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Abstract

A locally testable code is an error-correcting code that admits very efficient probabilistic
tests of membership. Tensor codes provide a simple family of combinatorial constructions of
locally testable codes that generalize the family of Reed-Muller codes. The natural test for
tensor codes, the axis-parallel line vs. point test, plays an essential role in constructions of
probabilistically checkable proofs.

We analyze the axis-parallel line vs. point test as a two-prover game and show that the
test is sound against quantum provers sharing entanglement. Our result implies the quantum-
soundness of the low individual degree test, which is an essential component of the MIP

∗ = RE

theorem. Our proof also generalizes to the infinite-dimensional commuting-operator model of
quantum provers.
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1 Introduction

Let Σ denote a finite field and let C denote a subspace of the vector space Σn of dimension k ≤ n.
We say that C is a (linear) code over alphabet Σ with blocklength n and dimension k. Viewing the
elements c ∈ C (called codewords) as functions mapping [n] = {1, 2, . . . , n} to Σ, if it further holds
that for any two distinct c, c′ ∈ C the number of i ∈ [n] such that c(i) 6= c′(i) is at least d then we
say that C has distance d.

A natural method to build large codes out of smaller codes is to take their tensor product.
Let C denote a code (called the base code) over alphabet Σ with blocklength n, dimension k,
distance d. The tensor code C⊗m is defined as the collection of all functions c : [n]m → Σ such
that for all (u1, . . . , um) ∈ [n]m, for all j ∈ [m], the function g(s) = c(u1, . . . , uj−1, s, uj+1, . . . , um)
is a codeword of C (see Definition 2.16 and Definition 2.17). The blocklength of C⊗m is nm, its
dimension is km, and its distance is at least dm. One can also consider taking tensor products of
different codes C1 ⊗ C2 ⊗ · · · , but we focus our attention on tensor codes of the form C⊗m.

Tensor codes have been extensively studied in theoretical computer science because they provide
natural constructions of locally testable codes [GS06, BSS06, DSW06, Vid15]. A code C is locally
testable if it has a tester algorithm that makes a small number of queries to a given w : [n] → Σ,
accepts if w is a codeword of C, and rejects with noticeable probability if w is far from every code-
word. In other words the code has efficient probabilistic tests for membership. Locally testable
codes are central components of probabilistically checkable proofs (PCPs); in particular improve-
ments in PCPs have been continually driven by the the development of improved low-degree tests,
which are tests for codes based on low-degree polynomials [AS98, ALM+98, RS97, MR08].

In the context of PCPs it is common to present a testing procedure for a code as a game between
a referee and two non-communicating provers. The goal of the referee is to determine, by making a
few queries to the provers, whether the provers’ responses are globally consistent with a codeword
from the code. Let C⊗m denote a tensor code; it has a natural two-prover test (called the tensor
code test) associated to it:

1. The referee samples a uniformly random u ∼ [n]m and sends u to prover A. They respond
with a value a ∈ Σ.

2. The referee samples a uniformly random j ∼ [m] and sends the axis-parallel line
ℓ = {(u1, . . . , uj−1, s, uj+1, . . . , um) : s ∈ [n]} to prover B. They respond with a codeword
g ∈ C.

3. The referee accepts iff g(uj) = a.

If c ∈ C⊗m is a codeword and the provers respond with c(u) and c|ℓ (i.e. the restriction of c to the
line ℓ) then they will pass with probability 1. Soundness of of the tensor code test refers to the con-
verse statement, namely that provers who succeed with high probability must be (approximately)
responding according to some codeword c ∈ C⊗m. This is formalized as follows.

Theorem 1.1. Let C be an interpolable1 code. Suppose provers A and B are deterministic and
pass the tensor code test corresponding to C⊗m with probability 1− ε. Let f : [n]m → Σ denote the

1The interpolable qualifier on the base code C is a technical condition stating that for every t = n−d+1 coordinates
i1, . . . , it ∈ [n] and values a1, . . . , at ∈ Σ there exists a unique codeword c ∈ C such that c(ij) = aj for j ∈ [t]. We
discuss the interpolability condition in more detail in Section 1.2.
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responses of prover A. Then there exists a codeword c ∈ C⊗m such that

Pr
u∼[n]m

[f(u) = c(u)] ≥ 1− poly(m, t) · (poly(ε) + poly(1/n)) ,

where t = n− d+ 1.

The proof of Theorem 1.1 follows almost directly from the analysis of the low-degree test of
Babai, Fortnow and Lund [BFL91], a central ingredient of their characterization MIP = NEXP of
(classical) multiprover interactive proof systems. They analyzed the tensor code test for the case
when the base code C is the set of univariate polynomials over a finite field F of degree at most
s, and the tensor code C⊗m is the set of m-variate polynomials over F with individual degree at
most s (i.e. each variable has degree at most s). 2 By noting that their proof only uses the tensor
code structure of low individual degree polynomials and the fact that univariate polynomials with
degree at most s form a code with distance n− s we see that their proof implies Theorem 1.1.

The analysis of Babai, Fortnow, and Lund’s low-degree test in the quantum setting has played
a major role in the study of the class MIP∗ of languages having quantum multi-prover interactive
proofs [IV12, Vid16, NV18b, NV18a, NW19]. In this setting, the provers are no longer modeled
as deterministic but instead are allowed to use a quantum strategy, in which their responses are
generated by performing measurements on a shared entangled state. While entanglement does not
allow the provers to communicate with each other, it gives rise to stronger correlations that cannot
be achieved classically. Thus the classical analysis does not extend in any direct way.

Quantum soundness of a variant of the multilinearity test (i.e. the case s = 1) played with
three entangled provers is at the heart of the proof of NEXP ⊆ MIP∗ [IV12]. This analysis is
extended to general degree s in [Vid16], and to the case of two provers in [NV18b]. However, it
was later discovered [Vid20] that the argument contained in [Vid16] contains a mistake. The case
of two provers and general s is essential in the proof of the recent characterization MIP∗ = RE,
which shows that every recursively enumerable language (including the Halting problem) has an
interactive proof in the entangled provers model [JNV+20a]. Our main contribution is a proof of
soundness of the low individual degree test that is used in the proof of MIP∗ = RE.3 We show
that quantum provers who succeed with high probability in the test must still – in a certain sense
– respond according to a low individual degree polynomial. Informally, our main result is the
following:

Theorem 1.2 (Quantum soundness of the tensor code test, informal). Let C be an interpolable code.
Suppose provers A and B are quantum and pass the (augmented 4) tensor code test corresponding
to C⊗m with probability 1− ε. Let {Au}u∈[n]m denote the “points” measurements of prover A, who
upon receiving question u ∈ [n]m performs measurement Au to obtain outcome a ∈ Σ. Then there
exists a measurement G with outcome set C⊗m satisfying the following properties:

2Technically speaking, Babai, Fortnow and Lund analyzed the low-degree test for multilinear polynomials (i.e.
polynomials with individual degree at most 1), but as noted in Remark 5.15 of [BFL91], their analysis generalizes to
polynomials with larger individual degree.

3The present paper is an updated version of an earlier arXiv posting by the same authors [JNV+20b], which was
posted after the mistake in the earlier works had been discovered. We discuss additional improvements compared to
that earlier draft below.

4The qualifier “augmented” refers to the addition of a subtest which is used to enforce approximate commutation
relations between the measurement operators used by prover A. This is a technical point that we discuss in more
detail in Section 1.2.
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• (Self-consistency) If prover A and prover B both perform the measurement G, they both obtain
the same outcome c ∈ C⊗m with probability at least 1− δ.

• (Consistency with points) If prover A measures Au for a uniformly random point u ∈ [n]m

to obtain an outcome a ∈ Σ and prover B measures G to obtain an outcome c ∈ C⊗m, then
a = c(u) with probability at least 1− δ.

Here, δ = poly(m, t) · poly(ε, 1/n) with t = n− d+ 1 .

The formal statement of this theorem is presented as Theorem 4.1. Intuitively the theorem states
that even though the provers are allowed to employ quantum strategies, their strategy is essentially
equivalent to a classical one: the provers would have roughly the same winning probability if they
both measured G (which does not depend on any question) to obtain a codeword c ∈ C⊗m and
then responded according to c. In other words, the “points” measurements {Au} of prover A
are – despite not necessarily commuting with each other – approximately consistent with a single
“global” codeword measurement G.

This paper generalizes our previous manuscript [JNV+20b] which established Theorem 1.2 for
the low individual degree test. In addition we significantly simplify the earlier analysis of [JNV+20b]
by working in the framework of synchronous strategies for the quantum provers. Synchronous
strategies are a subclass of quantum strategies where the provers are assumed to use the same
measurement operators whenever they receive the same question, and furthermore the entangled
state that they share is a maximally entangled state. These assumptions allow us to shortcut many
technical calculations that appear in [JNV+20b]. Furthermore, it is without loss of generality since
recent work by one of us establishes that soundness with synchronous strategies for a large class
of two-prover games (including the tensor code test) can be translated back into soundness for
general quantum strategies [Vid21]. As a result, Theorem 1.2 extends in a straightforward manner
to general strategies; see Theorem 4.7 for the precise statement.

An additional benefit of our streamlined analysis is that synchronous strategies can also be
defined in infinite dimensions. In this case the condition that the entangled state is maximally
entangled is replaced by the condition that the state is tracial, a notion which we introduce formally
below. Our proof naturally extends to this situation, and we are thus able to prove soundness of
the tensor code test against infinite-dimensional (synchronous) quantum strategies. We explain
the synchronous strategies framework in more detail in Section 1.1. We motivate the consideration
of infinite-dimensional strategies from a complexity-theoretic viewpoint in Section 1.3.

1.1 Nonlocal games and synchronous strategies

A nonlocal game G is specified by a quadruple (X ,A, µ,D) which corresponds to the following
scenario: a referee first samples a pair of questions (x, y) from a distribution µ over a finite product
set X × X and sends x to prover A and y to prover B. The provers respond with answers a, b ∈ A
respectively and the referee accepts if and only ifD(x, y, a, b) = 1, whereD : X×X×A×A → {0, 1}
is a decision predicate. Different kinds of restrictions on the provers’ allowed actions to determine
their answers lead to different optimal success probabilities for them in the game. The tensor code
test described earlier is an example of a nonlocal game, and the analysis of it with deterministic
non-communicating provers is a key component in the aforementioned complexity-theoretic results,
e.g. [BFL91].
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A quantum strategy for a nonlocal game describes the provers’ behavior during the game. We
focus on the class of synchronous strategies. A synchronous strategy S for a game G is specified
by a separable Hilbert space H (which could be infinite-dimensional), a von Neumann algebra A

on H, a tracial state τ on the algebra A ,5 and a collection of projective measurements {Mx}x∈X
in A (each Mx is a set of projections {Mx

a }a∈A summing to the identity).6 Given questions (x, y),
the probability of obtaining answers (a, b) is given by τ(Mx

a My
b ). Thus the probability that the

strategy S succeeds in the game G is given by

∑

x,y∈X
µ(x, y)

∑

a,b∈A
D(x, y, a, b) τ

(
Mx

a My
b

)
.

Readers who are not familiar with von Neumann algebras and tracial states may find the finite-
dimensional setting easier to understand. (No additional difficulty is posed by the infinite-dimensional
setting; we include it because it is more general and, once one gets used to it, simpler.) When
H = C

r for some dimension r, then we can without loss of generality take the algebra A to be
the set B(H) of all bounded operators on H (which in finite dimensions is simply the set of all
linear operators). In this case there is a unique tracial state, the normalized trace τ(X) = 1

r tr(X).
In terms of strategies for nonlocal games, this corresponds to the provers using the projective
measurements that are transposed from each other and sharing the maximally entangled state
|Φ〉 = 1√

r

∑r
e=1 |e〉|e〉. (The transposition is because in general we have 〈Φ|A⊗B|Φ〉 = 1

r tr(AB
T ).)

Such a strategy has the property that if both provers receive the same question x ∈ X then they
always output the same answer a ∈ A (this is why these strategies are called “synchronous”).

In the infinite-dimensional setting synchronous strategies give rise to commuting operator strate-
gies: as shown in [PSS+16, Theorem 5.5], for every synchronous strategy S = (τ, {Mx}) with
Hilbert space H there exist another Hilbert space H′, a state |ψ〉 ∈ H′, and measurements
{Ax}, {Bx} on H′ for the provers respectively such that for all x, y ∈ X and a, b ∈ A, the op-
erators Ax

a and By
b commute and we have

τ(Mx
a My

b ) = 〈ψ|Ax
a B

y
b |ψ〉 .

A consequence of the characterization MIP∗ = RE (specifically, of the fact that MIP∗ contains
undecidable languages) is that there exists a game that can be won with probability 1 using a (syn-
chronous) commuting-operator strategy but tensor product strategies (even infinite-dimensional
ones) cannot succeed with probability larger than 1

2 .
Synchronous strategies arise naturally when considering synchronous games: these are games

where the provers must output the same answers whenever they receive the same question (i.e. for
all x, D(x, x, a, b) = 1 if and only if a = b). Many games studied in quantum information theory
and theoretical computer science are synchronous games; for example the games constructed in the
proof of MIP∗ = RE are all synchronous. The augmented tensor code test (presented formally in
Section 3) studied in this paper is also a synchronous game.

It was shown by [PSS+16, KPS18] that if a synchronous game has a perfect strategy (i.e. a strat-
egy that wins with probability 1) then it also has a perfect synchronous strategy. Furthermore, if

5A von Neumann algebra A on a Hilbert space H is a ∗-subalgebra of B(H) (the set of bounded operators on H)
that contains the identity operator and is closed under the weak operator topology. A tracial state τ on the algebra
A is a positive, unital linear functional that satisfies the trace property : τ (AB) = τ (BA) for all A,B ∈ A .

6Unlike in the finite-dimensional setting, we cannot without loss of generality take A to be all of B(H); this is
because a tracial state on A does not extend to a tracial state on B(H), which is not finite.
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the former strategy is finite-dimensional, then so is the latter synchronous strategy. This character-
ization of perfect (finite-dimensional) strategies for synchronous games was recently extended to the
case of near-perfect strategies in [Vid21]: any finite-dimensional strategy for a synchronous game
G that succeeds with high probability can be well-approximated by a convex combination of finite-
dimensional synchronous strategies. In particular, results such as Theorem 1.2 for synchronous
strategies extend in a natural way to general strategies.

Besides the greater generality there are several advantages to focusing on synchronous strategies
when analyzing the tensor code test. We list the three most important, in our opinion. The first
advantage is that it simplifies notation. In the standard formulation of strategies for nonlocal
games, separate measurement operators are specified for both provers, and in the finite-dimensional
setting they are associated to separate Hilbert spaces. With synchronous strategies there is a single
Hilbert space and a single set of measurement operators. Furthermore, in the finite-dimensional
setting there is no need to specify the state used by the provers; it is assumed that they use the
maximally entangled state. (In infinite dimensions there can be multiple non-unitarily equivalent
tracial states.)

The second advantage is that it simplifies certain routine steps that typically occur in analyses
of quantum strategies. For example, an often-repeated argument is “prover switching”: this is to
argue that prover A’s measurement operator Ax

a corresponding to a question x ∈ X and answer
a ∈ A can be approximately mapped to an analogous measurement operator on prover B’s side.
This allows for “cycling” of measurement operators in the following manner:

〈ψ|Az
c A

y
b A

x
a ⊗ 1|ψ〉 ≈ 〈ψ|Az

c A
y
b ⊗Bx

a |ψ〉 ≈ 〈ψ|Ax
a A

z
c A

y
b ⊗ 1|ψ〉 ,

where here the first approximation sees Ax
a as acting on the state |ψ〉 on the right-hand side,

while the second approximation sees Bx
a as acting on the state 〈ψ| on the left-hand side. Though

fundamentally elementary, such steps can obfuscate the argument in a proof and are tedious to
verify. With synchronous strategies prover switching comes “for free” because of the tracial property
τ(Az

c A
y
b A

x
a) = τ(Ax

a A
z
c A

y
b ).

The third advantage is the operator-algebraic implications of MIP∗ = RE can be still be ob-
tained by focusing on synchronous strategies. In fact, as shown by Dykema and Paulsen [DP16]
the connection with Connes’ Embedding Problem (CEP) arises arguably more naturally in the syn-
chronous setting, e.g. a negative answer to CEP is equivalent to whether there is a nonlocal game G
such that the optimal success probability with finite-dimensional synchronous strategies is strictly
smaller than the optimal success probability with infinite-dimensional synchronous strategies.

1.2 Proof overview

At a high level our proof follows the approach of [BFL91], and it is useful to start by summarizing
their analysis, rephrased in terms of tensor codes rather than low-degree polynomials.

In the setting of [BFL91], we consider classical (i.e. deterministic) strategies: the provers’
strategy is described by a “points function,” assigning a value in Σ to each point u ∈ [n]m, and a
“lines function,” assigning a codeword of C to each axis-parallel line ℓ ⊂ [n]m queried in the test.
From the assumption that the points and lines functions agree at a randomly chosen point with high
probability, we would like to construct a “global” codeword of C⊗m that has high agreement with
the “local” points function, on average over a uniformly random u at which both are evaluated. This
is done by inductively constructing “subspace functions” defined on axis-aligned “affine subspaces”:
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subsets of [n]m where m − k coordinates have been fixed, for some 1 ≤ k ≤ m. We refer to the
parameter k as the dimension of the subspace. As special cases, a subspace of dimension k = 0 is
a single point in [n]m, a subspace of dimension k = 1 is an axis-aligned line, and a subspace with
dimension k = m is the entire space [n]m.

The induction proceeds on the dimension parameter k. The base case is k = 1, and the
“global” codeword is automatically supplied by the lines function. At each step, to construct the
subspace function for a subspace S of dimension k + 1, we pick some number t parallel subspaces
of dimension k that lie within S and compute the unique function in C⊗(k+1) that interpolates
them. The analysis shows that at each stage the function constructed through interpolation has
high agreement on average with the points function and lines function. In the end, when we reach
the ambient dimension k = m, the subspace function we construct is the desired global codeword.

Interpolation Before delving into more detail about the analysis, we first discuss a required prop-
erty of the codes considered in this paper, which is the ability to uniquely interpolate a codeword
from a few positions. Let C be a code with blocklength n and distance d. Let t = n−d+1. The dis-
tance property of the code implies that given t coordinates i1, . . . , it ∈ [n] and values a1, . . . , at ∈ Σ,
there exists at most one codeword c ∈ C such that c(ij) = aj for j ∈ [t]. We say that the code C is
interpolable if for all i1, . . . , it ∈ [n] and a1, . . . , at ∈ Σ there always exists a codeword c with the
prescribed values c(ij) = aj.

Interpolability is a direct generalization of the same property of polynomials. The code C
consisting of the evaluations of all degree-s polynomials over a finite field F is a code with blocklength
|F| and distance |F|−s. Given t = s+1 points and values, there always exists a degree s polynomial
interpolating through them.

Not all codes are interpolable; for example consider a code where some of the coordinates
are always fixed to a predetermined symbol. However, a wide class of error-correcting codes are
interpolable, including all polynomial codes.

In this paper, we assume all base codes C are linear (meaning that they form a subspace of a
vector space over a finite field) and interpolable. These two properties ensure that the tensor codes
C⊗m are also linear interpolable.

The classical zero-error case We return to giving an overview of the proof. To start building
intuition, it is useful to think about how to carry out the above program in a highly simplified
setting: the classical zero-error case, for m = 3 and d = n − 1. In this case, we assume that we
have access to a points function f : [n]m → Σ and lines function g : Ln,m → C that perfectly pass
the tensor code test, where Ln,m denotes the set of axis-parallel lines in [n]m. Moreover, we will
focus on the final step of the induction: thus, we assume that we have already constructed a set of
planes functions defined for every axis-parallel plane that are perfectly consistent with the line and
point functions. In the final step of the induction our goal is to combine these planes functions to
create a single global codeword h ∈ C⊗3 that is consistent with the points and lines functions.

To do this we interpolate the planes as follows. Let us label the 3 coordinates in the space x,
y, and z, and consider planes parallel to the (x, y)-plane. Each plane Sz is specified by a value of
the z coordinate:

Sz = {(x, y, z) : (x, y) ∈ [n]2}.
By the induction hypothesis, for every such plane Sz there exists a function gz : [n]

2 → Σ belonging
to the code C⊗2 that agrees with the points function. To construct a global function h : [n]3 → Σ

8



belonging to C⊗3, we pick two distinct values z1 6= z2 and “paste” the two plane functions gz1 and
gz2 together using the interpolability of the code. Specifically, we define h to be the unique function
in C⊗3 that interpolates between gz1 on the plane Sz1 and gz2 on the plane Sz2 . This interpolation
is guaranteed to exist because the code C (and thus C⊗3) is linear interpolable.

Why is h consistent with the points function? To show this we need to consider the lines
function on lines parallel to the z axis. Given a point (x, y, z), let ℓ be the line parallel to the z
axis through this point, and let gℓ be the associated lines function. By construction, h agrees with
gℓ at the two points z1 and z2. But gℓ and h|ℓ (the restriction of h to ℓ) are both codewords in C,
and hence if they agree at two points, they must agree everywhere. (This is because the distance
of the code C is d = n − 1.) Thus, h agrees with gℓ at the original point z as well. By success in
the test, gℓ in turn agrees with the points function f at (x, y, z), and thus, h(x, y, z) = f(x, y, z).
Thus, we have shown that the global function h is a codeword in C⊗3 and agrees with the points
function f exactly.

Dealing with errors To extend the sketch above to the general case, with nonzero error, requires
some modifications. At the most basic level, we may consider what happens when we allow for
deterministic classical strategies that succeed with probability less than 1 in the test. Such strategies
may have “mislabeling” error: the points function f may be imagined to be a global codeword of
C⊗3 that has been corrupted at a small fraction of the points. This type of error is handled by
the analysis in [BFL91]. The main modification to the zero-error sketch above is a careful analysis
of the probability that the pasting step produces a “good” interpolated codeword for a randomly
chosen pair of planes Sz1 , Sz2 . This analysis makes use of the distance property of the code together
with combinatorial properties of the point-line test itself (namely, the expansion of the hypercube
graph associated with [n]m).

At the next level of generality, we could consider classical randomized strategies. Suppose we
are given a randomized strategy that succeeds in the test with probability 1− ε. Any randomized
strategy can be modeled by first sampling a random seed, and then playing a deterministic strategy
conditioned on the value of the seed. A success probability of 1 − ε could have two qualitatively
different underlying causes: (1) on O(ε) fraction of the seeds, the strategy uses a function which
is totally corrupted, and (2) on a large fraction of the seeds, the strategy uses functions which are
only ε-corrupted. An analysis of randomized strategies could naturally proceed in a “seed-by-seed”
fashion, applying the deterministic analysis of [BFL91] to the large fraction of “good” seeds (which
are each only ε-corrupted), while giving up entirely on the “bad” seeds.

Here we consider quantum strategies, which have much richer possibilities for error. Neverthe-
less, we are able to preserve some intuition from the randomized case by working with submea-
surements, which are quantum measurements that do not always yield an outcome. Working with
a submeasurement allows us to distinguish two kinds of error: consistency error (the probability
that a submeasurement returns a wrong outcome) and completeness error (the probability that the
submeasurement fails to return an outcome at all). Roughly speaking, the completeness error cor-
responds to the probability of obtaining a “bad” seed in the randomized case, while the consistency
error corresponds to how well the strategies do on “good” seeds.

The technique of using submeasurements and managing the two types of error separately goes
back to [IV12]. That work developed a crucial tool to convert between these two types of error
called the self-improvement lemma, and in our analysis we make extensive use of a refined version
of this lemma (Lemma 4.2), that in particular applies to the two-prover setting as opposed to three
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provers in [IV12].
Essentially, the self-improvement lemma says the following: suppose that (a) the provers pass

the test with probability 1 − ε, and (b) there is a complete measurement Gg whose outcomes are
codewords g ∈ C⊗m that has consistency error ν: that is, G always returns an outcome, but has
probability ν of producing an outcome g that disagrees with the points measurement Au

a at a random
point u. Then there exists an “improved” submeasurement Hh with consistency error ζ depending
only on ε, and with completeness error (i.e. probability of not producing an outcome at all) of
ν + ζ. Thus the lemma says that we can always “reset” the consistency error of any measurement
we construct at intermediate points in the analysis to a universal function ζ depending only on the
provers’ success in the test, at the cost of introducing some amount completeness error. Intuitively,
one may think of the action of the lemma as correcting G on the portions of Hilbert space where it
is only mildly corrupted, while “cutting out” the portions of Hilbert space where G is too corrupted
to be correctable. In some sense, this lemma is the quantum analogue of the idea of identifying
“good” and “bad” random seeds in the classical randomized case. The proof of the lemma uses a
version of semidefinite programming duality together with the combinatorial facts used in [BFL91].

Armed with the self-improvement lemma, we set up the following variant of the induction loop
sued in [BFL91]. We say that an affine subspace S is “k-aligned” if S has dimension k and for all
u, v ∈ S, the projection of u, v to the first m − k coordinates are the same. For k running from 1
to m, for all k-aligned subspaces S, we construct a “subspace measurement” {GS

g } that returns a

codeword g ∈ C⊗k, as follows.

1. By the induction hypothesis, we know that there exists a measurement GS
g for every k-aligned

subspace S, which has (on average over the the subspaces S) consistency error δ(k) with the
points measurement. (For the base case k = 1, this is the lines measurement from the provers’
strategy).

2. We apply the self-improvement lemma to these measurements, yielding submeasurements
ĜS

g that have (on average) consistency error ζ independent of δ(k), and completeness error
κ(k) = δ(k) + ζ.

3. For each (k + 1)-aligned subspace S′, we construct a pasted submeasurement GS′

g′ , by per-
forming a quantum version of the classical interpolation argument: we define the pasted
submeasurement by sequentially measuring several parallel k-aligned subspaces S ⊆ S′ and
interpolate the resulting outcomes. This pasted submeasurement has (on average) consistency
error slightly worse than ζ, and completeness error which is slightly worse than κ(k). It is at
this step that it is crucial to treat the two types of error separately: in particular, we need
the consistency error to be low to ensure that the interpolation produces a good result.

4. We convert the resulting submeasurement into a full measurement, by assigning a random
outcome whenever the submeasurement fails to yield an outcome. This measurement will
have (on average) consistency error δ(k+1) which is larger than δ(k) by some additive factor.

