which the atomic res-
onance linewidth is Γ/2π ≈ 6 MHz. The detuning of
the cavity probe from atomic resonance together with
the vacuum Rabi coupling g/2π = 13.1 MHz led to a
maximal cavity shift |∆1/2π| ≈ 4 kHz per atom. The
cavity probe was maintained at a constant detuning of
δpc/2π = κ/2π = 1.8 MHz from the atom-shifted cavity
resonance frequency. The frequency lock of the probe
to the cavity was realized by stabilizing the radiofre-
quency power output from a heterodyne receiver mon-
itoring the probe transmission through the cavity; see
Fig. 1c and Appendix A. The large single-atom cooper-
ativity C = g2/κΓ = 15.9 and consequently low cav-
ity probe powers of a few picowatts in our experiment
allowed us to minimize the probe-induced off-resonant
scattering and associated heating rate. This sets the
cavity-based measurement apart from free-space methods
and was key for achieving the long measurement times at
the imprecision required for performing atom counting in
mesoscopic system; see Appendix D.
In a first set of experiments, we tracked the equivalent
atom number for different intracavity photon numbers
n, while slowly lowering the trap potential U/kB from
31µK to approximately 8µK by ramping up a magnetic
field gradient within 330 ms; see Fig. 7 and Appendix A.
The resulting ensemble of atom number traces is shown in
Fig. 2, with every individual trace representing a new run

of the experiment. The traces taken together form a stat-
istical ensemble that encompasses both the variation in
evaporation trajectories with different initial atom num-
ber and temperature, and also the fluctuations in atom
number generated by evaporation dynamics in individual
trajectories. In order to minimize the effect of noise, each
trace was filtered with a bandwidth corresponding to the
optimal integration time τ̃ extracted from the Allan de-
viation shown in Fig. 1c. For clarity we suppress the
subscript and write N(t) ≡ Nτ̃ (t) in the following. Our
measurements of N(t) show a clear trend to lower fi-
nal atom numbers as the intracavity photon number is
increased. This trend reflects the larger measurement-
induced heating at increasing probe power, which leads
to an increase in the number of atoms ejected from the
trap during evaporation.
In general, decorrelation of two measured atom num-
bers N(t1) ≡ N1 and N(t2) ≡ N2 at two points in
time, indicated by t1 and t2, arises from three sources:
technical noise, measurement noise and stochastic noise
due to the evaporation process itself. We extract the
correlations from the slope of the standardized atom
numbers N2,s vs. N1,s, which equals the Pearson cor-
relation coefficient ρ12 = cov(N1, N2)/σ1σ2; see Ap-
pendix C. The standardized atom numbers are defined as
N1(2),s = (N1(2) − 〈N1(2)〉)/σ1(2), where 〈N1〉 (〈N2〉) and
σ1 (σ2) are the mean and the standard deviation of the
non-standardized atom number distribution measured at
time t1 (t2). In our experiment, we observe dominant
linear correlations of around ρ12 = 97% at all intracavity
photon numbers for two measurements closely spaced in
time; see Fig. 2 upper panel. The strong observed cor-
relation indicates a small influence of all noise sources
at these early times. In particular, it confirms that our
measurement noise is small, consistent with our previous
analysis of the imprecision. For a time t2 = 275 ms, later
on the evaporation trajectory, the fluctuations accrued
over the process of evaporation are much more promin-
ent. However, there is still some degree of linear cor-
relation present. The reduction of the correlation from
ρ12 = 75.9(1)% at the smallest intracavity photon num-
ber n = 1.9(1) to 35.0(1)% at the largest intracavity
photon number n = 9.7(1) indicates a larger impact of
stochastic noise coupled into the system at larger lost
fraction of atoms. Extracting the final temperature of
the evaporating ensemble from a time of flight absorp-
tion image after our real-time measurement, we estim-
ate the temperature to drop to less than 1.5(1)µK for
n = 1.9(1), which implies a phase-space density increase
of at least 13%, but possibly significantly more; see Fig. 6
and Appendix A.

III. NON-LINEARITY OF EVAPORATION

The non-linear dynamics of a system are captured
already by the evolution of statistical averages. In the
following, we outline how two-time correlations extrac-
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N2 vs. N1 that is larger (smaller) than the remaining frac-
tion of atoms p. For a linear process, a = p. b Subtracted
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color, indicated in legend) used to quantify the non-linearity
of the evaporation process vs. remaining fraction of atoms p.
The shaded region shows the standard deviation calculated
by bootstrapping for the smallest and largest initial time.

ted from a continuous measurement of the atom number
of the same cloud enable us to uncover the non-linear
character of evaporative cooling. To this end, we com-
pare the remaining fraction of atoms, p = 〈N2〉/〈N1〉,
to the slope extracted from scatter plots such as those
shown in Fig. 2, calculated as the least squares estimate
a = ρ12 σ2/σ1. For a linear process, defined by a constant

evaporation rate per atom and hence Ṅ ∝ −N , the two
quantities should coincide and hence a = p, whereas non-
linear effects lead to a deviation from this expectation;
see Fig. 3a and Appendix C. As an example, the case
Ṅ ∝ −Nα with α > 1 leads to a < p, which we term
“sub-linear” to indicate a scatter slope smaller than in
the linear case.
For our evaporation sequence, we find systematic devi-
ations from a simple linear relationship; see Fig. 3b. Re-
cording the difference as = a − p versus the remaining
fraction of atoms p, we observe a pronounced super-linear
behavior with a > p, when p is calculated relative to a
small initial time t1. We interpret this super-linear be-
havior as being mediated by temperature variations in
our sample distribution: Atomic gases are prepared with
a low initial atom number because of higher atom losses
from an initially high gas temperature. The high temper-
ature hastens evaporation, leading to a higher per-atom
loss rate and thus a relatively lower final atom number,
leading altogether to a > p. This picture is backed by
simulations of the evaporation process; see Fig. 8 and

