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Contemporary quantum computers have relatively high levels of noise, making it difficult to use
them to perform useful calculations, even with a large number of qubits. Quantum error correction
is expected to eventually enable fault-tolerant quantum computation at large scales, but until then
it will be necessary to use alternative strategies to mitigate the impact of errors. We propose a
near-term friendly strategy to mitigate errors by entangling and measuring M copies of a noisy
state ρ. This enables us to estimate expectation values with respect to a state with dramatically
reduced error, ρM/Tr(ρM ), without explicitly preparing it, hence the name “virtual distillation”. As
M increases, this state approaches the closest pure state to ρ, exponentially quickly. We analyze the
effectiveness of virtual distillation and find that it is governed in many regimes by the behavior of
this pure state (corresponding to the dominant eigenvector of ρ). We numerically demonstrate that
virtual distillation is capable of suppressing errors by multiple orders of magnitude and explain how
this effect is enhanced as the system size grows. Finally, we show that this technique can improve
the convergence of randomized quantum algorithms, even in the absence of device noise.

I. INTRODUCTION

Performing meaningful calculations using near-term
quantum computers is challenging because of the rela-
tively high error rates of these devices. While quantum
error correction promises to enable quantum computa-
tion with arbitrarily small levels of noise, the overhead
required is too large to be currently practical [1, 2]. The
most plausible paths between today’s quantum comput-
ers and a fault-tolerant device assume a modest decrease
in error rates together with a large increase in the number
of qubits [2, 3]. We find it interesting to ask if these ad-
ditional qubits can be used fruitfully without employing
the full machinery of fault-tolerance. In this work, we ex-
plore an alternative to traditional quantum error correc-
tion that uses multiple independently-performed copies
of a computation for error mitigation.

A variety of strategies exist to mitigate against errors
on noisy intermediate-scale quatum (NISQ) devices, i.e.,
to efficiently approximate the output that would be pro-
duced in the absence of noise. One class of approaches
uses data collected at a variety of error rates to character-
ize the function relating the measured value of an observ-
able to the error rate and extrapolate to the zero noise
limit [4–6]. An alternative strategy proceeds by assuming
a particular noise channel and expressing its inverse as a
quasiprobability distribution over modified copies of the
original circuit [4]. Other techniques work by comparing
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classically tractable simulations (tractable because they
utilize a restricted set of gates) to evaluations of the same
circuits on a noisy device [7–9]. These methods aim to
learn enough about the impact of the noise to predict the
noise-free expectation values for structurally similar cir-
cuits. In Ref. 10, O’Brien et al. put forward a version of
quantum phase estimation algorithm that achieves pro-
tection against errors by inverting the state preparation
procedure and verifying that the system has returned to
a reference state at the end of the computation. Besides
these methods, more specific tools have been developed
for ground state calculations [11–13], for situations when
the desired state possesses certain symmetries [14–18],
and for treating errors during measurement [19–21].

Before the modern field of quantum error-correction
was developed, an alternative proposal was put for-
ward for stabilizing quantum computations [22–24]. The
essence of this approach is to execute M redundant copies
of a computation in parallel and use a measurement
to project into the symmetric subspace between these
copies. Similar measurement primitives (measurements
of the swap operator and its generalizations) have been
applied to measure Renyi entanglement entropies and
other polynomial functions of the density matrix [25–33].
One well-studied way to perform such a measurement is
to use a Clebsch-Gordon or Schur transform to rotate
to a basis which diagonalizes the swap operator [34]. In
Ref. 35, Cotler et al. built on these approaches to imple-
ment an idea they call “virtual cooling.” By performing
a joint measurement on M copies of a thermal state at
inverse temperature β (ρ ∝ e−βH), they were able to esti-
mate expectation values with respect to the thermal state
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at inverse temperature Mβ (ρM ∝ e−MβH). In this pa-
per, we apply the same kind of measurement techniques
to the problem of mitigating errors in a noisy quantum
computation.

Earlier work on using symmetrization to stabilize a
noisy quantum computation focused on protocols that
prepared an approximately purified state [22–24]. We
abandon this goal, and instead aim to reconstruct ex-
pectation values with respect to an approximately pu-
rified state without explicitly preparing it. We refer to
this approach as virtual distillation, using the word “vir-
tual” to emphasize that we don’t actually prepare a puri-
fied version of the state like a typical distillation scheme
would [36–38]. To be specific, we use collective measure-
ments of M copies of ρ to measure expectation values
with respect to the state

ρM

Tr(ρM )
=

∑
i p
M
i |i〉〈i|∑
i p
M
i

, (1)

where ρ =
∑
i pi |i〉〈i| is a spectral decomposition of ρ.

Under this approach, the relative weights of the non-
dominant eigenvectors are suppressed exponentially in
M . This represents an improvement over approaches
which demand that the approximately purified state is
prepared explicitly, which achieve a suppression that is
merely linear in M in the general case [22–24, 39].

Our proposed error mitigation technique offers the op-
portunity to make use of additional qubits to enhance
the quality of a noisy computation without the large
overhead of traditional quantum error correction. Fur-
thermore, the technique is simple to use and analyze. If
we neglect the errors that occur during measurement, it
is straightforward to obtain analytic expressions for the
states whose expectation values we effectively measure
and for the variance of the resulting estimator. In the
limit where the level of noise is small, the number of ad-
ditional measurements required by our approach goes to
zero. Our error mitigation strategy, as we shall show, is
capable of reducing the impact of stochastic errors aris-
ing from noise on a near-term device as well as stochastic
errors inherent to randomized quantum algorithms im-
plemented on an error-free device.

We begin in Section II by introducing the theoretical
formalism of virtual distillation and presenting its sim-
plest implementation. We continue in Section II B with
an analysis of the sample complexity of the simple version
of this technique along with a proof that there exist more
efficient generalizations under certain circumstances. In
Section III, we study the error mitigation performance
of virtual distillation analytically by splitting the effect
of errors into two components. We treat the shift of the
leading eigenvector of the density matrix away from the
target (error-free) state perturbatively (Section III B),
and the shift of the noisy density matrix away from its
dominant eigenvector using a phenomenological model
of errors (Section III A). Although the second effect may
be exponentially suppressed by increasing the number of
states (M), the same is not true for the first effect, which

in the worst case limits the performance of virtual distil-
lation to only providing a constant-factor improvement
in error rate (as a function of the underlying physical
noise rate). For purely coherent errors, this first effect
is the only consideration and virtual distillation offers no
protection. To complement this analysis, in Section IV
we present numerical simulations of virtual distillation
applied to various noisy quantum circuits. We observe
here that for some range of noise levels, virtual distilla-
tion achieves a rate of error suppression exceeding the
bounds suggested in Section III B. Finally, in Section V,
we consider the performance of our technique when ap-
plied to the stochastic errors that arise during random-
ized algorithms for real-time evolution.

II. THEORY

Virtual distillation is a protocol for using collective
measurements of M copies of a state ρ to suppress in-
coherent errors by measuring expectation values with re-
spect to the state ρM/Tr(ρM ). Virtual distillation ap-
proximates the error-free expectation value of O as

〈O〉corrected :=
Tr(OρM )

Tr(ρM )
. (2)

The resulting estimator converges exponentially quickly
towards the closest pure state to ρ as M is increased. In
this section, we lay out the basic theory behind virtual
distillation. We present the simplest implementation in
Section II A and an analysis of the measurement overhead
in Section II B. In Algorithm 1 below, we present pseu-
docode for the implementation discussed in more detail
in Section II A.

We begin by establishing some assumptions and no-
tation. Throughout this paper we deal with operations
that act on multiple copies of the same state. We make
the assumption that the noise experienced by the sepa-
rate copies has the same form and strength. If we relax
this assumption, then we still measure an effective state
that corresponds to the product of the density matrices
of the individual copies so long as the copies are not en-
tangled prior to virtual distillation. We briefly explore
this more general situation in Appendix H.

We use the letter N to indicate the number of qubits
in an individual system and the letter M to indicate the
number of copies (which we sometimes refer to as sub-
systems). Superscripts with parentheses indicate an op-
erator that acts on multiple systems. For example, we
shall denote the cyclic shift operator between M copies
by S(M). We use bolded superscripts without parenthe-
ses to denote which copy an operator acts on, e.g., O1

indicates the operator O acting on subsystem 1. We use
superscripts without a bold-faced font or parentheses to
indicate exponentiation as usual. Subscripts are used
in two different ways. Subscripts on an operator gener-
ally indicate which qubit within a system the operator
acts on. The exception is when the subscript is being
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used more generically as an index in a summation, which
should always be clear from the context and the presence
of the

∑
symbol.

Algorithm 1 Virtual distillation, basic implementation
(see Section II A)

Input: A number of measurement repetitions K, 2K copies
of the N qubit state ρ (provided two at a time).

Output: An error-mitigated estimate of 〈Zi〉 for each qubit

in ρ; 〈Zi〉corrected ≈
Tr(Ziρ

2)

Tr(ρ2)
.

Set Ei = 0 for each qubit i ∈ 1..N .
Set D = 0.
for k ∈ 1..K do

Perform any SWAP operations necessary to make it pos-
sible to couple each qubit in the first copy of ρ with the
corresponding qubit in the second copy.

Apply the two-qubit gate B
(2)
i (defined below in Eq. 10

of Section II A) between each qubit i in the first copy and
the corresponding qubit in the second copy.

Measure both states in the computational basis.
Let z1i and z2i denote the measurement outcomes for the

ith qubits in the first and second copies of ρ respectively.
for i ∈ 1..N do

Ei += 1
2N

(
z1i + z2i

)∏
j 6=i 1 + z1j − z2j + z1j z

2
j

end for
D += 1

2N

∏N
j=1 1 + z1j − z2j + z1j z

2
j

end for
return

{
〈Zi〉corrected := Ei

D

}
In order to evaluate the numerator and denominator

of Eq. 1, we can make use of the following equality [26,
27, 35],

Tr(OρM ) = Tr(OiS(M)ρ⊗M ). (3)

Here, Oi indicates the observable O acting on (an ar-
bitrary) subsystem i and S(M) indicates the cyclic shift
operator on M systems, i.e.,

Oi := I⊗ I · · ·O · · · I,
S(M) |ψ1〉 ⊗ |ψ2〉 · · · |ψM 〉 := |ψ2〉 ⊗ |ψ3〉 · · · |ψ1〉 . (4)

This identity can be proven by expanding the right-hand
side, carefully keeping track of the indices. Without loss
of generality we choose i = 1, yielding

Tr(O1S(M)ρ⊗M ) =∑
i1,i2,...iM ,j1,j2,···jM ,k

Ok,j1δj2,i1 · · · δj1,iMρi1,k · · · ρiM ,jM =

∑
i1,i2,...iM ,k

ρi1,kOk,iMρiM ,iM−1
· · · ρi2,i1 = (5)

Tr(OρM ).

In Figure 1 we present a diagrammatic representation
of Eq. 3 for the case where M = 3 (note that we have
commuted ρ⊗3 with S(3) in the diagram).

The quantities in the numerator and denominator of
Eq. 2 can be evaluated in a number of different ways.

Figure 1. A diagrammatic representation of Eq. 3 with M = 3
and i = 1 using tensor network notation [40–42]. The blue
square represents the operator O1, each red circle represent a
copy of the state ρ, and the connections between the shapes
indicate indices which are summed over. The cyclic shift oper-
ator S(3) is naturally represented as a product of two swap op-
erators, which are themselves indicated by the crossed wires.
Note that the top diagram actually corresponds to the expres-
sion Tr(O1ρ⊗3S(3)); we commuted ρ⊗3 with S(3) before pro-
ducing the figure. Rearranging the wires to yield the bottom
diagram is equivalent to the simplification of the summation
in Eq. 5.

