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Abstract 
 

Establishing the structure-property relationship for grain boundaries (GBs) is critical for 

developing next generation functional materials, but has been severely hampered due to its 

extremely large configurational space. Atomistic simulations with low computational cost and 

high predictive power are strongly desirable, but the conventional simulations using empirical 

interatomic potentials and density functional theory suffer from the lack of predictive power and 

high computational cost, respectively. A machine learning interatomic potential (MLIP) recently 

emerged but often requires an extensive size of the training dataset, making it a less feasible 

approach. Here we demonstrate that an MLIP trained with a rationally designed small training 

dataset can predict thermal transport across GBs in graphene with ab initio accuracy at an 

affordable computational cost. In particular, we employed a rational approach based on the 

structural unit model to find a small set of GBs that can represent the entire configurational space 

and thus can serve as a cost-effective training dataset for the MLIP. Only 5 GBs were found to be 

enough to represent the entire configurational space of graphene GBs. Using the atomistic Green’s 

function approach and the MLIP, we revealed that the structure-thermal resistance relation in 

graphene does not follow the common understanding that large dislocation density causes larger 

thermal resistance. In fact, thermal resistance is nearly independent of dislocation density at room 

temperature and is higher when the dislocation density is small at sub-room temperature. We 

explain this intriguing behavior with the buckling near a GB causing a strong scattering of flexural 

phonon modes. Our work shows that a machine learning technique combined with conventional 

wisdom (e.g., structural unit model) can extend the recent success of ab initio thermal transport 

simulation, which has been mostly limited to single crystals, to complex yet practically important 

polycrystals with GBs. 
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I. Introduction 

Grain boundaries (GBs) are of interest in many applications because they are common 

defects and largely affect electrical, mechanical, and thermal properties. For two dimensional (2D) 

materials such as graphene, experimental studies showed that GBs commonly exist in graphene 

sheets prepared by exfoliation[1-5], causing the fundamental physical properties of polycrystal 

samples largely deviate from those of single crystals. Therefore, engineering GBs is an effective 

way to achieving desired electronic, thermal, and mechanical properties in many applications[6-

14]. 

The physical properties are largely dependent on the local atomic structure of GB [5,6,15] 

and thus it is important to establish the structure-property relationship on how a GB structure 

affects the physical properties. However, establishing such a structure-property relationship has 

been challenging mainly for two reasons. The first is that GBs have extremely large configurational 

space. For example, three dimensional (3D) materials have 5 degrees of freedom (misorientation 

angle noted as qM hereafter, line angle, and three degrees of freedom of crystalline grain orientation 

in 3D space) for GB structures, making the configurational space extremely large. The second is 

that the experimental characterization of individual GB requires significant efforts particularly for 

preparing samples with a geometrically well-defined GB. The samples with GBs have been 

prepared by bonding two wafers with a twist angle but it often leaves a void at the interface [16]. 

Therefore, it is challenging to experimentally study enough number of GBs to draw a statistically 

conclusive finding on the structure-property relationship. 

Atomistic simulation can be a useful tool for the study of GBs if it has high predictive 

power, but also has major challenges. The atomistic simulation for thermal transport such as 

molecular dynamics (MD) [7,8,10,17-19] and the atomistic Green’s function (AGF) [14,20] 

require an interatomic potential. A common approach for the interatomic potential has been 

empirical potentials that have a rigid functional form parametrized based on quantum mechanical 

calculation results and experimental data. Although the empirical potentials have been useful for 

promoting the understanding of physical phenomena from an atomistic level, they have clear 

limitations. For the physical properties that were not considered for the parametrization, empirical 

potentials do not provide an accurate prediction. Also, because of its rigid functional form, it is 

usually not flexible enough to describe a wide range of atomic configurations. On the contrary, ab 

initio calculation can be highly accurate and have a predictive power without adjustable parameters 



as demonstrated by the recent studies. For example, the high thermal conductivity of boron 

arsenide was experimentally confirmed [21-23] after the prediction from ab initio simulation [24]. 