At the end of the loop, when k = m, we obtain a single measurement that returns a global codeword
as desired.

The subcube commutation test The “augmented” qualifier of the tensor code test in The-
orem 1.2 refers to an additional component called the “subcube commutation test”, which is de-
scribed in detail in Section 3. This additional test is not needed in the classical setting, but
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appears necessary in the noncommutative setting. The purpose of this test is to certify that the
points measurements used by the provers approximately commute on average over all pairs of points
x, y ∈ [n]m—something which is automatically true in the classical case. This is done by asking
one prover to report values for a pair randomly chosen points (u, v) from a randomly chosen sub-
cube, asking the other prover to report values for either u or v (chosen randomly), and checking
consistency between their reported values. A subcube is a subset of points in [n]m that all share
the same values in the last k coordinates for some 1 ≤ k ≤ n− 1. The reason for choosing a pair of
points uniformly at random in a subcube of this form, as opposed to a pair of points uniformly at
random in the entire cube, biases their distribution in a way that is appropriate for the induction.

The (approximate) commutation guarantee plays an important role in our analysis of the tensor
code test, and it is an interesting question whether it is truly necessary to test it directly with the
subcube commutation test; might it not automatically follow from success in the axis-parallel lines
test? An interesting contrast can be drawn to the Magic Square game [Mer90, Per90, Ara02], in
which questions are either cells or axis-parallel lines in a 3 × 3 square grid. This has the same
question distribution as the axis-parallel line-point test over [3]2. For the Magic Square game,
“points” measurements along the same axis-parallel “line” commute, but points that are not axis-
aligned do not commute: indeed, for the perfect strategy, they anticommute.

1.3 Future directions

This paper has several motivations. The first is to provide a complete proof of quantum soundness
of the tensor code test (and thus the low individual degree test), which as already mentioned plays
a central role in the result MIP∗ = RE.

Second, although MIP∗ = RE is ostensibly a complexity-theoretic result about the power of
quantum multiprover interactive proof systems, it also provides negative answers to seemingly-
unrelated questions in mathematical physics and operator algebras, namely Tsirelson’s Problem
and Connes’ Embedding Problem. Unfortunately there is still a large gap between the methods
used to prove MIP∗ = RE (which combine techniques from theoretical computer science, complexity
theory, and quantum information theory) and the traditional methods to study the problems of
Tsirelson and Connes in functional analysis. We believe that the simpler analysis of the tensor
code test and its presentation in the synchronous strategies framework will help researchers in pure
mathematics as well as theoretical computer science gain a better understanding of MIP∗ = RE. A
simpler, more direct proof may lead to the resolution of other long-standing open problems such as
the existence of a non-hyperlinear group [CLP15].

Third, we believe that the study of locally testable codes in the quantum setting is a subject
that is interesting in its own right. At its core, the quantum soundness of tensor codes is about
robustly deducing a global “consistency” property of a set of operators on a Hilbert space that
do not necessarily commute. This hints at a more general study of noncommutative property
testing, which could combine questions from property testing in theoretical computer science and
questions from functional analysis and operator algebras. The field of property testing, which
studies how global properties of combinatorial objects such as Boolean functions and graphs can
be robustly detected by only examining local views of the object, was initially motivated by the
MIP = NEXP and PCP theorems. Similarly, MIP∗ = RE and its mathematical consequences
suggest the occurrence of “local-to-global” phenomena in the noncommutative setting that seem
worth studying independently of interactive proofs and complexity theory.

We conclude with an open question. The complexity of quantum multiprover interactive proofs
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with infinite-dimensional commuting operator strategies, i.e. the class MIPco (where co stands for
“commuting operator”), remains unknown. It is natural to conjecture that MIPco = coRE, as this
would nicely complement the MIP∗ = RE result.7 The analysis of the soundness of the tensor code
test for infinite-dimensional strategies establishes a first step towards proving this conjecture.
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2 Preliminaries

We write [n] to denote the set {1, 2, . . . , n}. For positive integers a, b, c, . . ., that we treat as growing
to infinity, we write poly(a, b, c, . . .) to denote a function C(a+b+c · · · )C for some universal constant
C ≥ 1. For nonnegative real numbers 0 ≤ α, β, γ, . . . < 1 that we treat as going to 0, we write
poly(α, β, γ, . . .) to denote a function C(α1/C + β1/C + γ1/C) for some universal constant C ≥ 1.
In either case, the universal constant C can vary each time the poly(·) notation is used.

For a finite set S, we write x ∼ S to indicate that x is sampled from S according to some
distribution specified by context (usually the uniform distribution). For an event E in a probability
space, we write I[E] to denote the indicator for the event E.

2.1 Algebras, tracial states, and norms

Let H be a (separable) Hilbert space and let B(H) denote the set of bounded linear operators on
H. We write 1H to denote the identity operator on H (and simply write 1 when the Hilbert space
is clear from context).

A von Neumann algebra on a Hilbert space H is a unital ∗-subalgebra of bounded operators
B(H) that is closed in the weak operator topology. Let A ⊆ B(H) denote a von Neumann algebra
on H. We say that a positive linear functional τ : A → C is

• Unital if τ(1) = 1 ;

• Normal if there exists a positive trace class8 operator A such that for all X ∈ A , τ(X) =
tr(XA) ;

• Tracial if for all A,B ∈ A , we have τ(AB) = τ(BA) ;

In this paper, τ will always represent a positive linear functional that is tracial, normal, and unital.
We call such functionals a normal tracial state. For brevity we often drop the “normal” qualifier.

7Note that the co on either side of MIP
co = coRE refer to different things!

8An operator A ∈ B(H) is trace class if the trace of A is well-defined; i.e. for all orthonormal bases {|ek〉} for H,
the quantity

∑
k 〈ek|A|ek〉 is well-defined and independent of the choice of basis.
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If H is finite dimensional (i.e. isomorphic to C
r), then we will without loss of generality take

the algebra to be B(H). There is a unique tracial state on B(H) which is the normalized trace:

τ(A) =
1

r
tr(A).

For a more comprehensive reference on von Neumann algebras, we refer the reader to [Bla06].
We record some basic properties of tracial states. First, the map (A,B) 7→ τ(A∗B) is a semi-

inner product and in particular satisfies the Cauchy-Schwarz inequality, i.e.

|τ(A∗B)|2 ≤ τ(A∗A) τ(B∗B).

Second, tracial states give rise to a seminorm on A : we define the τ -norm of an operator A ∈ A

to be
‖A‖τ =

√
τ(A∗A) =

√
τ(AA∗).

The ‖ · ‖τ norm satisfies the triangle inequality: i.e., ‖A + B‖τ ≤ ‖A‖τ + ‖B‖τ . If H is finite-
dimensional, then τ -norm is the normalized Frobenius norm.

More generally, tracial states give rise to p-seminorms for 1 ≤ p < ∞ via ‖A‖p = τ(|A|p)1/p,
where for all A ∈ A , the operator absolute value |A| denotes (A∗A)1/2. These p-seminorms
satisfy triangle and Hölder inequalities (see [PX03] for an in-depth discussion of these norms and
noncommutative Lp spaces); we record some special cases here.

Proposition 2.1 (Triangle and Hölder inequalities). Let τ be a tracial state on a von Neumann
algebra A , and let A,B ∈ A . Then

1. |τ(A)| ≤ τ(|A|) .

2. (Hölder inequality 1) τ (|AB|) ≤ ‖A‖τ · ‖B‖τ .

3. (Hölder inequality 2) τ (|AB|) ≤ ‖A‖ · τ (|B|) .

4. (Triangle inequality for 1-norm) τ(|A+B|) ≤ τ(|A|) + τ(|B|).

Proof. The proof of the first item is as follows. By the polar decomposition, there exists a unitary
U ∈ A such that A = U |A|. Then by Cauchy-Schwarz,

|τ(A)| = |τ(U |A|)| = |τ(|A|1/2U |A|1/2)| ≤
√

τ(|A|1/2UU∗|A|1/2)τ(|A|) = τ(|A|).

The proof of the first Hölder inequality is as follows. By the polar decomposition, there exists a
unitary U ∈ A such that |AB| = UAB. Then

τ (|AB|) = |τ(UAB)| ≤
√

τ (A∗U∗UA) · τ (B∗B) = ‖A‖τ · ‖B‖τ

where we used Cauchy-Schwarz and the unitary of U .
The proof of the second Hölder inequality is as follows. Let |AB| = UAB and B = V |B| for

unitaries U, V ∈ A . Then

τ (|AB|) = |τ(UAV |B|)| = |τ(|B|1/2 UAV |B|1/2)| ≤
√

τ
(
|B|1/2 UAA∗U∗ |B|1/2

)
· τ (|B|)
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where we used the cyclicity of the trace and Cauchy-Schwarz. Since AA∗ ≤ ‖AA∗‖1, we have that
this is at most

√
τ
(
|B|1/2 (‖AA∗‖ · 1) |B|1/2

)
· τ (|B|) = ‖A‖ · τ (|B|)

where we use that
√

‖AA∗‖ = ‖A‖.
The proof of the triangle inequality is as follows. By the polar decomposition, there exists a

unitary U ∈ A such that |A+B| = U(A+B). Therefore

τ(|A+B|) = |τ(U(A+B))| = |τ(UA) + τ(UB)| ≤ |τ(UA)|+ |τ(UB)| ≤ τ(|A|) + τ(|B|)

where the first equality follows from the positivity of |A+ B| and the last inequality follows from
the second Hölder inequality.

2.2 Measurements and distance measures on them

Let M = {Ma}a∈A and N = {Na}a∈A denote sets of operators, indexed by a finite set A, in a
von Neumann algebra A with trace τ . We measure the distance between A and B, denoted by
‖M −N‖τ , as

‖M −N‖τ =

√∑

a∈A
‖Ma −Na‖2τ .

We say that M is δ-close from N , denoted by Ma ≈δ Na, if ‖M −N‖τ ≤ δ.
A submeasurement on H with answer/outcome set A is a set of positive operators {Ma}a∈A

such that
∑

a∈AMa ≤ 1. We say that {Ma}a∈A is a measurement if
∑

aMa = 1. A projective
(sub)measurement is a (sub)measurement such that each element Ma is a projection. To denote
“data processed” measurements, i.e., apply a function f : A → B to the outcome of a measurement,
we use the following notation: M[f ] denotes the (sub)measurement with elements

M[f |b] =
∑

a:f(a)=b

Ma

for all b ∈ B. As an example, suppose A = {0, 1}n and B = {0, 1}. Then we write M[a7→ai] to
denote the processed measurement that measures a string a, and then returns the i-th bit of a.
To refer to the element of M[a7→ai] corresponding to outcome b ∈ {0, 1}, we write M[a7→ai|b]. For a
predicate P : A → {0, 1}, we also use the notation

M[a:P (a)] =
∑

a:P (a)=1

Ma .

For example, the operator M[a:f(a)6=b] denotes the sum over all Ma such that f(a) 6= b.
Throughout this paper (sub)measurements are often indexed by a finite set X , and the elements

in the set X are generally drawn from a distribution µ. The set X is typically called a question set
and µ is typically called a question distribution, because these will correspond to questions that are
sampled in a nonlocal game such as the tensor codes test. Questions appear as superscripts and
answers appear as subscripts of a measurement operator; for example, Mx

a denotes the measurement
operator corresponding to question x and answer a.
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We introduce two important distance measures between (sub)measurements that will be used
throughout this paper. We fix a question set X , a question distribution µ, and an answer set A.
Let M = {Mx}x and N = {Nx}x denote two sets of submeasurements, where each Mx = {Mx

a }a
and Nx = {Nx

a }a.
The first distance measure we define is called inconsistency. We say that M and N are δ-

consistent if
E

x∼µ

∑

a,b∈A:
a6=b

τ(Mx
a Nx

b ) ≤ δ .

When the question set X , question distribution µ, and answer set A are clear from context, we
write Ma ≃δ Na to denote that M and N are δ-consistent. Observe that in case M and N are
measurements then M and N are δ-consistent if and only if

E
x∼µ

∑

a∈A
τ(Mx

a Nx
a ) ≥ 1− δ .

The second distance measure we introduce is called closeness. We say that sets M,N of
(sub)measurements are δ-close if

√
E

x∼µ

∑

a

‖Mx
a −Nx

a ‖2τ ≤ δ.

Similarly, when X ,A, µ are clear from context, we write Mx
a ≈δ Nx

a to denote that Mx and Nx

are δ-close on average over x ∼ µ. Observe that this notion of closeness is also well-defined when
the operators Mx

a , N
x
a are not necessarily positive. Thus we will also write Mx

a ≈δ Nx
a to denote

closeness of arbitrary operator sets that are indexed by question and answer sets X ,A.

2.2.1 Utility lemmas about consistency and closeness of measurements

We now establish several utility lemmas concerning consistency, closeness, and measurements. In
what follows, we let X denote a finite question set, µ a distribution over X , and A a finite answer
set. All expectations are over x sampled from µ.

Proposition 2.2 (Cauchy-Schwarz for operator sets). Let M = {Ma}a∈A and N = {Na}a∈A
denote sets of operators (not necessarily submeasurements). Then

∣∣∣
∑

a∈A
τ(Ma ·Na)

∣∣∣
2
≤

(∑

a∈A
‖Ma‖2τ

)
·
(∑

a∈A
‖Na‖2τ

)
.

Proof. Applying Cauchy-Schwarz twice,

∣∣∣
∑

a∈A
τ(Ma ·Na)

∣∣∣ ≤
∑

a∈A

∣∣∣τ(Ma ·Na)
∣∣∣ ≤

∑

a∈A

√
τ(MaM∗

a )τ(N
∗
aNa)

=
∑

a∈A
‖Ma‖τ‖Na‖τ ≤

√∑

a∈A
‖Ma‖2τ ·

√∑

a∈A
‖Na‖2τ .

The proposition follows by squaring both sides.
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Corollary 2.3. Let {Mx
a } and {Nx

a } be sets of operators indexed by both X and A. Then
∣∣∣E
x

∑

a∈A
τ(Mx

a ·Nx
a )
∣∣∣
2
≤

(
E
x

∑

a∈A
‖Mx

a ‖2τ
)
·
(
E
x

∑

a∈A
‖Nx

a ‖2τ
)

.

Proof. We apply Cauchy-Schwarz twice:
∣∣∣E
x

∑

a∈A
τ(Mx

a ·Nx
a )
∣∣∣
2
≤

(
E
x

∣∣∣
∑

a∈A
τ(Mx

a ·Nx
a )
∣∣∣
)2

≤
(
E
x

√∑

a∈A
‖Mx

a ‖2τ ·
√∑

a∈A
‖Nx

a ‖2τ
)2

≤
(
E
x

∑

a∈A
‖Mx

a ‖2τ
)
·
(
E
x

∑

a∈A
‖Nx

a ‖2τ
)
.

Proposition 2.4 (Data processing inequality for consistency). Let Mx = {Mx
a } and Nx = {Nx

a }
be submeasurements with outcomes in A such that Mx

a ≃δ Nx
a on average over x. Let f : A → B.

Then
Mx

[f |b] ≃δ N
x
[f |b]

on average over x where the answer summation is over b ∈ B.
Proof.

E
x

∑

b6=b′∈B
τ(Mx

[f |b]N
x
[f |b′]) = E

x

∑

b6=b′∈B
a,a′∈A
f(a)=b
f(a′)=b′

τ(Mx
aN

x
a′) ≤ E

x

∑

a6=a′∈A
τ(Mx

aN
x
a′) ≤ δ.

Proposition 2.5 (Consistency to closeness). Let Mx = {Mx
a } and Nx = {Nx

a } be measurements
with outcomes in A such that Mx

a ≃δ Nx
a on average over x. Then Mx

a ≈√
2δ Nx

a on average over
x.

Proof.
√

E
x

∑

a

‖Mx
a −Nx

a ‖2τ =

√
E
x

∑

a

τ((Mx
a −Nx

a )
2)

≤
√
E
x

∑

a

τ(Mx
a +Nx

a − 2Mx
aN

x
a )

=

√
E
x
2− 2

∑

a

τ(Mx
aN

x
a )

=

√
2E

x

∑

a

τ(Mx
a (1−Nx

a ))

≤
√
2δ.

The second line follows because Mx
a − (Mx

a )
2 ≥ 0 as {Mx

a } are measurements.
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Proposition 2.6 (Closeness to consistency). Let Mx = {Mx
a } be projective submeasurements and

let Nx = {Nx
a }a∈A be submeasurements with outcomes in A. Suppose that Mx

a ≈δ Nx
a on average

over x. Then Mx
a ≃δ N

x
a on average over x.

Proof.

E
x

∑

a6=b

τ(Mx
aN

x
b ) ≤ E

x

∑

a

τ(Mx
a (1−Nx

a ))

= E
x

∑

a

τ(Mx
a (M

x
a −Nx

a ))

≤
√

E
x

∑

a

τ((Mx
a )

2) ·
√

E
x

∑

a

τ((Mx
a −Nx

a )(M
x
a −Nx

a )
∗) (by Cauchy-Schwarz)

≤ δ

where we used that
∑

a τ((M
x
a )

2) ≤ 1.

Proposition 2.7. Let Ax = {Ax
a} and Bx = {Bx

a} be two sets of operators indexed by subscripts
in A such that Ax

a ≈δ B
x
a . Let Mx

a be operators satisfying
∑

aM
x
a (M

x
a )

∗ ≤ 1 for all x. Then

E
x

∑

a

τ (Mx
aA

x
a) ≈δ E

x

∑

a

τ (Mx
aB

x
a ) .

In particular, if Cx = {Cx
a} are submeasurements, then

E
x

∑

a

τ(Cx
aA

x
a) ≈δ E

x

∑

a

τ(Cx
aB

x
a ).

Proof. Via Cauchy-Schwarz we have:

∣∣∣E
x

∑

a

τ(Mx
a (A

x
a −Bx

a))
∣∣∣ ≤

√
E
x

∑

a

τ(Mx
a (M

x
a )

∗) ·
√

E
x

∑

a

‖Ax
a −Bx

a‖2τ ≤ δ.

Proposition 2.8. Let M = {Ma}a∈A, N = {Na}a∈A be sets of operators (not necessarily mea-
surements), and let R = {Rb}b∈B be a set of operators such that

∑
b R

∗
bRb ≤ 1. Suppose that

Ma ≈δ Na. Then RbMa ≈δ RbNa where the answer summation is over (a, b) ∈ A × B. Similarly,
if
∑

b RbR
∗
b ≤ 1, we have MaRb ≈δ NaRb.

Proof. We prove the approximation RbMa ≈δ RbNa:

∑

a∈A,b∈B
‖Rb(Ma −Na)‖2τ =

∑

a∈A,b∈B
τ
(
(Ma −Na)

∗R∗
bRb(Ma −Na)

)

=
∑

a

τ
(
(Ma −Na)

∗
(∑

b

R∗
bRb

)
(Ma −Na)

)

≤
∑

a

τ
(
(Ma −Na)

∗(Ma −Na)
)

=
∑

a

‖Ma −Na‖2τ
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≤ δ2.

where in the first inequality we used the assumption that
∑

b R
∗
bRb ≤ 1 and positivity of the trace.

The proof for the approximation MaRb ≈δ NaRb follows similarly.

Proposition 2.9 (Transfering “≃” using “≈”). Let {Ax
a} and {Bx

a} be measurements, and let {Cx
a}

be a submeasurement. Suppose that Ax
a ≃δ C

x
a and Ax

a ≈ε B
x
a . Then Bx

a ≃δ+ε C
x
a .

Proof. Let Cx =
∑

a C
x
a and C = ExC

x. First, we can rewrite the inconsistency between {Ax
a}

and {Cx
a} as

E
x

∑

a6=b

τ (Ax
aC

x
b ) = E

x

∑

a

τ (Ax
a(C

x −Cx
a ))

= E
x
τ (Cx)− E

x

∑

a

τ (Ax
aC

x
a ) (because {Ax

a} is a measurement)

= τ (C)− E
x

∑

a

τ (Ax
aC

x
a ) .

Likewise, we can rewrite the inconsistency between {Bx
a} and {Cx

a} as

E
x

∑

a6=b

τ (Bx
aC

x
b ) = τ (C)− E

x

∑

a

τ (Bx
aC

x
a ) .

We want to show that the inconsistency between B and C is close to the inconsistency between A
and B. In particular, we claim that

E
x

∑

a6=b

τ (Ax
aC

x
b ) ≈ε E

x

∑

a6=b

τ (Bx
aC

x
b ) .

To show this, we bound the magnitude of the difference using Cauchy-Schwarz.
∣∣∣E
x

∑

a

τ ((Ax
a −Bx

a)C
x
a )

∣∣∣

≤
√

E
x

∑

a

τ
(
(Ax

a −Bx
a)

2
)
·
√

E
x

∑

a

τ
(
(Cx

a )
2
)

≤ ε · 1. (because {Cx
a} is a submeasurement)

This completes the proof.

The following fact is useful for translating between statements about consistency and closeness
between submeasurements.

Proposition 2.10. Let {Ax
a} be a submeasurement and let {Bx

a} be a measurement such that on
average over x,

Ax
a ≃γ Bx

a .

Then

Ax
a ≈√

γ Ax
aB

x
a ≈√

γ AxBx
a , (1)

where Ax =
∑

aA
x
a. As a result, by the triangle inequality,

Ax
a ≈2

√
γ AxBx

a
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Proof. We establish the first approximation in Eq. (1):

E
x

∑

a

τ
((
Ax

a(1−Bx
a)
)∗
(Ax

a(1−Bx
a))

)
=E

x

∑

a

τ
(
(Ax

a)
2(1−Bx

a )
2
)

≤E
x

∑

a

τ (Ax
a(1−Bx

a ))

=E
x

∑

a,b:
b6=a

τ (Ax
aB

x
b )

≤γ.

The first equality follows from cyclicity of the trace. The first inequality folows from the fact
that (Ax

a)
2 ≤ Ax

a, (1−Bx
a)

2 ≤ 1 − Bx
a , and positicity of the trace. The last line follows from the

assumption of consistency between the A and B (sub)measurements.
To establish the second approximation in Eq. (1), we compute the difference:

E
x

∑

a

τ
(
(Ax −Ax

a)
2(Bx

a )
2
)
≤E

x

∑

a

τ ((Ax −Ax
a)B

x
a)

=E
x

∑

a,b:a6=b

τ (Ax
bB

x
a )

≤γ.

The second line follows from the fact that (Ax −Ax
a)

2 ≤ Ax − Ax
a and (Bx

a )
2 ≤ Bx

a , and the last
inequality follows from the consistency between the A and B (sub)measurements.

The following proposition states that, if a collection of measurements approximately pairwise
commute, then they can also be approximately commuted within longer products of operators.

Proposition 2.11. For all x ∈ X let Ax = {Ax
a} denote a submeasurement with answer set A.

Furthermore suppose that on average over x, y ∼ X , it holds that

Ax
aA

y
b ≈ε A

y
bA

x
a . (2)

Then for all k ∈ N it holds that on average over x ∼ X and uniformly random s ∼ X k,

P s
~a A

x
b ≈kε A

x
b P

s
~a (3)

where for all integers k ≥ 1, vectors ~a ∈ Ak, and sequences s ∈ X k we define

P s
~a = As1

~a1
· As2

~a2
· · ·Ask

~ak
.

Proof. We prove Equation (3) by induction on k. The base case for k = 1 follows from the
assumption of the approximate commutativity of the Ax measurements. Assuming the inductive
hypothesis holds for some k ≥ 1, we now prove it for k + 1: let s ∈ X k, t ∈ X . We can treat (s, t)
as a sequence of length k + 1. Then for all x ∈ X , we have

√√√√ E
s∼Xk

t,x∼X

∑

~a,b,c

∥∥∥P s,t
~a,bA

x
c −Ax

cP
s,t
~a,b

∥∥∥
2

τ
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=
√

E
s∼Xk

t,x∼X

∑

~a,b,c

∥∥P s
~aA

t
bA

x
c −Ax

cP
s
~aA

t
b

∥∥2
τ

≤
√√√√ E

s∼Xk

t,x∼X

∑

~a,b,c

( ∥∥∥P s
~a

(
At

bA
x
c −Ax

cA
t
b

)∥∥∥
τ
+

∥∥∥
(
P s
~aA

x
c −Ax

cP
s
~a

)
At

b

∥∥∥
τ

)2

≤
√√√√ E

s∼Xk

t,x∼X

∑

~a,b,c

∥∥∥P s
~a

(
At

bA
x
c −Ax

cA
t
b

)∥∥∥
2

τ
+

√√√√ E
s∼Xk

t,x∼X

∑

~a,b,c

∥∥∥
(
P s
~aA

x
c −Ax

cP
s
~a

)
At

b

∥∥∥
2

τ

where the second line follows from the triangle inequality, and the third line follows from squaring
both sides and applying Cauchy-Schwarz. Next, notice that

√√√√ E
s∼Xk

t,x∼X

∑

~a,b,c

∥∥∥P s
~a

(
At

bA
x
c −Ax

cA
t
b

)∥∥∥
2

τ
=

√√√√ E
s∼Xk

t,x∼X

∑

~a,b,c

τ
((

At
bA

x
c −Ax

cA
t
b

)∗
(P s

~a )
∗P s

~a

(
At

bA
x
c −Ax

cA
t
b

))

≤
√

E
t,x∼X

∑

b,c

∥∥At
bA

x
c −Ax

cA
t
b

∥∥2
τ
≤ ε

where the last inequality follows from the assumption (2). Similarly, we can bound

√√√√ E
s∼Xk

t,x∼X

∑

~a,b,c

∥∥∥
(
P s
~aA

x
c −Ax

cP
s
~a

)
At

b

∥∥∥
2

τ
≤

√
E

s∼Xk,x∼X

∑

~a,c

‖P s
~aA

x
c −Ax

cP
s
~a‖2τ ≤ kε

using the fact that {At
b} is a submeasurement for the first inequality and using the inductive

hypothesis for the second inequality. Thus we have established that

E
s∼Xk

t,x∼X

√√√√
∑

~a,b,c

∥∥∥P s,t
~a,bA

x
c −Ax

cP
s,t
~a,b

∥∥∥
2

τ
≤ (k + 1)ε

which proves the inductive hypothesis for k + 1. By induction, the hypothesis holds for all k.

2.3 Codes

Recall the definition of a code from the introduction.