Appendix B.
The rapid evaporation of hotter gases also quickly re-
duces their temperatures, such that over time different
realizations of the gas arrive at nearly the same final tem-
perature irrespective of their initial temperatures. This
interesting transient behavior is often implicitly assumed
in literature quoting that the temperature locks to a
fixed fraction 1/η of the trap depth [29, 30, 32] and ul-
timately originates from the competition between expo-
nential truncation and temperature-dependent thermal-
ization of atoms in the evaporation process.
At later times in the evaporation process, after the ef-
fect of initial temperature variation is suppressed, we
find slightly sub-linear behavior, where an initial excess
of atoms at time t1 is reduced during the evolution. This
behavior can be explained by increased three-body losses
towards the end of the evaporation ramp, which reduce
ensemble variations due to their non-linear character [33];
see Fig. 8. Interestingly, our observations imply that
evaporation first moderates temperature variation and
then, thereafter, atom number variation in different real-
izations, ultimately resulting in a stabilizing effect for
both atom number and temperature.

IV. STOCHASTIC CHARACTER OF
EVAPORATION

The mesoscopic nature of our samples together with
the continuous, high-precision measurement enables us
to characterize also the stochastic fluctuations inherent in
evaporative cooling accrued on a single trajectory. These
cannot be obtained from the average evolution of an evap-
orating gas. Crucially, analysis of two-time correlations
allows for discriminating the effect of variation in ini-
tial conditions from the inherent stochastic fluctuations,
which reach up to an rms on the order of

√
N in meso-

scopic samples with small N .
To access stochastic fluctuations directly, we analyze the
unexplained variance σ2

u = σ2
2

(
1− ρ2

12

)
as the amount

of variance in atom number measured at time t2 that is
not predictable through correlation with the initial atom
number at time t1; that is, the unexplained variance cap-
tures the variance beyond that explained by the linear
slope in an N1–N2 scatter plot; see also Figs. 2 and 3.
The unexplained variance also generalizes the reduced
Allan variance (see Fig. 1e) to arbitrary time separations,
and is dominated by the measurement noise and addi-
tionally the stochastic noise associated with atom loss;
see Appendix C.
We observe distinctly different behavior at early times
and at late times during the evaporation process. Refer-
enced to an early initial time t1 = 10 ms, the the unex-
plained variance grows rapidly; see Fig. 4a. Compared to
a simple parameter-free theoretical model (see Appendix
C) we find that the fluctuations are up to a factor of three
above the fluctuations expected for a purely uncorrelated
atom loss, which is described by a Poissonian stochastic



6

0 4 8

Integration time τ (ms)

U
ne

xp
l. 

va
r

0.9 0.7 0.5 0.3

Remaining fraction p

0

500

1000

1500

2000

0.9 0.7 0.5

Remaining fraction p

0

200

400

600

800

1000

50010001500

Atom number N1

0

200

400

600
p = 0.60(2)

t1 = 10 ms t1 = 180 ms
U

ne
xp

l. 
va

r.
 σ

u2

S
ub

tr
ac

te
d

 u
ne

xp
l. 

va
r.

 σ
u2

~

a b dc

Figure 4. Mesoscopic fluctuations of the evaporation process. a Unexplained variance σ2
u vs. remaining fraction of

atoms p for intracavity photon number n = 1.9(1) at initial time t1 = 10 ms and b at t1 = 180 ms, with the standard deviation
calculated by bootstrapping indicated by the shaded region. The solid gray lines show the model prediction including Poissonian
stochastic noise and measurement noise, the dashed lines show the prediction without the contribution of Poissonian stochastic
noise. c Unexplained variance σ2

u for p ≈ 1 (t2 = t1 + τ , darker points) and p = 0.60(2) (t2 = t1 + 95(5) ms, lighter points) for
different integration times τ . For p ≈ 1, the unexplained variance corresponds to twice the reduced Allan variance (solid orange
line). The bright orange line denotes the full Allan variance without subtracting the mean dynamics (see Fig. 1e). The gray
tick indicates the integration time τ = 4 ms that minimizes σ2

u and was used to produce the curves shown in a and b. d Scaling
of unexplained variance for fixed lost fraction p = 0.60(2) with initial atom number N1. The constant measurement noise has
been subtracted from the data for each n, to compare different n (color coded as in Fig. 2). The gray solid line denotes the
linear Poissonian expectation σ̃2

u(N1) = p(1− p)N1. The errorbars denote one standard deviation.