Also, the significant hydrodynamic phonon transport in graphitic materials was predicted using ab 

initio simulation first [25,26] and then experimentally confirmed [27,28]. However, the ab initio 

simulation for thermal transport has been limited to single crystalline phase and point defect cases. 

For the thermal transport across GBs, the ab initio simulation is not feasible due to its high 

computational cost considering the size of GB atomic structures.   

A recently emerging method is to use machine learning schemes to predict the interatomic 

interactions based on the dataset from ab initio simulations [29-40]. This so-called machine 

learning interatomic potential (MLIP) was motivated by the fact that the interatomic interaction is 

a function in a high dimensional space where machine learning outperforms conventional 

regression methods. Recently developed MLIPs show that the MLIP can be as accurate as ab initio 

calculations while its computational cost is several orders-of-magnitude cheaper than the ab initio 

calculations [29-31,41]. In particular, the MLIP was proven for predicting the thermal transport in 

the crystalline phase [29,31,34] and partially disordered crystalline phase that has vacancies [29]. 

This confirms that the MLIP is accurate enough to correctly capture subtle anharmonicity, which 

is critical for phonon-phonon scattering and phonon-strain field scattering, and is also flexible 

enough to describe various atomic configurations including vacancies. However, extending the 

past success of MLIP to spatially extended disorder case (e.g., GBs) has some challenges. Unlike 

vacancies, the GBs have extremely large atomic configurational space. Therefore, the training 

dataset should be carefully designed such that it can represent the entire configurational space. In 

addition, the size of the training dataset should be minimal since generating the training dataset 

from ab initio calculation can be prohibitively expensive considering the typical size of GB 

structures. 

 In this work, we develop MLIPs using the Gaussian regression, called the Gaussian 

approximation potential (GAP) [41,42], for studying phonon transport across graphene GBs. We 

use a systematic framework based on the structural unit model to select the complete and 

orthogonal training dataset. With the carefully chosen a few GBs for the training dataset, we show 

that the GAP can produce similar results as the ab initio calculations for the wide range of GBs 

while its computational cost is 6 orders of magnitude cheaper than the ab initio calculations. Using 

the GAP and AGF, we then report several important features of phonon transport across GBs in 



graphene with its high predictive power. We distinguish the influence of dislocation core and 

extended strain field on phonon scattering, and reveal an intriguing scattering of flexural phonon 

modes by out-of-plane buckling in graphene GBs. We also briefly evaluate an empirical Tersoff 

potential (TSF) [43,44] that has been widely used in past studies by comparing it to GAP. 

 

II. Methods 

II.1. Identifying the small set of GBs representing the entire configurational space of GBs 

In this work, we consider total 20 GBs that covers the full span of qM (0° to 60°) which 

include a variety of disclination densities and different topological arrangement of disclinations. 

We focus on symmetric GBs with zero line angle because several parameters that are expected to 

affect phonon scattering such as GB formation energy, dislocation density, and out-of-plane 

roughness are nearly unchanged with the line angle in graphene [4]. The qM and coincidence site 

lattice (CSL) Σ values of the 20 GBs are listed in Table 1. The supercells containing each of GBs 

were generated using an algorithm based on the centroidal Voronoi tessellation [4]. Then, we 

appended the same supercell that is rotated by 180° resulting in two GBs along the opposite 

directions in a supercell. Such supercells are preferred for the subsequent relaxation process using 

MD simulation since they have translational symmetry along all directions including the direction 

perpendicular to the GB line. An example supercell is shown in Figure S1 in the supplementary 

information. We then relaxed the obtained supercell by running MD simulations at 300 K in the 

NVT ensemble over 100 ps using the LAMMPS package, with a time step of 0.5 fs and TSF 

potential. Those supercells were used for training a GAP based on TSF interatomic potential 

(GAPTSF), which was used for the validation of our methods. A separate set of 20 supercells were 

further relaxed by density functional theory (DFT) calculation to develop another GAP based on 

DFT (GAPDFT) which we used to study the phonon transport across GBs in graphene. For the 

DFT calculations, we used the energy minimization scheme in the VASP package using ultrasoft 

pseudopotentials with a plane wave cutoff energy of 286 eV. The convergence criteria for energy 

and force were set to 10-8 eV and 10-6 eV/Å, respectively. The resulting supercells relaxed by TSF 

and DFT slightly differ as shown in Table 1. 