Definition 2.12. A linear [n, k, d]Σ code over a finite field Σ is a set C of functions c : [n] → Σ with
size |C| = |Σ|k that is closed under linear combination, such that for any two distinct c 6= c′ ∈ C,
the number of coordinates i ∈ [n] such that c(i) 6= c′(i) is at least d. The parameter n is called the
blocklength, k is called the dimension, and d is called the distance of the code.

Since all codes in this paper are linear, we drop the qualifier “linear” for brevity. The distance
property of a code implies the following simple fact:

Proposition 2.13. Let C be an [n, k, d]Σ code, and let t = n − d + 1. Suppose that i1, . . . , it are
t distinct elements in [n]. Then given a set of values a1, . . . , at ∈ Σ, there exists at most one
codeword c ∈ C such that c(ij) = aj for all 1 ≤ j ≤ t.
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Proof. Suppose not. Then there are two distinct codewords c, c′ that agree on at least n − d + 1
locations, and thus disagree on at most d− 1 locations. This contradicts the assumption that the
code has distance d.

We now formally define the interpolability condition on codes, which was discussed in Section 1.2.
All codes we consider in the paper are interpolable.

Definition 2.14. Let C be a linear [n, k, d]Σ code, and let t = n−d+1. We say C is interpolable if, for
all collections of t coordinates i1, . . . , it ∈ [n], there exists a linear interpolation map φi1,...,it : Σ

t → C
that maps a collection of values (a1, . . . , at) ∈ Σt to the unique codeword c ∈ C such that c(ij) = aj
for all j ∈ [t].

Remark 2.15. The condition of being interpolable is equivalent to saying that any t rows of the
generator matrix G ∈ Σn×k of the code are linearly independent. We observe that the Reed-Solomon
code is interpolable for any degree: for Reed-Solomon with degree s, the distance of the code is n−s,
and a degree-s polynomial can be uniquely interpolated from its value at t = s+ 1 points.

2.3.1 Tensor codes

Definition 2.16. Given j ∈ [m] and u ∈ [n]m−1, the axis-parallel line ℓ(j, u) through axis j and
with intercept u is the set

ℓ(j, u) = {(u1, u2, . . . , uj−1, i, uj , . . . , um−1) ∈ [n]m : i ∈ [n]}.

Definition 2.17. Let C be a [n, k, d]Σ code and let m ≥ 1 be an integer. The tensor code C⊗m is
the set of all functions c : [n]m → Σ such that the restriction c|ℓ of c to any axis-parallel line ℓ is a
codeword of C.

Proposition 2.18. Let γm = 1− dm

nm . For any c 6= c′ ∈ C⊗m it holds that

Pr
u∈[n]m

(
c(u) = c′(u)

)
≤ γm ≤ mt

n
.

Proof. The first inequality follows from the fact that the distance of C⊗m is dm. (This is easily seen
by verifying that codewords of Cm are exactly the tensor products of (possibly different) codewords
from C.) For the second inequality we use Bernoulli’s inequality,

γm = 1− dm

nm
= 1−

(
1− t− 1

n

)m

≤ m(t− 1)

n
≤ mt

n
.

The following two propositions relate codewords of C⊗(m+1) to tuples of codewords of C⊗m.

Proposition 2.19. Let C be an [n, k, d]Σ code, and let t ≥ n − d + 1. Let x1, . . . , xt ∈ [n], and
define the subset S ⊆ (C⊗m)

t
as

S = {(g1, . . . , gt) ∈
(
C⊗m

)t
: there exists h ∈ C⊗(m+1) such that h|xj = gj},

where h|xj denotes the function h(·, . . . , ·, xj). Then there is a one-to-one correspondence between

S and C⊗(m+1).
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Proof. The correspondence maps a tuple (g1, . . . , gt) ∈ S to the unique corresponding element
h ∈ C⊗(m+1) such that hxj = gj for all j. By the definition of S such an h exists; to show that this
is well defined, suppose there are two distinct h 6= h′ such that h|xj = gj = h′|xj for all j. Since
h 6= h′, there must exist some axis-parallel line ℓ(m + 1, u) along the (m + 1)-st axis such that
h|ℓ 6= h′|ℓ (this is because such lines partition the entire space [n]m+1. At the same time, we have
that

(h|ℓ)(xj) = gj(u) = (h′|ℓ)(xj)
for all 1 ≤ j ≤ t. Thus, h|ℓ and h′|ℓ are two codewords of C which are not equal, yet agree on at
least n− d+ 1 points. By Proposition 2.18, this is impossible. Hence, h is unique.

So far, we have established the the correspondence is well defined. It remains to show that it is
one-to-one. First, we observe that it is clearly injective by definition. Next, observe that it is also
onto: for any h ∈ C⊗(m+1), it holds that the tuple (h|x1 , . . . , h|xt) is in S and maps to h under the
correspondence. Therefore, it is one-to-one.

Proposition 2.20. Let C be a [n, k, d]Σ code that is interpolable, and let t = n − d + 1. Let S be
as in Proposition 2.19. Then S = (C⊗m)

t
.

Proof. Fix coordinates x1, . . . , xt ∈ [n] and let φx1,...,xt : Σt → C denote the corresponding linear

interpolation map for C. It suffices to show that all tuples (g1, . . . , gt) ∈ (C⊗m)
t
are contained in S

(which is a set defined with respect to x1, . . . , xt). Indeed, given such a tuple, let h : [n]m+1 → Σ
be the function defined by

h(z1, . . . , zm, x) = φx1,...,xt(g1(z), . . . , gt(z))(x).

It follows from the definition of φ that for any fixed z1, . . . , zm ∈ [n]m, the function h(z1, . . . , zm, ·)
is a codeword of C, and that for any j ∈ [t] we have

h(·, . . . , ·, xj) = gj(·, . . . , ·).

Moreover, by the linearity of φ, it holds that for any fixed x, h(·, . . . , ·, x) is a linear combination
of g1, . . . , gt and is thus a codeword of C⊗m. This establishes that h ∈ C⊗(m+1), and therefore that
(g1, . . . , gt) ∈ S.

3 The tensor code test

Let C be an interpolable code (called the base code) over alphabet Σ with blocklength n, dimension k,
and dimension d, and let m ≥ 2 be an integer. Informally, the augmented tensor code test proceeds
as follows. With probability 1/2, the referee performs the line-vs-point test as described in the in-
troduction. With probability 1/2, the referee performs a subcube commutation test. Here, a subcube
of [n]m denotes a subset of points of the form Hxm−j+2,...,xm = {(x1, . . . , xm−j+1, xm−j+2, . . . , xm) ∈
[n]m : x1, . . . , xm−j+1 ∈ [n]} where xm−j+2, . . . , xm are fixed elements of [n]. (If j = 1, then we
define the subcubeH to be all of [n]m.) The purpose of the subcube commutation test is to enforce
that for an average subcube Hxm−j+2,...,xm, the measurements corresponding to two randomly cho-
sen points u, v ∈ Hxm−j+2,...,xm approximately commute. The motivation for choosing the specific
distribution on pairs of points used in the test comes from its use in the analysis, and in particular
on how the induction is structured; see the induction step in the proof of Lemma 4.4.
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The augmented tensor code test for the tensor code C⊗m is described precisely in Figure 1.
From here on we omit the qualifier “augmented” and simply refer to the test described in Figure 1
as the tensor code test.

Perform one of the following tests with probability 1
2 each.

1. Axis-parallel lines test: Let u ∼ [n]m be a uniformly random point. Select j ∼ {1, . . . ,m}
uniformly at random and let ℓ = {(u1, . . . , uj−1, s, uj+1, . . . , um) ∈ [n]m : s ∈ [n]} be the
axis-parallel line passing through u in the j-th direction.

◦ Give ℓ to prover A and receive g ∈ C.
◦ Give u to prover B and receive a ∈ Σ.

Accept if g(uj) = a. Reject otherwise.

2. Subcube commutation test: Select j ∼ {1, . . . ,m} uniformly at random, and select
xm−j+2, . . . , xm ∼ [n] uniformly at random. Select u, v independently and uniformly at
random from the subcube Hxm−j+2,...,xm. Select t ∈ {0, 1} uniformly at random.

◦ If t = 0, then give (u, v) to prover A and receive (bu, bv) ∈ Σ2; otherwise, give (v, u) to
prover A and receive (bv, bu) ∈ Σ2.

◦ Give u to prover B; receive a ∈ Σ.

Accept if bu = a. Reject otherwise.

Figure 1: The tensor code test.

Definition 3.1. A tracial strategy S for the tensor code test is a tuple (τ,A,B, P ) where τ :
A → C is a tracial state on a von Neumann algebra A , and A,B,P are the following projective
measurements:

1. Points measurements: for every u ∈ [n]m, let Au = {Au
a}a∈Σ denote the measurement corre-

sponding to the points question u.

2. Lines measurements: for every axis-parallel line ℓ ⊂ [n]m, let Bℓ = {Bℓ
g}g∈C denote the

measurement corresponding to the lines question ℓ.

3. Pair measurements: for every subcube H and for every u, v ∈ H, let P u,v = {P u,v
a,b }a,b∈Σ

denote the measurement corresponding to the points pair question (u, v).

Aside from the discussion in Section 4.1 all strategies considered in the paper are tracial strate-
gies as defined in Definition 3.1, and we simply say “strategy”, omitting the qualifier “tracial”.

Definition 3.2. We say that S is an (ε, δ)-good (tracial) strategy if the following hold:

1. (Consistency between points and lines:)

Bℓ
[g 7→g(u)|a] ≃ε A

u
a ,

where the expectation is over a uniformly random axis-parallel line ℓ ⊂ [n]m and a uniformly
random point u ∈ ℓ, and the answer summation is over values a ∈ Σ. We wrote g(u) to
denote g(uj) where ℓ varies in the j-th coordinate.
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2. (Consistency between points and pairs:)

P u,v
[(a,b)7→a|a] ≃δ A

u
a and P u,v

[(a,b)7→b|b] ≃δ A
v
b ,

where the expectation is over a uniformly random subcube H = Hxm−j+2,...,xm (sampled by
choosing a random j ∼ [m] and random xm−j+2, . . . , xm ∼ [n]) and uniformly random points
u, v ∼ H, and the answer summation is over values a ∈ Σ and b ∈ Σ respectively.

Thus a strategy S that is (ε, δ)-good according to Definition 3.2 passes the tensor code test
with probability 1 − 1

2(ε + δ) ≥ 1 − ε − δ. Conversely, a strategy S that passes the tensor code
test with probability 1− ε is (2ε, 4ε)-good.

4 Analysis of quantum-soundness of tensor code test

Our main result is the following. Let C denote an interpolable [n, k, d]Σ code.

Theorem 4.1 (Quantum soundness of the tensor code test). There exists a function

η(m, t, r, ε, n−1) = poly(m, t, r) · poly(ε, n−1, e−Ω(r/m2))

such that the following holds. Let S = (τ,A,B, P ) be a synchronous strategy that passes the
(augmented) tensor code test for C⊗m with probability 1− ε, and let r ≥ 12mt be an integer. Let A

denote the algebra associated with the tracial state τ . Then there exists a projective measurement
{Gc}c∈C⊗m ⊂ A such that

E
u∼[n]m

∑

c∈C⊗m

τ
(
Gc A

u
c(u)

)
≥ 1− η ,

where η = η(m, t, r, ε, n−1) with t = n− d+ 1.

The proof of Theorem 4.1 proceeds by induction on the dimension m. As described in the proof
overview (Section 1.2) there are two main steps in the induction, called “self-improvement” and
“pasting”. The self-improvement step is based on the following lemma, whose proof we give in
Section 5.

Lemma 4.2 (Self-improvement). There exists a function ζ(m, t, ε, n−1) = poly(m, t) · poly(ε, n−1)
such that the following holds. Let S = (τ,A,B, P ) be an (ε, δ)-good strategy for the tensor code
test with C⊗m. Suppose that {Gg} is a measurement with outcomes in C⊗m satisfying:

(Consistency with A): On average over x ∈ [n]m, G[g 7→g(x)|a] ≃ν Ax
a.

Then there exists a projective submeasurement H = {Hh} ⊂ A with outcomes in C⊗m with the
following properties:

1. (Completeness): τ(H) ≥ 1− ν − ζ where H =
∑

hHh.

2. (Consistency with A): On average over x ∼ [n]m, H[h 7→h(x)|a] ≃ζ A
x
a.

3. (Agreement is explained by the complete part of H): There exists a positive linear map ψ such
that

ψ(1−H) ≤ ζ

and for each h ∈ C⊗m and all positive X ∈ A , we have

ψ(X) ≥ E
x∼[n]m

τ(X · Ax
h(x)).

24



where ζ = ζ(m, t, ε, n−1) with t = n− d+ 1.

While the first two conclusions of the lemma are intuitive, the third one deserves some explana-
tion. Intuitively the condition guarantees the existence of a certain “measure”, ψ, such that firstly
the measure of the “incomplete part” of H, i.e. 1−H, is small (in the lemma, one should think of
ζ as an error parameter that is ≪ ν), and secondly ψ satisfies a “non-triviality” condition in that it
is required to be large on any X such that also Ex τ(X ·Ax

h(x)) is large, i.e. such that X correlates
well with the averaged operator ExA

x
h(x) for a given h. This condition is used in the next lemma,

Lemma 4.3, to guarantee that the H measurements from Lemma 4.2 for different subcubes need to
be compatible in the sense that their incomplete parts mostly overlap. If this condition were not
present in the assumptions of Lemma 4.3 then instead of ν = κ + error we could only guarantee
ν = t · κ+ error, which is insufficient to complete the m steps of induction.

The pasting step is based on the following lemma, whose proof is given in Section 6.

Lemma 4.3 (Pasting). There exists a function

ν(m, t, r, ε, δ, ζ, n−1) = poly(m, t, r) · poly(ε, δ, ζ, n−1) (4)

such that the following holds. Let S = (τ,A,B, P ) be an (ε, δ)-good strategy for the code C⊗m+1 with
points measurements A = {Au,x}(u,x)∈[n]m×[n]. Let {Gx}x∈[n] denote projective submeasurements
with outcomes in C⊗m with the following properties:

1. (Completeness): τ(G) ≥ 1− κ where G = Ex
∑

g G
x
g .

2. (Consistency with A): On average over (u, x) ∈ [n]m × [n], Gx
[g 7→g(u)|a] ≃ζ A

u,x
a .

3. (Agreement is explained by the complete part of G): For each x ∈ [n] there exists a positive
linear map ψx such that

E
x
ψx(1−Gx) ≤ ζ

and for all x ∈ [n], g ∈ C⊗m, and positive X ∈ B(H), we have

ψx(X) ≥ E
u∼[n]m

τ(X ·Au,x
g(u)

).

Then for all integers r ≥ 12mt there exists a “pasted” measurement H = {Hh} ⊂ A with outcomes
h ∈ C⊗(m+1), satisfying the following property:

1. (Consistency with A): On average over (u, x) ∈ [n]m × [n], H[h 7→h(u,x)|a] ≃µ Au,x
a

where

µ = µ(κ,m, t, r, ε, δ, ζ, n−1) = κ
(
1 +

1

3m

)
+ ν(m, t, r, ε, δ, ζ, n−1) + e−

r
72m2 (5)

with t = n− d+ 1.

We now put these two steps together and prove Theorem 4.1. The proof is by induction on
m. The inductive argument directly establishes the following lemma which, together with the
self-improvement lemma, implies Theorem 4.1.
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Lemma 4.4. There exists a function

σ(m, t, r, ε, δ, n−1) = poly(m, t, r) ·
(
poly(ε, δ, n−1) + exp(−Ω(r/m2))

)

such that the following holds. Let S = (τ,A,B, P ) be an (ε, δ)-good strategy for the code C⊗m

and let r ≥ 12mt. Let A denote the algebra associated with S . Then there exists a measurement
{Gc} ⊂ A with outcomes in C⊗m such that

E
u∼[n]m

∑

c∈C⊗m

τ
(
GcA

u
c(u)

)
≥ 1− σ ,

where σ = σ(m, t, r, ε, δ, n−1) with t = n− d+ 1.

Proof of Theorem 4.1 from Lemma 4.4. The measurement {Gc} produced by Lemma 4.4 satisfies
the conclusions of Theorem 4.1 except it is not projective. To remedy this we apply the self-
improvement lemma to produce a projective submeasurement, and then complete the result into a
projective measurement.

More formally, let {Hc} be the projective submeasurement guaranteed by applying Lemma 4.2
to Gc. This submeasurement has the following properties.

1. (Projectivity): Hc is projective.

2. (Completeness): If H =
∑

hHh, then τ(H) ≥ 1− σ − ζ.

3. (Consistency with A): On average over u ∼ [n]m, H[h 7→h(u)|a] ≃ζ A
u
a.

Let H̃ be the measurement obtained by completing H arbitrarily, that is by setting H̃c∗ = Hc∗ +
1−∑

hHh for an arbitrarily chosen outcome c∗, and setting H̃c = Hc for all other outcomes c 6= c∗.
Then H̃ has the following properties:

1. (Projectivity): H̃ is projective. This holds by the projectivity of H, which implies that
1−∑

hHh is a projector and is orthogonal to each Hc for every outcome c.

2. (Completeness):
∑

h H̃h = 1. This holds by definition.

3. (Consistency with A): We evaluate the (in)consistency between H̃ and the points measure-
ments. We have

E
u

∑

a6=b

τ
(
H̃[h 7→h(u)|a]A

u
b

)
= E

u

∑

h,b6=h(u)

τ
(
H̃hA

u
b

)

= E
u

∑

h,b6=h(u)

τ
(
HhA

u
b

)
+ τ

(
(1−

∑

h

Hh)
∑

b6=c∗(u)

Au
b

)

≤ ζ + τ
(
1−

∑

h

Hh

)

≤ 2ζ + σ

where in the second-to-last inequality we used that H is ζ-consistency with the points mea-
surements {Au} and that

∑
b6=c∗(u)A

u
b ≤ 1, and in the last inequality we used that the

completeness of H is at least 1− ζ − σ. Thus on average of u ∼ [n]m, we have

H̃[h 7→h(u)|a] ≃2ζ+σ Au
a.
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Setting δ = ε, and η(m, t, r, ε, n−1) = 2ζ(m, t, ε, n−1)+σ(m, t, r, ε, δ, n−1) = poly(m, t, r)·
(
poly(ε, n−1)+

e−Ω(r/m2)
)
, we see that H̃ satisfies the conclusion of Theorem 4.1.

Proof of Lemma 4.4. Define sm = 2m. We argue that there is a choice of universal constants
c0, c1, c2, c3 ≥ 1 such that Lemma 4.4 holds with the function

σ(m, t, r, ε, δ, n−1) = sm ·
(
c0 · (mtr)c1 · (ε1/c2 + δ1/c2 + n−1/c2) + e−c3r/m2

)
.

The constants c0, c1, c2, c3 are set in terms of the universal constants that are implicit in the poly(·)
notation for the functions ζ, ν, µ from Lemma 4.2 and Lemma 4.3. We now explicitly identify these
constants:

ζ(m, t, ε, n−1) = z0 · (mt)z1 · (ε1/z1 + n−1/z1) (6)

ν(m, t, r, ε, δ, ζ, n−1) = b0 · (mtr)b1 · (ε1/b2 + δ1/b2 + ζ1/b2 + n−1/b2) (7)

µ(κ,m, t, r, ε, δ, ζ, n−1) = κ
(
1 +

1

3m

)
+ ν(m, t, r, ε, δ, ζ, n−1) + e−

r
72m2 (8)

where z0, z1, z2, b0, b1, b2 ≥ 1. Now we set the constants c0, c1, c2, c3 as follows.

1. Let c0 = 4b0z0.

2. Let c1 = b1 + z1 + 1.

3. Let c2 = b2z2.

4. Let c3 = 1/72.

We prove that Lemma 4.4 holds with this choice of function σ(m, t, r, ε, δ, n−1) via induction on m,
starting with m = 1.

Base case. For the case m = 1 there is only one line ℓ = {(β) : β ∈ [n]} . This means that
the lines measurement B = {Bℓ} contains a single measurement Bℓ. Because S passes the tensor
codes test with probability 1− ε, it is (2ε, 4ε)-good. As a result,

Bℓ
[g 7→g(u)|a] ≃2ε A

u
a .

The theorem follows by setting G = {Gg} equal to Bℓ, since c0 ≥ 2 (which implies that σ ≥ 2ε).

Induction step. Assuming, as the inductive hypothesis, that Lemma 4.4 holds for some m ≥ 1,
we prove it for m+ 1. Let S = (τ,A,B, P ) be a (ε, δ)-good strategy for the tensor code test with
C⊗(m+1), and let r ≥ 12(m + 1)t. For each x ∈ [n], we define S x = (τ,Ax, Bx, P x) to be the
strategy restricted on the last coordinate being x. In other words, we write

Ax := {Au,x}u∈[n]m , Bx := {Bℓ,x}ℓ⊂[n]m, P x := {P u,v,x}u,v∈[n]m ,
where Au,x := Au◦x, Bℓ,x := Bℓ◦x, P u,v,x := P u◦x,v◦x,
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where “◦” denotes string concatenation, and ℓ ◦ x = {α ◦ x : α ∈ ℓ}. Then S x is a strategy for the
C⊗m tensor code test. Write 1− εx and 1− δx for the probability that S x passes the axis-parallel
lines test and subcube commutation test, respectively. Then S x is an (εx, δx)-good strategy.

We claim that on average over x chosen uniformly from [n],

E
x∼[n]

εx ≤
(
m+ 1

m

)
· ε, E

x∼[n]
δx ≤

(
m+ 1

m

)
· δ.

Indeed, observe that in the axis-parallel lines test over [n]m+1, the probability that an axis-parallel
line along axis m+ 1 is chosen is 1/(m + 1). Thus,

ε =
1

m+ 1
· Pr

(
success for ℓ parallel to axis m+ 1

)
+

m

m+ 1
· E
x
εx ≥ m

m+ 1
· E
x
εx,

which yields the claimed bound on the expectation of εx. A similar calculation holds for the subcube
test (the probability that the subcube does not fix the m+ 1st coordinate is 1/(m + 1)).

Now we apply the inductive hypothesis, noting that r ≥ 12mt. To do so, fix an x ∈ [n]. The
inductive hypothesis states the existence of a measurement Gx = {Gx

g}g∈C⊗m such that on average
over u ∈ [n]m,

Gx
[g 7→g(u)|a] ≃σx Au,x

a ,

where σx = σ(m, t, r, εx, δx, n
−1). Setting ζx = ζ(m, t, εx, n

−1), self-improvement (Lemma 4.2)
then implies the existence of a projective submeasurement Hx = {Hx

h}h∈C⊗m with the following
properties:

1. (Completeness): If Hx =
∑

hH
x
h , then τ(Hx) ≥ 1− σx − ζx.

2. (Consistency with Ax): On average over u ∼ [n]m, Hx
[h 7→h(u)|a] ≃ζx Au,x

a .

3. (Agreement is explained by the complete part of Hx): There exists a positive linear map ψx

such that
ψx(1−Hx) ≤ ζx,

and for each h ∈ C⊗m and all positive X ∈ A , we have

ψx(X) ≥ E
u∼[n]m

τ(X · Au,x
h(u)).

These guarantees are almost of the form demanded by the hypotheses of the pasting lemma
(Lemma 4.3). However, the error bounds depend on x, whereas we would like the errors to be
averaged over x. To obtain such bounds, we will bound the average of σx, ζx over x ∼ [n]. Observe
that σx and ζx depend on x only through εx, δx ∈ [0, 1], and are polynomial functions of εx, δx. For
any distribution over a random variable α drawn from the interval [0, 1], for c ≥ 1, it holds that
Eαc ≤ Eα, and by concavity, for any c < 1, Eαc ≤ (Eα)c. Hence, the averaged quantities Ex σx
and Ex ζx, which we denote σ̂ and ζ̂, are polynomial functions of Ex εx ≤ m+1

m ε and Ex δx ≤ m+1
m δ:

σ̂ = E
x
σx = sm · c0(mtr)c1 · E

x
(ε1/c2x + δ1/c2x + n−1/c2) + sm · e−c3r/m2

(9)

≤ sm · c0(mtr)c1 ·
((

m+ 1

m
ε

)1/c2

+

(
m+ 1

m
δ

)1/c2

+ n−1/c2

)
+ sm · e−c3r/m2

(10)
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≤ sm · c0(mtr)c1 ·
(m+ 1

m

) 1
c2 ·

(
ε1/c2 + δ1/c2 + n−1/c2

)
+ sm · e−c3r/m2

(11)

ζ̂ = E
x
ζx = z0(mt)z1 · E

x
(ε1/z2 + n−1/z2) (12)

≤ z0(mt)z1 ·
((

m+ 1

m
ε

)1/z2

+ n−1/z2

)
(13)

≤ z0((m+ 1)t)z1 · (ε1/z2 + n−1/z2) (14)

Thus we have the following guarantees on the submeasurements {Hx}:

1. (Completeness): If H = Ex∼[n]m
∑

hH
x
h , then τ(H) ≥ 1− σ̂ − ζ̂.

2. (Consistency with Ax): On average over (u, x) ∼ [n]m × [n], Hx
[h 7→h(u)|a] ≃ζ̂ A

u,x
a .

3. (Agreement is explained by the complete part of Hx): For each x there exists a positive linear
map ψx such that

E
x
ψx(1−Hx) ≤ ζ̂,

3 and for each h ∈ C⊗m and all positive X ∈ A , we have

ψ(X) ≥ E
u∼[n]m

τ(X · Au,x
h(u)).

Define κ̂ = σ̂ + ζ̂. We see that the measurements Hx satisfy the hypotheses of the pasting lemma
(Lemma 4.3) with error parameters κ̂ and ζ̂. Applying the lemma, we conclude that the resulting
measurement H̃ satisfies the following consistency relation with A: on average over (u, x) ∈ [n]m×
[n],

H[h 7→h(u,x)|a] ≃µ Au,x
a ,

where

µ = µ(κ̂,m, t, r, ε, δ, ζ̂ , n−1) = κ̂
(
1 +

1

3m

)
+ ν(m, t, r, ε, δ, ζ̂ , n−1) + e−c3r/m2

(15)

=
(
σ̂ + ζ̂

)(
1 +

1

3m

)
+ b0(mtr)b1 ·

(
ε1/b2 + δ1/b2 + ζ̂1/b2 + n−1/b2

)
+ e−c3r/m2

. (16)

If we show that µ ≤ σ(m + 1, t, r, ε, δ, n−1), then we will have established the inductive step and
we would be done. To proceed, we first substitute (14) in for ζ̂. Let b′ = b2z2.