process. Consistent with our earlier interpretation, we
ascribe these large fluctuations to additional variance in
the initial temperature that is uncorrelated with the ini-
tial atom number.
Referenced to a later initial time t1 = 180 ms, when un-
explained temperature variations have been suppressed,
we observe a slower growth of σ2

u. Here, we find good
agreement with a linear, Poissonian stochastic loss pro-
cess, indicating that linear single-atom loss dominates
the fluctuations of the cooling process even in presence
of a non-linear three-body loss; see Fig. 4b. For large
remaining fraction of atoms p ≈ 1 (t2 close to t1), the
unexplained variance is consistent with the sum of meas-
urement noise in N1 and N2 and, hence, coincides with
twice the reduced Allan variance; see Fig. 4c. We note
that, in the fluctuation analysis, the mean dynamics is
subtracted, such that the optimal integration time can be
increased to τ = 4 ms without compromising time resol-
ution of our dynamical measurement; see Fig. 1e.
In order to further corroborate the stochastic nature of
the unexplained variance above measurement noise, we
investigated the unexplained variance at a fixed fraction
of lost atoms p = 0.60(2) for varying initial atom numbers
N1; see Fig. 4d. This strategy is motivated by quantum
optics experiments, where the variance originating from
photon (quantum) shot noise (∝ n) can be discrimin-
ated against technical noise (∝ n2) through their scal-
ing with photon number. In our experiment, we again
find a strong excess in σ2

u for large initial atom numbers
N1. However, for smaller initial atom numbers, the un-
explained variance approaches and traces the Poissonian
expectation p(1 − p)N1 for a range of N1 at all n. This

contrasts with the quadratic dependence of unexplained
variance on initial atom number expected for technical
noise.

V. CONCLUSION

The minimally invasive measurement of atom num-
ber dynamics in our cavity-coupled atomic gas opens
numerous near- and longer term perspectives. First,
our work provides an ideal starting point for further
studies of evaporation dynamics in low-dimensional
mesoscopic quantum gases. Specifically, our results call
for a detailed study of the impact of N -body losses on
evaporation, which are expected to lead to enhanced
atom-number fluctuations but also have a moderating
effect on ensemble variations due to the non-linear
density dependence of the evaporation rate.
Our results also indicate that feedback on the atom
number [25, 38] based on the non-destructive real-time
record of an evaporating gas can prepare samples at
a fixed temperature with controllable atom numbers
fluctuating less than the amount set by Poissonian
statistics. Samples stabilized this way provide an ideal
starting condition to study atom-number-dependent col-
lective phenomena in optical cavities such as dynamical
instabilities [34].
Furthermore, the densities reached in our two-
dimensional system are close to the regime where
corrections due to Bose statistics and interactions
in the gas become relevant. We expect that we can
reach this regime with only slightly higher initial atom
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numbers, which were limited technically in the present
study. This prospect motivates further studies focusing
on how evaporation dynamics, thermodynamics and
stochastic fluctuations are modified by quantum statist-
ics and atomic interactions. Approaching the superfluid
transition, our technique complements recent studies
in three-dimensional gases [26, 27]. In particular, it
enables highly sensitive studies of dynamical fluctuation
growth and stochastic behavior in a two-dimensional
mesoscopic setting and at strong interactions, providing
a new window into the intriguing physics of interacting
two-dimensional Bose gases [39].
Combining our technique with locally controlled coup-
ling to the cavity [40] opens the path towards future
non-invasive two-terminal transport measurements of
strongly correlated quantum gases in optical cavit-
ies [22], for dynamical probing of fluctuation dissipation
relations [41], or for realizing novel non-destructive local
scanning probes of cold gases [23]. Such non-destructive
probes are also directly relevant to uncovering dynamical
fluctuations characteristic of non-equilibrium univer-
sality in transport phenomena [42], or at fluctuating
interfaces [43], which can also be studied in neutral-atom
systems [44].
Finally, leveraging the recent advances in optical tweezer
technology, our detection scheme can be extended to
the single-atom level through controlled coupling to
optical cavities, realizing a versatile quantum sensor.

As a direct application, continuous non-destructive
probing of single atoms has recently been identified as
a key step to enable energy measurements in many-
body systems [45], thereby bringing experimental tests
of mesoscopic quantum thermodynamics [1] within reach.
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APPENDIX A: METHODS

Experimental sequence

We started our measurement by preparing a cloud of
about 2200 87Rb atoms with a temperature of approx-
imately T0 = 2.6µK in a cavity-supported vertical op-
tical standing wave, forming an optical lattice with lat-
tice spacing a = 421 nm. Before loading the lattice,
the cloud was compressed vertically in a tight magnetic
trap created by an atom chip, such that predominantly
a single slice of the lattice is populated [16, 34, 36]. We
estimate the fraction of atoms in other slices to be max-
imally 20%, as was characterized by cavity-aided mag-
netic resonance microscopy [12]. The depth of the lat-
tice trap was U0/2π = h × 641(30) kHz (kB × 31(1)µK)
and the waist of the lattice beam in the cavity was
w0 = 26µm, leading to axial and radial trapping fre-
quencies of ωz/2π = 91(2) kHz and ωr/2π = 670(10) Hz.
Given kBT0 = h× 54 kHz, these parameters put the gas
in a quasi two-dimensional regime, where motion along
the z-direction is frozen out, but atomic collisions are
still described by a three-dimensional scattering process.
The cavity length and exact wavelength of the lattice
laser were chosen such that the atomic cloud axially over-
lapped with the maximal probe intensity in the cavity.
The atoms emerged from the magnetic trap purely in
the |F, mF 〉 = |2, 2〉 hyperfine state. During probing, we
applied a strong magnetic field of Bz = 17 G along the
cavity axis, and also drove the cavity with σ+ circularly
polarized probe light. Under these conditions, the light-
atom interactions are reduced to an effective two-level
scheme, the atomic spin polarization is preserved, and
the vacuum Rabi coupling is maximized.
The atom number was recorded using a cavity probe at
a wavelength of 780 nm, detuned by ∆ca/2π ≈ −42 GHz
to the red of the D2 line. The transmission of this probe
through the cavity was recorded on a heterodyne receiver.
For heterodyne detection, we used a local oscillator (LO)
with approximately 1 mW of optical power derived from
the same laser but with its frequency offset by 10 MHz re-
lative to the frequency of the probe. The probe beam was
intensity stabilized before entering the cavity and the LO
before coupling into the heterodyne receiver. The photon
collection efficiency was reduced by cavity mirror losses
(εc = 0.31), finite path efficiency of the heterodyne path
(εp = 0.93), mode matching efficiency of local oscillator
and probe beam (εmm = 0.89) and quantum efficiency of
the heterodyne photodetector (εq ≈ 0.58). These effects
combined to give an overall photon detection efficiency
of ε = 0.149(10) in our heterodyne receiver.
After preparation of the cloud, forced evaporation was