A challenge in developing an MLIP for GBs is how to prepare a complete set of training 

data. Considering the typical period length of GBs and the area strained by a GB, a supercell that 

contains a GB can be often too large for the ab initio calculation. Thus, for the training dataset, it 



is critical to select a small set of GBs that can represent the entire configurational space of GBs. 

In early studies developing an MLIP for general purpose, a fraction of the total database was 

chosen for the training dataset without much rationale, with the remaining as the testing dataset 

[29,41,42,45,46]. Recently, active learning schemes have been proposed to reduce the size of 

training dataset [47-49], making it possible to simulate the dynamic evolution of systems such as 

phase change in a large scale for a long time period. While the active learning scheme can be used 

for general cases, using preexisting knowledge on the system of study, if it is available, can be 

more efficient. As an example, the active learning schemes need to scan the large configurational 

space of GBs until it finds no additional GB structures required for the training dataset. Besides, 

the active learning scheme is more suitable for molecular dynamics simulation in which a training 

dataset is added based on the measured uncertainty at each time step. For phonon transport 

simulation, the lattice dynamics-based method (e.g., AGF) has several important advantages over 

molecular dynamics simulations such as modal analysis and no statistical error. 

We use the fact that most GBs have hierarchical structures with basic building blocks as 

demonstrated in the previous studies that analyzed the GB structures with the structural unit model 

[50-52]. A basic idea is to identify those basic building blocks or unique local atomic environments 

(LAEs) from many GBs and find a small set of GBs that contain the complete set of the unique 

LAEs [53]. Then, an MLIP trained with the data from the small set of GBs is expected to accurately 

capture the interatomic interactions of GBs in the entire configurational space.  

We used the smooth overlap of atomic positions (SOAP) [54] descriptor to find the smallest 

GB dataset that contains all the representative LAEs in the 20 GBs. The SOAP descriptor places a 

Gaussian function on each atom to construct the density of neighbor atoms 𝜌𝜌! , which is then 

expanded in a basis set of radial functions gn(r) and spherical harmonics Ylm(r) as 

𝜌𝜌!(𝐫𝐫) = ∑ 𝑐𝑐"#$
(!) g"(𝑟𝑟)"#$ 𝑌𝑌#$(𝐫𝐫),    (1) 

where 𝑐𝑐!"#
(%)  are the expansion coefficients for atom i. The descriptor is formed from these 

coefficients by computing the power spectrum elements 

𝑝𝑝""!#
(!) = '

√)#*'
∑ 𝑐𝑐"#$

(!) (𝑐𝑐"!#$
(!) )∗$ .    (2) 

The resulting descriptor has invariance under translation, rotation, and the permutation of atoms. 

For each GB, a SOAP descriptor for each atom i in the GB is calculated and represented as 

coefficients of basis functions 𝒑𝒑% = {𝑝𝑝', 𝑝𝑝(, ⋯ , 𝑝𝑝)} . The length of the SOAP vector N is 



determined by a radial basis cutoff nmax and an angular basis (spherical harmonic) cutoff lmax. We 

evaluate the dissimilarity of LAEs using SOAP descriptors which is defined as [53]: 

𝑑𝑑%* = *𝒑𝒑% ∙ 𝒑𝒑% + 𝒑𝒑* ∙ 𝒑𝒑* − 2𝒑𝒑% ∙ 𝒑𝒑*     (3) 

where 𝒑𝒑% and 𝒑𝒑* are the SOAP vectors for the two atoms i and j. We introduce a parameter e, 

serving as a criteria for the unique LAE. If 𝑑𝑑%* > e, the 𝒑𝒑% and 𝒑𝒑* are different from each other 

indicating that the two atoms i and j are surrounded by different LAEs. Otherwise, we determine 

𝒑𝒑% and 𝒑𝒑* represent the same LAE. In this work, we used 0.04 for the value of e. 