ζ̂1/b2 ≤ (z0((m+ 1)t)z1)1/b2 · (ε1/z2 + n−1/z2)1/b2

≤ z0((m+ 1)t)z1 · (ε1/b′ + n−1/b′)

where we used that z0((m+ 1)t)z1 ≥ 1 and b2 ≥ 1. Plugging these bounds into (16), we get

µ ≤
(
1 +

1

3m

)
·
(
σ̂ + ζ̂

)
+ 2b0(mtr)b1 · z0((m+ 1)t)z1 ·

(
ε1/b

′

+ δ1/b
′

+ n−1/b′
)
+ e−c3r/m2

≤
(
1 +

1

3m

)
·
(
σ̂ + ζ̂

)
+ 2b0z0((m+ 1)tr)b1+z1

(
ε1/b

′

+ δ1/b
′

+ n−1/b′
)
+ e−c3r/m2

. (17)
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Similarly, we can upper bound

(
1 +

1

3m

)
· ζ̂ ≤ 2 · z0((m+ 1)t)z1 · (ε1/b′ + n−1/b′)

because, for example, ε1/b2 ≤ ε1/b
′
. Thus we get that (17) is at most

(17) ≤
(
1 +

1

3m

)
σ̂ + 4b0z0((m+ 1)tr)b1+z1

(
ε1/b

′

+ δ1/b
′

+ n−1/b′
)
+ e−c3r/m2

(18)

Substituting (11) in for σ̂ and using that c2 ≥ b′ we get

(18) ≤
(
1 +

1

3m

)
sm · c0(mtr)c1 ·

(m+ 1

m

) 1
c2 ·

(
ε1/c2 + δ1/c2 + n−1/c2

)

+ 4b0z0((m+ 1)tr)b1+z1 ·
(
ε1/c2 + δ1/c2 + n−1/c2

)

+
((

1 +
1

3m

)
sm + 1

)
· e−c3r/m2

. (19)

Next, using that
(
1 + 1

3m

)
sm ≤ sm+1, we have

(19) ≤
(
sm+1 · c0(mtr)c1 ·

(m+ 1

m

) 1
c2 + 4b0z0((m+ 1)tr)b1+z1

)
·
(
ε1/c2 + δ1/c2 + n−1/c2

)

+
((

1 +
1

3m

)
sm + 1

)
· e−c3r/m2

. (20)

If we argue both

sm+1 · c0(mtr)c1 ·
(m+ 1

m

) 1
c2 + 4b0z0((m+ 1)tr)b1+z1 ≤ sm+1c0((m+ 1)tr)c1 (21)

(
1 +

1

3m

)
sm + 1 ≤ sm+1 (22)

then we would be done as (20) would be at most σ(m + 1, t, r, ε, δ, n−1) as desired. To argue (21)
we first note that it is equivalent to showing that

sm+1c0(tr)
c1
(
(m+ 1)c1 −m

c1− 1
c2 (m+ 1)

1
c2

)
≥ 4b0z0((m+ 1)tr)b1+z1 .

Since sm+1 ≥ 1, c0 ≥ 4b0z0 by definition, and c1 ≥ b1+ z1+1 by definition, it suffices to argue that

(m+ 1)c1 −m
c1− 1

c2 (m+ 1)
1
c2 ≥ (m+ 1)b1+z1 .

This is equivalent to showing

(m+ 1)c1−(b1+z1) −m
c1− 1

c2 (m+ 1)
1
c2

−(b1+z1) ≥ 1 .

Since b1, z1, c2 ≥ 1 it holds that (m+ 1)
1
c2

−(b1+z1) ≤ m
1
c2

−(b1+z1) and thus

(m+ 1)c1−(b1+z1) −m
c1− 1

c2 (m+ 1)
1
c2

−(b1+z1) ≥ (m+ 1)c1−(b1+z1) −m
c1− 1

c2 m
1
c2

−(b1+z1)

= (m+ 1)c1−(b1+z1) −mc1−(b1+z1)
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≥ 1

as desired, where we used that c1 ≥ b1 + z1 + 1 again.
To argue (22) one can see by definition of sm and sm+1 that

sm+1 −
(
1 +

1

3m

)
sm = 2(m+ 1)− 2m

(
1 +

1

3m

)
≥ 1

as desired.

4.1 Extension to general states

As mentioned in the introduction, Theorem 4.1 is formulated in the framework of synchronous
strategies, which is particularly convenient to state and prove the result as it involves a single
Hilbert space and set of measurement operators. For some applications one may wish to extend
the guarantees of Theorem 4.1 to the more general setting of strategies that are not assumed to
be perfectly synchronous a priori. This extension is essentially provided in the work [Vid21]. For
completeness in this section we include all details of the reduction.

We first recall the following definition of a (not necessarily synchronous) two-prover strategy
for a game G, which we immediately specialize to the case of the tensor code test.

Definition 4.5. A two-prover strategy S for the tensor code test is a tuple (|ψ〉, A,B, P, Ã, B̃, P̃ )
where |ψ〉 ∈ HA ⊗HB is a state in the tensor product of two finite-dimensional Hilbert spaces HA

and HB, and A,B,P (resp. Ã, B̃, P̃ ) are the following families of projective measurements:

1. Points measurements: for every u ∈ [n]m, let Au = {Au
a}a∈Σ (resp. Ãu = {Ãu

a}a∈Σ) denote
the first (resp. second) prover’s measurement corresponding to the points question u.

2. Lines measurements: for every axis-parallel line ℓ ⊂ [n]m, let Bℓ = {Bℓ
g}g∈C (resp. B̃ℓ =

{B̃ℓ
g}g∈C) denote the first (resp. second) prover’s measurement corresponding to the lines

question ℓ.

3. Pair measurements: for every subcubeH and for every u, v ∈ H, let P u,v = {P u,v
a,b }a,b∈Σ (resp.

P̃ u,v = {P̃ u,v
a,b }a,b∈Σ) denote the first (resp. second) prover’s measurement corresponding to

the points pair question (u, v).

This definition is the same as Definition 3.1 given at the start of Section 3, except that we
have decoupled the measurement operators associated with each prover and the tracial state τ has
been replaced by the state |ψ〉, with the additional tensor product structure. (There is a more
general class of strategies where all prover operators act on the same possibly infinite-dimensional
Hilbert space H but all operators associated with one prover are required to commute with the
other prover’s operators; we do not consider such commuting-operator strategies here.)

Because we do not assume a priori that the provers must employ the same measurement op-
erators we modify the tensor code test by adding a “synchronicity test’ described in Figure 2. To
distinguish this test from the original tensor code test we refer to it as “the two-prover tensor code
test.”

31



With probably 1
3 each, perform either of the two tests described in Figure 1, where the roles of

“prover A” and “prover B” are attributed at random (under the constraint that each prover gets
assigned a different role). With the remaining probability 1

3 perform the following test.

3. Synchronicity test: Let ℓ ⊂ [n]m be a line sampled according to the same distribution as in
the axis-parallel line test, i.e. ℓ is a uniformly random axis-parallel line. Let (u, v) be a pair
of points sampled according to the same distribution as in the commutation test, i.e. u and v
are both uniformly distributed in the same random subcube. With probability 1

3 each, send
either ℓ, or u, or the pair (u, v), to both provers. Accept if and only if the provers’ answers
are identical.

Figure 2: The two-prover tensor code test.

The following is analogous to Definition 3.2.

Definition 4.6. We say that S is an (ε, δ, ξ)-good strategy for the two-prover tensor code test if
the following hold:

1. (Consistency between points and lines:) The strategy passes the axis-parallel line test with
probability at least 1− ε. Formally,

E
ℓ⊂[n]m

E
u∈ℓ

∑

a∈Σ

1

2

(
〈ψ|Bℓ

[g 7→g(u)|a] ⊗ Ãu
a|ψ〉+ 〈ψ|Au

a ⊗ B̃ℓ
[g 7→g(u)|a]|ψ〉

)
≥ 1− ε ,

where the expectation is over a uniformly random axis-parallel line ℓ ⊂ [n]m and a uniformly
random point u ∈ ℓ.

2. (Consistency between points and pairs:)

E
H

u,v∼H

∑

a,b∈Σ

1

2

(
〈ψ|P u,v

[(a,b)7→a|a] ⊗ Ãu
a|ψ〉+ 〈ψ|Au

a ⊗ P̃ u,v
[(a,b)7→a|a]|ψ〉

)
≥ 1− δ ,

E
H

u,v∼H

∑

a,b∈Σ

1

2

(
〈ψ|P u,v

[(a,b)7→b|b] ⊗ Ãv
b |ψ〉+ 〈ψ|Av

b ⊗ P̃ u,v
[(a,b)7→b|b]|ψ〉

)
≥ 1− δ ,

where the expectation is over a uniformly random subcube H = Hxm−j+2,...,xm (sampled by
choosing a random j ∼ [m] and random xm−j+2, . . . , xm ∼ [n]) and uniformly random points
u, v ∼ H.

3. (Synchronicity:)

1

3

(
E

u∼[n]m

∑

a∈Σ
〈ψ|Au

a⊗Ãu
a|ψ〉+ E

ℓ⊂[n]m

∑

f

〈ψ|Bℓ
f⊗B̃ℓ

f |ψ〉+ E
H

u,v∼H

∑

a,b∈Σ
〈ψ|P u,v

a,b ⊗P̃ u,v
a,b |ψ〉

)
≥ 1−ξ ,

where the expectations are uniform over a point u and an axis-parallel line ℓ, and as in the
previous item for (H,u, v).

Finally, we say that a two-prover strategy passes the (two-prover) tensor code test with probability
1− ε if the strategy is (ε′, δ′, ξ′)-good for some ε′, δ′, ξ′ such that 1

3(ε
′ + 2δ′ + ξ′) ≤ ε.
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We can now state our two-prover extension of Theorem 4.1.

Theorem 4.7. There exists a function

η′(m, t, k, ε, n−1) = poly(m, t, k) · poly(ε, n−1, e−k/m2
)

such that the following holds. Let S = (|ψ〉, A,B, P, Ã, B̃, P̃ ) be a two-prover strategy that passes
the two-prover tensor code test for C⊗m with probability 1−ε, where |ψ〉 ∈ HA⊗HB, and k ≥ 12mt.
Then there exists projective measurements {Gc}c∈C⊗m and {G̃c}c∈C⊗m on HA and HB respectively
such that the following hold, on expectation over a uniformly random u ∼ [n]m and a uniformly
random axis-parallel line ℓ ⊂ [n]m:

Au
a ⊗ 1 ≃η′ 1⊗ G̃[c 7→c(u)|a] , (23)

G[c 7→c|ℓ|f ] ⊗ 1 ≃η′ 1⊗ B̃ℓ
f , (24)

Gc ⊗ 1 ≃η′ 1⊗ G̃c , (25)

where η′ = η′(m, t, ε, n−1) with t = n− d+ 1.

Proof. Let S = (|ψ〉, A,B, P, Ã, B̃, P̃ ) be as in the statement of the theorem. The proof proceeds
in three steps. The first and main step consists in applying [Vid21, Corollary 4.1] to Theorem 4.1
to obtain the following.

Claim 4.8. There exists measurements {Gc} on HA and {G̃c} on HB such that

Au
a ⊗ 1 ≃η1 1⊗ G̃[c 7→c(u)|a] , (26)

1⊗ Ãu
a ≃η1 G[c 7→c(u)|a] ⊗ 1 , (27)

for some η1 = η1(m, t, ε, n−1) = poly(m, t) · poly(ε, n−1).

Proof. To apply [Vid21, Corollary 4.1] we first need to construct a symmetric strategy, which means
that |ψ〉 can be written as

|ψ〉 =
∑

i

√
λi|ui〉 ⊗ |ui〉 ∈ H ⊗H , (28)

where the λi are non-negative and {|ui〉} orthonormal in some Hilbert spaceH, and the two provers’
measurement operators are identical up to a transpose: Ãu

a = (Au
a)

T for all u, a, where the transpose
is taken with respect to the basis {|ui〉}, and similarly for the B and P measurement operators.
The idea to achieve this is standard. First assume without loss of generality that HA ≃ HB ≃ H′

for some Hilbert space H′. This can always be achieved by enlarging HA or HB as needed. Next
define

|ψ′〉 = 1√
2

(
|ψ〉 ⊗ |0〉 ⊗ |1〉 + (S|ψ〉)⊗ |1〉 ⊗ |0〉

)
∈ H′ ⊗H′ ⊗ C

2 ⊗ C
2 ,

where S is the “SWAP” operator S = (2P − I) with P the projection on the symmetric subspace
Span{|u〉⊗|u〉 : |u〉 ∈ H′′}. Let H = H′⊗C

2. For any u, a define (A′)ua = Au
a⊗|0〉〈0|+(Ãu

a)
T ⊗|1〉〈1|

and similarly B′ and P ′. Then (reordering the subsystems of |ψ′〉 in the obvious way so that
|ψ′〉 ∈ H ⊗H) for any X ′, Y ′ among the newly defined measurement operators we have that

〈ψ′|X ′ ⊗ (Y ′)T |ψ′〉 = 1

2

(
〈ψ|X ⊗ Ỹ |ψ〉 + 〈ψ|S†(X̃T ⊗ Y T )S|ψ〉

)
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= 〈ψ|X ⊗ Ỹ |ψ〉 .

As a consequence, the symmetric strategy S ′ also passes the tensor code test with probability at
least 1− ε.

Next we introduce some notation associated to the application of the corollary. Let X =
[n]m∪ ([n]m−1× [m])∪ ([n]m)2 be the set of all questions that can be asked to the first prover in the
two-prover tensor code test, Y = {⊥} a singleton, and B = C⊗m. Let p be the uniform distribution
on [n]m ⊂ X , and for u in the support of p, let gu : Σ → 2C

⊗m
map a ∈ Σ to the set of all c ∈ C⊗m

such that c(u) = a. Finally let κ : [0, 1] → [0, 1] be the function κ(ω) = 1−η′(ω), where η′ is defined
as follows. Let η(m, t, ε, n−1) be the function from Theorem 4.1. Let m, t and n be the parameters
of the two-prover tensor code test, which we consider to be fixed. If η is a concave function of ε
we can let η′(ω) = η(m, t, ω, n−1), with m, t and n fixed by the parameters for If η is not concave
we proceed as follows. Since η has polynomial dependence on ε we can write it as a finite sum
η(ε) =

∑M
i=1 αiε

ci where αi = αi(m, t, n−1) ∈ R and ci ∈ R are an increasing sequence of positive
constants depending on the form of η only. Moreover, since η(m, t, ε, n−1) = poly(m, t)·poly(ε, n−1)
then for all i, |αi| = poly(m, t) · poly(n−1). Now for ε ∈ [0, 1] we have that η(ε) ≤ η′′(ε) = αεc1

where α =
∑

i |αi| and so α = poly(m, t) · poly(n−1). We then define κ = 1− η′′.
With this setting, Theorem 4.1 shows that the assumptions of [Vid21, Corollary 4.1] are satisfied,

for the game G = (X ,A, ν,D) which is specified by the two-prover tensor code test. This is because
(using terminology from [Vid21]) for any symmetric PME strategy (|ψ〉, A) there is a tracial strategy
(τ,A) for G that reproduces exactly the same distribution on answers in the game; for this it suffices
to define the trace as τ(X) = 1

d tr(X) for any operatorX on the d-dimensional spaceH that underlies
the strategy A.

We apply the conclusion of [Vid21, Corollary 4.1] to the symmetric projective strategy S ′.
Since S and hence S ′ must be (3ε, 32ε, 3ε)-good according to Definition 4.6, we deduce that in
the terminology from [Vid21], δsync(S

′; ν) ≤ 3ε. As a consequence we obtain the existence of a
measurement {G′

c} on H such that

E
u∼[n]m

∑

c∈C⊗m

〈ψ′|(A′)uc(u) ⊗G′
c|ψ′〉 ≥ 1− η′′(m, t,poly(ε), n−1) , (29)

where

η′′(m, t,poly(ε), n−1) = η′(m, t, ε+ poly(ε), n−1) + poly(ε) = poly(m, t) · poly(ε, n−1) .

It remains to derive (26) and (27). Let Gc = (IA⊗〈0|)G′
c(IA⊗|0〉) and G̃c = (IB⊗〈1|)G′

c(IB⊗|1〉),
where IA (resp. IB) denotes the projection on HA ⊆ H′ (resp. HB ⊂ H′). Then {Gc} and {G̃c}
are measurements on HA and HB respectively, and (26) and (27) follow directly from (29), with
η1 = 2η′′, by expanding |ψ′〉 and (A′)uc(u) on the left-hand side using their definition.

Claim 4.9 almost establishes (23), except that {G̃c} is not necessarily a projective measurement.
So in the second step we turn {Gc} and {G′

c} into projective measurements.

Claim 4.9. There exists a projective measurement {G′
c} on HA (resp. {G̃′

c} on HB) such that

Au
a ⊗ 1 ≃η2 1⊗ G̃′

[c 7→c(u)|a] , (30)

1⊗ Ãu
a ≃η2 G′

[c 7→c(u)|a] ⊗ 1 , (31)

for some η2 = η2(m, t, ε, n−1) = poly(m, t) · poly(ε, n−1).
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Proof. We do the proof for {Gc}, as the proof for {G̃c} is entirely analogous. Write the Schmidt
decomposition |ψ〉 = ∑

i

√
λi|ui〉|vi〉, where the λi are non-negative reals and {|ui〉} (resp. {|vi〉})

an orthonormal basis of HA (resp. HB). Let K =
∑

i

√
λi|ui〉〈vi|. Let Gu

a =
∑

c: c(u)=aGc. Then

1− η1 ≤ E
u

∑

c

〈ψ|Gc ⊗ Ãu
c(u)|ψ〉

=
∑

a

〈ψ|Gu
a ⊗ Ãu

a|ψ〉

=
∑

a

tr
(
Gu

aKÃu
aK

T
)

≤
(∑

a

tr
(
Gu

aρ
1/2
A Gu

aρ
1/2
A

))1/2(∑

a

tr
(
Ãu

aρ
1/2
B Ãu

aρ
1/2
B

))1/2
, (32)

where the first inequality is (26) and the last inequality follows by Cauchy-Schwarz, and ρA = KK†

and ρB = K†K. It follows that
∑

c

tr
(
Gcρ

1/2
A Gcρ

1/2
A

)
= E

u

∑

a

tr
(
Gu

aρ
1/2
A Gu

aρ
1/2
A

)
−

∑

c 6=c′

E
u

∑

a

1c(u)=c′(u)=atr
(
Gcρ

1/2
A Gc′ρ

1/2
A

)

≥ (1− η1)
2 − γm

∑

c 6=c′

tr
(
Gcρ

1/2
A Gc′ρ

1/2
A

)

≥ 1− 2η1 − γm , (33)

where the second line follows from (32) for the first term and Proposition 2.18 and tr(Gcρ
1/2
A Gc′ρ

1/2
A ) ≥

0 for all c, c′ for the second. Using the Cauchy-Schwarz inequality,

1− 2η1 − γm ≤
∑

c

tr
(
Gcρ

1/2
A Gcρ

1/2
A

)
≤

∑

c

tr
(
G2

cρA
)
.

We apply Lemma 5.1 to the measurement {Gc}, with τ defined by τ(X) = tr(XρA). From the
lemma it follows that there exists a projective measurement {G′

c} such that
∑

c

tr
(
(Gc −G′

c)
2ρA

)
= O

(
2η1 + γm

)
. (34)

Then

E
u

∑

c

〈ψ|G′
c ⊗ Ãu

c(u)|ψ〉

= E
u

∑

c

〈ψ|Gc ⊗ Ãu
c(u)|ψ〉+ E

u

∑

c

〈ψ|(G′
c −Gc)⊗ Ãu

c(u)|ψ〉

≥ 1− η1 −
(
E
u

∑

a

tr
(
((G′)ua −Gu

a)ρ
1/2
A ((G′)ua −Gu

a)ρ
1/2
A

))1/2(
E
u

∑

a

tr
(
Ãu

aρ
1/2
B Ãu

aρ
1/2
B

))1/2

≥ 1− η1 −O
(
η1 + γm

)1/4
,

where the first inequality uses (27) for the first term and Cauchy-Schwarz for the second, and the
last is justified by the following:

E
u

∑

a

tr
(
((G′)ua −Gu

a)ρ
1/2
A ((G′)ua −Gu

a)ρ
1/2
A

)
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≤ 2− 2E
u

∑

a

tr
(
(G′)uaρ

1/2
A Gu

aρ
1/2
A

)

≤ 2− 2
∑

c

tr
(
G′

cρ
1/2
A Gcρ

1/2
A

)
+ γm

= 2− 2
∑

c

tr
(
(G′

c −Gc)ρ
1/2
A Gcρ

1/2
A

)
+

∑

c

tr
(
Gcρ

1/2
A Gcρ

1/2
A

)
+ γm

≤ 4η1 + 3γm +
(∑

c

tr
(
(G′

c −Gc)
2ρA

))1/2(∑

c

tr
(
G2

cρA
))1/2

≤ 4η1 + 3γm +O
(√

2η1 + γm
)
,

where the second inequality uses that tr
(
G′

cρ
1/2
A Gc′ρ

1/2
A

)
≥ 0 for all c, c′ and Proposition 2.18, the

fourth line uses (33), and the last uses (34). The claimed bound on η2 follows from the same bound
on η1 and the bound on γm provided in Proposition 2.18.

With (30) we have established (30). In the last step we obtain (24) and (25).

Claim 4.10. Let {G′
c} and {G̃′

c} be projective measurements that satisfy (30) and (31) respectively.
Then

G′
[c 7→c|ℓ|f ] ⊗ 1 ≃η3 1⊗Bℓ

f , (35)

G′
c ⊗ 1 ≃η3 1⊗ G̃′

c , (36)

for some η3 = poly(η2, (mt)/n, ε).

Proof. We start with (36). Write

∑

c

G′
c ⊗ G̃c ≃γm E

u

∑

a

G′
[c 7→c(u)|a] ⊗ G̃′

[c 7→c(u)|a] (37)

≃η′3
E
u

∑

a

Au
a ⊗ Ãu

a (38)

≃3ξ 1⊗ 1 , (39)

where η′3 = 2
√
2η2 and recall that ξ = 3ε. Each of the three approximations above is justified as

follows. For (37), form the difference

∑

c,c′

E
u
1c(u)=c′(u)G

′
c ⊗ G̃c′ ≤ γm1⊗ 1 ,

using Proposition 2.18. For (38), write

E
u

∑

a

G′
[c 7→c(u)|a] ⊗ G̃′

[c 7→c(u)|a] − E
u

∑

a

Au
a ⊗ Ãu

a

= E
u

∑

a

(
G′

[c 7→c(u)|a] ⊗ 1− 1⊗ Ãu
a

)(
1⊗ G̃′

[c 7→c(u)|a]
)
+ E

u

∑

a

(
1⊗ Ãu

a

)(
1⊗ G̃′

[c 7→c(u)|a] −Au
a ⊗ 1

)
.

Each of the two terms above is bounded in the same way. We do it for the first:

E
u

∑

a

〈ψ|
(
G′

[c 7→c(u)|a] ⊗ 1− 1⊗ Ãu
a

)(
1⊗ G̃′

[c 7→c(u)|a]
)
|ψ〉
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≤
(
E
u

∑

a

〈ψ|
(
G′

[c 7→c(u)|a] ⊗ 1− 1⊗ Ãu
a

)2|ψ〉
)1/2(

E
u

∑

a

〈ψ|
(
1⊗ G̃′

[c 7→c(u)|a]
)2|ψ〉

)1/2

≤
√

2η2 ,

by (31) and the fact that {G′} and {Ã} are families of projective measurements. Finally, (39)
follows directly from the synchronicity condition.

To conclude we show (35).

E
ℓ

∑

f

G′
[c 7→c|ℓ|f ] ⊗ B̃ℓ

f ≃γm E
ℓ
E
u∈ℓ

∑

a

G′
[c 7→c(u)|a] ⊗ B̃ℓ

f 7→f(u)|a (40)

≃η′′3
E
ℓ
E
u∈ℓ

∑

a

Au
a ⊗ G̃′

[c 7→c(u)|a] (41)

≃η2 1⊗ 1 , (42)

where η′′3 =
√

2η′3 +
√
4ε. We justify each of these three approximations as follows. For (40), form

the difference
E
ℓ

∑

f,f ′

E
u∈ℓ

1f(u)=f ′(u)G
′
[c 7→c|ℓ|f ′] ⊗Bℓ

f ≤ γ1 1⊗ 1 ≤ γm 1⊗ 1 ,

by Proposition 2.18. For (41), write

E
ℓ
E
u∈ℓ

∑

a

G′
[c 7→c(u)|a] ⊗ B̃ℓ

f 7→f(u)|a − E
ℓ
E
u∈ℓ

∑

a

Au
a ⊗ G̃′

[c 7→c(u)|a]

= E
ℓ
E
u∈ℓ

∑

a

〈ψ|
(
G′

[c 7→c(u)|a] ⊗ 1− 1⊗ G̃′
[c 7→c(u)|a]

)(
1⊗ B̃ℓ

f 7→f(u)|a
)
|ψ〉

+ E
ℓ
E
u∈ℓ

∑

a

〈ψ|
(
1⊗ G̃′

[c 7→c(u)|a]
)(
1⊗ B̃ℓ

f 7→f(u)|a −Au
a ⊗ 1

)
|ψ〉 .

Each of the two terms above is bounded as previously, using (37) for the first and the consistency
condition between points and lines for the second. This gives η′′3 =

√
2(γm + η′3 + 3ξ) +

√
4ε.

Finally, (42) is by (30). The claimed bound on η3 follows from Proposition 2.18 to bound γm and
ξ ≤ 3ε.

The theorem follows using the bound on η2 given in Claim 4.9.

5 Self-improvement

In this section we prove Lemma 4.2. The proof of the lemma relies on three main ingredients.

Orthogonalization. The first is a lemma that allows us to round a submeasurement that is
self-consistent to a projective measurement. The lemma first appears in [KV11] for the finite-
dimensional case, in [JNV+20b] with an improved error dependence and was extended to the
infinite-dimensional case in [dlS21]. The proof uses the polar decomposition.