induced by exponentially ramping up the current through
our atomic chip wires with a time constant of 70 ms. The
resulting inhomogeneous magnetic field was accompanied
by a magnetic field gradient increasing from zero up to
220 G/cm, strong enough to lower the trap depth dynam-
ically; see Fig. 7. During the evaporation process, an ana-
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Figure 5. Experimental sequence. Upper panel: Het-
erodyne magnitude Shet with atoms present (not present) in
orange (blue). The heterodyne magnitude signal was not re-
corded for times ts between 30 ms and 170 ms. Middle panel:
Corresponding VCO frequency f . Bottom panel: Current
in our atomic chip wires (red). Evaporation was induced by
ramping up the current, which lowers the trap depth dynam-
ically (see Fig. 7), and halted at 320 ms by ramping the cur-
rent back down quickly. During evaporation (indicated by
gray shading in all panels), the heterodyne magnitude was
kept constant by a side-of-fringe lock. The atom-induced
cavity shift was extracted from an in-loop measurement of
the control voltage fed back to the VCO. At the end of an
experimental run, a swept atom number measurement was
performed, where δpc was varied by sweeping f down and up
across cavity resonance. In these sweep measurements, the
atom number was extracted from the shift of the cavity pro-
file visible in the heterodyne magnitude signal, and was used
just for calibration purposes.

log side-of-fringe feedback loop was engaged to keep the
probe-cavity detuning fixed at δpc/2π ≈ κ/2π = 1.8 MHz
and thus the intracavity probe intensity constant. The
time-zero of our measurement was chosen 8 ms after ac-
tivating the feedback, which was enough time to avoid
any effect of transients on our real-time atom-number
traces. We believe, however, that these transients and
variations caused by loading the cloud in our cavity lat-
tice contribute to the initial temperature variation ob-
served in our gas.
To realize the side-of-fringe feedback loop, part of the het-
erodyne signal was split off after a radio-frequency amp-
lifier, sent through a bandpass filter with a 2 MHz band-
width, and its power was detected with a linear radio-
frequency power detector (Analog Devices, AD8361).
The detected power was kept constant by feeding back
to the frequency of probe and LO through a voltage con-
trolled oscillator (VCO) driving an acousto-optic modu-
lator (AO) before the cavity. The required in-loop control
voltage was monitored. An equivalent VCO signal was
recorded after the sequence without the atoms present.
The difference of this reference signal and the signal with
atoms, together with the calibrated VCO characteristics,
yielded the atom-induced cavity shift ∆N . In order to re-
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of the gas measured in time of flight after the final swept
atom number measurement for different intracavity photon
numbers. The gray line is a linear fit guiding the eye.

duce the effect of photon shot noise, we subtracted a run-
ning average of five empty cavity traces of successive runs
from each trace with atoms. The number of averaged
empty cavity traces was a compromise between mitigat-
ing the influence of shot noise on the reference trace and
avoiding additional imprecision due to longer-time tech-
nical drifts of the empty cavity resonance. After untilting
the trap, we performed a swept atom number measure-
ment; see Fig. 5. To this end, we swept the frequency of
the cavity probe across the resonance of our cavity. The
peak position of the recorded heterodyne signal relative
to a reference measurement on an empty cavity taken at
the end of the sequence reflected the atom-induced cav-
ity shift; see Fig. 5. The swept measurement was used
to benchmark the shift correction described in the next
section.
In order to verify the cooling of our gas, we performed
a time-of-flight absorption measurement after our swept
atom number measurement. To this end, we rapidly
turned off the cavity lattice and let the cloud expand
by 400µs. The temperatures extracted from this time of
flight measurement are shown in Fig. 6. We consider this
extracted temperature to be an upper bound of the actual
temperature due to the long additional hold time before
the measurement, the additionally present swept atom
number measurement, and the short expansion time of
the gas limited by our cavity geometry. We note that the
temperatures extracted from our simulation right at the
end of the evaporation ramp are approximately a factor
of two below these values; see Fig. 8.

Trap depth and shift correction

The magnetic field applied during evaporative cooling
leads to a reduction of the trap depth to below 10 µK; see
Fig. 7. We find the trap depth using the known waist size