The 20 GBs covering the full span of qM contain a total of 5544 LAEs and the dissimilarity 

analysis show that there exists significant overlap among the 5544 LAEs; the total 5544 LAEs can 

be reduced to only 12 and 13 unique LAEs for the structures relaxed by TSF and DFT, respectively. 

The TSF and DFT produce slightly different structures after relaxation, and hence the number of 

unique LAEs also differ. The analysis shows that the total 20 GBs covering the full span of qM can 

be composed using those 12 or 13 unique LAEs, confirming the idea that the extremely large 

configurational space of GBs in fact have a very small number of basic building blocks. We then 

identified 5 representative GBs shown in Figure 1 that contain all of the 12 or 13 unique LAEs. 

The selected GBs significantly differ from each other in terms of the topological arrangements and 

the density of disclinations. We used the 5 GBs to generate a training dataset for our GAP, train 

the GAP, and performed the AGF simulation with the GAP to simulate the phonon transport across 

GBs as discussed in the method sections. 

 

II.2. Training GAP 

We trained two separate GAPs: GAPTSF for the validation of our methods using relatively 

cheap TSF potential and GAPDFT for studying of phonon transport across GBs with ab initio 

accuracy. For training dataset, we performed MD simulations of the 5 representative GBs and 

obtained the snapshots of the atomic position, force, and energy. The MD simulations were 

performed at 300 K in the NVT ensemble with a time step of 0.5 fs. After initial time steps for 

thermal equilibration, we took one snapshot every 50 time steps to reduce the correlation between 

snapshots. The training datasets for both GAPTSF and GAPDFT include relaxed structures of the 

5 selected GB structures and 50 snapshots for each GB at 300K. After obtaining the training dataset, 

we used the hyperparameters listed in Table 2 to train GAPTSF and GAPDFT. 



 

II.3. AGF simulation  

For the AGF simulation, the supercell needs to be sufficiently large so that the leads do not 

have strain from a GB. The supercell we used for the AGF calculation is 10 times longer in the 

direction perpendicular to GBs than those we used for SOAP dissimilarity analysis and training 

GAP. Since the AGF simulation does not require translational symmetry along the heat flow 

direction, the supercells for the AGF calculation contain only one GB for each unlike those for 

training the GAP that have two GBs. The comparison of supercells for GAP training and AGF 

simulation in terms of the size can be found in Table S1 in the supplementary information. The 

second-order force constants were calculated using phonopy [55] and LAMMPS [56] with 

GAPTSF or GAPDFT. In the AGF simulation, we used decimation technique [57,58] to 

approximate surface Green’s functions and we used a frequency broadening factor of 1 cm-1 for 

the continuous representation of discrete eigenfrequencies. We observed a good convergence of 

transmission function with 20 transverse wavevectors for the GB with the largest width 

(qM=50.57°). For other GBs, the number of transverse wavevectors was determined such that the 

product of the number of transverse wavevectors and the width of GB is the same for all GBs. 

 

III. Results and Discussions 

We use the GAPTSF to validate our simulation framework from selecting representative 

GBs to the AGF calculation. Unlike the ab initio calculation, the TSF potential is computationally 

cheap enough to generate the data of interatomic force constants and transmission function of all 

the 20 GBs. Therefore, the GAPTSF can be directly validated against the results from TSF for all 

the 20 GBs. In Figure 2, we compare the GAPTSF and TSF for the GB formation energy, and 

spectral phonon transmission function. The GAPTSF and TSF agree well with each other for the 

prediction of the GB energy for both the training and testing GBs. In particular, the spectral phonon 

transmission functions, the property of interest in this work, are similar for all GBs. This confirms 

that the 5 GBs chosen from the LAE analysis are enough to represent the entire 20 GBs and thus 

the resulting GAP is highly accurate and reliable for a wide range of GBs.  