Lemma 5.1 (Orthogonalization). Let A be a von Neumann algebra with a normal state τ . Let
A = {Aa}a∈A ⊂ A denote a submeasurement. Suppose that

∑

a

τ(Aa(1−Aa)) ≤ ζ.
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Then there exists a projective submeasurement {Pa} ⊂ A such that

Aa ≈√
18ζ Pa .

Proof. We indicate how the lemma follows from [dlS21, Theorem 1.2]. Let n = |A| + 1 and
identify A with the set {1, . . . , n − 1}. Let An = 1 − ∑

aAa so {Aa}a∈{1,...,n} is a measurement.
Applying [dlS21, Theorem 1.2], we get orthogonal projections Pa satisfying

Aa ≈√
9δ Pa , (43)

where

δ = 1−
n∑

a=1

τ
(
A2

a

)

=
n−1∑

a=1

τ(Aa(1−Aa)) + τ
(
An −A2

n

)
, (44)

where for the second line we used that {Aa}a∈{1,...,n} is a measurement. The first term is at most
ζ by assumption. For the second term we write

τ
(
A2

n

)
= τ

(
An

(
1−

n−1∑

a=1

Aa

))

= τ
(
An)−

n−1∑

a=1

τ
(
AnAa

)

≥ τ
(
An)−

n−1∑

a=1

τ
((
1−Aa

)
Aa

)

≥ τ
(
An

)
− ζ ,

where the inequality on the third line uses that

An = 1−
n−1∑

a=1

Aa ≤ 1−Aa

for all a ∈ {1, . . . , n − 1}, and Aa ≥ 0 for all a. Thus (44) is at most 2ζ, which together with (43)
proves the lemma.

Complementary slackness. The second ingredient is a duality result about positive linear maps
which appears in [dlS21]. The proof is based on an application of the Hahn-Banach theorem.

Lemma 5.2 (Proposition 7.1 in [dlS21]). Let A be a von Neumann algebra and let ϕ1, . . . , ϕk :
A → C be normal positive linear maps. Then there is a unique normal linear map ψ : A → C of
minimal norm such that ψ ≥ ϕi for all i. Moreover there exists a measurement {Ti}i∈[k] such that
for all X ∈ A ,

ψ(X) =
∑

i

ϕi(TiX) (45)
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In finite dimensions this lemma corresponds to the complementary slackness condition of a
particular semidefinite program satisfying strong duality (see [NV18b, Lemma 10] for the finite-
dimensional version of this statement). In the proof of Lemma 4.2, we use Lemma 5.2 to define
the “maximum” ψ of a collection of linear forms ϕi. This step can be thought of as a replace-
ment for “majority decoding” in analyses of low-degree testing in the commutative (i.e. classical)
case [GLR+91, RS92].

Local-to-global variance bound. The third ingredient is the following lemma. Recall that C
is a [n, k, d]Σ code. Define γ = 1− d

n .

Lemma 5.3. Let (τ,A,B, P ) be an (ε, δ)-good strategy for the tensor code test with C⊗m. Let {Tg}
be a measurement with outcomes in C⊗m. Then on average over uniform x, y ∈ [n]m,

Ax
g(x)T

1/2
g ≈ζvar A

y
g(y)

T 1/2
g

where ζvar =
√
m

(
2
√
2ε+ 2

√
γ
)
.

Before proving Lemma 5.3 we first prove a “local” version of Lemma 5.3, where the closeness of

Ax
g(x)T

1/2
g and Ay

g(y)T
1/2
g hold when x, y are random points from a random axis-parallel line (rather

than being random points from the entire domain [n]m).

Lemma 5.4. Let (τ,A,B, P ) be an (ε, δ)-good strategy for the tensor code test with C⊗m. Then on
overage over axis-parallel lines ℓ, and x, y ∈ ℓ,

Ax
g(x)T

1/2
g ≈ζlocal A

y
g(y)T

1/2
g

where ζlocal = 2
√
2ε+ 2

√
γ.

Proof. By definition of (ε, δ)-good strategy we have Ax
a ≃ε B

ℓ
[f 7→f(x)|a], and thus by Proposition 2.5

we have Ax
a ≈√

2ε B
ℓ
[f 7→f(x)|a]. This implies that

Ax
g(x)T

1/2
g ≈√

2ε B
ℓ
[f :f(x)=g(x)] · T 1/2

g (46)

on average over a uniformly random axis-parallel line ℓ and a uniformly random point x ∈ ℓ. This
holds because

E
ℓ,x∈ℓ

∑

g∈C⊗m

∥∥∥
(
Ax

g(x) −Bℓ
[f :f(x)=g(x)]

)
T 1/2
g

∥∥∥
2

τ
= E

ℓ,x∈ℓ

∑

a∈Σ

∑

g:g(x)=a

∥∥∥
(
Ax

g(x) −Bℓ
[f 7→f(x)|a]

)
T 1/2
g

∥∥∥
2

τ

= E
ℓ,x∈ℓ

∑

a∈Σ

∑

g:g(x)=a

τ

((
Ax

a −Bℓ
[f 7→f(x)|a]

)2
Tg

)
≤ E

ℓ,x∈ℓ

∑

a∈Σ
τ
((

Ax
a −Bℓ

[f 7→f(x)|a]

)2)
≤ 2ε

where the first inequality follows from the fact that {Tg} is a measurement. Next, we have that

Bℓ
[f :f(x)=g(x)] · T 1/2

g ≈√
γ Bℓ

g|ℓ · T
1/2
g . (47)

This holds because

E
ℓ,x∈ℓ

∑

g∈C⊗m

∥∥∥
(
Bℓ

[f :f(x)=g(x)] −Bℓ
g|ℓ

)
T 1/2
g

∥∥∥
2

τ
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= E
ℓ,x∈ℓ

∑

h∈C
τ

((
Bℓ

[f :f(x)=h(x)] −Bℓ
h

)2
T[g:g|ℓ=h]

)

= E
ℓ,x∈ℓ

∑

h∈C
τ
(
Bℓ

[f :f(x)=h(x),f 6=h] · T[g:g|ℓ=h]

)

= E
ℓ

∑

h,f∈C

(
E
x∈ℓ

I[f(x) = h(x), f 6= h]
)
· τ

(
Bℓ

f · T[g:g|ℓ=h]

)

≤ E
ℓ

∑

h,f∈C
γ · τ

(
Bℓ

f · T[g:g|ℓ=h]

)

= γ

where the third line follows from the fact that the {Bℓ
h} measurements are projective, in the fourth

line we used I[f(x) = h(x), f 6= h] to denote the characteristic function of the indicated set, the fifth
line follows from the fact that two distinct codewords f 6= h can only agree on at most γ fraction
of coordinates, and the last line follows from the fact that {Bℓ

f} and {Tg} are measurements. Thus
putting together (46) and (47) we get

Ax
g(x)T

1/2
g ≈√

2ε B
ℓ
[f :f(x)=g(x)] · T 1/2

g ≈√
γ Bℓ

g|ℓ · T
1/2
g

≈√
γ Bℓ

[f :f(y)=g(y)] · T 1/2
g ≈√

2ε A
y
g(y) · T

1/2
g .

on average over a random axis-parallel line ℓ and independent random points x, y ∈ ℓ.

The proof of Lemma 5.3 now follows by using the expansion of the hypercube to transfer the
“local variance” bound of Lemma 5.4 to a “global variance” bound.

Proof of Lemma 5.3. Define the graph G to have vertex set [n]m, and vertices x, y ∈ [n]m are
connected if and only if they differ in at most one coordinate. Define N = nm. The Laplacian L
associated with this graph G has a zero eigenvector

|ϕ0〉 =
1√
N

∑

x∈[n]m
|x〉.

Furthermore the second largest eigenvalue λ2 is equal to 1
mN .

For all g ∈ C⊗m, define the positive linear functional ψg(X) = τ
(
T
1/2
g ·X ·T 1/2

g

)
. By Lemma A.2,

we have that

E
x,y∼[n]m

∑

g∈C⊗m

∥∥∥
(
Ax

g(x) −Ay
g(y)

)
T 1/2
g

∥∥∥
2

τ
= E

x,y∼[n]m

∑

g∈C⊗m

ψg

((
Ax

g(x) −Ay
g(y)

)2
)

≤ m E
ℓ,x,y∈ℓ

∑

g∈C⊗m

ψg

((
Ax

g(x) −Ay
g(y)

)2
)

= m E
(x,y)∼G

∑

g∈C⊗m

∥∥∥
(
Ax

g(x) −Ay
g(y)

)
T 1/2
g

∥∥∥
2

τ

≤ mζ2local, Lemma 5.4

which completes the proof by definition.

We now proceed to prove Lemma 4.2.
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5.1 Proof of Lemma 4.2, Step 1: Construction of (non-projective) H

Let A = {Ax}x∈[n]m and {Gg} be as in the statement of Lemma 4.2. Let A and τ be the underlying
von Neumann algebra and normal trace. For all g ∈ C⊗m define

Ag = E
x
Ax

g(x) ,

where the expectation is uniform over all x ∈ [n]m. For all g ∈ C⊗m define ϕg : A → C by

∀X ∈ A , ϕg(X) = τ(X ·Ag) .

Notice that ϕg is a normal positive linear map. It is positive because τ(XAg) = τ(A
1/2
g XA

1/2
g ) ≥ 0

for positiveX ∈ A . It is normal because τ is normal, which by definition (see Section 2) implies that

there is a positive trace class operator M such that τ(XAg) = τ(A
1/2
g XA

1/2
g ) = tr(A

1/2
g XA

1/2
g M).

Since XA
1/2
g M is a trace class operator and A

1/2
g is bounded, we have that tr(A

1/2
g XA

1/2
g M) =

tr(XA
1/2
g MA

1/2
g ); this implies that ϕg(X) = tr(XA

1/2
g MA

1/2
g ) is normal because A

1/2
g MA

1/2
g is a

positive trace class operator.
By Lemma 5.2 there exists a unique normal linear map ψ of minimal norm satisfying ψ ≥ ϕg

for all g ∈ C⊗m. Moreover there exists a measurement {Tg} such that

∀X ∈ A , ψ(X) =
∑

g

ϕg(TgX) . (48)

We refer to Equation (48) as the complementary slackness condition.
For all x ∈ [n]m and g ∈ C⊗m let

Hx
g = Ax

g(x) · Tg ·Ax
g(x) .

We verify that for all x ∈ [n]m, {Hx
g } forms a submeasurement:

∑

g

Hx
g =

∑

g

Ax
g(x) · Tg · Ax

g(x) =
∑

a

Ax
a

( ∑

g:g(x)=a

Tg

)
Ax

a ≤
∑

a

(Ax
a)

2 =
∑

a

Ax
a = 1. (49)

Finally, for g ∈ C⊗m define
Hg = E

x∼[n]m
Hx

g .

We proceed to argue that, except for the projectivity condition, the submeasurement {Hg} satisfies
the conclusions of Lemma 4.2. We first show a technical lemma.

Lemma 5.5. Let ζvar =
√
m(2

√
2ε+ 2

√
γ) as in Lemma 5.3. Then

E
x

∑

g

τ
(∣∣Hg −Ax

g(x)TgA
x
g(x)

∣∣) ≤ 2 ζvar .

Proof. We have

E
x

∑

g

τ
(∣∣Hg −Ax

g(x)TgA
x
g(x)

∣∣) = E
x

∑

g

τ
(∣∣∣E

y

(
Ay

g(y) −Ax
g(x)

)
TgA

y
g(y) + E

y
Ax

g(x)Tg

(
Ay

g(y) −Ax
g(x)

)∣∣∣
)
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≤ E
x,y

∑

g

τ
(∣∣(Ay

g(y)
−Ax

g(x)

)
TgA

y
g(y)

∣∣)+ τ
(∣∣Ax

g(x)Tg

(
Ay

g(y)
−Ax

g(x)

)∣∣)

≤ E
x,y

∑

g

(∥∥(Ay
g(y) −Ax

g(x)

)
T 1/2
g

∥∥
τ
·
∥∥T 1/2

g Ay
g(y)

∥∥
τ

+
∥∥Ax

g(x)T
1/2
g

∥∥
τ
·
∥∥T 1/2

g

(
Ay

g(y) −Ax
g(x)

)∥∥
τ

)

≤ 2
(
E
x,y

∑

g

∥∥(Ay
g(y) −Ax

g(x)

)
T 1/2
g

∥∥2
τ

)1/2(
E
x

∑

g

∥∥T 1/2
g Ax

g(x)

∥∥2
τ

)1/2
,

where the second line uses the triangle inequality for the 1-norm (Item 4 of Proposition 2.1),
the third the Hölder inequality (Item 2 of Proposition 2.1), and the fourth the Cauchy-Schwarz
inequality. The lemma then follows from Lemma 5.3 together with the fact that ‖Ax

a‖ ≤ 1 for every
x, a and

∑
g Tg ≤ 1.

5.1.1 Bounding the completeness of H

Lemma 5.6.
∑

g τ(Hg) ≥ 1− ν.

Proof. We compute

∑

g

τ(Hg) = E
x

∑

g

τ
(
Ax

g(x) · Tg ·Ax
g(x)

)
(50)

= E
x

∑

g

τ
(
Tg ·Ax

g(x)

)
Cyclicity of trace, projectivity of Ax

a

=
∑

g

τ (Tg · Ag)

=
∑

g

ϕg(Tg) Definition of ϕg

= ψ(1) Complementary slackness
(51)

=
∑

g

ψ(Gg) {Gg} is a measurement

≥
∑

g

ϕg(Gg) ψ ≥ ϕg for all g

=
∑

g

τ(Gg · Ag) Definition of ϕg

= E
x

∑

a

τ(G[g(x)=a] · Ax
a)

= E
x

∑

a

τ(G[g(x)=a])− E
x

∑

b6=a

τ(G[g(x)=a] · Ax
b )

≥ 1− ν ,

by the assumption that {Gg} is ν-inconsistent with A.
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5.1.2 Bounding the consistency of H with A

Let ζvar be as in Lemma 5.5.

Lemma 5.7. On average over x ∼ [n]m, H[g 7→g(x)|a] ≃2 ζvar A
x
a.

Proof. By expanding the definition of H we get

E
x

∑

a6=b

τ
(
Ax

b ·H[g 7→g(x)|a]
)
= E

x

∑

g,b:g(x)6=b

τ (Ax
bHg) (52)

≈2 ζvar E
x

∑

g,b:g(x)6=b

τ
(
Ax

b · Ax
g(x) · Tg ·Ax

g(x)

)
Lemma 5.5 (53)

= 0 Projectivity of Ax
b (54)

Here the application of Lemma 5.5 is justified by forming the difference between (53) and (52) and
bounding it as

∣∣(53)− (52)
∣∣ ≤ E

x

∣∣∣
∑

g,b:g(x)6=b

τ
(
Ax

b · (Hg −Ax
g(x) · Tg ·Ax

g(x)

))∣∣∣

≤ E
x

∑

g

∣∣τ
(
(1−Ax

g(x)) · (Hg −Ax
g(x) · Tg ·Ax

g(x)

))∣∣

≤ E
x

∑

g

τ
(∣∣Hg −Ax

g(x) · Tg · Ax
g(x)

∣∣
)

≤ 2 ζvar ,

where the third line follows from Hölder’s inequality (Item 3 of Proposition 2.1) and ‖1−Ax
g(x)‖ ≤

1.

5.1.3 Bounding the projectivity of H

Lemma 5.8. Let γm = 1− (d/n)m. Then
∑

g τ(Hg −H2
g ) ≤ 5 ζvar + γm.

Proof. Write

∑

g

τ(H2
g ) = E

x

∑

g

τ
(
Hx

g ·Hg

)

≈2 ζvar E
x

∑

g

τ
(
Ax

g(x) ·Hx
g · Ax

g(x) · Tg

)
, (55)

where the approximation on the second line follows from Lemma 5.5. Now we write

RHS of Eq. (55) ≈γm E
x

∑

g,g′

τ
(
Ax

g(x) ·Hx
g′ · Ax

g(x) · Tg

)
To be proved below (56)

= E
x

∑

g,g′

τ
(
Hx

g′ · Ax
g(x) · Tg

)
Ax

g(x) ·Hx
g′ · Ax

g(x) = Hx
g′ · Ax

g(x) (57)

≈ ζvar E
x,y

∑

g,g′

τ
(
Hx

g′ ·Ay
g(y) · Tg

)
To be proved below (58)
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=
∑

g,g′

τ
(
Hg′ · Ag · Tg

)
(59)

=
∑

g,g′

ϕg(Tg ·Hg′) Definition of ϕg (60)

=
∑

g′

ψ(Hg′) Complementary slackness (61)

≥
∑

g′

ϕg′(Hg′) ψ ≥ ϕg′ for all g
′ (62)

=
∑

g′

τ(Hg′ ·Ag′) Definition of ϕg′ (63)

= E
x

∑

a

τ
(
H[g 7→g(x)|a] ·Ax

a

)
(64)

= E
x

∑

a

τ
(
H[g 7→g(x)|a] ·

(
1−

∑

b6=a

Ax
b

))
(65)

= τ(H)− E
x

∑

a6=b

τ
(
H[g 7→g(x)|a] ·Ax

b

)
(66)

≥ τ(H)− 2 ζvar Lemma 5.7 (67)

This completes the proof of the lemma, modulo Eq. (56) and Eq. (58), which we now turn to.

Proof of approximation in Eq. (56). We aim to show that

∣∣∣E
x

∑

g′ 6=g

τ
(
Ax

g(x) ·Hx
g′ ·Ax

g(x) · Tg

) ∣∣∣ ≤ γm .

To see this, we show

E
x

∑

g′ 6=g

τ
(
Ax

g(x) ·Hx
g′ ·Ax

g(x) · Tg

)

= E
x

∑

g 6=g′

τ
(
Ax

g(x) · Ax
g′(x) · Tg′ · Ax

g′(x) · Ax
g(x) · Tg

)

= E
x

∑

g 6=g′

τ
(
Ax

g(x) · Tg′ · Ax
g(x) · Tg

)
· I[g(x) = g′(x)]

= E
x

∑

g 6=g′

τ
(
Tg′ ·Ax

g(x) · Tg · Ax
g(x)

)
· I[g(x) = g′(x)] Cyclicity of trace

= E
x

∑

g 6=g′

τ
(
Tg′ ·Hg

)
· I[g(x) = g′(x)] . Definition of Hg (68)

To conclude, note that since τ(Tg′Hg) ≥ 0 for all g, g′ and
∑

g 6=g′ τ(Tg′Hg) ≤ 1 it follows that (68)
is at most

max
g 6=g′

E
x
I[g(x) = g′(x)] ≤ 1− dm

nm
= γm ,

because two distinct codewords g 6= g′ of C⊗m can only agree on at most nm − dm coordinates.
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Proof of approximation in Eq. (58). We aim to show that

E
x

∑

g,g′

τ
(
Hx

g′ ·Ax
g(x) · Tg

)
≈ ζvar E

x,y

∑

g,g′

τ
(
Hx

g′ ·Ay
g(y) · Tg

)
. (69)

To do this, we bound the magnitude of the difference:

∣∣∣ E
x,y

∑

g,g′

τ
(
Hx

g′ · (Ax
g(x) −Ay

g(y)) · Tg

) ∣∣∣

=
∣∣∣ E
x,y

∑

g

τ
(
T 1/2
g ·

(∑

g′

Hx
g′

)
· (Ax

g(x) −Ay
g(y)) · T

1/2
g

)∣∣∣

≤
√

E
x

∑

g

τ
(
T
1/2
g ·

(∑

g′

Hx
g′

)2
· T 1/2

g

)
·
√

E
x,y

∑

g

τ
(
T
1/2
g ·

(
Ax

g(x) −Ay
g(y)

)2 · T 1/2
g

)

≤
√
1 · ζvar

where we used Cauchy-Schwarz, the fact that {Hx
g′} and {Tg} are (sub)measurements, and Lemma 5.3.

This concludes the proof of (67) and hence the lemma.

5.2 Proof of Lemma 4.2, Step 2: Making H projective

To conclude the proof of Lemma 4.2, we show how to modify the submeasurement {Hg} defined
and analyzed in the previous section so that it is projective. Recall that according to Lemma 5.8
{Hg} satisfies ∑

g

τ(Hg −H2
g ) ≤ η ,

for η = 5 ζvar + γm. This condition allows us to apply the Orthogonalization Lemma (Lemma 5.1).
From the lemma it follows that there exists a projective submeasurement H ′ = {H ′

g} satisfying

Hg ≈√
18η H ′

g .

5.2.1 Proof of Item 1 (Completeness)

The completeness of the projective submeasurement {H ′
g} is related to the completeness of {Hg}

in the following manner:

∑

g

τ(H ′
g) =

∑

g

τ(H ′
g ·H ′

g) {H ′
g} is projective

≈√
18η

∑

g

τ(Hg ·H ′
g) Proposition 2.7

≈√
18η

∑

g

τ(Hg ·Hg) Proposition 2.7

≥
∑

g

τ(Hg)− η Lemma 5.8 (70)
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5.2.2 Proof of Item 2 (Consistency with A)

Next we show consistency of {H ′
g} with the measurements {Ax

a}. Towards this we first prove that
for all x,

H[g 7→g(x)|a] ≈η′ H
′
[g 7→g(x)|a] ,

where

η′ =
√

2
√

18η + η.

This is because
∑

a

τ
(
(H[g 7→g(x)|a] −H ′

[g 7→g(x)|a])
2
)

=
∑

a

τ(H2
[g 7→g(x)|a]) +

∑

a

τ((H ′
[g 7→g(x)|a])

2)− 2
∑

a

τ(H[g 7→g(x)|a] ·H ′
[g 7→g(x)|a])

≤
∑

a

τ(H[g 7→g(x)|a]) +
∑

a

τ((H ′
[g 7→g(x)|a]))− 2

∑

a

τ(H[g 7→g(x)|a] ·H ′
[g 7→g(x)|a])

=
∑

g

τ(Hg) +
∑

g

τ(H ′
g)− 2

∑

a

τ(H[g 7→g(x)|a] ·H ′
[g 7→g(x)|a])

≤
∑

g

τ(Hg) +
∑

g

τ(H ′
g)− 2

∑

g

τ(Hg ·H ′
g)

≤2
√

18η + η.

The third line follows from the fact that {H[g(x)=a]} and {H ′
[g(x)=a]} are submeasurements. The

fifth line follows from dropping terms τ(Hg ·H ′
g′) for g 6= g′, which are nonnegative. The sixth line

follows from (each step of) the derivation (70).
Using the fact that {Ax

a} forms a complete measurement,

E
x

∑

a6=b

τ
(
H ′

[g 7→g(x)|a] · Ax
b

)
= τ(H ′)− E

x

∑

a

τ
(
H ′

[g 7→g(x)|a] · Ax
a

)

≈η′ τ(H
′)− E

x

∑

a

τ
(
H[g 7→g(x)|a] ·Ax

a

)

≈η′ τ(H)− E
x

∑

a

τ
(
H[g 7→g(x)|a] · Ax

a

)

= E
x

∑

a6=b

τ
(
H[g 7→g(x)|a] · Ax

b

)

≤ 2 ζvar (71)

where the second line follows from Proposition 2.7, the third line follows from (70), and the last
line follows from Lemma 5.7.

5.2.3 Proof of Item 3 (Agreement is well-explained)

The map ψ constructed at the start of Section 5.1 satisfies ψ(X) ≥ ϕg(X) = τ(X · Ag) for all
g ∈ C⊗m and positive X ∈ B(H). We compute

ψ(1−H ′) = ψ(1) − ψ(H ′)
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= ψ(1) −
∑

g

ψ(H ′
g)

≤ ψ(1) −
∑

g

τ(H ′
g · Ag)

= ψ(1) − E
x

∑

a

τ(H ′
[g 7→g(x)|a] · Ax

a)

= τ(H)− E
x

∑

a

τ(H ′
[g 7→g(x)|a] ·Ax

a)

≈η′ τ(H
′)− E

x

∑

a

τ(H ′
[g 7→g(x)|a] · Ax

a)

= E
x

∑

a6=b

τ(H ′
[g 7→g(x)|a] ·Ax

b )

≤ 2η′ + 2 ζvar

where the equality ψ(1) = τ(H) follows from the equality between (50) and (51), the sixth line
follows from (70), and the last line follows from (71). This implies

ψ(1−H ′) ≤ 3η′ + 2 ζvar .

5.2.4 Putting everything together

To conclude the proof of Lemma 4.2, we set

ζ = 3η′ + 2 ζvar .

First we note that, since t = n− d+ 1, we can express γ = 1− d
n ≤ t

n and

γm = 1− dm

nm
= 1−

(
1− t− 1

n

)m
≤ 1−

(
1− mt

n

)
=

mt

n
.

By the definitions of η′ and ζvar, we have

ζvar =
√
m(2

√
2ε+ 2

√
γ) = poly(m, t) · poly

(
ε,

1

n

)
,

η = 5ζvar + γm = poly(m, t) · poly
(
ε,

1

n

)
,

η′ =
√

2
√

18η + η = poly(η) = poly(m, t) · poly
(
ε,

1

n

)
,

ζ = 3η′ + 2ζvar = poly(m, t) · poly
(
ε,

1

n

)
.

6 Pasting

We now prove Lemma 4.3. For convenience we restate the lemma here:
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Lemma 4.3 (Pasting). There exists a function

ν(m, t, r, ε, δ, ζ, n−1) = poly(m, t, r) · poly(ε, δ, ζ, n−1) (4)

such that the following holds. Let S = (τ,A,B, P ) be an (ε, δ)-good strategy for the code C⊗m+1 with
points measurements A = {Au,x}(u,x)∈[n]m×[n]. Let {Gx}x∈[n] denote projective submeasurements
with outcomes in C⊗m with the following properties:

1. (Completeness): τ(G) ≥ 1− κ where G = Ex
∑

g G
x
g .

2. (Consistency with A): On average over (u, x) ∈ [n]m × [n], Gx
[g 7→g(u)|a] ≃ζ A

u,x
a .

3. (Agreement is explained by the complete part of G): For each x ∈ [n] there exists a positive
linear map ψx such that

E
x
ψx(1−Gx) ≤ ζ

and for all x ∈ [n], g ∈ C⊗m, and positive X ∈ B(H), we have

ψx(X) ≥ E
u∼[n]m

τ(X ·Au,x
g(u)).