For simplicity, we focus our presentation one such ap-
proach Section II A. In that section, we roughly follow
the work of Ref. 35, except that we use the language of
qubits rather than bosonic systems. We discuss a vari-
ety of alternative protocols in Appendix A, Appendix B,
and Appendix C. Figure 2 summarizes the differences
between these variants. The practical utility of these
techniques as error-mitigation tools will be partly deter-
mined by the number of samples necessary to evaluate the
corrected expectation values to within some target pre-
cision ε. We address this issue in Section II B and also
show that their exists generalizations of our approach
that can further reduce the number of circuit repetitions
for a desired precision.

A. Measurement by Diagonalization

In this section, we present a straightforward strategy
applicable when the operator O is the Pauli Z operator
acting on a single qubit and M = 2. Other single-qubit
observables can be accessed by applying the appropriate
single-qubit rotations before the virtual distillation pro-
cedure. This realization of our error mitigation technique
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Figure 2. A flowchart that describes the choices involved in
selecting between the different variants of virtual distillation
presented in this work. Blue boxes denote questions for the
experimentalist to answer about the available quantum re-
sources and problem to be studied, green boxes link to the
relevant sections in the text and briefly summarize the main
features of each variant. The flowchart provides direction to
the most flexible variant given the answers provided in the
blue boxes but the actual experimental performance will de-
pend on many factors.

requires only a single additional layer of two-qubit gates
followed by measurement in the computational basis. We
present a schematic of this approach in Figure 3.

Rather than using the relation in Eq. 3 directly, we
instead define a symmetrized version of our observable,

O(M) =
1

M

M∑
i=1

Oi. (6)

For the specific case we consider here, that means we take

Z
(2)
k =

1

2
(Z1

k + Z2
k ). (7)

It is straightforward to use Eq. 3 to show that

Tr(OρM )

Tr(ρM )
=

Tr(O(M)S(M)ρ⊗M )

Tr(S(M)ρ⊗M )
. (8)

Using the symmetrized observable is advantageous be-
cause

[O(M), S(M)] = 0, (9)

Figure 3. A circuit diagram of our approach applied to a
six-qubit circuit. We use twice the number of qubits to inde-
pendently perform two copies of the original circuit. We then
apply a single layer of the two-qubit gates specified in Eq. 10
before measuring each qubit in the computational basis. This
allows us to estimate the error-mitigated expectation values
for all single-site Z operators.

or, in our case, [Z
(2)
k , S(2)] = 0.

Both S(2) and Z
(2)
k factorize into tensor products of op-

erators that act separately on each pair of qubits, where
the ith pair consists of the ith qubit from each system.
Therefore, we may simultaneously diagonalize S(2) and

Z
(2)
k S(2) using an operator that factorizes with the same

structure. We denote the two-qubit unitary that per-

forms this diagonalization on the ith pair B
(2)
i . We give

a matrix representation for this gate below, noting that
there is some freedom in the choice of phases for the ma-
trix elements,

B
(2)
i :=


1 0 0 0

0
√

2
2 −

√
2

2 0

0
√

2
2

√
2

2 0
0 0 0 1

 . (10)

We then define

B(2) :=
M⊗
i=1

B
(2)
i . (11)

As desired, this unitary diagonalized the individual
factors that make up the observables,

B(2)S
(2)
i B(2)† →1

2
(1 + Z1

i − Z2
i + Z1

i Z
2
i ), (12)

B(2)Z
(2)
k S

(2)
k B(2)† →1

2
(Z1

k + Z2
k ). (13)

This diagonalization is particularly easy to implement
when each qubit from the first copy of ρ is adjacent to
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the corresponding qubit from the second copy. The pro-
cedure for measuring the observables required to estimate
the numerator and denominator of Eq. 8 then reduces to
applying a single layer of N two-qubit gates in parallel
and measuring in the computational basis. In fact, be-

cause B(2) diagonalizes Z
(2)
k S(2) for all N values of k, we

naturally collect the data required to estimate the error-
mitigated expectation values for all N of the operators
Zk simultaneously. By applying the appropriate single-
qubit rotations before performing virtual distillation, we
could instead access an arbitrary single-qubit observable
on each qubit. We capture this process diagrammatically
in Figure 3.

In order to develop some intuition, it is helpful to ex-
press ρ⊗2 using a spectral decomposition of ρ and con-
sider two separate components of the resulting sum,

ρ⊗2 =
∑
ij

pipj |i〉〈i| ⊗ |j〉〈j| (14)

=
∑
i

p2
i |i〉〈i| ⊗ |i〉〈i|+

∑
i6=j

pipj |i〉〈i| ⊗ |j〉〈j| .

The calculation of measurement probabilities and expec-
tation values is a linear operation on the density matrix;
we can therefore consider these two components sepa-
rately. The component of the state with i = j is in
the +1 eigenspace of S(2) and leads to measurements
of S(2) which yield the +1 eigenvalue with probability
p =

∑
i p

2
i = Tr(ρ2). In the case where i 6= j, |i〉〈i|⊗|j〉〈j|

is an even superposition of symmetric and anti-symmetric
states,

|i〉 |j〉 =
1

2

(
|i〉 |j〉+ |j〉 |i〉

)
+

1

2

(
|i〉 |j〉 − |j〉 |i〉

)
. (15)

For this component of the state, measurements of S(2)

yield +1 and −1 with equal probability and
〈
S(2)

〉
= 0.

Combining these two cases, we have the expected equal-
ity, Tr(S(2)ρ⊗2) = Tr(ρ2). Measurements of S(2)O(2) fol-
low a similar pattern.

We find it interesting to contrast this behavior with
the stabilizer theory of quantum error correction. In
the stabilizer formalism, errors are detected by project-
ing through measurement into the −1 eigenspace of one
or more symmetries. In our approach, we instead rely on
errors being equally supported on the eigenspaces of the
symmetry we measure.

B. Sample Efficiency

The number of circuit repetitions required to deter-
mine the error-mitigated expectation values within a pre-
cision ε depends on the variance of our estimator. In this
section, we present expressions for this variance. We fo-
cus on the M = 2 case and the methods discussed in
Section II A. The calculations are also applicable to the
variant protocol we present in Appendix C. We also show

how their exists an extension to our protocol that makes
more efficient use of multiple copies when the noise level
is sufficiently high.

We’d like to determine the variance of our estimator
for the error-mitigated expectation value

〈O〉corrected =
Tr(O(2)S(2)ρ⊗2)

Tr(S(2)ρ⊗2)
. (16)

We leave the derivation to Appendix D and simply give
an (approximate) expression for the variance,

Var(〈O〉corrected) ≈
1

R

( 1

Tr(ρ2)2

(1

2
Tr(ρO2) +

1

2
Tr(ρO)2 − Tr(ρ2O)2

)
− 2

Tr(ρ2O)

Tr(ρ2)3

(
Tr(ρO)− Tr(ρ2O)Tr(ρ2)

)
(17)

+
Tr(ρ2O)2

Tr(ρ2)4

(
1− Tr(ρ2)2

))
,

where R refers to the number of measurement repetitions.
It’s useful to consider what happens in the limit where ρ
is a pure state. In that case, the second and third lines
are zero and the variance reduces to

Var(〈O〉corrected) =
1

2R

(
Tr(ρO2)− Tr(ρO)2

)
, (18)

exactly what one would expect when averaging 2R inde-
pendent measurements of O. As the purity of ρ decreases,
the variance, and the number of circuit repetitions, in-
creases.

The rest of this section focuses on laying the ground-
work to improve the sample efficiency of these techniques.
This is an important goal because the number of samples
required can grow large given sufficiently noisy circuits.
At high enough error rates, we are highly likely to find
ourselves in a situation where

Tr(ρ3)� Tr(ρ2)� 1. (19)

We now make the assumption that the level of error mit-
igation offered by measuring ρM is sufficient but we have
2K � M copies of ρ available. For simplicity, we fo-
cus on the case where M = 2 and O is a Pauli operator
acting on one or more qubits. We present a generaliza-
tion of our approach involving a collective measurement
of all 2K copies of ρ that performs better than a naive
parallelization.

The naive approach we hope to beat consists of tak-
ing K pairs and running the protocol described above in
parallel, averaging the results. For simplicity, we focus
on the variance of our estimator for the quantity that
appears in the numerator of Eq. 8 rather than the ratio
itself. In Appendix D we show that the variance of our es-
timator for S(2)O(2) is 1

2Tr(ρO2)+ 1
2Tr(ρO)2−Tr(ρ2O)2.

Therefore, the variance obtained when using 2K copies
in parallel is exactly

Var(
〈
S(2)O(2)

〉
) =

1

2K

(
Tr(ρO2)+Tr(ρO)2−2Tr(ρ2O)2

)
.

(20)
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We prove below that it is possible in some situations to
obtain a more sample-efficient estimator for the corrected
expectation value by performing a joint measurement on
all 2K copies. We do so by providing an operator Õ with
the desired expectation value and calculating its variance.

First, we define the operator

Õ =
1(

2K
2

) 2K∑
i=1

∑
j>i

1

2
(Oi +Oj)S(i,j), (21)

where we use S(i,j) to denote the swap operator specif-
ically between subsystems i and j. It is simple to show
that

Tr(Õρ⊗2K) = Tr(Oρ2). (22)

We compute the variance of Õ with respect to the state
ρ⊗2K in Appendix E, finding that

Var(
〈
Õ
〉

) ≤ 1 + 7(K − 1)Tr(ρ3)

K(2K − 1)
. (23)

When Tr(ρ3) is small, the second term in Eq. 23 is
suppressed and there is a regime where the variance of
this operator shrinks quadratically with K. The naive
approach, where we perform K independent calculations
on separate pairs results in an estimator whose variance
is suppressed only linearly in K. We do not suggest a
particular strategy, let alone one that is NISQ-friendly,
for implementing the measurement of Õ. We hope that
future work can address this issue. Furthermore, while
we have established that generalizations of the simplest
virtual distillation procedure can outperform a naive par-
allel strategy, we have not established a comprehensive
theory on the limitations of virtual distillation. It would
be useful to quantify the minimum number of samples
required to resolve Tr(OρM ) given access to a large num-
ber of copies of ρ under various assumptions about the
spectrum of the density matrix.

III. PERFORMANCE UNDER DIFFERENT
NOISE MODELS

In the numerical studies, we will present evidence that
the performance of virtual distillation can be essentially
predicted by the combination of two contributions. Here
we find it instructive to consider them separately using
simple analytical models. To understand the potential
benefit of our approach using the minimal setup, we con-
sider the fidelity of

ρcorrected :=
ρ2

Tr(ρ2)
(24)

with the ideal state generated by noiseless evolution (ne-
glecting error introduced by the measurement proce-
dure). We first consider the performance under noise

that maps the ideal state to states orthogonal to it, leav-
ing the dominant eigenvector of the density matrix as the
ideal state. We then turn towards the effect of errors that
lead to states non-orthogonal to the ideal state, causing
a drift in the dominant eigenvector of the density ma-
trix. The essential behavior of virtual distillation is to
remove errors of the first kind rapidly, while converging
to a floor determined by the drift in the dominant eigen-
vector that enables a large constant factor improvement
over the erred state.