With the success of GAPTSF, we proceeded to developing GAPDFT using the training 

dataset from DFT calculation. Like GAPTSF, the GAPDFT also shows excellent accuracy. The 

root-mean-square of errors (RMSE) of energy and force are 0.0011 eV and 0.052 eV/Å 



respectively for the training set, and the RMSE of energy and force are 0.0019 eV and 0.066 eV/Å 

respectively for the testing set. In Figure 3, we examine the GAPDFT compared to DFT for the 

relaxed atomistic structures. The structures relaxed by the GAPDFT are similar to those by DFT 

in particular for the out-of-plane atomic displacements. 

Figure 4 presents the GB formation energy from GAPDFT and DFT, showing good 

agreement between them for the entire range of qM. The overall trend of GB formation energy 

from the GAPDFT follows the trend predicted by the Read-Shockley model [59]; the GB 

formation energy is linear to qM for low qM (<15°) and high qM (>45°) while the mid-range qM 

show non-monotonic behavior of GB formation energy with respect to qM.  

In Figure 4b and 4c, we separate the GB formation energy into the contribution from local 

dislocation cores (core energy, 𝐸𝐸+,-.) and surrounding strain field (strain energy, 𝐸𝐸/0-123) [60,61] 

to better understand the GB formation energy and its effects on phonon transport. The core energy 

(𝐸𝐸+,-.) and strain energy (𝐸𝐸/0-123) can be defined as: 

𝐸𝐸+,-. = 	
∑ 5!6

"#$%&
"'$'

5()*+
"#$%&
!

"),-'
     (4) 

𝐸𝐸/0-123 = 	
∑ 5!6

".'%/-,
"'$'

5()*+
".'%/-,
!

"),-'
     (5) 

where 𝑁𝑁+,-.  and 𝑁𝑁/0-123  are the number of atoms forming dislocation cores (pentagons and 

heptagons) and hexagon lattices, respectively. The 𝑁𝑁0,0 is the total number of atoms. The 𝐸𝐸789: 

and 𝑙𝑙8320 are the energy per atom in the perfect crystalline phase and the length of GB. The core 

energy and strain energy from GAPDFT in Figure 4b and 4c seem physically reasonable. The 

dislocation density linearly increases with qM, have a maximum value at mid-qM, and linearly 

decreases with qM (see Figure S2 in the supplementary information). Therefore, the core energy in 

Figure 4b is maximum in the mid-qM range where the dislocation density is maximum. The strain 

energy is minimum in the same qM range where the lattice can open up to insert one additional 

lattice plane to form an edge dislocation and thus the strain is minimized [62]. We should note one 

of the noteworthy advantages of MLIPs over DFT is that the MLIPs can predict each atom’s 

contribution to total energy while DFT cannot in principle. Although partitioning the total energy 

into each individual atom’s contribution is somewhat arbitrary in the MLIPs scheme, it provides 

qualitatively reasonable results compared to the DFT simulation as shown in the GB formation 

energy of the GBs that are not included in the training process. 



In Figure 5, we present the thermal resistance as a function of qM at various temperatures 

from the AGF and the Landauer formalism calculations. At high temperatures of 500 K and 1500 

K in Figures 5c and 5d, the thermal resistance has a concave shape with respect to qM, having a 

maximum resistance value at mid qM range. This behavior is similar to the case of Si and diamond 

at 1000 K that a previous study reports using molecular dynamics simulation with an empirical 

potential [8]. A common explanation for this behavior has been that the dislocation density is the 

maximum in the mid-qM and thus the phonon scattering by GBs is expected to be maximum in the 

mid-qM range. However, we observe different behaviors at low temperatures at 300 K and 100 K. 