Then for all integers r ≥ 12mt there exists a “pasted” measurement H = {Hh} ⊂ A with outcomes
h ∈ C⊗(m+1), satisfying the following property:

1. (Consistency with A): On average over (u, x) ∈ [n]m × [n], H[h 7→h(u,x)|a] ≃µ Au,x
a

where

µ = µ(κ,m, t, r, ε, δ, ζ, n−1) = κ
(
1 +

1

3m

)
+ ν(m, t, r, ε, δ, ζ, n−1) + e−

r
72m2 (5)

with t = n− d+ 1.

6.1 Commutativity of the A’s

We first derive a consequence of passing the subcube commutation test with high probability.

Lemma 6.1. Let S = (τ,A,B, P ) be strategy for the tensor code test with code C⊗(m+1) that passes
the subcube commutation test with probability 1 − δ. Let A = {Au,x}u∈[n]m,x∈[n] denote the points
measurements. On average over uniform and independently random (u, x), (v, y) ∼ [n]m × [n],

Au,x
a Av,y

b ≈√
32(m+1)δ

Av,y
b Au,x

a .

Proof. Suppose the strategy S passes the subcube commutation test with probability 1− δ. Since
the index j = 1 in the test (see Figure 1) with probability (m + 1)−1, the strategy passes the test
conditioned on j = 1 with probability at least 1− δ(m+1). When j = 1, the “subcube” is actually
the entire space [n]m+1. This means that

Au,x
a ≃(m+1)δ P

u,x,v,y
[(a,b)7→a],

on average over (u, x), (v, y) ∈ [n]m+1 which implies

Au,x
a ≈√

2(m+1)δ
P u,x,v,y
[(a,b)7→a], (72)
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by Proposition 2.5.
By multiple applications of Proposition 2.8, we have

Au,x
a Av,y

b ≈√
2(m+1)δ

Au,x
a P u,x,v,y

[(a,b)7→b]

≈√
2(m+1)δ

P u,x,v,y
[(a,b)7→a]P

u,x,v,y
[(a,b)7→b]

= P u,x,v,y
[(a,b)7→b]P

u,x,v,y
[(a,b)7→a]

≈√
2(m+1)δ

Av,y
b P u,x,v,y

[(a,b)7→a]

≈√
2(m+1)δ

Av,y
b Au,x

a .

The theorem now follows from the triangle inequality.

6.2 Commutativity of the G’s

Having deduced that the points measurements approximately commute on average, we now aim
to deduce that the “subspace measurements” {Gx} corresponding to the parallel m-dimensional
subspaces Sx = {(u, x) : u ∈ [n]m} approximately commute. We first prove a slightly weaker state-
ment, which is that the subspace measurements {Gx} give rise to points measurements {Gu,x

a }a∈Σ
that approximately commute.

Lemma 6.2. Let ν1 = 8(
√
ζ+

√
(m+ 1)δ). Let {Gx

g} be projective submeasurements satisfying the
conditions in Lemma 4.3. Define Gu,x

a = Gx
[g 7→g(u)|a] for all (u, x) ∈ [n]m × [n]. Then on average

over uniform and independently uniform (u, x), (v, y) ∼ [n]m × [n],

Gu,x
a Gv,y

b ≈ν1 G
v,y
b Gu,x

a .

Proof. We compute

E
(u,x),(v,y)

∑

a,b

τ
((

Gu,x
a Gv,y

b −Gv,y
b Gu,x

a

)∗(
Gu,x

a Gv,y
b −Gv,y

b Gu,x
a

))

= 2 E
(u,x),(v,y)

∑

a,b

τ
(
Gu,x

a Gv,y
b −Gv,y

b Gu,x
a Gv,y

b Gu,x
a

)

where in the second line we used the cyclicity of the trace τ and the fact that {Gu,x
a } is projective.

By the consistency assumption (Assumption 2 of Lemma 4.3), we have Gu,x
a ≃ζ A

u,x
a and therefore

by Proposition 2.10 we have, on average over (u, x) ∼ [n]m+1,

Gu,x
a ≈√

ζ G
u,x
a Au,x

a (73)

Gu,x
a ≈2

√
ζ G

xAu,x
a (74)

where Gx =
∑

aG
x
[g 7→g(u)|a].

The rest of the proof is outlined in the following sequence of approximations.

E
(u,x),(v,y)

∑

a,b

τ
(
Gv,y

b Gu,x
a Gv,y

b Gu,x
a

)

≈2
√
ζ E

(u,x),(v,y)

∑

a,b

τ
(
Gv,y

b Gu,x
a Gv,y

b GxAu,x
a

)
To be proved below (75)
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≈√
ζ E

(u,x),(v,y)

∑

a,b

τ
(
Gv,y

b Gu,x
a Gv,y

b Au,x
a

)
To be proved below (76)

= E
(u,x),(v,y)

∑

a,b

τ
(
Au,x

a Gv,y
b Gu,x

a Gv,y
b

)
Cyclicity of the trace

≈2
√
ζ E

(u,x),(v,y)

∑

a,b

τ
(
Au,x

a Gv,y
b Gu,x

a GyAv,y
b

)
To be proved below (77)

≈√
ζ E

(u,x),(v,y)

∑

a,b

τ
(
Au,x

a Gv,y
b Gu,x

a Av,y
b

)
To be proved below (78)

= E
(u,x),(v,y)

∑

a,b

τ
(
Gv,y

b Gu,x
a Av,y

b Au,x
a

)
Cyclicity of the trace

≈√
32(m+1)δ

E
(u,x),(v,y)

∑

a,b

τ
(
Gv,y

b Gu,x
a Au,x

a Av,y
b

)
Lemma 6.1, Prop. 2.7

≈√
ζ E

(u,x),(v,y)

∑

a,b

τ
(
Gv,y

b Gu,x
a Av,y

b

)
To be proved below (79)

≈√
ζ E

(u,x),(v,y)

∑

a,b

τ
(
Gv,y

b Gu,x
a

)
. To be proved below (80)

This shows that

E
(u,x),(v,y)

∑

a,b

τ
(
Gv,y

b Gu,x
a

)
≈

8
√
ζ+
√

32(m+1)δ
E

(u,x),(v,y)

∑

a,b

τ
(
Gv,y

b Gu,x
a Gv,y

b Gu,x
a

)
.

Proof of approximation in Eqs. (75) and (77). Define Gu,x,v,y
a =

∑
bG

v,y
b Gu,x

a Gv,y
b and it is

easy to verify that {Gu,x,v,y
a } forms a submeasurement. Hence, we have

E
(u,x),(v,y)

∑

a,b

τ
(
Gv,y

b Gu,x
a Gv,y

b Gu,x
a

)
= E

(u,x),(v,y)

∑

a

τ (Gu,x,v,y
a ·Gu,x

a )

≈2
√
ζ E
(u,x),(v,y)

∑

a

τ (Gu,x,v,y
a ·GxAu,x

a )

= E
(u,x),(v,y)

∑

a,b

τ
(
Gv,y

b Gu,x
a Gv,y

b GxAu,x
a

)
,

where the approximation follows from Proposition 2.7 and Eq. (74). This gives Eq. (75).
Similarly, to prove the approximation in Eq. (77), we define Hu,x,v,y

b =
∑

aA
u,x
a Gv,y

b Gu,x
a . Then

∑

b

Hu,x,v,y
b

(
Hu,x,v,y

b

)∗
=

∑

b

∑

a,a′

Au,x
a Gv,y

b Gu,x
a Gu,x

a′ Gv,y
b Au,x

a′

=
∑

b

∑

a

Au,x
a Gv,y

b Gu,x
a Gv,y

b Au,x
a

≤
∑

a,b

Au,x
a Gv,y

b Au,x
a

≤ 1,
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where the second line uses the projectivity of
{
Gu,x

a

}
and the third line uses Gu,x

a ≤ 1. By
Proposition 2.7 and Eq. (74), we have

E
(u,x),(v,y)

∑

a,b

τ
(
Au,x

a Gv,y
b Gu,x

a Gv,y
b

)
= E

(u,x),(v,y)

∑

b

τ
(
Hu,x,v,y

b Gv,y
b

)

≈2
√
ζ E
(u,x),(v,y)

∑

b

τ
(
Hu,x,v,y

b GyAv,y
b

)

= E
(u,x),(v,y)

∑

a,b

τ
(
Au,x

a Gv,y
b Gu,x

a GyAv,y
b

)
.

Proof of approximations in Eqs. (76) and (78). Let Rx
g = Ev,y

∑
b G

v,y
b Gx

gG
v,y
b . It can be

verified that {Rx
g} forms a submeasurement:

∑

g

Rx
g ≤ E

v,y

∑

b

(Gv,y
b )

2 ≤ 1.

To show the approximation in Eq. (76), we bound the magnitude of the difference:
∣∣∣∣∣∣

E
(u,x),(v,y)

∑

a,b

τ
(
Gv,y

b Gu,x
a Gv,y

b · (1−Gx) · Au,x
a

)
∣∣∣∣∣∣

=

∣∣∣∣∣ Eu,x
∑

a

τ
(
Rx

[g 7→g(u)|a] · (1−Gx) · Au,x
a

)∣∣∣∣∣

=

∣∣∣∣∣ Eu,x
∑

g

τ
(
Rx

g · (1−Gx) · Au,x
g(u)

)∣∣∣∣∣

≤
√
E
x

∑

g

τ
(
Rx

g

)
·
√

E
u,x

∑

g

τ
(
Au,x

g(u) · (1−Gx) ·Rx
g · (1−Gx) · Au,x

g(u)

)
Cauchy-Schwarz

≤
√

E
u,x

∑

g

τ
(
Au,x

g(u) · (1−Gx) ·Rx
g · (1−Gx) · Au,x

g(u)

)
{Rx

g} is a submeasurement

=

√
E
x

∑

g

τ
(
(1−Gx) ·Rx

g · (1−Gx) · E
u
Au,x

g(u)

)
{Ax

a} is projective

≤
√
E
x

∑

g

ψx
(
(1−Gx) · Rx

g · (1−Gx)
)

Assumption 3

≤
√
E
x
ψx (1−Gx) {Rx

g} is submeasurement, {Gx} is projective

≤
√
ζ Assumption 3.

The proof of approximation in Eq. (78) follows in an identical manner.

Proof of approximations in Eqs. (79) and (80). To show the approximation in Eq. (79), we
define

Sv,y =
∑

b

Av,y
b Gv,y

b ,

51



and verify that

Sv,y(Sv,y)∗ =
∑

b,b′

Av,y
b Gv,y

b Gv,y
b′ Ab,y

b′ =
∑

b

Av,y
b Gv,y

b Ab,y
b ≤ 1,

and ∑

a

Sv,yGu,x
a (Sv,yGu,x

a )∗ ≤ Sv,y(Sv,y)∗ ≤ 1.

Applying Proposition 2.7 to Eq. (73), we have

E
(u,x),(v,y)

∑

a,b

τ
(
Av,y

b Gv,y
b Gu,x

a Au,x
a

)
= E

(u,x),(v,y)

∑

a

τ (Sv,yGu,x
a ·Gu,x

a Au,x
a )

≈√
ζ E
(u,x),(v,y)

∑

a

τ (Sv,yGu,x
a ·Gu,x

a )

= E
(u,x),(v,y)

∑

a,b

τ
(
Av,y

b Gv,y
b Gu,x

a

)
,

which proves Eq. (79) by cyclicity of the trace.
The proof of approximation in Eq. (80) follows in an identical manner.

We now show that the subspace measurements {Gx} themselves approximately commute.

Lemma 6.3. Let γm be as defined in Proposition 2.18 and ν2 = 4(γm+ν1). Let {Gx
g} be projective

submeasurements satisfying the conditions in Lemma 4.3.
Then on average over independently uniform x, y ∼ [n],

Gx
g G

y
h ≈ν2 Gy

hG
x
g .

Proof. By definition, we need to bound

E
x,y

∑

g,h

τ
((

Gx
g G

y
h −Gy

h G
x
g

)∗(
Gx

g G
y
h −Gy

hG
x
g

))
= 2 E

x,y

∑

g,h

τ
(
Gx

g G
y
h −Gy

h G
x
g G

y
h G

x
g

)

where we used the cyclicity of the trace τ and the projectivity of {Gx
g}.

For notational convenience we use the abbreviation Gu,x
a = Gx

[g 7→g(u)|a] for all (u, x) ∈ [n]m× [n].
We have

E
x,y

∑

g,h

τ
(
Gy

hG
x
g G

y
hG

x
g

)

≈γm E
(u,x),y

∑

a,h

τ
(
Gy

h G
u,x
a Gy

hG
u,x
a

)
To be proved below (81)

≈γm E
(u,x),(v,y)

∑

a,b

τ
(
Gv,y

b Gu,x
a Gv,y

b Gu,x
a

)
To be proved below (82)

≈ν1 E
(u,x),(v,y)

∑

a,b

τ
(
Gv,y

b Gu,x
a Gu,x

a Gv,y
b

)
Proposition 2.7 and Lemma 6.2

= E
(u,x),(v,y)

∑

a,b

τ
(
Gv,y

b Gu,x
a

)
Projectivity of G’s

= E
x,y

∑

g,h

τ
(
Gx

g G
y
h

)
.
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Proof of approximation in Eq. (81). To show the approximation in Eq. (81), we bound the
magnitude of the difference:

∣∣∣∣∣∣∣∣
E

(u,x),y

∑

g,g′,h:
g 6=g′

I[g(u) = g′(u)] τ
(
Gy

hG
x
g G

y
hG

x
g′
)
∣∣∣∣∣∣∣∣

= E
x,y

∑

g,g′,h:
g 6=g′

τ
(
Gy

hG
x
g G

y
hG

x
g′
)
E
u
I[g(u) = g′(u)] τ(Gy

h G
x
g G

y
hG

x
g′) ≥ 0

≤ E
x,y

∑

g,g′,h:
g 6=g′

τ
(
Gy

hG
x
g G

y
hG

x
g′
) (

1− dm

nm

)
Proposition 2.18

≤ γm

where in the last inequality we used that summing τ
(
Gy

hG
x
g G

y
hG

x
g′

)
over g, g′, h is at most 1.

Proof of approximation in Eq. (82). To show the approximation in Eq. (82), we bound the
magnitude of the difference:

∣∣∣∣∣∣∣∣
E

(u,x),(v,y)

∑

a,h,h′:
h 6=h′

I[h(v) = h′(v)] τ
(
Gy

h G
u,x
a Gy

h′ G
u,x
a

)
∣∣∣∣∣∣∣∣

= E
(u,x),y

∑

a,h,h′:
h 6=h′

τ
(
Gy

h G
u,x
a Gy

h′ G
u,x
a

)
E
v
I[h(v) = h′(v)]

≤ γm .

6.3 Pasting the G’s together: Method 1

Now that we have established the subspace submeasurements {Gx} approximately commute, we
“paste” them together into a single submeasurement H = {Hh} with outcomes in C⊗(m+1) that
are consistent with the G’s. We give two methods for achieving this. The first, detailed in this
section, is the simpler method, but it achieves a weaker bound: instead of the value of µ claimed
in Lemma 4.3 this method obtains

µ(κ,m, t, ε, δ, ζ, n−1) = κ+ poly(m, t) ·
(
poly

(
ε, δ, ζ, n−1

))1/t
, (83)

with a dependence on 1/t in the exponent. Intuitively, for this method we define H as a measure-
ment that tries to “simultaneously” measure t = n−d+1 subspace submeasurements Gx1 , . . . , Gxt

for a randomly chosen tuple of distinct coordinates (x1, . . . , xt) ∈ [n]t, obtain m-dimensional words
g1, . . . , gt ∈ C⊗m, and then interpolate a “global” codeword h ∈ C⊗m+1 such that h(u, xi) = gi(u).
Since the base code C is interpolable, by Proposition 2.20, there is always a global codeword h
consistent with g1, . . . , gt.
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While the exponential dependence on 1/t in (83) remains acceptable for applications where t
is thought of as constant, if the parameter grows even e.g. logarithmically with n the bound can
become trivial. To address this case in Section 6.4 we give a different method (explained in that
section), which obtains the bound claimed in Lemma 4.3.

We now formalize the first “interpolation” approach. We start by precisely defining the pasted
submeasurement H.

Let x1, . . . , xt ∈ [n]. Define an initial pasted submeasurement as follows:

Hx1,...,xt
g1,...,gt = Gx1

g1 · · ·G
xt
gt · · ·Gx1

g1 .

This forms a submeasurement because of each of the individual Gx’s are submeasurements. Then,
for all h ∈ C⊗(m+1), define the following operators

Hx1,...,xt

h = Hx1,...,xt

h|x1 ,...,h|xt

where h|xj denotes the codeword in C⊗m that comes from setting the (m+1)-st coordinate of h to
xj. This set H

x1,...,xt = {Hx1,...,xt

h } forms a submeasurement. This is because the set

S = {(g1, . . . , gt) ∈
(
C⊗m

)t
: there exists h ∈ C⊗(m+1) such that h|xj = gj}

is a subset of (C⊗m)
t
, and furthermore S is in one-to-one correspondence with C⊗(m+1) as shown

in Proposition 2.19. Thus

∑

h

Hx1,...,xt

h =
∑

(g1,...,gt)∈S
Hx1,...,xt

g1,...,gt ≤
∑

(g1,...,gt)∈(C⊗m)t

Hx1,...,xt
g1,...,gt ≤ 1.

And finally, define the operators

Hh = E
(x1,...,xt)∼distinct([n],t)

Hx1,...,xt

h

where we define distinct([n], t) to denote the set of tuples (x1, . . . , xt) ∈ [n]t such that all of the
coordinates are distinct. It is easy to verify that H = {Hh} forms a submeasurement. In what
follows, H will interchangeably refer to both the set {Hh} as well as the sum

∑
hHh; it should be

clear from context which we are referring to. We will repeatedly use the following simple claim.

Proposition 6.4. Let n, k ≥ 1 be integer. Let x = (x1, . . . , xk) ∼ [n]k be sampled uniformly at
random and let y = (y1, . . . , yk) ∼ distinct([n], k). Then

dTV(x, y) ≤
k2

n
.

Proof. For any z = (z1, . . . , zk) ∈ [n]k,

Pr(x = z) =
1

qk
,

Pr(y = z) =

{
1

(nk)k!
if z ∈ distinct([n], k),

0 otherwise.
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Because 1

(nk)k!
≥ 1

nk , Pr(x = z) ≥ Pr(y = z) if and only if z /∈ distinct([n], k). Hence,

dTV(x, y) = max
S⊆[n]k

{Pr(x ∈ S)− Pr(y ∈ S)}

= Pr(x ∈ distinct([n], k))− Pr(y ∈ distinct([n], k)) = Pr(x ∈ distinct([n], k)] .

We can upper-bound this probability as follows.

Pr(x ∈ distinct([n], k)) = Pr(∃i : xi ∈ {x1, . . . , xi−1})

≤
k∑

i=2

Pr(xi ∈ {x1, . . . , xi−1}) ≤
k∑

i=2

(
i− 1

n

)
=

k(k − 1)

2n
.

6.3.1 Bounding the consistency of H with the A measurements

First we bound the consistency of H with line measurements Bℓ where ℓ are parallel to the (m+1)-
st axis. In other words, we consider lines ℓ consisting of points that only vary in the (m + 1)-st
coordinate. Since we focus on such lines, we use the following abbreviation:

Bu
f = Bℓ

f

where ℓ = ℓ(m+ 1, u) (see Definition 2.16 for the notation for axis-parallel lines).
Since (τ,A,B, P ) is an (ε, δ)-good strategy for C⊗(m+1), we have by definition that

E
ℓ,y∼ℓ

∑

f∈C
τ
(
Bℓ

f A
y
f(yj)

)
≥ 1− ε

where the expectation is over all axis-parallel lines ℓ = ℓ(j, α−j) (not necessarily the ones parallel
to direction m + 1) and points y ∈ ℓ. Since a line ℓ that is parallel to the (m + 1)-st direction is
selected with probability 1/(m+ 1), this implies that

E
(u,x)∈[n]m×[n]

∑

f∈C
τ
(
Bu

f A
u,x
[a:a6=f(x)]

)
≤ (m+ 1)ε . (84)

Define measurement {Bu,x
a } as

Bu,x
a = Bu

[f 7→f(x)|a] .

Then Eq. (84) can be also written as

E
(u,x)∈[n]m×[n]

∑

a,b:a6=b

τ
(
Bu,x

b Au,x
a

)
≤ (m+ 1)ε . (85)

By Proposition 2.5 this implies that on average over (u, x) ∈ [n]m × [n],

Bu,x
a ≈√

2(m+1)ε
Au,x

a . (86)

We first show that the {Hh} submeasurement and the {Bu
f } measurements are consistent.
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Lemma 6.5. Let ν3 = t ·
(
t · ν2 +

√
ζ +

√
2(m+ 1)ε

)
. On average over u sampled uniformly from

[n]m, we have
H[h 7→h|u|f ] ≃ν3 B

u
f

where the answer summation is over f ∈ C.

Proof. Let D be the uniform distribution on distinct([n], t) and Di be the marginal distribution of
D on i coordinates.

E
u

∑

f ′ 6=f

τ
(
H[h 7→h|u|f ′]B

u
f

)
= E

u

∑

h∈C⊗(m+1),f∈C
h|u 6=f

τ
(
HhB

u
f

)

= E
u

E
(x1,...,xt)∼D

∑

h∈C⊗(m+1),f∈C:
h|u 6=f

τ
(
Hx1,...,xt

h Bu
f

)

= E
u

E
(x1,...,xt)∼D

∑

h,f :
∃ i:h(u,xi)6=f(xi)

τ
(
Hx1,...,xt

h Bu
f

)

≤
t∑

i=1

E
u

E
(x1,...,xt)∼D

∑

h,f :
h(u,xi)6=f(xi)

τ
(
Hx1,...,xt

h Bu
f

)

For any fixed i ∈ [t], we have

E
u

E
(x1,...,xt)∼D

∑

h,f :
h(u,xi)6=f(xi)

τ
(
Hx1,...,xt

h Bu
f

)

= E
u

E
(x1,...,xt)∼D

∑

h,f :
h(u,xi)6=f(xi)

τ
(
Gx1

h|x1
· · · Gxt

h|xt
· · · Gx1

h|x1
· Bu

f

)

= E
u

E
(x1,...,xt)∼D

∑

g1,...,gt,f :
gi(u)6=f(xi)

τ
(
Gx1

g1 · · ·G
xt
gt · · ·Gx1

g1 ·Bu
f

)

≤ E
u

E
(x1,...,xi)∼Di

∑

g1,...,gi

τ
(
Bu

[f :f(xi)6=gi(u)]
·Gx1

g1 · · ·G
xi
gi ·

(
Gxi

gi ·G
xi−1
gi−1 · · ·Gx1

g1

))

≈i·ν2 E
u

E
(x1,...,xi)∼Di

∑

g1,...,gi

τ
(
Bu

[f :f(xi)6=gi(u)]
·Gx1

g1 · · ·G
xi
gi ·

(
G

xi−1
gi−1 · · ·Gx1

g1 ·Gxi
gi

))
(87)

where the inequality comes from the fact that Gxi+1 , . . . , Gxt are submeasurements, and the last
approximation follows from Propositions 2.7 and 2.11 and the approximate commutativity of the
Gx measurements (Lemma 6.3). Continuing on, we can use Cauchy-Schwarz to bound (87) by

(87) ≤
√

E
(x1,...,xi)∼Di

∑

g1,...,gi

τ (Gx1
g1 · · ·Gxi

gi · · ·Gx1
g1 )

·
√

E
u

E
(x1,...,xi)∼Di

∑

g1,...,gi

τ
(
Gx1

g1 · · ·G
xi−1
gi−1 · · ·Gx1

g1 ·Gxi
gi ·

(
Bu

[f :f(xi)6=gi(u)]

)2 ·Gxi
gi

)
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≤
√
1 ·

√
E
u,xi

∑

gi

τ
(
Gxi

gi B
u
[f :f(xi)6=gi(u)]

)

where in the last inequality we used the fact that the Gx is projective and
(
Bu

[f :f(xi)6=gi(u)]

)2 ≤
Bu

[f :f(xi)6=gi(u)]
for all u. Notice that

E
u,xi

∑

gi

τ
(
Gxi

giB
u
[f :f(xi)6=gi(u)]

)
= E

u,x

∑

a,b:a6=b

τ
(
Gu,x

a Bu,x
b

)

≈√
2(m+1)ε

E
u,x

∑

a,b:a6=b

τ
(
Gu,x

a Au,x
b

)

≤ ζ .

where the approximation in the second line follows from Proposition 2.7 and Eq. (86). Putting
everything together, this implies that

E
u

∑

h∈C⊗(m+1),f∈C
h|u 6=f

τ
(
HhB

u
f

)
≤ ν3,

for ν3 given in the statement of the lemma.

Next we argue that H is consistent with the points measurements A.

Lemma 6.6. Let ν4 = ν3+
√
2(m+ 1)ε. On average over (u, x) sampled uniformly from [n]m× [n],

we have
H[h 7→h(u,x)|a] ≃ν4 A

u,x
a .

where the answer summation is over a ∈ Σ.

Proof. Define Hu,x
a = H[h 7→h(u,x)|a]. We have

E
u,x

∑

a,b:
a6=b

τ
(
Hu,x

a Bu,x
b

)
= E

u,x

∑

a,b:
a6=b

τ



( ∑

h:h(u,x)=a

Hh

)( ∑

f :f(x)=b

Bu
f

)


= E
u,x

∑

h,f :
h(u,x)6=f(x)

τ
(
HhB

u
f

)

≤ E
u,x

∑

h,f :h|u 6=f

τ
(
HhB

u
f

)
,

which is at most ν3 by Lemma 6.5. That is

Hu,x
a ≃ν3 B

u,x
a .

Applying Proposition 2.9 to the above and Eq. (86) proves that

Hu,x
a ≃ν4 A

u,x
a ,

for ν4 = ν3 +
√

2(m+ 1)ε.
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6.3.2 Bounding the completeness of H

We now bound the completeness of H. Let G = ExG
x where Gx =

∑
g G

x
g .

Lemma 6.7. Let ν5 =
√
ν4 +

√
ζ. Then

τ(H) ≈ν5 τ(HG) .