A. Orthogonal Errors

We first consider idealized errors that leave the dom-
inant eigenvector as the ideal state. We consider a phe-
nomenological error model motivated by the assumption
that we can think of errors as discrete events that occur
locally in space and time with some probability. For sim-
plicity, we model every gate as a stochastic quantum map
where with probability p an error occurs, and we assume
that every new error sends the quantum evolution to a
new orthogonal state. The resulting density matrix for a
circuit with G gates is

ρ = (1− p)Gρ0 + (1− p)G−1p
G∑
j=1

ρj1

+ (1− p)G−2p2
∑
j1 6=j2

ρj1,j2

+ (1− p)G−3p3
∑

j1 6=j2 6=j3

ρj1,j2,j3 + . . . (25)

The operator for ρ2 is similar with all the coefficients
squared, as all the states are assumed to be orthogonal.
Therefore,

Tr(ρ2) = ((1− p)2 + p2)G . (26)

The fidelity with the ideal state ρ0 is

Tr(ρ0ρ
2)

Tr(ρ2)
=

(1− p)2G

((1− p)2 + p2)G
(27)

' 1−Gp2 +O(Gp3) . (28)

Therefore we expect a quadratic suppression of errors in
the most favorable case.

The result is similar in the case of M copies:

Tr(ρ0ρ
M )

Tr(ρM )
=

(1− p)MG

((1− p)M + pM )G
(29)

' 1−GpM +O(GpM+1) . (30)

The other factor affecting the performance of virtual
distillation besides the fidelity is the sample complex-
ity. We analyze the general case in more detail in Ap-
pendix D, but it is instructive to briefly consider the
performance under this simplified model of errors. For
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simplicity, we assume that we aim to measure the error-
mitigated expectation value of a Pauli operator O at the
M = 2 level using R independent experiments to esti-
mate the numerator and denominator of Eq. 16 (for a
total of 2R experiments). Then the variance of our es-
timators for the numerator and denominator are upper
bounded by 1, and we have

Var(〈O〉corrected) /
1

R

( 1

Tr(ρ2)2
+

Tr(Oρ2)2

Tr(ρ2)4

)
. (31)

Because of our assumption that O is a Pauli operator, and
therefore ||O|| = 1, we have Tr(Oρ2) ≤ Tr(ρ2), implying
Tr(Oρ2)2 ≤ Tr(ρ2)2. Therefore,

Var(〈O〉corrected) /
2

RTr(ρ2)2
=

2

R((1− p)2 + p2)2G
.

(32)
When p is small, we can neglect the p2 term in the de-
nominator. Therefore, taking

R ∝∼ (1− p)−4G (33)

is sufficient to estimate 〈Ocorrected〉 to within a fixed ad-
ditive error.

B. Non-Orthogonal Error Floor

The analysis of the previous section made the simpli-
fying assumption that the dominant eigenvector of the
density matrix, ρ0 = |0〉〈0|, corresponds exactly to the
ideal state generated by noiseless evolution. In practice,
errors will lead to population in states that may not be
orthogonal to the target state, leading to a drift in the
dominant eigenvector of the density matrix. We will see
in our numerical studies that this drift limits the maxi-
mum potential upside of virtual distillation. In this sec-
ond, we develop an understanding of this drift by using
perturbation theory to consider the first-order change in
the dominant eigenvector of the density matrix.

Let us consider a state ρ in the middle of a noisy prepa-
ration circuit, allowing for ρ to already be somewhat dis-
torted by noise. Writing ρ in its eigenbasis, we have

ρ =
∑
i

λi |i〉〈i| , (34)

where we order the eigenvalues in descending order. Note
that we use the symbol λi for the ith eigenvector of the
density matrix rather than pi throughout this section,
reserving the symbol p for the coefficients associated with
a Kraus operator decomposition of our noise channel. We
wish to consider the impact of a subsequent noise channel
defined in terms of a set of Kraus operators,

ρ→ p0ρ+
∑
j 6=0

pjKjρK
†
j . (35)

Note that we have demanded a representation of the
channel where K0 is the identity matrix in order to sim-
plify our analysis. Now let ∆V denote the change in the
density matrix induced by this channel (ρ→ ρ+ ∆V ),

∆V := (p0 − 1)ρ+
∑
j 6=0

pjKjρK
†
j , (36)

where we define the scale ∆ by taking ||V || to be O(1).
Now we make the assumption that we are in the low-

error regime. Specifically, we assume that λ0 � λ1 and
that ∆ � |λ0 − λ1|. Under this assumption, we satisfy
the necessary conditions for applying matrix perturba-
tion theory to the dominant eigenvector [43]. We can
therefore proceed by expressing the dominant eigenvec-
tor of ρ + ∆V as a convergent power series in ∆. This
yields

|0〉 = |0(0)〉+ ∆ |0(1)〉+ ∆2 |0(2)〉+O(∆3), (37)

where |0〉 denotes the dominant eigenvector of ρ + ∆V ,
|0(0)〉 denotes the dominant eigenvector of the unper-
turbed ρ, and |0(i)〉 denotes the correction at ith order.
Likewise, we can also express the eigenvalue correspond-
ing to the dominant eigenvector as a power series in ∆,

λ0 = λ
(0)
0 + ∆λ

(1)
0 + ∆2λ

(2)
0 +O(∆3). (38)

We can then proceed in the usual way, expanding the
eigenvalue equation,

(ρ+ ∆V ) |0〉 = λ0 |0〉 , (39)

and equating terms order by order. This leads to a famil-
iar expression for the first order correction to the domi-
nant eigenvector in terms of the zeroth order eigenvalues
and eigenvectors,

|0(1)〉 =
∑
i6=0

〈i(0)|V |0(0)〉
λ

(0)
0 − λ

(0)
i

|i(0)〉 . (40)

At this point, it’s useful to carefully consider the nor-
malization of |0〉. Let |D〉 denote the normalized form of
|0〉,

|D〉 :=
|0(0)〉+ ∆ |0(1)〉+ ∆2 |0(2)〉+O(∆3)√

1 + ∆2
〈
0(1)
∣∣0(1)

〉
+O(∆3)

= |0(0)〉+ ∆ |0(1)〉

+ ∆2 |0(2)〉 − ∆2

2

〈
0(1)
∣∣∣0(1)

〉
|0(0)〉+O(∆3),

(41)

where we have made use of the fact that the first and
second order corrections are both orthogonal to the un-
perturbed eigenvector.

We can now compute the trace distance between |D〉
and the dominant eigenvector of the unperturbed state,
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T ( |D〉 , |0(0)〉)

=
1

2
Tr
(√

(∆
∣∣0(0)

〉〈
0(1)
∣∣+ ∆

∣∣0(1)
〉〈

0(0)
∣∣+ ∆2

∣∣0(0)
〉〈

0(2)
∣∣+ ∆2

∣∣0(2)
〉〈

0(0)
∣∣−∆2

〈
0(1)
∣∣0(1)

〉 ∣∣0(0)
〉〈

0(0)
∣∣+O(∆3))2

)
=

1

2
Tr
(√

∆2
〈
0(1)
∣∣0(1)

〉 ∣∣0(0)
〉〈

0(0)
∣∣+ ∆2

∣∣0(1)
〉〈

0(1)
∣∣+O(∆3)

)
=

1

2
Tr
(√

∆2
〈
0(1)
∣∣0(1)

〉 ∣∣0(0)
〉〈

0(0)
∣∣+ ∆2

〈
0(1)
∣∣0(1)

〉 ∣∣0(1)
〉〈

0(1)
∣∣〈

0(1)
∣∣0(1)

〉 +O(∆3)
)

= ∆

√〈
0(1)
∣∣0(1)

〉
2

+O(∆2). (42)

Now let us expand
〈
0(1)
∣∣0(1)

〉
in terms of the Kraus op-

erators of our noise model.〈
0(1)
∣∣∣0(1)

〉
=
∑
i6=0

1

(λ0 − λi)2
〈0|V † |i〉〈i|V |0〉

=
∑
i6=0

1

(λ0 − λi)2∣∣∣ 〈i|((p0 − 1)I +
∑
j 6=0

pjKj |0〉〈0|K†j
)
|0〉
∣∣∣2

=
∑
i6=0

1

(λ0 − λi)2

∣∣∣∑
j 6=0

pj 〈i|Kj |0〉〈0|K†j |0〉
∣∣∣2,

(43)

where we omit the (0) superscripts of the eigenvalues and
eigenvectors on the right-hand side for readability.

We can see that, in the general case, we expect a non-
zero contribution to the trace distance at first order in
∆. Because ρ2/Tr(ρ2) ≈ |D〉〈D| in the low-noise regime,
this will effectively set a floor for how well our method
can correct errors. Therefore, without further constraints
on the state, the noise model, or the observables being
measured, our method will not achieve a quadratic sup-
pression in errors in the low noise limit but rather a con-
stant factor improvement whose magnitude depends on
the typical size of a quantity we denote by the symbol γ,

γ :=
∣∣∣∑
j 6=0

pj 〈i|Kj |0〉〈0|K†j |0〉
∣∣∣. (44)

Interestingly, when we examine the data from our nu-
merical simulations, we do obtain an improvement con-
sistent with a quadratic suppression of errors at interme-
diate error rates. Additionally, γ has no lower bound; it
can in some cases be zero, in which case we expect to
recover the quadratic suppression of error predicted from
Section III A. As the trace distance is an upper bound
for the error in any observable, particular observables of
particular states may recover this performance even when
γ 6= 0.

In order to shed some light on the error floor set by the
drift in the dominant eigenvector of the density matrix,

it can be helpful to ask when we might expect γ to be
near zero. It is clear that this quantity must be zero if
one of two conditions hold:

Kj |0〉 ∝ |0〉 (45)

〈0|K†j |0〉 = 0. (46)

One way that this can occur is if the state and the cir-
cuit have a natural set of symmetries. The first con-
dition holds if the error is drawn from such a symmetry
group, while the second is satisfied if it violates it strictly.
For an example of the second case, consider a bit-flip or
amplitude-damping error channel acting on a state with
a definite number of excitations. There are other situ-
ations where the second equality is approximately sat-
isfied. For example, in circuits exhibiting the limits of
quantum chaos, apart from a small light cone at the end
of the circuit, any local errors lead to a state nearly in-
distinguishable from a Haar random state. Therefore,
the matrix elements in Eq. 46 are exponentially small in
the number of qubits. This sensitivity to local pertur-
bations in random circuits is used in the cross-entropy
benchmarking technique [44], and explains the improved
behavior of our technique in numerical tests on random
circuits.

IV. NUMERICAL EXPERIMENTS

In this section, we present numerical simulations of
virtual distillation applied to three model systems. We
first consider two classes of random circuits, chosen be-
cause they are simple limits where the behaviour of vir-
tual distillation is easy to analyze. We then turn towards
the application of virtual distillation to the simulation of
the dynamics of a one dimensional spin chain following a
quantum quench. This example allows us to study the be-
haviour of virtual distillation in the context of quantum
simulation, an application which is a promising candidate
for the eventual demonstration of practical quantum ad-
vantage in the NISQ era. We choose to focus on time
evolution rather than the ground state problem mainly
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because ground states have additional structure which
enables specialized error mitigation techniques and we
are interested in how virtual distillation behaves in the
absence of this structure.