of the lattice trap in the cavity and the applied magnetic
fields as the height of the saddle point of the combined
potential of magnetic and optical traps relative to the
trap bottom, including the small but non-negligible influ-
ence of the red-detuned probe. With increasing applied
magnetic field gradients, the trap minimum is radially
displaced from the center of the cavity mode, and hence
away from the maximal coupling point of the probe laser.
We calculate the displacement and the resulting reduced
overlap with the probe laser for a point-like cloud. The
maximal displacement is approximately 8 µm. For our
probe waist of wp = 25µm, this displacement leads to a
change in g2 and hence ∆1 of at most 15 % (see the inset
of Fig. 7). We verified that the results of this procedure
for a point-like cloud were almost identical to the case of
a thermal cloud with a temperature of T0 ≈ 2.6µK, such
that we use the former as an approximation for the lat-
ter. We confirm the accuracy of our calculated correction
factor by comparing the corrected atom number meas-
ured at the maximal spatial displacement with a sweep
measurement after removing the magnetic field gradient,
see Fig. 5, where the atoms were located at the position
of maximal probe coupling. Due to the strong lattice-
induced confinement, the displacement of the cloud along
the vertical direction is negligible. In addition to the
sideways displacement, the applied magnetic field rotates
the overall magnetic field direction. Consequently, the
orientation of the quantization axis tilts and the projec-
tion of the circularly polarized light of the probe beam
changes, resulting in maximally 3% of additional correc-
tion to the coupling strength. We estimate an associated
maximal probability of 4% per scattered photon to res-
ult in transfer into other hyperfine ground states, with a
negligible effect on our measured atom numbers. We also
stress that the small correction of g2 does not affect any
of the conclusions drawn, and we have accounted for it in
the direct quantitative comparison of our measurements
with the theoretical models presented in the following.

APPENDIX B: MODELING EVAPORATIVE
COOLING

Theoretical model for evaporation

We model evaporative cooling in two dimensions, fol-
lowing references [29, 32], by the time evolution of a
truncated Maxwell-Boltzmann distribution in a harmonic
trap with time-dependent depth. The change in atom
number N for a truncation parameter η = U/kBT in the
trap is

Ṅ = −Nγe−η
(
ηP (2, η)− 3P (3, η)

P (2, η)2

)
. (2)

Here, γ = nthσvth is related to the elastic collision rate
γc =

√
2γ in a gas with density nth and thermal velocity

vth =
√

8kBT/πm. The incomplete Gamma functions
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The trap depth of the combined potential of far off-resonant
optical lattice trap, magnetic field and probe-induced poten-
tial as the magnetic gradient is ramped up from zero to its
maximal value. The inset shows the correction factor required
to correct g2 for the shift of the cloud relative to the maximal
probe intensity. Different colors correspond to different in-
tracavity photon number, with the color code the same as in
Fig. 2.

P (α, η) =
∫ η

0
dt tα−1e−t/Γ (α) take into account trun-

cation effects in a trap with finite depth [29]. We can
rewrite Eq. (3) to bring out the temperature and atom
number dependence explicitly,

Ṅ = −cγN2T−
1
2 e−η

(
ηP (2, η)− 3P (3, η)

P (2, η)2

)
. (3)

The constant cγ = γ0T
1
2

0 /N0 contains the initial rate γ0,
the initial temperature T0 and the initial atom number
N0. Notably, Eq. (3) indicates that, at constant temper-
ature, atom spilling over a potential barrier constitutes a
loss process which is non-linear in atom number.
Evaporating atoms cause a change in the internal energy
E = 2NkBT of the gas. Taking the time derivative and
solving for the change in temperature, we obtain

kBṪ =
Ė

2N
− Ṅ

N
kBT. (4)

The change in energy is proportional to the atom loss rate
multiplied with the energy of a leaving atom, corrected
for truncation [29]

Ė = ṄkBT

[
η +

(
1− P (4, η)

ηP (2, η)− 3P (3, η)

)]
, (5)

where η = U/kBT . Plugging this into Eq. (4), we obtain
the change in temperature as

Ṫ

T
=

1

2

Ṅ

N

[
η −

(
1 +

P (4, η)

ηP (2, η)− 3P (3, η)

)]
+
Γh
2T

. (6)

In the last step, we have included a heating rate Γh,
caused, e.g., by photon recoil heating or other external

heating sources.
Three-body losses affect both the atom number dynam-
ics and the temperature dynamics of evaporative cooling.
Their atom number dynamics have to be treated separ-
ately from the atom number dynamics due to evaporating
atoms. The atom loss rate due to three-body collisions
is

Ṅ3B = −c3
6√
27
L3 n

2
thN ∝

N3

T 2
. (7)

Here, L3 denotes the three-body loss coefficient [46],
which is scaled appropriately for a thermal bosonic
gas [47], and c3 is an additional scaling coefficient. These
losses do not contribute to the cooling of the gas. Rather,
they lead to “anti-evaporation heating” [47], as the loss
happens predominantly at the center of the trap, where
the density is highest. Atoms in the central region of the
trap have less than average potential energy, such that
the gas effectively heats upon thermalization. Quant-
itatively, anti-evaporation heating leads to a change in
temperature reflecting the difference in potential energy
between an average atom and an atom lost through a
three-body collision,(

Ṫ

T

)
3B

= −1

2

Ṅ3B

N

(
1−

√
2

3

)
(8)

Together with the known time-dependent trajectory of
the trap depth U(t), equations (3) and (6) can be solved
to obtain the mean atom number and temperature dy-
namics of evaporative cooling. The effect of three-body
loss can be included by adding equations (7) to (3)
and (8) to (6).