At 300 K in Figure 5b, the concave shape of thermal resistance becomes negligible and the 

resistance is nearly independent of the qM. As temperature further decreases to 100 K in Figure 5a, 

the thermal resistance shows a convex shape with respect to qM, having the lowest thermal 

resistance at mid-qM. The behavior of thermal resistance at 100 K and 300 K is clearly opposite to 

the current understanding that the higher dislocation density leads to higher thermal resistance. For 

graphene GBs, the higher dislocation density does not necessarily lead to higher thermal resistance. 

In particular, at 100 K, the thermal resistance is even higher when the dislocation density is smaller.  

A possible explanation for this intriguing behavior of thermal resistance as a function of 

qM at different temperatures is that dislocation core and nearby strain field affect the phonon 

scattering by GBs to the different extents at different temperatures. At low temperatures, heat is 

mostly carried by long wavelength phonons which experience only weak scattering by dislocation 

cores since the wavelength is much longer than the characteristic size of the cores. The strain field 

can be a major contributor to the phonons scattering at low temperature due to its spatially extended 

characteristics. This is supported by the fact that the strain energy distribution in Figure 4c and the 

thermal resistance at 100 K in Figure 5a have a similar trend with respect to qM; both thermal 

resistance and strain energy are minimum in the mid-qM. At high temperatures where the short 

wavelength phonons are the major heat carriers, the wavelengths become comparable to the size 

of dislocation cores which thus cause strong scattering due to its nature of large lattice distortion 

compared to the strain field. The thermal resistance at 500 K and 1500 K in Figure 5 follow a 

similar trend as the core energy in Figure 4b.  

Observing the important role of the strain field for phonon scattering at low temperatures, 

we further investigate its detailed mechanisms. Figures 6a and 6b show the thermal conductance 



normalized by the ballistic thermal conductance of perfect graphene as a function of temperature. 

The normalization eliminates the specific heat effects from the conductance and thus shows how 

much the thermal conductance is suppressed by phonon scattering at a GB at various temperatures. 

The total 20 GBs can be clearly separated into two groups: one showing monotonously decreasing 

normalized thermal conductance as a function of temperature shown in Figure 6a and the other 

showing increasing at low temperature and then decreasing normalized thermal conductance with 

temperature shown in Figure 6b. It is interesting to see that most GBs of the first group are from 

mid-qM while the latter group is from the small and large qM. To explain the different behavior of 

the two GB groups, we consider spectral transmissivity defined as the phonon transmission 

function across a GB normalized by the ballistic phonon transmission function across single 

crystalline graphene. In Figure 6c, we present the spectral transmissivity for the two GBs with qM 

of 6.02° and 32.20° that represent each group. In the frequency range below 15 THz which 

dominates the thermal transport below room temperatures, the two GBs show a remarkable 

difference. While the spectral transmissivity is high and nearly constant for the GB with qM=32.20°, 

the transmissivity for the GB with qM=6.02° is low and increases rapidly with frequency. It is 

noteworthy that the majority of phonon states below 15 THz are from the flexural acoustic phonon 

branch due to the quadratic phonon dispersion and large density-of-states.  

The remarkably different scattering of flexural modes in the two GB groups is originated 

from the structural difference, in particular buckling induced by a GB. This is consistent with the 

previous studies [63,64] that showed flexural modes are strongly scattered by buckling of GB 

structure. Figure 6d shows that the two groups of GBs are very different in terms of out-of-plane 

buckling. The common disclinations in graphene, pentagon and heptagon, create compression and 

dilation stress at the tips of disclinations, respectively. When a GB has low or high qM, the pentagon 

and heptagon disclinations are far from each other due to the low density of dislocations, and thus 

the out-of-plane buckling is induced to reduce the compressive and dilation strain. On the contrary, 

when a GB has a mid qM, the disclination cores are densely packed along the GB line with the 

pentagon and heptagon cores placed next to each other. In such a case, the compressive and dilation 

strain are canceled and the out-of-plane buckling does not occur [59]. Therefore, at low 

temperatures where the thermal phonon wavelength is comparable to the characteristic length of 

buckling, the significant buckling in GBs with low and high qM causes strong scattering of the 



flexural phonon modes. As a result, the GBs with low and high qM exhibit higher thermal resistance 

at 100 K than those with mid qM in Figure 5a, although they have lower dislocation density.  