We find it illuminating to characterize the effective-
ness of our approach as a function of the expected num-
ber of errors in a particular circuit. This tends to al-
low more universal prediction of performance when trad-
ing between error rate per gate and number of gates.
We consider a noise model that focuses on stochastic
errors in two-qubit gates. Specifically, after each two-
qubit gate, we apply a single-qubit depolarizing channel
to both qubits acted on by the gate. The expected num-
ber of errors (E) can be expressed simply as a function
of the number of two-qubit gates in the circuit (G) and
the single-qubit depolarizing probability (p, defined in
the usual way in Eq. F3),

E = 2pG. (47)

To quantify the error, we focus mainly on the trace dis-
tance between the ideal state that would be obtained
with noise-free evolution and the effective state accessed
by virtual distillation The trace distance leads to a nat-
ural bound in the error for the expectation value of an
arbitrary observable,

|Tr(ρO)− 〈ψideal|O|ψideal〉 | ≤ 2||O||T (ρ, |ψideal〉), (48)

where O is an observable with operator norm ||O||, and
T (−,−) denotes the trace distance.

A. Scrambling Circuits

Both classes of random circuits that we simulate are
related to the scrambling circuits used to demonstrate
beyond classical computation in Ref. 44. The first class
is essentially a one-dimensional version of the circuit fam-
ily considered in that work. The second class of circuits
is exactly the same as the first class, except that we re-
move the two-qubit gates. We provide some additional
details in Appendix F. For these non-entangling random
circuits, we still perform the noisy simulations of these
circuits by applying single-qubit depolarizing channels in
the same locations where the two-qubit gates would have
been.

Because the behaviour of the non-entangling random
circuits is particularly simple to understand, we consider
this class of circuits first. In the absence of entangling
gates, we can commute the applications of the single-
qubit depolarizing channel to the end of the circuit. We
can then combine them together into a single application
per qubit with a larger effective error rate. We carry
this procedure out analytically in Appendix F, showing
that the dominant eigenvector of the density matrix cor-
responds exactly the ideal state. This leads us to expect
behaviour similar to that of the phenomenological noise
model we considered in Section III A.

Figure 4. The error in the unmitigated noisy states (M = 1)
and the states accessed by virtual distillation (M = 2, 3) for a
variety of non-entangling random circuits at two different sys-
tem sizes (differentiated by thickness of markers). We plot the
error, quantified by the trace distance to the state obtained
from noiseless evolution, as a function of the expected num-
ber of single-qubit depolarizing errors, resulting from varying
both the error rate and number of gates. Unlike other cases,
for these non-entangling circuits, the eigenvalue floor vanishes
and we see exponential suppression in the number of copies.

In Figure 4, we plot the trace distances between
the ideal states generated by noiseless evolution and
the states obtained by noisy evolution of these non-
entangling random circuits (blue curve). We consider
a variety of different circuit depths and error rates for
both six-qubit systems (thin curves) and ten qubit sys-
tems (thick curves). For each of these simulations, we
also calculate the trace distance between the ideal state
and the states we are effectively accessing by using virtual
distillation with M = 2 (orange dotted curve, ρ2/Tr(ρ2))
or M = 3 (green dotted curve, ρ3/Tr(ρ3)) copies. For
each particular setting of circuit depth and error rate,
we consider a single randomly chosen member from the
ensemble of non-entangling scrambling circuits described
above.

We see that the data from this variety of simulations
collapses together when we plot the error (in terms of
trace distance) as a function of the expected number of
gate errors. When the expected number of errors is not
too large, the curves for M = 1, M = 2, and M =
3 are nearly linear with slopes 1, 2, and 3 respectively.
Although the noise model in this case does not exactly
match the phenomenological model of Section III A, the
results are broadly consistent. For these non-entangling
random circuits, we observe a level of error suppression
that is exponential in M .

In Figure 5 and Figure 6, we present plots that ex-
plore the behaviour of entangling random circuits on
a one-dimensional line of qubits. When we considered
the non-entangling random circuits, we found that error
(quantified by the trace distance to the ideal state) de-
pended mostly on the system size and the expected num-
ber of gate errors. This was true regardless of whether
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Figure 5. The error in the unmitigated noisy states (M = 1),
the states accessed by virtual distillation (M = 2, 3), and the
dominant eigenvector of the density matrices (M → ∞) for
a variety of entangling random circuits. We plot the trace
distance to the state obtained from noiseless evolution as a
function of the expected number of single-qubit depolarizing
errors for two different system sizes (represented by thickness
of marker). Here we vary the expected number of errors by
varying the number of gates, fixing the single-qubit depolar-
izing probabilities to 5 × 10−4 (left panel) or 5 × 10−3 (right
panel). We see that the dominant eigenvector determines the
noise floor beyond which we cannot improve, independent of
the number of copies, and that this floor drops as the size of
the system increases.

or the expected number of errors was varied by chang-
ing the circuit depth or by changing the error rate per-
gate. Here we observe slightly different behaviour be-
tween these two cases, and therefore consider them sepa-
rately. These two figures also differ from Figure 4 in that
they include a red dashed curve corresponding to trace
distance between the dominant eigenvector of the den-
sity matrix (limM→∞ ρM/Tr(ρM )) and the ideal state, a
quantity which is non-zero for the richer family of circuits
we now consider.

Figure 5 presents two plots that show the effects of
varying the circuit depth at two different fixed error rates.
We see that the error in the dominant eigenvector effec-
tively sets a floor for the minimal error achievable by
virtual distillation for any value of M . This floor grows
slowly with increasing circuit depth. Furthermore, both
the absolute magnitude and the rate of growth appear
to be suppressed with system size. In Section III B we
showed that the leading order contributions to the trace
distance between the dominant eigenvector and the ideal
state can be understood in terms of the matrix elements
of the Kraus operators (see Eq. 44). As the circuit depth
of the random circuit increases, we expect a 1D random
circuit to approach a Haar random circuit at a depth
proportional to the number of qubits N . Once this ap-

Figure 6. The error in the unmitigated noisy states (M = 1),
the states accessed by virtual distillation (M = 2, 3), and the
dominant eigenvector of the density matrices (M → ∞) for
a variety of entangling random circuits. We plot the trace
distance to the state obtained from noiseless evolution, as
a function of the expected number of single-qubit depolariz-
ing errors, for 6 and 10 qubit systems (demarcated by the
thickness of the symbols). We vary the expected number of
errors by varying the error rate per-gate, fixing the number of
two-qubit gates to be 450. It’s clear that there is a maximum
number of expected errors for which the technique is effective,
and below a certain error rate, the achievable improvement is
fixed by the drift in the dominant eigenvector (M →∞).

proximation is sufficient, all but a small fraction of errors
in the lightcone of the observable at the end of the circuit
will lead to matrix elements that contribute to the drift
in the dominant eigenvector that are exponentially small
in the number of qubits. This observation may explain
the scaling we see in Figure 5.

In Figure 6 we plot the error in terms of trace distance
as we vary the expected number of gate errors by varying
the per-gate error rate for a fixed circuit. At low error
rates, we see that the errors in the dominant eigenvectors
(red dashed curves) scale linearly with the error rate but
are orders of magnitude smaller than the errors in the
unmitigated state. This matches the behaviour we would
expect from the analysis of Section III B. As in Figure 5,
the error in the dominant eigenvector sets a floor for the
performance of our method at finite M and that this floor
is suppressed as the system size increases.

B. Heisenberg Quench

The properties of random circuits can be somewhat
unique in their ability to scramble errors. It is thus im-
portant to consider how the approach works for other cir-
cuits of interest, like the quantum simulation of physical
systems. In this section, we explore the performance of
our approach applied to the simulation of time evolution
following a quantum quench in a spin model. We initial-
ize the system in an antiferromagnetic state, e.g., |0101〉,
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Figure 7. The average error in the single-site magnetization
in the unmitigated noisy states (M = 1), the states accessed
by our error mitigation technique (M = 2, 3), and the domi-
nant eigenvectors of the density matrices (M →∞) for states
generated by the Trotterized time evolution of a Heisenberg
model. We plot the actual average errors we calculate us-
ing the blue dots (M = 1), orange crosses (M = 2), green
squares (M = 3), red diamonds (M → ∞), and large purple
diamonds (M = 2, noisy distillation) alongside bounds deter-
mined by the trace distance to the ideal state using Eq. 48
(various curves). We plot these quantities as a function of the
expected number of single-qubit depolarizing errors, which we
vary by varying the number of gates, fixing the single-qubit
depolarizing probability to 5 × 10−3. We see that for this
specific observable, the trace distance bounds are pessimistic
by roughly an order of magnitude, though generally respect
the behavior of the eigenvector floor. Furthermore, we no-
tice an almost perfect coincidence between the orange crosses
and purple diamonds, indicating that performing the virtual
distillation circuits of Section II A with noise has a negligible
effect on the corrected expectation value.

and simulate the time evolution under the Hamiltonian

H =
N−1∑
i=1

(
JxXiXi+1 + JyYiYi+1 + JzZiZi+1

)
(49)

+
N∑
i=1

hXi.

Here we have chosen the parameters, Jx = Jy = 1.0,
Jz = 1.5, h = 1.0, in order to match a previously studied
family of non-integrable models [45], although we take
open boundary conditions rather than periodic ones. We
approximate the time evolution under this Hamiltonian
by Trotterization with a timestep of ∆t = 0.2. Specifi-
cally, we use alternating layers of single-qubit gates, two-
qubit gates between odd-even pairs of qubits, and two-
qubit gates between even-odd pairs of qubits. As above,
we simulate the resulting circuits with single-qubit depo-
larizing noise applied after every two-qubit gate.

In Figure 7, we plot the bounds on the error of an ar-
bitrary observable (normalized so that ||O|| = 1) derived
from the trace distance to the noiseless state. We vary the
expected number of errors by varying the circuit depth
of a six qubit system with a fixed single-qubit depolar-
izing probability of 5 × 10−3. Alongside these bounds

Figure 8. The error in the unmitigated noisy states (M = 1),
the states accessed by virtual distillation (M = 2, 3), and the
dominant eigenvectors of the density matrices (M →∞), for
states generated by the Trotterized time evolution of a Heisen-
berg model. We plot the trace distance to the state obtained
from noiseless evolution as a function of the expected number
of single-qubit depolarizing errors. The expected number of
errors is varied by changing the error rate per-gate, fixing the
number of two-qubit gates to be 450. We show this data for 6
and 10 qubit systems (differentiated by the size of the mark-
ers). As we increase the system size from 6 qubits to 10, we
observe that the error (quantified by the trace distance to the
ideal state) decreases for the error-mitigated states (M > 1).

(plotted using solid and dashed curves) we also plot the
actual average error in the single-site magnetization (av-
eraged over the 6 sites) at various points throughout the
circuit. For the two-copy (M = 2) version of our pro-
posal, we plot the error calculated directly from the state
ρ2/Tr(ρ2) using yellow crosses and the error we would ob-
tain by applying the destructive measurement described
in Section II A using large purple diamonds. For this
second calculation, we simulate the application of the six
two-qubit gates (Eq. 10) required to diagonalize the ob-
servables using the same noise model as the rest of the
circuit. From the nearly perfect overlap of the yellow
crosses with the purple diamonds, we can see that circuit
noise during the diagonalization step has barely any ef-
fect on the reconstructed expectation values. It is also
apparent that, although the average error in the magneti-
zation does not saturate the bounds implied by the trace
distance, our approach suppresses the errors in the actual
expectation values to a similar degree that it suppresses
the trace distance.