Proof. We bound the difference

τ (H(1−G)) = E
x

∑

h

τ (Hh(1−Gx))

≈√
ν4 E

u,x

∑

h

τ
(
HhA

u,x
h(u,x)(1−Gx)

)
. (88)

To see the approximation in the second line, it suffices to bound the difference as

∣∣∣ E
u,x

∑

h

τ
(
Hh

(
1−Au,x

h(u,x)

)
(1−Gx)

) ∣∣∣

≤
√

E
u,x

∑

h

τ
(
Hh

(
1−Au,x

h(u,x)

)2) ·
√

E
u,x

∑

h

τ (Hh(1−Gx)2) Cauchy-Schwarz

≤
√

E
u,x

∑

a

τ
(
H[h:h(u,x)6=a]A

u,x
a

)
·
√
1

≤ √
ν4 Lemma 6.6

where the third line follows from the projectivity of the points measurements, Gx ≤ 1, and {Hh}
is a submeasurement. Continuing the proof, we bound the absolute value of Eq. (88) as

∣∣∣∣∣ Eu,x
∑

h

τ
(
HhA

u,x
h(u,x)(1−Gx)

)∣∣∣∣∣

≤
√

E
u,x

∑

h

τ (Hh) ·
√

E
u,x

∑

h

τ
(
(1−Gx)

(
Au,x

h(u,x)

)2
(1−Gx)Hh

)
Cauchy-Schwarz

≤
√
1 ·

√
E
x

∑

h

τ
(
(1−Gx)Hh(1−Gx)E

u
Au,x

h(u,x)

)

≤
√

E
x

∑

h

ψx((1−Gx)Hh (1−Gx)) Assumption 3 of Lemma 4.3

≤
√

E
x
ψx(1−Gx) ψx is positive

≤
√

ζ Assumption 3 of Lemma 4.3.

We now argue that HG can be approximated by Gt+1.
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Lemma 6.8. Let ν6 = 2t2(ν2 + n−1). Then

τ(H) ≈ν6 τ(Gt) and τ(HG) ≈ν6 τ(G
t+1) .

Proof. We prove the first approximation.

τ (H) = E
(x1,...,xt)∼distinct([n],t)

∑

h∈C⊗(m+1)

τ
(
Gx1

h|x1
· · ·Gxt

h|xt
· · ·Gx1

h|x1

)
(89)

= E
(x1,...,xt)∼distinct([n],t)

∑

g1,...,gt

τ
(
Gx1

g1 · · ·G
xt
gt · · ·Gx1

g1

)
(90)

≈t2/n E
(x1,...,xt)∼[n]t

∑

g1,...,gt

τ
(
Gx1

g1 · · ·G
xt
gt · · ·Gx1

g1

)
, (91)

where in going from the first to the second line we used Proposition 2.20 (which uses the interpola-
bility of C) to rewrite the sum over h to sums over t-tuples of polynomials g1, . . . , gt; and in going
from the second to the third line, we used Proposition 6.4 and that the absolute value of

∑

g1,...,gt

τ
(
Gx1

g1 · · ·G
xt
gt · · ·Gx1

g1

)

for all x1, . . . , xt is at most 1. Continuing, we have

(91) = E
(x1,...,xt)∼[n]t

∑

g1,...,gt

τ
(
Gx1

g1 · · ·G
xt
gt · · ·Gx2

g2

)
Cyclicity of the trace

≈(2t−5)ν2 E
(x1,...,xt)∼[n]t

∑

g1,...,gt

τ
(
Gx1

g1 · · ·G
xt
gt · · ·Gx3

g3

)

In other words, the right-most Gx2
g2 has been commuted leftwards to where the left occurence of

Gx2
g2 is; this requires 2t − 5 (approximate) commutations. This follows from Proposition 2.11, the

approximate commutativity of the G’s, and the projectivity of the G’s. We can then commute the
right-hand Gx3

g3 to the left 2t− 7 places, and so on. Adding up all the errors together, we get that

τ(H) ≈t2(ν2+n−1) E
(x1,...,xt)∼[n]t

∑

g1,...,gt

τ
(
Gx1

g1 · · ·G
xt
gt

)
= τ

(
Gt

)

where we used that
∑t−1

j=2(2(t− j)− 1) ≤ t2.
The second approximation in the Lemma statement follows from a nearly identical argument.

Lemma 6.9. Let ν7 = ν6 + 2(ν5 + 2ν6)
1/t. Then

τ(H) ≥ τ(G)− ν7 .

Proof. Since for all real numbers 0 ≤ λ ≤ 1 and integer t ≥ 2, we have

λ(1− λt−1) ≤ 2
(
λt(1− λ)

)1/t

we have the operator inequality

G−Gt ≤ 2
(
Gt(1−G)

)1/t
.
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and thus applying τ (·) on both sides, we have

τ(G −Gt) ≤ 2τ

((
Gt(1−G)

)1/t
)

≤ 2
(
τ
(
Gt −Gt+1

))1/t

where we used that τ
(
X1/t

)
≤ τ (X)1/t for all positive operators X (this is a consequence of

Hölder’s inequality, see [PX03]). This implies that

|τ(H)− τ(G)| ≤ τ(G−Gt) + |τ(H −Gt)| ≤ τ(G−Gt) + ν6

and

τ(G−Gt) ≤ 2
(
|τ
(
Gt −H

)
|+ |τ (H −HG) |+

∣∣τ
(
HG−Gt+1

)∣∣
)1/t

≤ 2(ν6 + ν5 + ν6)
1/t

where we used Lemmas 6.7 and 6.8. Put altogether we have

|τ(H) − τ(G)| ≤ ν6 + 2(ν5 + 2ν6)
1/t.

6.3.3 Putting everything together

We now finish the proof of Lemma 4.3, with the error function µ specified in (83) instead of (5).
(The claimed bound (5) is shown in the next section.) Let H ′ = {H ′

h} denote the completion
of H = {Hh} as follows: letting h∗ be the lexicographically first element of C⊗(m+1), we set
H ′

h∗ = Hh∗ + (1 − H). Then for all h 6= h∗, define H ′
h = Hh. By construction H ′ is a perfectly

complete measurement. We now evaluate its consistency with A:

E
u,x

∑

h,a:h(u,x)6=a

τ
(
H ′

hA
u,x
a

)
≤ E

u,x

∑

h,a:h(u,x)6=a

τ (HhA
u,x
a ) +

∑

a

τ ((1−H)Au,x
a )

= E
u,x

∑

h,a:h(u,x)6=a

τ (HhA
u,x
a ) + τ ((1−H))

≤ ν4 + (1− τ (G)) + ν7 .

Letting µ = κ+ν4+ν7 where κ = τ(G), we get thatH ′ satisfies the conclusions stated in Lemma 4.3,
once we verify that µ has the correct asymptotic dependence on m, t, ε, δ, ζ, n, t.

Without loss of generality, we assume ε ≤ 1/(m + 1), δ ≤ 1, ζ ≤ 1 as otherwise the lemma is
trivial. Recall also that by Proposition 2.18, γm ≤ (mt)/n. Under these conditions, we have

ν1 = 8(
√

ζ +
√

(m+ 1)δ) = poly(m) · poly(δ, ζ)
ν2 = 4(γm + ν1) = poly(m, t) · poly

(
δ, ζ, n−1

)

ν3 = t

(
tν2 +

√
ζ +

√
2(m+ 1)ε

)
= poly(m, t) · poly

(
ε, δ, ζ, n−1

)

ν4 = ν3 +
√

2(m+ 1)ε = poly(m, t) · poly
(
ε, δ, ζ, n−1

)

ν5 =
√
ν4 +

√
ζ = poly(m, t) · poly

(
ε, δ, ζ, n−1

)

ν6 = 2t2
(
v2 + n−1

)
= poly(m, t) · poly

(
ε, δ, ζ, n−1

)

60



ν7 = ν6 + 2(ν5 + 2ν6)
1/t

= poly(m, t) · poly
(
ε, δ, ζ, n−1

)
+

(
poly(m, t)poly

(
ε, δ, ζ, n−1

)) 1
t

= poly(m, t) ·
(
poly

(
ε, δ, ζ, n−1

)) 1
t .

Therefore, µ = κ+ poly(m, t) ·
(
poly

(
ε, δ, ζ, n−1

))1/t
as required.

6.4 Pasting the G’s together: Method 2

The second construction of H = {Hh} is designed to circumvent the problem of the first con-
struction, which is that its soundness has a rather poor dependence on the parameter t. Before
describing the construction, we need the following definitions.

Definition 6.10 (G’s incomplete part). For each x ∈ [n] we write Gx =
∑

g G
x
g and Gx

⊥ = 1−Gx

for the “complete” and “incomplete” parts of Gx respectively. Let Ĝ = {Ĝx
g}g∈C⊗m∪{⊥} be the

projective measurement defined as

Ĝx
g =

{
Gx

g if g ∈ C⊗m,

Gx
⊥ if g = ⊥.

For succinctness we denote C+ = C⊗m ∪ {⊥}, leaving the parameter m implicit.

Definition 6.11 (Types). A type τ is an element of {0, 1}k for some integer k. We write |τ | =
τ1 + · · ·+ τk for the Hamming weight of τ . We often associate τ with the set {i : τi = 1} and write
i ∈ τ if τi = 1.

Suppose that the measurement Ĝ is performed some k ≥ 1 times in succession, generating the
outcomes g1, . . . , gk. Let us write τ ∈ {0, 1}k for the “type” of these outcomes, where

τi =

{
1 if gi ∈ C⊗m ,
0 if gi = ⊥ .

Whenever τ ≥ t, assuming that the gi are not inconsistent using Proposition 2.19 we can interpolate
them to produce an h ∈ C⊗(m+1). Hence, we would like to understand the probability that |τ | ≥ t
and ensure that it is as large as possible. The probability that Ĝ returns a g ∈ C⊗m is equal to
the completeness of G, which is 1 − κ. This tells us that the probability that τ1 = 1 is 1− κ. We
might naively expect that the same holds for the other τi as well. We might also naively expect
that the τi are independent. These two assumptions should not be expected to hold in general, as
they ignore correlations between the measurements. However, if we make these assumptions, then
we at least have a simple toy model for the measurement outcomes: τ ∼ Binomial(k, 1 − κ).

In this toy model, we expect |τ | ≈ k · (1 − κ) on average. This was the limitation of the first
construction: if k = t and κ is reasonably large (say, on the order of 1/t), then we don’t expect |τ |
to be larger than t with high probability, and so we can’t interpolate to produce a global codeword.
This suggests an alternative strategy: choose k large enough so that k · (1− κ) ≫ t. In fact, as we
are aiming for H to have completeness close to 1− κ, we should choose k so large that |τ | ≥ t with
probability roughly 1− κ. On the other hand, if we set k too large, then we increase the risk that
the k outcomes g1, . . . , gk are inconsistent with each other, which is an additional source of error.

This “naive analysis” motivates our second construction of H, which is stated below. We will
show that the naive analysis, in which we treat τ as a binomial random variable and bound |τ |
using a Chernoff bound, can be formalized.
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Definition 6.12 (The pasted measurement). Let k ≥ t be an integer.

1. (Pasting): Let x1, . . . , xk ∈ [n]. Define initial “sandwiched” measurement operators as follows:

Ĥx1,...,xk
g1,...,gk

= Ĝx1
g1 · Ĝx2

g2 · · · Ĝ
xk
gk

· · · Ĝx2
g2 · Ĝx1

g1 .

2. (Interpolation): Let (x1, . . . , xk) ∈ distinct([n], k). For any w ∈ {0, 1}k and h ∈ C⊗(m+1),
define hw = (g1, . . . , gk) ∈ (C+)k as gi = ⊥ if wi = 0 and gi = h|xi otherwise. Define the
interpolated measurement

Hx1,...,xk
h =

∑

w:|w|≥t

Ĥx1,...,xk
hw

.

3. (Averaging): Define
Hh = E

(x1,...,xk)∼distinct([n],k)
Hx1,...,xk

h .

To analyze this construction, we first need to show that Ĝ commutes with itself. This is shown
in Section 6.4.1, using that a similar property holds for G. Using this in Section 6.4.2 we prove that
Ĥ is consistent with B, which we use to prove that H is consistent with A. Finally, we analyze the
completeness of H in Section 6.4.3.

6.4.1 Commutativity of Ĝ

In this section we show that Ĝ commutes with itself. As we already know this holds for the sub-
measurement G, our task essentially reduces to showing that this holds for G’s incomplete part,
i.e. G⊥. As it is more convenient to work with G = 1−G⊥ rather than G⊥, we will first show that
these properties hold for G; the fact that they also hold for G⊥ will then follow as an immediate
corollary.

Lemma 6.13 (Commutativity with Gx
g implies commutativity with Gx). For all y ∈ [n] let My =

{My
o } be a projective sub-measurement with outcomes in some set O and let χ > 0. Suppose that

Gx
gM

y
o ≈χ My

oG
x
g , (92)

on average over independent and uniformly random x, y ∈ [n]. Then

GxMy
o ≈√

3χ My
oG

x .

Proof. We first show that

E
x,y

∑

g,o

τ
(
Gx

gM
y
oG

xMy
o

)
≈χ E

x,y

∑

g,o

τ
(
Gx

gM
y
oG

x
gM

y
o

)
(93)

(note that on the left hand side, the third factor is Gx instead of Gx
g). To show this, we take the

difference to obtain

E
x,y

∑

g,o

τ
(
Gx

gM
y
o

(
Gx −Gx

g

)
My

o

)
= E

x,y

∑

g,o

τ
(
Gx

gG
x
gM

y
o

(
Gx −Gx

g

)
My

o

)
(94)
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where we used the fact that {Gx
g} is projective. Notice that

E
x,y

∑

g,o

τ
(
Gx

gM
y
oG

x
g(G

x −Gx
g)M

y
o

)
= 0 (95)

using again the fact that {Gx
g} is projective. Thus to prove (93) it suffices to show that the quantity

in (94) is χ-close to the quantity in (95). Taking the difference, we get
∣∣∣ E
x,y

∑

g,o

τ
(
Gx

g(G
x
gM

y
o −My

oG
x
g)(G

x −Gx
g)M

y
o

)∣∣∣

=
∣∣∣ E
x,y

∑

g,o

τ
(
(Gx −Gx

g)M
y
oG

x
g(G

x
gM

y
o −My

oG
x
g)
)∣∣∣

≤
(
E
x,y

∑

g,o

τ
(
(Gx −Gx

g )M
y
oG

x
gM

y
o (G

x −Gx
g )
))1/2(

E
x,y

∑

g,o

τ
(
(Gx

gM
y
o −My

oG
x
g )

2
))1/2

≤ χ , (96)

where the second line follows from the cyclicity of the trace, the third line uses Cauchy-Schwarz
and the fourth bounds the first term by 1 using ‖Gx − Gx

g‖ ≤ 1 for all x, g, cyclicity of the trace
and {Gx}, {My} sub-measurements, and the second term by χ using (92).

To prove the lemma we expand

E
x,y

∑

o

τ
(
(GxMy

o −My
oG

x)2
)
= E

x,y

∑

o

(
2 τ

(
GxMy

oG
xMy

o

)
− 2 τ

(
GxMy

o

))

= E
x,y

∑

g,o

(
2 τ

(
Gx

gM
y
oG

xMy
o

)
− 2 τ

(
Gx

gM
y
o

))

≈2χ E
x,y

∑

g,o

(
2 τ

(
Gx

gM
y
oG

x
gM

y
o

)
− 2 τ

(
Gx

gM
y
o

))

= E
x,y

∑

g,o

τ
((

Gx
gM

y
o −My

oG
x
g

)2)

≤ χ2 .

The third line follows from (96), and the last line follows again from (92).

Corollary 6.14 (Commutativity of G’s). Recall the error parameter ν2 from Lemma 6.3. Then

E
x,y

τ
(
(GxGy −GxGy)2

)
≤ 9ν

1/4
2 .

Proof. We prove this via two applications of Lemma 6.13. First, by Lemma 6.3, we have that

Gx
gG

y
h ≈ν2 G

y
hG

x
g

on average of x, y ∼ [n]. By Lemma 6.13, we get that

GxGy
h ≈3

√
ν2 Gy

hG
x .

By applying Lemma 6.13 again with the projective sub-measurement Mx = {Gx} with a single
outcome, we get that

GyGx ≈
9ν

1/4
2

GxGy .
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Corollary 6.15 (Commutativity of Ĝ). Recall the error parameter ν2 from Lemma 6.3. Let ν ′2 =

27ν
1/4
2 . Then

Ĝx
gĜ

y
h ≈ν′2

Ĝy
hĜ

x
g . (97)

Proof. We can write

E
x,y

∑

g,h∈C⊗m

τ
(
(Ĝx

g Ĝ
y
h − Ĝy

hĜ
x
g)

2
)
= E

x,y

∑

g,h∈C⊗m

τ
(
(Gx

gG
y
h −Gy

hG
x
g)

2
)
+ E

x,y
τ
(
(Gx

⊥G
y
⊥ −Gy

⊥G
x
⊥)

2
)

+ E
x,y

∑

g∈C⊗m

τ
(
(Gx

gG
y
⊥ −Gy

⊥G
x
g)

2
)
+ E

x,y

∑

h∈C⊗m

τ
(
(Gx

⊥G
y
h −Gy

hG
x
⊥)

2
)
.

(98)

We can bound the first term by ν22 by Lemma 6.3. We can bound the second term by first writing

E
x,y

τ
(
(Gx

⊥G
y
⊥ −Gy

⊥G
x
⊥)

2
)
= E

x,y
τ
(
((1−Gx)(1−Gy)− (1−Gy)(1−Gx))2

)

= E
x,y

τ
(
(GxGy −GyGx)2

)

≤ 92 · ν1/22

where the last line follows from Corollary 6.14. Similarly, we can bound the third and fourth terms
of (98) by

E
x,y

∑

g

τ
(
(Gx

gG
y
⊥ −Gy

⊥G
x
g)

2
)
= E

x,y

∑

g

τ
(
(Gx

g (1−Gy)− (1−Gy)Gx
g )

2
)

= E
x,y

∑

g

τ
(
(Gx

gG
y −GyGx

g)
2
)

≤ 9ν2

where the last line follows from Lemma 6.3 and Lemma 6.13.
Putting everything together, this implies that we can upper bound (98) by ν22 +92ν

1/2
2 +18ν2 ≤

3 · 92 · ν1/22 . The lemma follows.

6.4.2 Consistency of Ĥ and H with B and A

We use the same notation as in Section 6.3.1. The following lemma is analogous to Lemma 6.5.

Lemma 6.16 (Consistency of Ĥ with B). Let ν ′′3 = k · ν ′2 + (ζ + (2(m + 1)ε)1/2)1/2. For any
1 ≤ i ≤ k,

E
u

E
x1,...,xk

∑

a6=⊥

∑

b6=a

τ
(
Ĥx1,...,xk

[(g1,...,gk)7→gi(u)|a]B
u
[f 7→f(xi)|b]

)
≤ ν ′′3 (99)

where the expectation over (x1, . . . , xk) is over independently random x1, . . . , xk ∼ [n].

Proof. The proof follows closely that of Lemma 6.5. We have

E
u

E
x1,...,xk

∑

g1,...,gk:gi 6=⊥

∑

f :f(xi)6=gi(u)

τ
(
Ĥx1,...,xk

g1,...,gk
Bu

f

)

64



= E
u

E
x1,...,xk

∑

g1,...,gk:gi 6=⊥

∑

f :f(xi)6=gi(u)

τ
(
Ĝx1

g1 · · · Ĝ
xk
gk

· · · Ĝx1
g1 · Bu

f

)

= E
u

E
x1,...,xi

∑

g1,...,gi:gi 6=⊥
τ
(
Bu

[f :f(xi)6=gi(u)]
· Ĝx1

g1 · · · Ĝ
xi
gi ·

(
Ĝxi

gi · Ĝ
xi−1
gi−1 · · · Ĝx1

g1

))

≈i·ν′2 E
u

E
x1,...,xi

∑

g1,...,gi

τ
(
Bu

[f :f(xi)6=gi(u)]
· Ĝx1

g1 · · · Ĝ
xi
gi ·

(
Ĝ

xi−1
gi−1 · · · Ĝx1

g1 · Ĝxi
gi

))
(100)

where the last approximation follows from Propositions 2.7 and 2.11 and the approximate com-
mutativity of the Ĝx measurements (Corollary 6.15). Continuing, we can use Cauchy-Schwarz to
bound (100) by

(100) ≤
√

E
x1,...,xi

∑

g1,...,gi:gi 6=⊥
τ
(
Ĝx1

g1 · · · Ĝxi
gi · · · Ĝx1

g1

)

·
√

E
u

E
x1,...,xi

∑

g1,...,gi:gi 6=⊥
τ
(
Ĝx1

g1 · · · Ĝ
xi−1
gi−1 · · · Ĝx1

g1 · Ĝxi
gi ·

(
Bu

[f :f(xi)6=gi(u)]

)2 · Ĝxi
gi

)

≤
√
1 ·

√
E
u,xi

∑

gi:gi 6=⊥
τ
(
Ĝxi

gi B
u
[f :f(xi)6=gi(u)]

)
,

where in the last inequality we used the fact that Ĝx is projective and
(
Bu

[f :f(xi)6=gi(u)]

)2 ≤ Bu
[f :f(xi)6=gi(u)]

for all u. Notice that

E
u,xi

∑

gi:gi 6=⊥
τ
(
Ĝxi

giB
u
[f :f(xi)6=gi(u)]

)
= E

u,x

∑

a,b:a6=b

τ
(
Gu,x

a Bu,x
b

)

≈√
2(m+1)ε

E
u,x

∑

a,b:a6=b

τ
(
Gu,x

a Au,x
b

)

≤ ζ .

where the approximation in the second line follows from Proposition 2.9 and Eq. (86).

Next we move from Ĥ to H.

Lemma 6.17 (Consistency of H with B). Let ν ′3 = kν ′′3 + k2/n . Then

H[h|u=f ] ≃ν′3
Bu

f .

Proof. We have

E
u

∑

f 6=f ′

τ
(
H[h 7→h|u|f ′]B

u
f

)
(101)

= E
u

∑

h

∑

f 6=h|u
τ
(
HhB

u
f

)

= E
u

E
(x1,...,xk)∼distinct([n],k)

∑

h

∑

f 6=h|u
τ
(
Hx1,...,xk

h Bu
f

)

= E
u

E
(x1,...,xk)∼distinct([n],k)

∑

h

∑

w:|w|≥t

∑

f 6=h|u
τ
(
Ĥx1,...,xk

g1,...,gk
Bu

f

)
(102)
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where gi ∈ C+ is defined to be ⊥ if wi = 0, and otherwise gi = h|xi . Because |w| ≥ t, there exist
at least t coordinates i such that gi 6= ⊥ and hence gi = h|xi . Since t ≥ n − d + 1, using the
distance property of C it follows that if f 6= h|u then there must exist an i such that gi 6= ⊥ and
gi(u) 6= f(xi). Thus

(102) = E
u

E
(x1,...,xk)∼distinct([n],k)

∑

h

∑

w:|w|≥t

∑

f :∃i:gi 6=⊥,
gi(u)6=f(xi)

τ
(
Ĥx1,...,xk

g1,...,gk
Bu

f

)

≤ E
u

E
(x1,...,xk)∼distinct([n],k)

∑

g1,...,gk

∑

f :∃i:gi 6=⊥,
gi(u)6=f(xi)

τ
(
Ĥx1,...,xk

g1,...,gk
Bu

f

)
. (103)

Using Proposition 6.4 (which allows us to switch from sampling (x1, . . . , xk) ∼ distinct([n], k) to
sampling x1, . . . , xk independently from [n]) and the fact that τ

(
Ĥx1,...,xk

g1,...,gk B
u
f

)
is nonnegative and,

when summed over g1, . . . , gk and f , is at most 1, we have that Equation (103) is (k2/n)-close to

E
u

E
x1,...,xk

∑

g1,...,gk

∑

f :∃i:gi 6=⊥,
gi(u)6=f(xi)

τ
(
Ĥx1,...,xk

g1,...,gk
Bu

f

)

≤
∑

i

E
u

E
x1,...,xk

∑

g1,...,gk

∑

f :gi 6=⊥,
gi(u)6=f(xi)

τ
(
Ĥx1,...,xk

g1,...,gk
Bu

f

)
(by the union bound)

=
∑

i

E
u

E
x1,...,xk

∑

g1,...,gk:gi 6=⊥

∑

b6=gi(u)

τ
(
Ĥx1,...,xk

g1,...,gk
Bu

[f 7→f(xi)|b]
)

≤
∑

i

ν ′′3 (by Lemma 6.16)

= k · ν ′′3 .

This establishes the lemma.

Corollary 6.18 (Consistency of H with A). Let ν ′4 = ν ′3 +
√

2(m+ 1)ε. Then on average over
(u, x) ∼ [n]m × [n],

H[h 7→h(u,x)|a] ≃ν′4
Au,x

a .

Proof. Applying Proposition 2.4 to Lemma 6.17 we get that

H[h 7→h(u,x)|a] ≃ν′3
Bu

[f 7→f(x)|a] . (104)

Using (86) together with Proposition 2.9 (with measurement “Ax
a” in the Proposition being set

to Bu
[f 7→f(x)|a], measurement “Bx

a” being set to Ax
a and the submeasurement “Cx

a” being set to

H[h 7→h(u,x)|a]) proves the lemma.

6.4.3 Completeness of H

Definition 6.19. Let τ ∈ {0, 1}k be a type. We define the following two subsets of (C+)k.

• We define Outcomesτ to be the set of tuples (g1, . . . , gk) such that gi ∈ C⊗m for each i ∈ τ
and gi = ⊥ for each i /∈ τ . This is the set of possible outcomes of the measurement Ĥ of
type τ .
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• Let x1, . . . , xk ∈ [n]. We define Globalτ (x) to be the subset of Outcomesτ containing only those
tuples which are consistent with a global codeword. In other words, (g1, . . . , gk) ∈ Globalτ (x)
iff there exists an h ∈ C⊗(m+1) such that gi = h|xi for each i ∈ τ (recall that h|xi denotes the
function h(· · · , xi) ∈ C⊗m). Define

Globalτ (x) = Outcomesτ \ Globalτ (x).

This contains those tuples of type τ with no consistent global codeword.

Lemma 6.20. Let ν ′5 = 2k2

n + k · ν ′′3 + γm . Let x1, . . . , xk ∼ [n] be sampled uniformly at random.
Then

τ
(
H
)
≈ν′5

E
x1,...,xk

∑

τ :|τ |≥t

∑

(g1,...,gk)∈Outcomesτ

τ
(
Ĥx1,...,xk

g1,...,gk

)
.