Evaporation dynamics

The model derived in the previous section can be used
to check the influence of initial atom number and tem-
perature variation on the evaporation dynamics, and
serves as a benchmark of the subtracted slope presen-
ted in the main text as a measure of non-linear dynamics
in the average evolution. To this end, we simulate the
coupled atom- and temperature dynamics for our exper-
imental configuration. We neglect the influence of adia-
batic decompression [32], which is expected to be small in
gradient-assisted evaporation [35]. In our case, the expec-
ted reduction of the trap frequency along the direction of
the gradient is approximately 15%. The heating rate per
photon is extracted from reference measurements to be
Γh = 7(3)µK s−1. For our parameters, we expect scat-
tering into free space to be a significant heating source.
The off-resonant scattering rate Γeff/n ≈ 3.6 s−1 leads to
an expected recoil heating rate per intracavity photon of
Γr/n = 2Er Γeff/n ≈ h×27.1 kHz s−1 = kB×1.3µK s−1,
where we have used the recoil energy Er = ~2k2/2m ≈
h × 3.8 kHz for 87Rb on the D2 line. We attribute the
discrepancy between this estimate and the experimental
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Figure 8. Theoretical modeling of evaporation. a Simulation of atom number dynamics during forced evaporation
for the trap ramp shown in Fig. 7. We show 200 traces with initial atom numbers N0 and temperatures T0 sampled from
Gaussian distributions in light color, for varying intracavity photon number n as indicated in the top right corner. The atom
number samples have a mean 〈N0〉 and a standard deviation of 2〈N0〉1/2. The temperature distribution is centered about
the initial temperature T0 and has a standard deviation of ∆T0 = 0.6µK. We have included a three-body loss contribution
scaled by c3 = 0.2. The dark line shows the measured atom number dynamics including shift correction. b Ratio of trap
depth to temperature, η = U/kBT , for the same ensemble as in a. The initially broad distribution is rapidly narrowed down
and then remains nearly constant during further evaporation. c Subtracted slope as for n = 1.9 for different temperature
spreads (indicated in top right corner) in absence of three-body loss (c3 = 0). We observe the same trends as observed in our
experiment, with a fast rise for small p and a decay with increasing initial time t1 (indicated in legend). The shaded region
indicates the standard deviation extracted from a bootstrap analysis of the calculated samples. d Subtracted slope as for
n = 3.2 and ∆T0 = 0.6µK for increasing contribution of three-body loss characterized by the scaling factor c3 (indicated in
top right corner). Three-body loss leads to a negative contribution to as, which suppresses the effect of initial temperature
variation.

value to additional technical noise contributions from the
side-of-fringe lock, which can lead to parametric heating
of the cloud.
To model variations in the initially prepared ensemble, we
calculate 200 traces with atom number N0 and temperat-
ure T0 drawn from Gaussian distributions. The standard
deviation of the atom number distribution is extracted
from a fit to the measured initial atom number distri-
bution. The standard deviation of the temperature dis-
tribution ∆T0 is varied in the simulation. The elastic

collision rate is calculated for each run using the drawn
atom number and temperature assuming a quasi two-
dimensional gas. The resulting curves of the time evolu-
tion of the atom number for our trap ramp are shown in
Fig. 8a, for a temperature spread of ∆T0 = 0.6µK and
a three-body collision scale factor c3 = 0.2. The over-
all temporal dynamics and the final atom numbers are in
good agreement with the data for the chosen parameters.
During the initial 100 ms of the evaporation process, the
temperature variation, reflected in variation in the ratio
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of trap depth to temperature η, are rapidly suppressed
and temperature locks to an approximately fixed fraction
of trap depth provided the heating is small; see Fig. 8b.
In order to support the introduction of the subtracted
slope as = ρ12 σ2/σ1 − p as a non-linearity measure (see
main text and Appendix C), we study the effect of vary-
ing temperature spread and three-body loss on as. The
resulting dependencies are shown in Fig. 8c and Fig. 8d.
We observe that, as expected and explained in the main
text, an increase in the initial temperature spread is re-
flected as a positive signal in as, which reduces to near
zero and stays constant for later initial time t1. Contrar-
ily, the introduction of strong three-body loss in the dy-
namics results in a negative as and hence sub-linear beha-
vior, as expected for an effect that reduces the atom num-
ber variance in time [33], even if strong initial temperat-
ure variations are present in the ensemble; see Fig. 8d.
Qualitatively, the simulation shows the same features as
observed in our data for three-body losses of approxim-
ately c3 = 0.05− 0.2 times the value expected according
to Eq. (7). This reduction of three-body losses points
to an overestimate of the density of the ensemble, for
example due to interactions in the two-dimensional gas,
which we have neglected in our treatment. Our simula-
tions support our claim that the subtracted slope as is
a meaningful quantity sensitive to both initial temperat-
ure variation and three-body loss. We have verified that
this is robustly the case also if the thermalization and
heating rates are reduced. For stronger heating, we find
experimentally and from our simulations that evapora-
tion assumes linear character with as = 0. While our
simulations do reflect the effect of variation in the initial
ensemble, we stress that the intrinsic stochastic charac-
ter of evaporation is not captured. Further studies of
the interplay between stochastic fluctuations and non-
linearities such as three-body loss would be of particular
interest.

APPENDIX C: EVAPORATION
NON-LINEARITY AND NOISE

Non-linearity measure

The minimally invasive measurement strategy in-
volving the cavity allows to go beyond single-time ob-
servables by constructing two-time correlations. The in-
formation about the linearity of the time evolution is en-
coded in the dependence of the measured atom number
N2 on the initial atom number N1. Here, we denote
N1 and N2 as ensembles of measured atom number out-
comes at times t1 and t2 respectively. The standard devi-
ations of the distributions are denoted σ1 and σ2 respect-
ively. Assuming a linear relationship between N1 and
N2, the optimal set of coefficients a and b of the model
f(X,β) = aX + b can be found from linear regression
analysis for the variables N1 and N2. The parameters

minimizing the squared residuals are

a = ρ12
σ2

σ1
(9)

b = 〈N2〉 − a〈N1〉. (10)

Here, we have introduced the Pearson correlation coeffi-
cient

ρ12 =
cov(N1, N2)