Figure 8 offers a different look at the same system. As
with Figure 6, in this figure we fix the number of two-
qubit gates to be 450 and we vary the expected number
of gate errors by sweeping over a range of per-gate er-
ror rates. Here we clearly see the impact of the floor
set by the drift in the dominant eigenvector (red dotted
curve). At low gate error rates, the error (in terms of
trace distance to the ideal state) for the virtually dis-
tilled states (M > 1) is suppressed by a constant factor
relative to the error in the unmitigated state (M = 1).
The constant factor improvement is substantial and ap-
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Figure 9. The average overhead in the number of measure-
ment repetitions required to measure the single-site mag-
netization (of a Heisenberg model) with virtual distillation
(M = 2). The overhead is calculated by taking the ratio of
the time required using our technique to achieve a fixed tar-
get precision and the time required when measuring the same
quantity to the same precision with respect to the unmiti-
gated noisy state (M = 1). We vary the expected number
of errors by varying the error rate per-gate, fixing the num-
ber of two-qubit gates to be 450, and plot the overhead as a
function of the expected number of single-qubit depolarizing
errors. We show data for 6 and 10 qubit systems, denoting the
larger system using larger markers. As the error rate grows
beyond O(1) errors, the overhead increases dramatically, with
the larger system seeing the greatest inflation.

pears to increase with system size. Both the size of the
improvement and its sensitivity to the system size are
smaller than we observed for the one-dimensional scram-
bling circuits of Figure 6.

In Figure 9, we consider the cost of performing the two-
copy (M = 2) version of virtual distillation for the same
systems considered in Figure 8. We do this using the ex-
pression for the variance presented in Eq. 17 and derived
in Appendix D. Using this expression, we calculate the
average variance of our error-mitigated estimators for the
single-site magnetization, {Zi}. We consider the ratio of
this average variance (for the error-mitigated expectation
values) with the average variance of the same measure-
ments without error mitigation. Because the number of
measurements required for some fixed precision scales lin-
early with the variance, this ratio is also the ratio between
the number of measurements required to use virtual dis-
tillation and the number of measurements required to
measure the unmitigated expectation values (assuming
the same target precision). This quantity therefore en-
capsulates the overhead incurred by our scheme.

When the expected number of errors is small, we see
that virtual distillation barely increases the number of
measurements required. It is only as the number of errors
grows larger than one that the measurement cost rises
dramatically. We note that Eq. 17 implicitly assumes

that we perform a number of measurements R such that

R� 1

Tr(ρ2)2
. (50)

This assumption will break down when the target preci-
sion is low and the expected number of errors in Figure 9
is large, but the qualitative conclusion remains the same.

V. MITIGATING ALGORITHMIC ERRORS

To date, most error mitigation methods have focused
on the reduction of errors caused by imperfections in a
device implementation, such as decoherence or control
errors. Here explore the idea that some of these tech-
niques can be applied to algorithmic errors incurred dur-
ing otherwise noise-free implementations of randomized
algorithms. Previous works have used extrapolation [46]
or randomized symmetry application [47] to mitigate co-
herent errors in evolution; we extend this concept to in-
coherent errors.

Recent developments in Hamiltonian simulation have
led to the development of randomized evolution meth-
ods such as qDRIFT [48], randomized Trotter [49], and
combinations thereof [50], which have benefits in some
situations over their deterministic counterparts. As
these methods are randomized, they output mixed states
rather than pure states, even in the absence of noise.
Moreover, they depend on an approximation parame-
ter with a natural limit in which they converge to the
pure state generated by exact evolution. In this section,
we show numerically that virtual distillation applied to
qDRIFT can suppress this deviation from the exact evo-
lution. For the particular model system we consider,
we find that virtual distillation can reduce the coherent
space-time volume required to reach a particular accu-
racy threshold by a factor of 8 or more compared with
the standard qDRIFT.

A. qDRIFT

We briefly introduce some background on the qDRIFT
method. qDRIFT simulates time evolution under a
Hamiltonian H, by constructing product formulae using
a randomized selection rule. Terms are chosen from H
at random, with a selection probability proportional to
their interaction strength in the Hamiltonian. One then
evolves the system forwards in time under this Hamilto-
nian term, for a fixed timestep and repeats this process
a number of times, generating a product formula that
provides an approximation to the time evolution opera-
tor. When averaged over the classical randomness (in the
choice of interaction terms), qDRIFT generates a quan-
tum channel that closely approximates the exact evolu-
tion more closely than the individual product formulae.
Importantly, unlike most deterministic Trotter methods,
the scaling of this approach does not depend explicitly
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Figure 10. qDRIFT coherent cost reduction through virtual
distillation in the Heisenberg model. Here we show the num-
ber of coherent qDRIFT steps required to reach a target trace
distance, with and without virtual distillation using 2 copies.
We see that there is a consistent reduction of at least 16x in
the number of required steps. When accounting for the over-
head of using two copies, this amounts to a 8x reduction in
the coherent space-time volume used to reach the same error
rate.

on the number of terms in the Hamiltonian, but rather
than 1-norm of the coefficients.

More precisely, we consider a Hamiltonian that we may
decompose as H =

∑
i hiHi, where all hi are made real

and positive by absorbing signs into Hi, and the spectral
norm of Hi is bounded by 1. Defining λ =

∑
i hi, the

diamond norm distance between the qDRIFT channel
and the true time evolution is bounded by

ε =
2λ2t2

η
, (51)

where η is the number of qDRIFT selection steps per-
formed to generate each instance of the qDRIFT chan-
nel, and hence controls the amount of coherent evolution
required. As η increases, the resulting quantum channel
converges to the unitary corresponding to the exact evo-
lution. It will be our aim to understand how our virtual
distillation technique can reduce the coherent space-time
volume required, by reducing this factor η required to
achieve the same error in practice.

B. Virtual distillation applied to qDRIFT

Here we study the application of virtual distillation
to qDRIFT numerically. Specifically, we investigate how
virtual distillation can impact the number of coherent
steps, η, required to reach a target accuracy. For this,
we choose a Heisenberg Hamiltonian with up to 6 qubits
per copy. The Hamiltonian is given by

H =
N∑
i=1

XiXi+1 + YiYi+1 + ZiZi+1 + hiZi, (52)

where hi ∈ {−h, h} are randomly chosen Z magnetic
field strengths, and periodic boundary conditions are ap-
plied such that site N + 1 is site 1. For our studies
here, we choose a time evolution length of t = N and
let h = 1. We numerically investigate the number of
coherent qDRIFT steps required to achieve a trace dis-
tance of 0.01 to the ideal state for evolutions under such a
Heisenberg model. The results of this analysis are shown
in Fig. 10. We see for this system that virtual distilla-
tion consistently reduces the required number of coherent
steps to achieve the desired trace distance by a factor of
more than 16x. If we account for the space overhead of
using two copies, this still amounts to a space-time ad-
vantage of 8x. These results suggest that the use of error
mitigation techniques may be further developed to yield
practical algorithmic improvements for real systems, es-
pecially in the NISQ regime.

VI. CONCLUSION

In this work, we showed how techniques for using mul-
tiple copies of a state to access polynomials of the density
matrix can be used to mitigate incoherent errors. We
studied the effectiveness of this approach for two analyt-
ically tractable noise models and characterized its limit
in terms of the dominant eigenvector of the noisy density
matrix. We numerically demonstrated reductions in the
error (quantified by the trace distance to the noise-free
state) of up to three orders of magnitude for a collec-
tion of small model systems. Furthermore, we showed
that this error suppression is enhanced as the system
size or the speed of information scrambling grows. We
also considered the application of our error mitigation
approach to the incoherent algorithmic error that arises
when approximating time-evolution using the qDRIFT
algorithm, finding a substantial constant factor improve-
ment.

Our proposed strategy for error mitigation, which we
refer to as virtual distillation, is simple to use and ana-
lyze. It provides a natural way to take advantage of the
surplus of qubits that we expect to have available as the
NISQ era continues to suppress the effects of incoherent
errors. We expect that our technique will prove comple-
mentary to other error mitigation and calibration tech-
niques, especially those capable of addressing coherent
errors. The effective state accessed by virtual distilla-
tion approaches the dominant eigenvector of the density
matrix exponentially quickly as the number of copies, M ,
increases. Therefore, the utility of our technique depends
mainly on the error in the dominant eigenvector and the
number of samples required. In particular, we have de-
voted a signficant amount of attention to the question of
sample complexity. This is due to the fact that proposed
NISQ applications, especially in quantum simulation, al-
ready face a daunting cost in this regard [17]. Our ana-
lytical work and numerical simulations indicate that our
strategy is most effective and affordable when the num-
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ber of errors expected in the circuit is O(1). The reach
of our approach will therefore naturally grow throughout
the NISQ era as hardware platforms continue to improve.

There are several other important considerations rele-
vant to the performance of this technique in the NISQ
era besides the drift in the dominant eigenvector and
the sample complexity. First of all, virtual distillation
requires collective measurements that couple the qubits
of one copy with the corresponding qubits of additional
copies. For hardware platforms based on a 2D grid
of qubits, these measurements are easiest to perform
when the connectivity of the original circuit is linear and
would require a substantial number of additional gates
in the general case. Fortunately, a linearly connected ar-
ray of qubits is known to be sufficient to achieve the
optimal gate complexity in some cases, including cer-
tain approaches for the simulation of quantum chem-
istry [51, 52]. A second important consideration is that
we’re often interested in measuring observables with sup-
port on more than one qubit. We discuss some options
for performing such measurements in Appendix A, Ap-
pendix B, and Appendix C, but these options come with
their own overheads in gate complexity or the number
of measurements repetitions. Thirdly, and perhaps most
importantly, the assumption that we’re able to measure
expectation values with respect to ρM/Tr(ρM ) is violated
when the individual copies are not in the same state or
when errors occur during execution of the measurements.
We discuss some aspects of the breakdown of this as-
sumption in Appendix H. In general, we do not expect
virtual distillation to be able to correct errors during the
measurement process but we note that we saw a reason-
able level of robustness to such errors in our numerical
simulations (see Figure 7).

Even as we begin to leave the NISQ era behind and ap-
proach devices that start to incorporate quantum error
correction, in the early days the desire to use as many
logical qubits as possible means we may perform some
computations that still have an appreciable number of
logical errors. Given that our technique can provide a
substantial improvement in error at negligible overhead
compared to traditional quantum error correction tech-
niques, there may be some advantageous interplay be-
tween the two, where small distance codes are used in

conjunction with this technique before more qubits are
available. We explore this opportunity in more detail in
Appendix G.

Our technique builds upon a long tradition of work
that uses the symmetric group for stabilizing quantum
computations and mitigating errors. We believe that
this research direction continues to hold promise, and we
identify a few directions that we find particularly intrigu-
ing. Virtual distillation is based on a simple collective
measurement of M copies of ρ. In Section II B, we show
that there exists more sophisticated collective measure-
ments whose sample complexity improves quadratically
upon our approach in some regimes. It would be interest-
ing to investigate this further, both from a fundamental
perspective, and with an eye towards practical implemen-
tation. Besides this potential improvement, another clear
question arises from our work. The drift in the dominant
eigenvector of the density matrix is a coherent error. As
with the coherent errors that occur directly in the exe-
cution of circuits on a NISQ device, we are hopeful that
variational optimization or other, complementary, error
mitigation techniques may prove useful in addressing this
additional source of coherent error. Studying this in the
context of the real noise experienced in hardware will be
especially important and illuminating.

In the process of preparing this work, a related paper,
Ref. 53 appeared in the literature. Our work highlights
different conclusions than theirs in error scaling due to
our explicit consideration of errors that induce a drift in
the dominant eigenvector of the density matrix.