Proof. By definition,

τ
(
H
)
= E

(y1,...,yk)∼distinct([n],k)

∑

τ :|τ |≥t

∑

(g1,...,gk)∈Globalτ (y)
τ
(
Ĥy1,...,yk

g1,...,gk

)
. (105)

The sum in (105) is over g1, . . . , gk which are consistent with a global codeword. We show that the
value of this sum remains largely unchanged if we drop this condition. In particular, we claim that

(105) ≈ k2

n
+k·ν′′3+γm

E
(y1,...,yk)∼distinct([n],k)

∑

τ :|τ |≥t

∑

(g1,...,gk)∈Outcomesτ

τ
(
Ĥy1,...,yk

g1,...,gk

)
. (106)

To show this, we note that (106) ≥ (105). Hence, it suffices to upper bound their difference.

(106)− (105) = E
(y1,...,yk)∼distinct([n],k)

∑

τ :|τ |≥t

∑

(g1,...,gk)∈Globalτ (y)

τ
(
Ĥy1,...,yk

g1,...,gk

)

= E
u

E
(y1,...,yk)∼distinct([n],k)

∑

τ :|τ |≥t

∑

f

∑

(g1,...,gk)∈Globalτ (y)

τ
(
Ĥy1,...,yk

g1,...,gk
Bu

f

)
, (107)

where in the second line we used that B is a measurement. Next, we claim that

(107) ≈ k2

n
+k·ν′′3

E
u

E
(y1,...,yk)

∼distinct([n],k)

∑

τ :|τ |≥t

∑

f

∑

(g1,...,gk)∈Globalτ (y)

τ
(
Ĥy1,...,yk

g1,...,gk
Bu

f

)
· I[∀i ∈ τ, f(yi) = gi(u)].

(108)
To show this, we note that (107) ≥ (108). Thus, it suffices to upper bound their difference (107)−
(108). This is given by

E
u

E
(y1,...,yk)∼distinct([n],k)

∑

τ :|τ |≥t

∑

f

∑

(g1,...,gk)∈Globalτ (y)

τ
(
Ĥy1,...,yk

g1,...,gk
Bu

f

)
· I[∃i ∈ τ, f(yi) 6= gi(u)] . (109)

Recall that x1, . . . , xk ∼ [n] are sampled independently and uniformly at random. Using Proposi-
tion 6.4, Equation (109) is (k2/n)-close to

E
u

E
x1,...,xk

∑

τ :|τ |≥t

∑

f

∑

(g1,...,gk)∈Globalτ (x)

τ
(
Ĥx1,...,xk

g1,...,gk
Bu

f

)
· I[∃i ∈ τ, f(xi) 6= gi(u)]

67



≤ E
u

E
x1,...,xk

∑

τ :|τ |≥t

∑

f

∑

(g1,...,gk)∈Outcomesτ

τ
(
Ĥx1,...,xk

g1,...,gk
Bu

f

)
· I[∃i ∈ τ, f(xi) 6= gi(u)]

≤ E
u

E
x1,...,xk

∑

τ

∑

f

∑

(g1,...,gk)∈Outcomesτ

τ
(
Ĥx1,...,xk

g1,...,gk
Bu

f

)
· I[∃i ∈ τ, f(xi) 6= gi(u)]

≤ E
u

E
x1,...,xk

∑

τ

∑

f

∑

(g1,...,gk)∈Outcomesτ

τ
(
Ĥx1,...,xk

g1,...,gk
Bu

f

)
·
(∑

i∈τ
I[f(xi) 6= gi(u)]

)

=
∑

i

E
u

E
x1,...,xk

∑

g1,...,gk:gi 6=⊥

∑

f :f(xi)6=gi(u)

τ
(
Ĥx1,...,xk

g1,...,gk
Bu

f

)

=
∑

i

E
u

E
x1,...,xk

∑

g1,...,gk:gi 6=⊥

∑

a6=gi(u)

τ
(
Ĥx1,...,xk

g1,...,gk
Bu

[f(xi)=a]

)

≤
∑

i

ν ′′3 (by Lemma 6.16)

= k · ν ′′3 .

Returning to Equation (108), we introduce the notation

Consistentτ (g, y, u) =

{
1 if ∃f such that f(yi) = gi(u) for all i ∈ τ ,
0 otherwise .

Clearly, for any f ,
I[∀i ∈ τ, f(yi) = gi(u)] ≤ I[Consistentτ (g, y, u)] .

As a result,

(108) ≤ E
u

E
(y1,...,yk)

∼distinct([n],k)

∑

τ :|τ |≥t

∑

f

∑

(g1,...,gk)∈Globalτ (y)

τ
(
Ĥy1,...,yk

g1,...,gk
Bu

f

)
· I[Consistentτ (g, y, u)]

= E
u

E
(y1,...,yk)

∼distinct([n],k)

∑

τ :|τ |≥t

∑

(g1,...,gk)∈Globalτ (y)

τ
(
Ĥy1,...,yk

g1,...,gk

(∑

f

Bu
f

))
· I[Consistentτ (g, y, u)]

= E
u

E
(y1,...,yk)

∼distinct([n],k)

∑

τ :|τ |≥t

∑

(g1,...,gk)∈Globalτ (y)

τ
(
Ĥy1,...,yk

g1,...,gk

)
· I[Consistentτ (g, y, u)]

= E
(y1,...,yk)

∼distinct([n],k)

∑

τ :|τ |≥t

∑

(g1,...,gk)∈Globalτ (y)

τ
(
Ĥy1,...,yk

g1,...,gk

)
· Pr

u

(
Consistentτ (g, y, u)

)
. (110)

Let us now fix (y1, . . . , yk) ∈ distinct([n], k), a type τ such that |τ | ≥ t, and (g1, . . . , gk) ∈
Globalτ (y). Suppose without loss of generality that τ1 = · · · = τt = 1, so that g1, . . . , gt ∈ C⊗m.
Then by Proposition 2.20 there is a unique h∗ ∈ C⊗(m+1) which interpolates g1, . . . , gt. In other
words, for all 1 ≤ i ≤ t and for all u ∈ [n]m,

h∗(u, yi) = gi(u).

On the other hand, because (g1, . . . , gk) ∈ Globalτ (y), there exists an i∗ ∈ τ such that gi∗ 6= (h∗)|yi∗ .
Hence,

Pr
u

(
Consistentτ (g, y, u)

)
≤ Pr

u

(
gi∗(u) = h∗(u, yi∗)

)
= Pr

u

(
gi∗(u) = (h∗)|yi∗ (u)

)
≤

(
1− dm

nm

)
= γm ,
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by Proposition 2.18. As a result,

(110) ≤ E
(y1,...,yk)

∼distinct([n],k)

∑

τ :|τ |≥t

∑

(g1,...,gk)∈Globalτ (y)

τ
(
Ĥy1,...,yk

g1,...,gk

)
· γm

≤ E
(y1,...,yk)

∼distinct([n],k)

∑

g1,...,gk

τ
(
Ĥy1,...,yk

g1,...,gk

)
· γm

= γm .

This establishes Equation (106). Finally, Equation (106) is (k2/n)-close to

E
x1,...,xk

∑

τ :|τ |≥t

∑

(g1,...,gk)∈Outcomesτ

τ
(
Ĥx1,...,xk

g1,...,gk

)
,

as desired.

Lemma 6.21. Recall the error parameter ν ′2 from Corollary 6.15. Let ν ′6 = 2k2ν ′2. Let x1, . . . , xk ∼
[n] be sampled uniformly at random. Then

E
x1,...,xk

∑

τ :|τ |≥t

∑

(g1,...,gk)∈Outcomesτ

τ
(
Ĥx1,...,xk

g1,...,gk

)
≈ν′6

k∑

i=t

(
k

i

)
τ
(
Gi(1−G)k−i

)
.

Proof. We begin by introducing some notation that we will use throughout the proof. Let τ ∈
{0, 1}k be a type. Then we define

τ<ℓ = (τ1, . . . , τℓ−1) ∈ {0, 1}ℓ−1 , τ>ℓ = (τℓ+1, . . . , τk) ∈ {0, 1}k−ℓ ,

and we define τ≤ℓ and τ≥ℓ similarly. In addition, given (g1, . . . , gk) ∈ (C+)k, we define

g<ℓ = (g1, . . . , gℓ−1) , g>ℓ = (gℓ+1, . . . , gk)

and we define g≤ℓ and g≥ℓ similarly. Using this notation, we can write

Ĥ
x≥ℓ
g≥ℓ = Ĥxℓ,...,xk

gℓ,...,gk
.

Next, we introduce the notation
Ĝ

x≥ℓ
g≥ℓ = Ĝxℓ

gℓ
· · · Ĝxk

gk
.

This satisfies the recurrence relation

Ĝ
x≥ℓ
g≥ℓ = Ĝxℓ

gℓ
· Ĝx>ℓ

g>ℓ
. (111)

Furthermore, we can write
Ĥ

x≥ℓ
g≥ℓ = (Ĝ

x≥ℓ
g≥ℓ ) · (Ĝ

x≥ℓ
g≥ℓ )

†. (112)

To prove the lemma we show that for each 1 ≤ ℓ ≤ k,

E
x≥ℓ

∑

τ :|τ |≥t

∑

g≥ℓ∈Outcomesτ≥ℓ

τ
(
Ĥ

x≥ℓ
g≥ℓ · (G|τ<ℓ| · (1−G)(ℓ−1)−|τ<ℓ |)

)
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≈2kν′2
E
x>ℓ

∑

τ :|τ |≥t

∑

g>ℓ∈Outcomesτ>ℓ

τ
(
Ĥx>ℓ

g>ℓ
· (G|τ≤ℓ| · (1−G)ℓ−|τ≤ℓ|)

)
. (113)

If we then repeatedly apply Equation (113) for ℓ = 1, . . . , k, we derive

E
x1,...,xk

∑

τ :|τ |≥t

∑

(g1,...,gk)∈Outcomesτ

τ
(
Ĥx1,...,xk

g1,...,gk

)

= E
x≥1

∑

τ :|τ |≥t

∑

g≥1∈Outcomesτ

τ
(
Ĥ

x≥1
g≥1

)

≈2kν′2
E
x≥2

∑

τ :|τ |≥t

∑

g≥2∈Outcomesτ≥2

τ
(
Ĥ

x≥2
g≥2 · (G|τ≤1| · (1−G)1−|τ≤1|)

)

≈2kν′2
E
x≥3

∑

τ :|τ |≥d+1

∑

g≥3∈Outcomesτ≥3

τ
(
Ĥ

x≥3
g≥3 · (G|τ≤2| · (1−G)2−|τ≤2|)

)

· · ·
≈2kν′2

∑

τ :|τ |≥t

τ
(
G|τ | · (1−G)k−|τ |)

=
k∑

i=t

(
k

i

)
τ
(
Gi(1−G)k−i

)
.

This proves the lemma.
We now prove Equation (113). To begin, for each 1 ≤ ℓ ≤ k + 1 and τ≥ℓ ∈ {0, 1}k−ℓ+1, we

define the operator

Sτ≥ℓ
=

∑

τ<ℓ:|τ |≥t

G|τ<ℓ| · (1−G)(ℓ−1)−|τ<ℓ | . (114)

Then the statement in Equation (113) can be rewritten as

E
x≥ℓ

∑

τ≥ℓ

∑

g≥ℓ∈Outcomesτ≥ℓ

τ
(
Ĥ

x≥ℓ
g≥ℓ · Sτ≥ℓ

)

≈2kν′2
E
x>ℓ

∑

τ>ℓ

∑

g>ℓ∈Outcomesτ>ℓ

τ
(
Ĥx>ℓ

g>ℓ
· Sτ>ℓ

)
. (115)

To prove this, we will use several facts about Sτ≥ℓ
. First, S is self-adjoint and positive semidefinite.

This is because each term in Equation (114) is a product of G and (1 − G). These operators
commute with each other, and both are self-adjoint and positive semidefinite. Next, S is bounded:

Sτ≥ℓ
=

∑

τ<ℓ:|τ |≥t

G|τ<ℓ| · (1−G)(ℓ−1)−|τ<ℓ|

≤
∑

τ<ℓ

G|τ<ℓ| · (1−G)(ℓ−1)−|τ<ℓ |

= (G+ (1−G))ℓ−1

= 1 . (116)
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In addition, for any τℓ ∈ {0, 1},
(
E
xℓ

∑

gℓ∈Outcomesτℓ

Ĝxℓ
gℓ

)
=

{
G if τℓ = 1 ,

(1−G) if τℓ = 0 ,

= Gτℓ · (1−G)1−τℓ . (117)

Thus, for any τ>ℓ,

∑

τℓ

Sτ≥ℓ
·
(
E
xℓ

∑

gℓ∈Outcomesτℓ

Ĝxℓ
gℓ

)
=

∑

τℓ

Sτ≥ℓ
· (Gτℓ · (1−G)1−τℓ)

=
∑

τℓ

∑

τ<ℓ:|τ |≥t

G|τ<ℓ| · (1−G)(ℓ−1)−|τ<ℓ| · (Gτℓ · (1−G)1−τℓ)

=
∑

τℓ

∑

τ<ℓ:|τ |≥t

G|τ≤ℓ| · (1−G)ℓ−|τ≤ℓ|

=
∑

τ≤ℓ:|τ |≥t

G|τ≤ℓ| · (1−G)ℓ−|τ≤ℓ|

= Sτ>ℓ
. (118)

Finally, for any τ≥ℓ,

Sτ≥ℓ
·
(
E
xℓ

∑

gℓ∈Outcomesτℓ

Ĝxℓ
gℓ

)
· Sτ≥ℓ

= Sτ≥ℓ
· (Gτℓ · (1−G)1−τℓ) · Sτ≥ℓ

(by Equation (117))

=
√

Gτℓ · (1−G)1−τℓ · (Sτ≥ℓ
)2 ·

√
Gτℓ · (1−G)1−τℓ

(because Sτ≥ℓ
commutes with G and (1−G))

≤
√

Gτℓ · (1−G)1−τℓ · I ·
√

Gτℓ · (1−G)1−τℓ (by Equation (116))

= Gτℓ · (1−G)1−τℓ

=
(
E
xℓ

∑

gℓ∈Outcomesτℓ

Ĝxℓ
gℓ

)
, (119)

where the last step uses Equation (117) again. This concludes the set of facts we will need about
Sτ≥ℓ

.
Now we prove Equation (115). To start, we write using the definition

E
x≥ℓ

∑

τ≥ℓ

∑

(gℓ,...,gk)∈Outcomesτ≥ℓ

τ
(
Ĥxℓ,...,xk

gℓ,...,gk
· Sτ≥ℓ

)

= E
x≥ℓ

∑

τ≥ℓ

∑

(gℓ,...,gk)∈Outcomesτ≥ℓ

τ
(
Ĝxℓ

gℓ
· (Ĝx>ℓ

g>ℓ
· (Ĝx>ℓ

g>ℓ
)†) · Ĝxℓ

gℓ
· Sτ≥ℓ

)
. (120)

Next, we commute the leftmost Ĝxℓ
gℓ

to the right. Using Corollary 6.15 and Proposition 2.11 we get

Ĝxℓ
gℓ

· Ĝx>ℓ
g>ℓ

≈kν′2
Ĝx>ℓ

g>ℓ
· Ĝxℓ

gℓ

71



and similarly
Ĝxℓ

gℓ
· (Ĝx>ℓ

g>ℓ
)† ≈kν′2

(Ĝx>ℓ
g>ℓ

)† · Ĝxℓ
gℓ

.

Combining with Proposition 2.7 and injecting back into (120) we get

E
x≥ℓ

∑

τ≥ℓ

∑

(gℓ,...,gk)∈Outcomesτ≥ℓ

τ
(
Ĥxℓ,...,xk

gℓ,...,gk
·Sτ≥ℓ

)
≈2kν′2

E
x≥ℓ

∑

τ≥ℓ

∑

(gℓ,...,gk)∈Outcomesτ≥ℓ

τ
(
(Ĝx>ℓ

g>ℓ
·(Ĝx>ℓ

g>ℓ
)†)·Ĝxℓ

gℓ
·Sτ≥ℓ

)
.

(121)
We end by noting that

(121) = E
x≥ℓ

∑

τ≥ℓ

∑

(gℓ,g>ℓ)∈Outcomesτ≥ℓ

τ
(
Ĥx>ℓ

g>ℓ
· (Sτ≥ℓ

· Ĝxℓ
gℓ
)
)

= E
x>ℓ

∑

τ>ℓ

∑

g>ℓ∈Outcomesτ>ℓ

τ
(
Ĥx>ℓ

g>ℓ
·
(∑

τℓ

Sτ≥ℓ
·
(
E
xℓ

∑

gℓ∈Outcomesτℓ

Ĝxℓ
gℓ

)))

= E
x>ℓ

∑

τ>ℓ

∑

g>ℓ∈Outcomesτ>ℓ

τ
(
Ĥx>ℓ

g>ℓ
· Sτ>ℓ

)
. (by Equation (118))

This concludes the proof of Equation (115) and therefore proves the lemma.

The following lemma follows from the functional calculus for bounded self-adjoint operators. In
the lemma, A may be any von Neumann subalgebra of B(H) and τ a normal tracial state on A ,
but we state (and use it) for the algebra and tracial state associated with the strategy S .

Lemma 6.22. Let 0 < θ < 1 and let k, t > 0 be integers such that k ≥ 2t/θ. Define the function
F : R → R by

F (x) =

k∑

r=t

(
k

r

)
xr(1− x)k−r.

Then for any self-adjoint X ∈ A such that 0 ≤ X ≤ 1 and τ
(
X
)
≥ 1− κ, it holds that F (X) ∈ A

and moreover
τ
(
F (X)

)
≥ 1− κ

1− θ
− e−θ2k/2.

Proof. The statement that F (X) ∈ A follows from the functional calculus for bounded self-adjoint
operators. Let µ be the projection-valued measure on the Borel σ-algebra in [0, 1] associated to X
by the spectral theorem for bounded self-adjoint operators (see e.g. [Hal13, Theorem 7.12]). Then
X =

∫
[0,1] λdµ(λ), and using that τ is normal, there exists a trace class operator A ∈ B(H) such

that

τ(X) = tr
(∫

[0,1]
λdµ(λ)A

)

=

∫

[0,1]
λ tr

(
Adµ(λ)

)

=

∫

[0,1]
λdν(λ) ,
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where ν is the real-valued measure on [0, 1] defined by dν(E) =
∫
E tr(Adµ(λ)). Thus the assump-

tion τ(X) ≥ 1− κ implies that
∫
λ λdν(λ) ≥ 1− κ. By Markov’s inequality, for any 0 < θ < 1,

∫

[0,1]
I[1− λ ≥ 1− θ] dν(λ) ≤

∫
[0,1](1− λ) dν

1− θ
≤ κ

1− θ
. (122)

We now evaluate τ(F (X)). Observe that for 0 ≤ p ≤ 1, F (p) is precisely the probability of observing
at least t successes out of k i.i.d. Bernoulli trials, each of which succeeds with probability p. In other
words, it is the probability that Y := Y1 + · · · + Yk ≥ t, where Y1, . . . , Yk ∼ Bernoulli(p). We can
bound this probability by the additive Chernoff bound (see the second additive bound in [Blu11]):

Pr(Y < t) = Pr(Y < pk − (pk − t))

= Pr
(
Y < pk −

(
p− t

k

)
· k

)

≤ exp
(
− 2

(
p− t

k

)2
· k

)
.

Thus,

F (p) = Pr(Y ≥ t) = 1− Pr(Y < t) ≥ 1− exp
(
− 2

(
p− t

k

)2
· k

)
. (123)

Putting the pieces together, we compute τ(F (X)):

τ
(
F (X)

)
= τ

(∫

[0,1]
F (λ) dµ(λ)

)

=

∫

[0,1]
F (λ) τ

(
Adµ(λ)

)

≥
∫

[0,1]
F (λ) I[λ ≥ θ] dν(λ) (F is nonnegative)

≥ F (θ)

∫

[0,1]
I[λ ≥ θ] dν(λ) (F is non-decreasing)

≥
(
1− κ

1− θ

)
· F (θ) (by Equation (122))

≥
(
1− κ

1− θ

)
·
(
1− exp

(
− 2

(
θ − t

k

)2
· k

))
(Equation (123))

≥ 1− κ

1− θ
− exp

(
− 2

(
θ − d

k

)2
· k

)
. (124)

Finally, we note that because k ≥ 2t/θ, we have θ/2 ≥ t/k. This implies that θ−t/k ≥ θ−θ/2 = θ/2,
and so (θ − t/k)2 ≥ (θ/2)2 = θ2/4. As a result,

exp
(
2
(
θ − t

k

)2
· k

)
≥ exp

(
θ2k/2

)
.

Equivalently,

exp
(
− 2

(
θ − t

k

)2
· k

)
≤ exp

(
− θ2k/2

)
.

Thus, we conclude

τ
(
F (X)

)
≥ 1− κ

1− θ
− exp

(
− θ2k/2

)
.
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Corollary 6.23 (Completeness of H). Recall the error parameters ν ′5, ν
′
6 from Lemma 6.20 and

Lemma 6.21, respectively. Let ν = ν ′5+ ν ′6 and let k ≥ 12mt be an integer. Then ν is equal to some
polynomial function poly(m, t, k) · poly(ε, δ, ζ, n−1) and furthermore

τ
(
H
)
≥ 1− κ ·

(
1 +

1

3m

)
− ν − e−

k
72m2 .

Proof. We begin by approximating the completeness as follows.

τ
(
H
)
≈ν′5

E
x1,...,xk

∑

τ :|τ |≥t

∑

(g1,...,gk)∈Outcomesτ

τ
(
Ĥx1,...,xk

g1,...,gk

)
(by Lemma 6.20)

≈ν′6

k∑

i=d+1

(
k

i

)
τ
(
Gi(1−G)k−i

)
(by Lemma 6.21)

= τ
(
F (G)

)

where F is the function from Lemma 6.22. We unroll the error parameters in terms of ε, δ, ζ,m, n, t, k:

γm = 1− dm

nm
≤ mt

n
(Proposition 2.18)

ν1 = 8(
√

ζ +
√

(m+ 1)δ) (Lemma 6.2)

ν2 = 4(γm + ν1) (Lemma 6.3)

ν ′2 = 27ν
1/4
2 (Corollary 6.15)

ν ′3 = kν ′′3 + k2/n (Lemma 6.17)

ν ′4 = ν ′3 +
√
2(m+ 1)ε (Corollary 6.18)

ν ′5 = 2
k2

n
+ kν ′′3 + γm (Lemma 6.20)

ν ′6 = 2k2ν ′2 (Lemma 6.21)

One can see that each of the error parameters γm, ν1, . . . , ν
′
6 can be expressed in the form poly(m, t, k)·

poly(ε, δ, ζ, n−1) where each error parameter is a different polynomial function. Thus letting
ν = ν ′5 + ν ′6 = poly(m, t, k) · poly(ε, δ, ζ, n−1), we have that

τ(H) ≥ τ(F (G)) − ν .

Define θ = 1
6m . Note that k ≥ 2t/θ by assumption, and that 1

1−θ ≤ 1 + 1
3m . As a result, k and θ

satisfy the hypotheses of Lemma 6.22, which implies

τ
(
F (G)

)
≥ 1− κ

1− θ
− e−θ2k/2

≥ 1− κ

1− θ
− e−

k
72m2

≥ 1− κ ·
(
1 +

1

3m

)
− e−

k
72m2 .

In total, we have

τ
(
H
)
≥ 1− κ ·

(
1 +

1

3m

)
− ν − e−

k
72m2 .

This completes the proof.
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We conclude by observing that the conclusion of Lemma 4.3 follows immediately by letting k
denote the parameter r in the statement of Lemma 4.3 9, combining the bounds from Corollary 6.18,
and Corollary 6.23 using the same “completion” procedure as described in Section 6.3.3.

A Operators on expander graphs

Let G be an n-vertex graph with some distribution on the edges, such that the marginal distribution
on the vertices is uniform. Let

K = E
(u,v)∼G

|u〉〈v|

and let

L =
1

n
1−K

denote the normalized Laplacian of G.

Proposition A.1. L = 1
2 · E(u,v)∼G(|u〉 − |v〉)(〈u| − 〈v|).

Thus L is positive semidefinite and has 0-eigenvector

|ϕ0〉 =
1√
n

∑

u∈V (G)

|u〉

where V (G) denotes the vertex set of G.
Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn denote the eigenvalues of L in non-decreasing order. Then we have

that
L ≥ λ2 (1− |ϕ0〉〈ϕ0|). (125)

The following lemma states that “global” averages of an operator-valued function on an expander
graph can be approximated by averages of the function on random edges of the graph.

Lemma A.2. Let H be a Hilbert space and let ρ be a positive linear functional on B(H). Let
{Au}u∈[n] be bounded operators on H. Suppose G is an n-vertex graph associated with an edge
distribution that has the uniform marginal distribution on the vertices. Then

E
u,v∼[n]

ρ((Au −Av)∗(Au −Av)) ≤ 1

nλ2
E

(u,v)∼G
ρ((Au −Av)∗(Au −Av))

where the expectation on the left hand side is over uniformly random vertices u, v ∼ [n].

Proof. Define the following map V : H → C
n ⊗H:

V =
∑

u

|u〉 ⊗Au.

Observe that

V ∗(L⊗ 1)V =
1

2
E

(u,v)∼G
(Au −Av)∗(Au −Av). (126)

9We use r in the statement of Lemma 4.3 in order to avoid confusion with the dimension of the code C, which is
also denoted by k.
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On the other hand, we have

V ∗(L⊗ 1)V ≥ λ2 · V ∗
(
1− |ϕ0〉〈ϕ0|

)
V Equation (125) (127)

≥ λ2 ·
(∑

u

(Au)∗Au −
(∑

v

n−1/2Av
)∗(∑

v

n−1/2Av
))

(128)

= nλ2 ·
(

E
u∼[n]

(Au)∗Au −A
∗
A
)

(129)

= nλ2 ·
(

E
u∼[n]

(Au)∗(Au −A)
)

(130)

=
nλ2

2
·
(

E
u,v∼[n]

(Au −Av)∗(Au −Av)
)
. (131)

where in the second line we computed V ∗V =
∑

u(A
u)∗Au and V ∗|ϕ0〉 =

∑
u n

−1/2(Au)∗, and in
the third line we defined A = Ev∼[n]A

v. Applying the positive linear functional ρ on Equation (126)
and Equation (131) yields the statement of the Lemma.
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