σ1σ2
(11)

calculated from the covariance of the two random vari-
ables. When standardizing the random variables by sub-
tracting their mean and normalizing to the standard de-
viation, N1(2),s = (N1(2) − 〈N1(2)〉)/σ1(2), the correla-
tion coefficient corresponds directly to the slope of the
straight line minimizing the ordinary least squares in
the scatter plot. A decreasing correlation coefficient in
this case directly reflects the influence of measurement
and stochastic noise in the system. Scatter plots of N2,s

vs. N1,s are shown in Fig. 2 in the main text. To extract
the non-linearity measure, we consider non-standardized
variables. Here, for a strictly linear relationship, the frac-
tion of remaining atoms p = 〈N2〉/〈N1〉 contains the full
information on the dynamics. Therefore, it should hold
that a = p in this case. Any deviation from a = p can
be interpreted as a non-linearity and leads to increased
(a > p) or decreased (a < p) relative variation in the
ensemble at time t2. On average, a < p (a > p) implies a
better (worse) predictive power of a measurement result
obtained at time t1 for a measurement performed at time
t2. As an example, if the atom loss dynamics has a char-
acter Ṅ ∝ −Nα, α > 1, we expect realizations with more
atoms initially to lose atoms more quickly. This leads to
a value of a < p for later times, as more atoms were
lost than expected for a linear process. Therefore, a loss
process with α > 1 reduces atom number variation in an
ensemble, which has been observed experimentally for a
cloud with three-body loss (α = 3) [33] and is consistent
with the simulations shown in Fig. 8d.

Unexplained variance

The correlation coefficient quantifies the degree of fluc-
tuation between two random variables which can be ex-
plained by a linear model. For stochastic processes such
as evaporative cooling or other transport phenomena, the
fluctuations due to this randomness are also of interest.
Relating measurements of an atom number N2 at time t2
to measurements N1 at time t1 of the same ensemble can
shed light on this process noise, as it appears as fluctu-
ations in N2 which are not explained by any correlation
with N1.
We can quantify this “unexplained variance” by consid-
ering the prediction for N2 based on the value of N1,
which is

N2,pr = 〈N2〉+ a (N1 − 〈N1〉) (12)
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This leads to the following unexplained variance

σ2
u = 〈(N2 −N2,pr)

2〉 = σ2
2 + a2σ2

1 − 2a cov(N1, N2)
(13)

This quantity is minimized for a = ρ12 σ2/σ1 (see Eq. (9))
and, thus,

σ2
u = σ2

2

(
1− ρ2

12

)
. (14)

This expression shows that the correlation coefficient cap-
tures the fraction of the total variance explained by the
linear relationship, which is subtracted from the total
variance to obtain the unexplained variance. We evalu-
ate the fraction of unexplained variance for our data; see
Fig. 4.

Unexplained variance for uncorrelated atom loss

In the following, we will derive an expression for σu
assuming a given constant measurement noise σm and a
purely Poissonian ejection mechanism of atoms with cor-
responding stochastic noise. Under these assumptions,
we expect the variance σ2,th at time t2 to contain con-
tributions from measurement noise, stochastic noise and
variation σ1 of N1. Concretely, we get

σ2
2,th = p2

(
σ2

1 − σ2
m

)
+ σ2

m + 〈N1〉 p(1− p). (15)

The second and third term are measurement noise and
Poissonian stochastic noise, respectively. The first term
reflects the scaled initial ensemble variation, which is ob-
tained from the part of the variation σ1 which is not
originating from measurement noise. The prediction for
the correlation coefficient defined in Eq. (11) becomes

ρ12,th =
p
(
σ2

1 − σ2
m

)
√
σ2,thσ1

. (16)

In the covariance in the numerator, only those parts of
the variances without the measurement noise contribute.
Note that this is strictly true only outside the correla-
tion time of the measurement noise, which we assume to
be white for simplicity. For equal-time measurements,
the correlation coefficient equals unity. Using Eq. (15)
and Eq. (16), we can get a prediction for the fraction of
variance unexplained,

σ2
u,th = σ2

2,th

(
1− ρ2

12,th

)
(17)

= p2σ
2
m

σ2
1

(
σ2

1 − σ2
m

)
+ σ2

m + 〈N1〉 p(1− p). (18)

This expression shows that the unexplained variance is
affected by the initial variance, measurement noise and
stochastic noise. Comparing with the expression for the
variance σ2

2,th, we see that the contribution from the ini-
tial variance is suppressed for small measurement noise
σ2
m � σ2

1 . For p → 1, the first term approaches σ2
m,

such that the total unexplained variance in this case ap-
proaches 2σ2

m. We compare this model to our data in
Fig. 4. The measurement noise σm is extracted from the
Allan deviation shown in Fig. 1e and the initial mean
〈N1〉 and standard deviation σ1 are evaluated from the
atom number distribution at time t1. The most striking
discrepancy is caused by temperature variations: Initially
hidden, they are converted to strong atom number vari-
ations upon cutting into the thermal distribution. These
variations are not expected based on earlier atom num-
ber measurements alone. At later times, the unexplained
variance approaches the prediction for uncorrelated atom
loss. The good agreement between this simple model and
our data at late times indicates that technical noise has
a negligible impact on our measurements. The convex
shape proportional to p(1− p) of fraction of variance un-
explained is masked to a large part by the first term in
σu,th, despite the small imprecision reached by cavity-
assisted atom number detection.