Acknowledgements

The authors are extremely grateful to Dave Bacon for
key discussions around the symmetric subspace and dia-
grammatic derivations, Gian-Luca Anselmetti for sugges-
tions around performing virtual distillation with two dis-
tinct states, and Nathan Wiebe for helpful advice at var-
ious stages. WJH and KBW acknowledge support from
the NSF QLCI program through grant number OMA-
2016245.

[1] D Aharonov and M Ben-Or, “Fault-tolerant quantum
computation with constant error,” in Proceedings of the
twenty-ninth annual ACM symposium on Theory of com-
puting , STOC ’97 (Association for Computing Machin-
ery, New York, NY, USA, 1997) pp. 176–188.

[2] Austin G Fowler, Matteo Mariantoni, John M Martinis,
and Andrew N Cleland, “Surface codes: Towards practi-
cal large-scale quantum computation,” Phys. Rev. A 86,
032324 (2012).

[3] John Preskill, “Quantum computing in the NISQ era and
beyond,” Quantum 2, 79 (2018).

[4] Kristan Temme, Sergey Bravyi, and Jay M Gambetta,
“Error mitigation for Short-Depth quantum circuits,”
Phys. Rev. Lett. 119, 180509 (2017).

[5] Suguru Endo, Simon C Benjamin, and Ying Li, “Prac-
tical quantum error mitigation for Near-Future applica-
tions,” Phys. Rev. X 8, 031027 (2018).

[6] Abhinav Kandala, Kristan Temme, Antonio D Córcoles,
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a circuit to localize an observable of interest to a single qubit before performing virtual distillation. Here we present
an alternative solution that doesn’t require the use of ancilla-assisted measurement or circuit depth.

The challenge arises due to the use of Eq. 8, in particular, the choice to use the symmetrized version of an observable,
a notion defined in Eq. 6. Using the symmetrized version of a multi-qubit observable means that it is not possible to
perform the required diagonalization using a tensor product of separate unitaries across each pair of qubits. As an
example, we consider the operator O = ZiZj . Our arguments hold equally well for any other operator composed of
a tensor product of (more than one) single-qubit Pauli operators. Taking the product of the symmetrized observable
and the swap operator yields

O(2)S(2) =
1

2
(Z1

i Z
1
j + Z2

i Z
2
j )S(2). (A1)

This operator does not factorize into a tensor product of operators with support on the individual pairs of qubits, nor
can it be diagonalized by an operator that factors this way.

However, instead of using Eq. 8 to determine the corrected expectation value of O, we can instead use the non-
symmetrized form introduced in Eq. 2. Returning to our example where O = ZiZj , we see that we need to estimate
the numerator and denominator of

Tr(Z1
i Z

1
j S

(2)ρ⊗2)

Tr(S(2)ρ⊗2)
. (A2)

Unlike the symmetrized observable of Eq. A1, the operator Z1
i Z

1
j S

(2) factorizes into a tensor product over the N
pairs of qubits (a pair being one qubit from the first system and the corresponding qubit from the second system).
Z1
i Z

1
j S

(2) is not Hermitian, but because it is unitary, we can still estimate Tr(Z1
i Z

1
j S

(2)ρ⊗2) by applying a circuit

to diagonalize it and measuring in the computational basis. As Z1
i Z

1
j S

(2) factorizes into a product of two-qubit
operators, the circuit that diagonalizes it does as well.

Note that because Z1
i Z

1
j does not commute with S(2), we will be unable to simultaneously estimate the numerator

and denominator of Eq. A2. We will also be unable to simultaneously measure the corrected expectation value
corresponding to different choices of i and j. More generally, we are able to measure any single tensor product of
one-qubit operators at a time, regardless of the number of qubits it acts on. The details of the diagonalization will, of
course, depend upon the operator to be measured. We do not carefully analyze the number of measurements required
by this flavor of virtual distillation, but we note that the inability to parallelize the measurement of commuting
multi-qubit observables would make it challenging to profitably combine this approach with sophisticated NISQ
measurement strategies, such as the one presented in Ref. 17. In particular, individual multi-qubit operator must
be measured separately using this approach, even if they commute. This fact increases the overall number of circuit
repetitions required for many applications.

Appendix B: Measurement by Diagonalization with Three or More Copies

In Section II A and Appendix A we described protocols for measuring the expectation value of O with respect to

the state ρ2

Tr(ρ2) by diagonalizing S(2) and either O1S(2) or O(2)S(2). Here we describe how these approaches can

be generalized to higher powers of ρ in a natural way. Like the swap operator, the cyclic shift operator between M
N -qubit systems, S(M), factorizes into a tensor product of N M -qubit gates. Specifically, it factorizes into the tensor

product of N single-qubit cyclic shift operators. The symmetrized operator Z
(M)
k = 1

M

∑M
i=1 Z

i
k commutes with the

operator S(M). Therefore, Z
(M)
k S(M) and S(M) are simultaneously diagonalizable even though S(M) is unitary but

not Hermitian for M > 2. Because Z
(M)
k and S(M) both factorize into tensor products over N M -tuples of qubits,

the unitary that diagonalizes these operators then factorizes into a tensor product of M -qubit operators in the same
way.

The same concerns about correcting the expectation values of multi-qubit observables that we discussed in Ap-
pendix A for the two-copy (M = 2) case apply to this generalized proposal. The tools developed so far allow us to
simultaneously estimate Tr(Zkρ

M ) for all values of m and also Tr(ρM ). If we are interested in reconstructing Tr(PρM )
for some multi-qubit Pauli operator P , we can do so using a generalization of Eq. A2, but we would be limited to
measuring the operators required for one particular P at a time.

For the specific case of M = 3, we have numerically optimized the quantum circuit of Figure 11 to simultaneously

diagonalize Z
(3)
k S

(3)
k and S

(3)
k . We obtained parameters for the four two-qubit gates that allow for an error (measured

in the Frobenius norm of the difference between the exact and approximate matrices) of approximately 5E − 5 when
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Figure 11. The ansatz that we numerically optimize to approximately diagonalize S
(3)
k and Z

(3)
k . The two-qubit gates parame-

terized by the ~θis are arbitrary two-qubit gates. We performed the numerical optimization using the Julia language.

the following equations are used,

B
(3)
k S

(3)
k B

(3)†
k →1

8

(
2+ (B1)

(−3−
√

3i)Z1
k+

(3−
√

3i)Z1
kZ

2
k+

(3 +
√

3i)Z3
k+

2i
√

(3)Z1
kZ

3
k+

(3−
√

3i)Z2
kZ

3
k

)
,

B
(3)
k Z

(3)
k B

(3)†
k →1

3
(Z1

k + Z2
k + Z3

k ). (B2)

Appendix C: Ancilla-Assisted Measurement

In this section, we present the approach one may take if ancilla-assisted measurement is feasible in the experimental
setup. This is a simplified version of the proposal for ancilla-assisted measurement protocol found in Ref. 35 for
estimating the expectation value of an observable O with respect to the state ρ2/Tr(ρ2). As with the method we
discussed in Section II A, we do this by approximating the numerator and denominator of Eq. 8. Unlike that method,
this approach uses a non-destructive measurement of the swap operator (S(2)). The main reward for this added
complexity is that this variant of virtual distillation doesn’t restrict the form of the operators being measured, nor
does it prevent simultaneous measurement of operators acting on overlapping subsets of qubits. Therefore, it is
compatible with some of the recently developed techniques for efficiently measuring a large collection of commuting
operators [17, 54, 55]. While we focus on the M = 2 copy version here, we also briefly discuss the generalization to
M ≥ 3 copies.

To use this method, we begin with two system registers, each in the state ρ, as well as an ancilla qubit in the
|0〉 state. We then perform a non-destructive measurement of S(2) in the standard way, using the so-called swap or
Hadamard test [25, 26, 56]. Specifically, we apply a Hadamard gate to the ancilla qubit, apply S(2) conditioned on
the ancilla qubit being in the |1〉 state, and measure the ancilla qubit in the X basis. The expectation value of X on
the ancilla qubit is then equal to

〈
S(2)

〉
. Because S(2) factorizes into a tensor product of two-qubit swap gates, its

controlled version likewise factorizes into a series of N Fredkin (controlled-swap) gates. Compiling this circuit may
necessitate some extra steps (such as expanding the single ancilla qubit into a GHZ state using a series of CNOT
gates) in order to deal with the restricted connectivity of a near-term device.

It isn’t technically necessary, but it simplifies the analysis and reduces the variance of the resulting estimator to
focus on the symmetrized form of O, O(2) = 1

2 (O1+O2). As in Section II A, this is beneficial because the symmetrized

observable O(2) commutes with S(2). We can therefore measure the product O(2)S(2) by first measuring S(2) using
the Hadamard test described above and then measuring O(2) on the system registers. This protocol does not require
a separate estimation of Tr(ρO) like the original proposal of Ref. 35. Furthermore, it allows us to make us to make
use of measurements of O on both copies of ρ and also simultaneously estimate the numerator and denominator of
Eq. 8, leading to a relatively sample-efficient scheme.

Now let us consider the case with three or more copies of ρ. S(N) is not Hermitian for N > 2 but the natural
generalization to the above strategy still works as expected. Specifically, we can use a controlled version of the cyclic
shift operator, S(N), to sample an observable whose expectation value is equal to Re(Tr(S(N)ρ⊗N )) [26, 27, 35].
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Because the symmetrized observable O(N) commutes with S(N), it also commutes with the observable measured
by this generalization of the swap test. Therefore, we can sample from an observable whose expectation value is
Tr(S(N)O(N)ρ⊗N ) by first performing the higher-order swap test and then a measurement of O(N).

Appendix D: Variance of the Corrected Expectation Value Estimator

In this section, we calculate the variance of the estimator for the corrected expectation value obtained by applying
Eq. 8 with M = 2. Specifically, we consider the estimation of the expectation value of an observable O with respect

to the state ρ2

Tr(ρ2) constructed by repeatedly measuring the operators S(2)O(2) and S(2),

Tr(Oρ2)

Tr(ρ2)
=

Tr(O(2)S(2)ρ⊗2)

Tr(S(2)ρ⊗2)
. (D1)

We assume that both operators are simultaneously measured by averaging over R repetitions of state-preparation and
measurement. This assumption applies to the measurement by diagonalzation method presented in Section II A of
the main text and also to the ancilla-assisted measurement approach of Appendix C.

The outcomes obtained from measurements of these operators are classical random variables, and we can proceed
by determining the variance of these two random variables and their covariance. We begin by calculating the variance
of the numerator (with respect to the state ρ⊗2).

Var(S(2)O(2)) =
〈

(S(2)O(2))2
〉
−
〈
S(2)O(2)

〉2

(D2)

=
〈

(O(2))2
〉
− Tr(ρ2O)2 (D3)

=
1

4
Tr((ρ⊗ ρ)(O2 ⊗ I + 2O ⊗O + I⊗O2))− Tr(ρ2O)2 (D4)

=
1

2
Tr(ρO2) +

1

2
Tr(ρO)2 − Tr(ρ2O)2 (D5)

The variance of the random variable in the denominator follows by taking O = I,

Var(S(2)) =
〈

(S(2))2
〉
−
〈
S(2)

〉2

(D6)

= 1− Tr(ρ2)2. (D7)

We’ll also need the covariance between the random variables representing measurements of the operators which
estimate the numerator and the denominator.