Lastly, it would be interesting to present a brief comparison of GAPDFT and TSF since 

the TSF has been widely used in past studies while its accuracy for phonon transport across GBs 

has not been comprehensively examined. In Figure 4, we compare GAPDFT and TSF for the GB 

formation, core, and strain energies. Figure 4a shows that the TSF overestimates the GB formation 

energy compared to the GAPDFT. This is because the core energy from TSF is larger than that 

from GAPDFT in the mid-qM range where the density of dislocation core is maximum as shown 

in Figure 4b. On the contrary, for strain energy in Figure 4c, the TSF and GAPDFT show similar 

predictions for the wide range of qM although the strain energy from TSF is slightly smaller. The 

comparison of the core and strain energy from TSF and GAPDFT indicates that TSF is reasonably 

accurate in predicting the energy of strained hexagon structure while poor in predicting the energy 

of severely distorted structures such as pentagons and heptagons. 

The thermal resistances from TSF and GAPDFT in Figure 5 are observed similar, but the 

force constants and spectral transmission functions behind the thermal resistance values are 

noticeably different for TSF and GAPDFT. For the self-interaction force constant in the crystalline 

phase, the TSF overpredicts by 35% compared to the GAPDFT (see Figure S3 in the 

supplementary information). The force constant prediction by TSF has a more pronounced error 

in the core region of GBs. In Figures 7a and 7b, we present the error of TSF in predicting force 

constant change upon the introduction of GBs. We define the normalized error as 

|ΔΦii,TSF−ΔΦii,GAPDFT|/ΔΦii,GAPDFT where Φii is a self-interaction force constant and ΔΦii is the 

difference of a self-interatomic force constant from the perfect crystalline case (i.e., 

Φii,GB−Φii,crystal). The figure shows that the error in the core region is pronounced and reaches up 

to 50% while the error is small for the surrounding hexagons. This agrees with the aforementioned 

observation that the TSF has significant error for dislocations while is reasonably accurate for 

strained hexagons. As a result, the spectral transmissions from GAPDFT and TSF in Figure 7c and 

7d show substantial difference above 20 THz where dislocation cores are important for phonon 

scattering. Overall, the suppression of transmission functions from the perfect crystalline phase is 

noticeably larger in TSF than in GAPDFT, also supported by the overprediction of core energy by 

TSF in Figure 4b. However, below 20 THz where the strain field is the dominant cause for phonon 

scattering, the GAPDFT and TSF show similar suppression of the spectral transmission function.  



 

IV. Conclusion  

In summary, we demonstrated that MLIPs trained with the rationally designed minimal 

dataset can predict phonon transport across GBs with ab initio predictive power and accuracy 

while the computational cost is affordable. Special attention was paid on reducing the required 

training dataset by employing the idea of structural unit model that GBs have hierarchical 

structures and have only a few basic building blocks. Our approach shows that only 5 GBs are 

enough to represent the entire configurational space and thus the small training dataset using those 

5 GBs is sufficient for an MLIP. Indeed, our test using TSF and GAPTSF shows that force 

constants and spectral transmission functions from the TSF and GAPTSF are similar for 20 GBs 

covering the entire configurational space.  

The GAPDFT trained with the dataset from DFT reveals several intriguing characteristics 

of phonon scattering by GBs with ab initio accuracy. Previous studies for three dimensional bulk 

materials suggested that thermal resistance increases with dislocation density, but we showed that 

graphene does not follow the same trend. The thermal resistance at room temperature does not 

depend on the dislocation density and even decreases with increasing dislocation density. We 

explained this with the two dimensional structural characteristics of graphene: flexural phonon 

modes carrying the majority of heat and out-of-plane buckling induced by GBs. The heat-carrying 

flexural phonon modes are strongly scattered by the out-of-plane buckling which is pronounced 

for the GBs with low dislocation density. Thus, dislocation density alone cannot determine the 

scattering of phonons in polycrystalline graphene but the surrounding strain field plays an 

important role.  