APPENDIX D: MEASUREMENT PRECISION

In the following, we show that the enhanced atom light-
coupling in an optical cavity is fundamental to high-
precision atom counting. Minimally invasive measure-
ments compromise between excess heating and consec-
utive fluctuations due to the measurement process and a
sufficient number of extracted photons to reduce photonic
shot noise [25, 48, 49]. For cavity-enhanced atom count-
ing, we aim to find an optimal observation time as a
compromise between averaging down photon shot noise
of the detected probe field and probe-induced atom num-
ber fluctuations, e.g. by recoil heating or cavity backac-
tion heating [12–15]. To quantify the photonic shot noise
contribution, we use the Lorentzian cavity profile for the
photon number n in the cavity

n = nmax
κ2

κ2 + δ2
pc

. (19)

Here, nmax denotes the on-resonance (δpc = 0) intracav-
ity photon number and κ is the half linewidth of the cav-
ity. The sensitivity ∆δpc for determining the cavity-probe
detuning as a function of photon noise ∆n is obtained by
taking the derivative of Eq. (19) with respect to δpc,

∆n

n
= −2

δ2
pc

κ2 + δ2
pc

∆δpc
δpc

. (20)

At the side of fringe for δpc = κ, the sensitivity be-

comes ∆n
n = −∆δpcκ . Taking into account the detec-

tion efficiency ε of the detection chain, the number of
detected photons within a window of integration time τ
is ndet = 2κnετ . Note that for a heterodyne detector,
the detection efficiency effectively reduces by a factor 2
(ε → ε/2) if only the magnitude of the heterodyne sig-
nal is used in the detection, as is the case in our, in this
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sense, non-optimal feedback scheme. Assuming photon-
shot noise ∆ndet =

√
ndet, we find the uncertainty

∆δpc = −
√

κ

2nετ
. (21)

Using the cavity shift per atom, ∆1, we convert this to
an atom number uncertainty

∆N =
∆ca

g2
|∆δpc| =

∆ca

g2

√
κ

2nετ
=

√
1

2C

√
1

Γeff

√
1

ετ
.

(22)

In the last step, we have introduced the cooperativ-
ity C = g2/κΓ for a vacuum Rabi coupling g =√
d2ωa/2~ε0Vm on the optical transition with frequency

ωa and dipole matrix element d and for a cavity mode
volume Vm. The dependence of the uncertainty on the
cooperativity shows the advantage of a cavity-assisted
measurement over its free-space equivalent. Further-
more, the fluctuations due to photonic shot noise de-
crease with the number of scattered photons Γeffτ . The
total number of scattered photons is also responsible for
heating the cloud via recoil heating with a rate Γr, which
introduces atom number loss and associated fluctuations
in a trap with finite depth. Assuming Poissonian fluctu-
ations in the number of lost atoms within an integration
time τ , we model the fluctuations in atom number in a
trap with depth U as

∆N2 = N
αΓr
U

τ = NΓeff
αEr
U

τ. (23)

The proportionality constant α allows to take into ac-
count truncation in evaporative cooling. We can add the
fluctuations due to atom loss to the photonic shot-noise-
induced fluctuations derived in Eq. (22) and obtain

∆N2
tot =

1

2C

1

Γeff

1

ετ
+NΓeff

αEr
U

τ. (24)

Minimizing the uncertainty with respect to τ , we get

∆N2
tot,min = N

√
2

NCε

√
αEr
U

(25)

at a corresponding integration time

τmin =
1

Γeff

√
1

2NCε

√
U

Erα
. (26)

We want to minimize both the minimal fluctuations as
well as the corresponding integration time. Short integ-
ration times correspond to maximal dynamic range for
measuring atom number dynamics. We see that both
quantities benefit from a cavity with high cooperativ-
ity. Also, the dependence on collective cooperativity
NC shows that precise cavity-enhanced atom counting is
easier to achieve at larger atom numbers. Interestingly,
the minimal atom number imprecision does not depend
on the effective scattering rate Γeff . We observe that the
minimal atom number imprecision has no fundamental
limit, as the ratio Er/U can be reduced by increasing
the trap depth, which reduces the loss. If temperature is
a relevant parameter in the probed dynamics, a further
interesting quantity to take into account is the temperat-
ure increase of the gas during the integration time. From
the increase in internal energy and assuming equiparti-
tion in a two-dimensional harmonically trapped gas, it is
given as

kB∆Tmin =
2ΓeffErτmin

2
(27)

=

√
1

2NCε

√
UEr
α

. (28)

Taking the product of temperature added and minimal
atom number uncertainty, the experiment-specific quant-
ities U and α drop out and we are left with(

kB∆Tmin

Er

) (
∆N2

tot,min

N

)
=

1

NCε
. (29)

This relation implies that for a given minimal integra-
tion time, the energy deposited in the system bounds
the atom number imprecision and vice versa. The exact
value for the minimal integration time and thus the time
resolution of the measurement can be chosen by chan-
ging the effective scattering rate, i.e. the atom-cavity
detuning ∆ca in our case. Our observed dependence of
the imprecision quantified by the Allan deviation with
integration time τ is shown in Fig. 1e, where we find a
decrease of the imprecision with increasing integration
time for small τ < 1 ms and then an increase for larger
τ . We note, however, that there the increase in impre-
cision is dominated by the dynamically changing mean
atom number, which leads to a scaling of the Allan vari-
ance with τ2. Directly comparing the two cases requires
subtracting the known time dynamics of the mean atom
number, only keeping the stochastic contribution (∝ τ)
discussed here. While these two effects can always be
separated in post-processing even for an unknown dy-
namical process by subtracting the mean of all traces,
this is generally not possible e.g. for applying feedback
to a system with unknown atom number dynamics.
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