Cov(S(2)O(2), S(2)) =
〈
S(2)O(2)S(2)

〉
−
〈
S(2)O(2)

〉〈
S(2)

〉
(D8)

=
〈
O(2)

〉
− Tr(ρ2O)Tr(ρ2) (D9)

= Tr(ρO)− Tr(ρ2O)Tr(ρ2). (D10)

There isn’t a closed-form expression for the variance of the ratio of two random variables [57], but we can take the
standard approximation based on a Taylor series expansion,

Var(
A

B
) ≈ 1

〈B〉2
Var(A)− 2

〈A〉
〈B〉3

Cov(A,B) +
〈A〉2

〈B〉4
Var(B). (D11)

We estimate the expectation values for the numerator and denominator of Eq. D1 by averaging over a series of
R experiments. This scales the variances calculated above by a factor of 1

R . If R is sufficiently large, then the
approximation presented in Eq. D11 will be a good one. Applying this expression to determine the variance of the
estimator from Eq. D1 yields

Var(Estimator) ≈ 1

R

( 1

Tr(ρ2)2

(1

2
Tr(ρO2) +

1

2
Tr(ρO)2 − Tr(ρ2O)2

)
(D12)

− 2
Tr(ρ2O)

Tr(ρ2)3

(
Tr(ρO)− Tr(ρ2O)Tr(ρ2)

)
+

Tr(ρ2O)2

Tr(ρ2)4

(
1− Tr(ρ2)2

))
.
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Appendix E: Variance of the Proposed Collective Measurement

In Section II B, we claimed that there exists a joint measurement on 2K copies of ρ that allows us to estimate Tr(Oρ2)
with a lower variance than performing K copies of the basic virtual distillation procedure in parallel. Specifically,
we claimed that the operator Õ (whose definition we reproduce below) exhibits a lower variance than the simple
alternative under certain conditions. In this appendix, we prove this claim. First, we recall the definition,

Õ =
1(

2K
2

) 2K∑
i=1

∑
j>i

1

2
(Oi +Oj)S(i,j), (E1)

where we S(i,j) denotes the swap operator between subsystems i and j and O is an arbitrary Pauli operator. Linearity
ensures that a calculation of the expectation value of this operator can be reduced to the virtual distillation procedure
applied to two copies, yielding

Tr(Õρ⊗2K) = Tr(Oρ2). (E2)

We now bound the variance of measurements of this operator with respect to the state ρ⊗2K ;

Var(Õ) =
〈
O2
〉
− 〈O〉2 (E3)

=
1

4
(
K
2

)2 2K∑
i=1

∑
j>i

2K∑
a=1

∑
b>a

〈
(Oi +Oj)S(i,j)(Oa +Ob)S(a,b)

〉
− Tr(Oρ2)2. (E4)

Note that we have made use of Eq. E2 to replace 〈O〉2 by Tr(Oρ2)2. We proceed by breaking the summation up into
three cases. In the first case, i = a and j = b. In the second case, there are only three distinct values amongst the
indices i, j, a, b. In the fourth case, all four of the indices take distinct values.

Consider the first case where i = a and j = b. Then we can simplify and bound the sum,

1

4
(

2K
2

)2 2K∑
i=1

∑
j>i

〈
(Oi +Oj)S(i,j)(Oi +Oj)S(i,j)

〉
=

1

4
(

2K
2

)2 2K∑
i=1

∑
j>i

〈
2 +OiOj +OjOi

〉
(E5)

≤ 1(
K
2

) . (E6)

Here we have used the properties that S(i,j), Oi, and Oj are self-inverse, and that S(i,j) commutes with (Oi +Oj).
Next, let’s consider the third case, where all four indices take distinct values. Then the operators (Oi + Oj)S(i,j)

and (Oa + Ob)S(a,b) act on distinct pairs of systems. Therefore, their expectation values with respect to the tensor
product ρ⊗2K can be evaluated separately and multiplied together. We can use this fact to simplify and bound this
component of the sum,

1

4
(

2K
2

)2 2K∑
i=1

∑
j>i

2K∑
a=1,a6=i,a6=j

∑
b>a,b6=i,b6=j

〈
(Oi +Oj)S(i,j)(Oa +Ob)S(a,b)

〉
(E7)

=
1

4
(

2K
2

)2 2K∑
i=1

∑
j>i

2K∑
a=1,a6=i,a6=j

∑
b>a,b6=i,b6=j

〈
(Oi +Oj)S(i,j)

〉〈
(Oa +Ob)S(a,b)

〉
(E8)

=
1(

2K
2

)2 2K∑
i=1

∑
j>i

2K∑
a=1,a6=i,a6=j

∑
b>a,b6=i,b6=j

Tr(Oρ2)2 (E9)

=
1(

2K
2

)(2K − 2

2

)
Tr(Oρ2)2 < Tr(Oρ2)2. (E10)

Now we treat the case where the indices take three distinct values. Actually, there are four sub-cases here. We
could have any one of the four possibilities, i = a, i = b, j = a, or j = b. We work out the details for the i = a case
below, noting that the others behave symmetrically.〈

(Oi +Oj)S(i,j)(Oi +Ob)S(i,b)
〉

(E11)

=
〈

(Oi +Oj)(Oj +Ob)S(i,j)S(i,b)
〉

(E12)

=
〈

(OiOj +OiOb +OjOb + 1)S(i,j)S(i,b)
〉
. (E13)
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Here we have used the property that Oi is self-inverse. Now we note that the product S(i,j)S(i,b) is a cyclic shift between
the subsystems i, j, b and that this product commutes with the operator (OiOj + OiOb + OjOb + 1). Computation
using a tensor network diagram (see Figure 12) establishes that〈

(OiOj +OiOb +OjOb + 1)S(i,j)S(i,b)
〉

(E14)

= 3Tr(OρOρ2) + Tr(ρ3). (E15)

In order to bound this quantity, let us denote the projector onto the +1 eigenspace of O by P+ and the projector
onto the −1 eigenspace by P−. Then we can expand Eq. E15 in terms of these projectors, yielding

3Tr(OρOρ2) + Tr(ρ3) (E16)

= 3Tr(P+ρP+ρ
2)− 3Tr(P−ρP+ρ

2)− 3Tr(P+ρP−ρ
2) + 3Tr(P−ρP−ρ

2) + Tr(ρ3) (E17)

≤ 7Tr(ρ3). (E18)

For simplicity, let us define the indicator function

W (i, j, a, b) =

{
1 if i, j, a, b take exactly three distinct values

0 otherwise
(E19)

Now we can bound the component of the sum where the indices take three distinct values. For each of the
(

2K
2

)
values

of i and j, there are exactly 4K − 4 values of a and b such that I(i, j, a, b) = 1. Therefore, we have

1

4
(

2K
2

)2 2K∑
i=1

∑
j>i

2K∑
a=1

∑
b>a

〈
(Oi +Oj)S(i,j)(Oa +Ob)S(a,b)

〉
I(i, j, a, b) (E20)

≤ 7

4
(

2K
2

)2 2K∑
i=1

∑
j>i

2K∑
a=1

∑
b>a

I(i, j, a, b)Tr(ρ3). (E21)

≤ 7(4K − 4)

4
(

2K
2

) Tr(ρ3) (E22)

≤ 7(2K − 2)

2K(2K − 1)
Tr(ρ3). (E23)

Now we can combine the bounds from the three different cases and simplify the expression for the variance to yield

Var(Õ) ≤ 1 + 7(K − 1)Tr(ρ3)

K(2K − 1)
. (E24)

Note that we have simplified by subtracting the Tr(Oρ2)2 term that arose from evaluating 〈O〉2.

Appendix F: Details Regarding the Numerical Experiments with Scrambling Circuits

In Section IV A we briefly described the random circuits that we simulated to produce Figure 4, Figure 5, and
Figure 6. Here we expand upon that description.

The first class of circuits are essentially the one-dimensional analogues of the random circuits of Ref. 44. They are
constructed by alternating between layers of two-qubit gates and single-qubit gates. The two-qubit gate layers consist
of ‘Sycamore gates,’ two-qubit gates that enact the unitary

1 0 0 0
0 0 −i 0
0 −i 0 0

0 0 0 e
−iπ
6

 . (F1)

The two-qubit gate layers themselves alternate between layers that have Sycamore gates on every even-odd pair and
every odd-even pair. The ensemble of random circuits is defined by adding a layer of randomly chosen single-qubit
gates between every layer of two-qubit gates in this fixed structure. These single-qubit gates are drawn from the set{

X, Y, Z,
√
X,

√
Y ,

√
Z
}
, (F2)
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Figure 12. A diagrammatic proof of Eq. E15.

with the square root of a gate being defined by taking the principal square root in the eigenbasis of the gate.
The second class of random circuits is exactly the same as the first class, except that we effectively remove the two-

qubit gates by replacing the Sycamore gates with the identity. When we perform noisy simulations of these circuits
we apply the single-qubit depolarizing channels in the same locations despite the lack of two-qubit gates. Note that
because this second class of random circuits contains only single-qubit gates, the applications of the single-qubit
depolarizing noise channels can be commuted to the end of the circuit and combined together.

We can therefore write an analytical expression for the density matrix at the end of the noisy computation in terms
of the noiseless single qubit states {|φi〉}, the single-qubit depolarizing probability, p, and the depth of the circuit, D.
We define the single-qubit depolarizing channel in the usual way,

∆(ρ) = (1− p)ρ+
p

3
+
p

3

(
XρX + Y ρY + ZρZ

)
. (F3)

An equivalent formulation which will be useful for our purposes is

∆(ρ) = (1− 4

3
p)ρ+

4

3
p
I
2
. (F4)

For a pure state ρ = |φ〉〈φ|, we have

∆(|φ〉〈φ|) = (1− 2

3
p) |φ〉〈φ|+ 2

3
p
∣∣φ⊥〉〈φ⊥∣∣ , (F5)

where |φ⊥〉 is orthogonal to |φ〉. Eq. F4 allows us to easily analyze D repeated applications of the channel,

∆(ρ)D = (1− 4

3
p)Dρ+ (1− (1− 4

3
p)D)

I
2
, (F6)

which tells us that D applications of the channel with an error rate p are equivalent to a single application with error
rate

p̃ =
3

4
− 3

4
(1− 4

3
p)D. (F7)
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We can now write an expression for the density matrix at the end of the computation,

N⊗
i=1

(1− 2

3
p̃(i)) |φi〉〈φi|+

2

3
p̃(i)

∣∣φ⊥i 〉〈φ⊥i ∣∣ . (F8)

Here the effective single-qubit depolarizing probability p̃(i) depends on i because the qubits at the end of the circuit

are only subject to D
2 applications of the single-qubit depolarizing channel instead of the D that are applied to qubits

in the bulk. Therefore, employing Eq. F7, we have

p̃(i) =

{
3
4 −

3
4 (1− 4

3p)
D
2 for i = 1 or i = N,

3
4 −

3
4 (1− 4

3p)
D for 2 ≤ i ≤ N − 1.

(F9)

We can observe a few things from the combination of Eq. F8 and Eq. F9. First of all, for any value of p smaller than
the maximal p = 3

4 , the dominant eigenvector of the density matrix is exactly the ideal state (|φ1〉⊗ |φ2〉⊗ · · ·⊗ |φN 〉).
Secondly, when p is small, the next largest eigenvectors of the density matrix will correspond to states with an error
on a single qubit. Neglecting the subtlety caused by the two different values of p̃, we can see that there will be N such
eigenvectors with eigenvalues ≈ 2

3 P̃ . After these states, there will be
(
N
2

)
eigenvectors corresponding two states with

two errors. This distribution doesn’t exactly match the phenomenological noise model we assumed in Section III A,
but it is qualitatively similar.

Appendix G: Interplay with the surface code

While the majority of this work has focused on the NISQ regime, one interesting question to ask is what role this
approach can play after some degree of quantum error correction has been deployed. To explore this connection
concretely, we imagine that a fault-tolerant surface code quantum computer is in operation with typical gate error
rates on the order of 10−3. For such systems, it has been determined numerically [58] that in conjunction with a
minimum-weight perfect matching decoder, the error rate of a surface code cycle is roughly

εc = 10−(d+3)/2 (G1)

where d is the distance of the code protecting a given logical qubit. Including data and measurement qubits, the
translation to physical qubits for a given distance is n = 2d2. In order to guarantee protection against measurement (or
time-like) errors up to the same distance without using an excessive number of qubits, one must repeat measurements
a number of cycles proportional to d. For operations like gates, additional cycles are required to perform the operation
as well. For example, many simple Clifford operations may be done in a number of cycles like 2d using lattice surgery
techniques [59, 60]. However more complicated arbitrary rotations like the ones used in many NISQ algorithms, must
first be broken down into a combination of discrete gates like T and Clifford gates through gate synthesis, then those
T gates consume on the order of 20d cycles for successful distillation. Using a coarse synthesis heuristic of roughly
10 T gates and 10 Clifford gates per arbitrary rotation, this gives approximately 200d cycles of the surface code per
arbitrary rotation. If we average this coarsely, assuming an even distribution of Clifford and arbitrary rotations,
as is common in NISQ approaches, then we can model on average that we require 100d rounds of the surface code
per gate we wish to perform. While these numbers are subject to refinement and improvements, we believe these
can approximately serve to understand where an advantageous combination of methods might occur. As is common
with early circuit implementations, we may assume that the gates are densely packed so that additional idling error
is minimal. With these assumptions, using n physical qubits to represent a single logical qubit, we have an overall
fidelity of

f1 =
(

1− 10−(
√
n/2+3)/2

)100
√
n/2G

(G2)

where G is the number of gates performed. The virtual distillation technique uses twice the qubits to effect a large
constant factor improvement over the bare circuit. Hence the apt comparison here is to consider the use of twice
the qubits within the virtual distillation technique, or to use twice the qubits to improve the distance of the surface
code logical qubit. An asymptotic analysis would argue that the exponential returns of the error correcting code
would be the best option, however the overhead can mean that a large constant factor could make virtual distillation
advantageous in some cases. To examine this, consider the error rate of G gates in the surface code using twice the
qubits

f2 =
(

1− 10−(
√
n+3)/2

)100
√
nG

. (G3)
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A strict analysis would consider that we need to round these to integer distances, but for this approximate analysis,
this should suffice. If we consider the ratio between the implied error rates cs = (1 − f1)/(1 − f2), we can find the
required constant factor for a given number of qubits per logical qubit and number of gates to make using virtual
distillation advantageous. Past a certain number of qubits, this constant factor is enormous, but we find that up to
distance 10−15 the empirical improvements measured in the text are sufficient to justify the use of virtual distillation
in place of additional qubit protection. In particular, at distance 10 with n = 200 physical qubits per logical qubit,
performing G = 1000 gates on the logical qubit, the respective error rates are about are 10−1 and 10−5, and hence a
constant improvement is about of about 104 is sufficient to justify the use of virtual distillation, which is on par with
some improvements seen in the main text. To be fair, one might argue that an overall error rate of 10−5 would already
suffice, and by a distance of 15, the required improvement is on the order of 107 which is at the upper limit of what
we imagine can be achieved with this technique. At smaller distances and numbers of gates, the required constant
factors decrease as well. If we assume that we will consistently push the limits of the number of logical qubits we use,
reducing the number of physical qubits per logical qubit available, this may imply a regime in early fault tolerance
where this technique is applicable. Further studies will be required to identify precisely under what conditions this
may be the case.

Appendix H: Virtual Distillation Applied to Distinct States

In the main body of this paper, we applied virtual distillation to a variety of systems under the assumption that we
had access to multiple copies of the same noisy state. In reality, even if we attempt to perform the same computation
multiple times in parallel, the noise experienced by each copy will not be identical. We now consider the case where
we apply virtual distillation to two distinct states, ρA and ρB . It’s straightforward to show that we then effectively
measure expectation values with respect to the state

ρeff =
ρAρB

Tr(ρAρB)
. (H1)

This can be demonstrated in various ways, but the most straightforward is to use a diagrammatic proof of the kind
we illustrated in Figure 1. Note that we still rely on the important assumption that the two copies are unentangled
prior to virtual distillation.

Furthermore, some additional care must be taken when virtual distillation is applied to two distinct states. In
particular, ρeff is not guaranteed to be a positive semidefinite matrix and does not, in general, correspond to a valid
quantum state. This is especially important to note in the context of variational algorithms, where care would have
to be taken to ensure that a non-variational answer is not achieved due to the non-phyiscality of ρeff. It will be an
interesting direction for future work to address this potential challenge.

In order to explore the impact of virtually distilling two different states together, we present an additional simulation
of the Heisenberg evolution that we considered in Section IV B. In Figure 13, rather than employing the single-qubit
depolarizing noise model we used previously, we simulate ρA = ρbit using an analogous application of a bit-flip error
channel, while using a phase-flip channel for ρB = ρphase. We find that the error in the effective state accessed by
performing virtual distillation to these two different states closely tracks the error we obtain by using two copies of
either state individually.

Appendix I: Performance Under Amplitude Damping and Dephasing Noise

In Section IV, we used numerical simulations of three different systems to explore the performance of virtual
distillation under a noise model where we applied a single-qubit depolarizing noise channel after each two-qubit
gate. It is natural to ask how virtual distllation performs under a more realistic approximation to the actual noise
experienced on NISQ hardware. In this appendix, we shed light on this question by considering a more physically
motivated model of stochastic errors in two-qubit gates based on single-qubit amplitude damping and dephasing
channels. As we did in the main text, we follow each two-qubit gate the application of a single-qubit error channel
to each qubit. Here that single qubit error channel is the concatenation of the dephasing and amplitude damping
channels described below.

Our amplitude damping channel is parameterized by γ1, which represents the probability that a qubit in the |1〉
state will spontaneously decay into the |0〉 state. We can express this channel in a standard (but non-unique) way
using the Kraus operators,

M0 =

[
1 0
0
√

1− γ1

]
, M1 =

[
0
√
γ1

0 0

]
. (I1)
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Figure 13. The error in the unmitigated noisy states, and the states accessed by virtual distillation, for the same 10 qubit
Heisenberg evolution under two different noise models. We consider a bit-flip error model (ρbit, teal curve) and phase-flip error
model (ρphase, orange dashed curve). We show the error for virtual distillation applied in the usual way to two identical copies
of each noisy state (ρ2bit and ρ2phase, purple dotted curve and pink dashed curve). We also consider the error when virtual
distillation is applied to one copy of each state state (ρbitρphase, green dotted curve). We quantify the error in terms of the
trace distance to the state obtained from noiseless evolution as a function of the expected number of single-qubit gate errors.
The expected number of errors is varied by changing the error rate per-gate, fixing the number of two-qubit gates to be 450.
Ultimately, we find that the performance of virtual distillation is barely affected when the two input states are generated with
different noise processes.

Our dephasing channel is parameterized by γ2, which represents the probability that an unintended interaction between
a qubit and its environment entangles the two, effectively performing a measurement in the computational basis. One
standard way of expressing this channel in terms of Kraus operators is given below,

M0 =
√

1− γ2

[
1 0
0 1

]
, M1 =

[√
γ2 0
0 1

]
, M2 =

[
0 0
0
√
γ2

]
. (I2)

It can also be convenient to use the equivalent representation,

M0 =

[
1 0
0
√

1− γ̃

]
, M1 =

[
0 0
0
√
γ̃

]
, γ̃ = 2γ2 − γ2

2 . (I3)

The parameters γ1 and γ2 can be related to the related to the T1 and T2 times frequently used to characterize
relaxation in two-level systems [61, 62]. In our simulations, we consider λ1 = λ2, a choice with a physical model where
the T1 and T2 times are comparable. This allows us to plot the error (quantified by the trace distance to the state
that would be obtained in the absence of noise) as a function of the expected number of error events. The expected
number of errors (E) can be expressed in terms of the number of two-qubit gates in the ciruit (G) and the two error
probabilities,

E = 2G(λ1 + λ2). (I4)

In Figure 14 and Figure 15 we present the results of two sets of simulations under this error model. Figure 14
closely follows Figure 6 from the main text, examining the performance of virtual distillation applied to a random
circuit on a one-dimensional array of qubits (see Section IV A). Likewise, Figure 15 considers the same Heisenberg
evolution treated in Figure 8 and described in Section IV B. In both cases, we show the error in the unmitigated noisy
state, the states accessed by virtual distillation with M = 2 and M = 3 copies, and the dominant eigenvector of the
noisy density matrix. We quantify the error in terms of the trace distance to the ideal state that would be obtained
in the absence of noise, plotting this trace distance as a function of the expected number of errors.

Comparing Figure 14 and Figure 15 with Figure 6 and Figure 8 from the main text, we note a few things. First
of all, the qualitative behaviour of virtual distillation is largely unaffected by the change in the noise model. When
the expected number of errors is small enough we still see that virtual distillation decreases the error by orders of
magnitude. The performance is still limited by the drift in the dominant eigenvector and we find that in many regimes
M = 2 copies is sufficient to maximize the potential benefit. The largest differences are observed when one compares
the two figures that analyze the performance of virtual distillation on random circuits (Figure 14 and Figure 6). In
this case, the potential benefit of virtual distillation is smaller (roughly two orders of magnitude instead of three for
the ten qubit system) under the noise model based on amplitude damping and dephasing. Additionally, and perhaps
more interestingly, we see that the dependence on system size mostly vanishes for the random circuits when we switch
to the noise model considered in this appendix, while it persists when we consider the Heisenberg evolution.
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Figure 14. The error in the unmitigated noisy states (M = 1), the states accessed by virtual distillation (M = 2, 3), and the
dominant eigenvector of the density matrices (M →∞) for a variety of entangling random circuits (described in Section IV A).
We plot the trace distance to the state obtained from noiseless evolution, as a function of the expected number of single-qubit
amplitude damping and dephasing errors, for 6 and 10 qubit systems (demarcated by the thickness of the symbols). We vary
the expected number of errors by varying the error rate per-gate, fixing the number of two-qubit gates to be 450. This figure
is constructed to parallel Figure 6, except that we consider an error model based on single-qubit amplitude damping and
dephasing rather than a depolarizing channel. We see that the system size dependence vanishes at low error rates in this case,
in contrast with the data from Figure 6.

Figure 15. The error in the unmitigated noisy states (M = 1), the states accessed by virtual distillation (M = 2, 3), and the
dominant eigenvectors of the density matrices (M →∞), for states generated by the Trotterized time evolution of a Heisenberg
model (described in Section IV B). We plot the trace distance to the state obtained from noiseless evolution as a function
of the expected number of single-qubit amplitude damping and dephasing errors. The expected number of errors is varied
by changing the error rate per-gate, fixing the number of two-qubit gates to be 450. We show this data for 6 and 10 qubit
systems (differentiated by the size of the markers). This figure mirrors Figure 8, except that we consider an error model based
on single-qubit amplitude damping and dephasing rather than depolarizing noise. The two figures display similar behaviour,
indicating that our conclusions about virtual distillation have some robustness to changes in the noise model.
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