We also briefly examined the accuracy of TSF for thermal transport across GBs by 

comparing it to GAPDFT. The overall thermal resistance values from both TSF and GAPDFT 

reasonably agree with each other, but the force constants and spectral transmission functions show 

a noticeable difference. In particular, TSF shows inaccuracy in predicting dislocation cores 

(pentagons and heptagons) while is reasonably accurate for the strain field. As a result, the 

transmission functions from TSF agree with those from GAPDFT at low frequency where the 

strain field is important for phonon scattering, but shows noticeable error in the mid to high 

frequency range.  



Our work provides deep insights into the atomic-level mechanisms governing phonon 

transport across graphene GBs, particularly for the buckling effects on phonon transmission and 

thermal resistance. This understanding may help to explain phonon transport across GBs in other 

two-dimensional materials and also to engineer their thermal properties using GBs. The present 

method for developing MLIPs with minimal training dataset can be easily extended to three 

dimensional materials. It would help to predict and understand thermal transport in the 

polycrystalline phase of emerging materials for which a reliable interatomic potential has not been 

developed yet.  
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Table 1. List of the 20 GBs with their structural properties. The 5 representative GBs chosen by 

the SOAP dissimilarity analysis are indicated with superscripts † and ‡ for the structures relaxed 

by TSF and DFT, respectively. 

 

index θM (deg.) 
CSL 

∑ 

Structures relaxed by TSF Structures relaxed by DFT 

GB period (Å) 
Disclination 

density (Å-1) 
GB period (Å) 

Disclination 

density (Å-1) 

1 6.01† 91 23.7608 0.0842 23.3084 0.0858 

2 7.34 61 19.4537 0.1028 19.0835 0.1048 

3 9.43 37 15.1509 0.132 14.8627 0.1346 

4 10.99 109 26.0123 0.1537 25.5172 0.1568 

5 13.17‡ 19 10.8593 0.1842 10.6527 0.1877 

6 16.43 49 17.4449 0.2293 17.1116 0.2337 

7 17.9† 93 24.0326 0.2497 23.5727 0.2545 

8 21.79‡ 7 6.6012 0.3029 6.4725 0.309 

9 26.01‡ 79 22.1546 0.3611 21.7306 0.3681 

10 27.8 39 15.5647 0.3855 15.2662 0.393 

11 29.41 97 24.5397 0.4075 24.0737 0.4154 

12 32.2 13 8.9919 0.4448 8.8178 0.4536 

13 35.57 67 20.3977 0.3922 20.0072 0.3998 

14 40.35†,‡ 103 25.2933 0.3163 24.8106 0.3224 

15 42.1 31 13.8792 0.2882 13.6149 0.2938 

16 44.82† 43 16.3393 0.2448 16.0284 0.2496 

17 46.83 57 18.8093 0.2127 18.4503 0.2168 

18 48.36†,‡ 73 21.2859 0.1879 20.8804 0.1916 

19 49.58 91 23.7631 0.1683 23.3122 0.1716 

20 50.57 111 26.2369 0.1524 25.7374 0.1554 

  



 

 

Table 2. List of hyperparameters for GAPTSF and GAPDFT 

 

Hyperparameter Note 2-body 3-body SOAP 

rcut (Å) Cutoff radius of the descriptor 4.0 4.0 4.0 

d (Å) 
Transition width over which the 
magnitude of SOAP descriptor 

monotonically decrease to 0 
- - 1.0 

d (eV) Weight of different descriptors 10.0 3.7 0.07 

Nt 
Number of representative atomic 
environments selected using the 

corresponding sparse method 
50 200 650 

Sparse method  Uniform Uniform CUR 

nmax Radial basis cutoff - - 12 

lmax Angular basis cutoff - - 12 

senergy (eV/atom) Expected error for atomic energy 0.001 

sforce (eV/Å) Expected error for force 0.0005 

 
  



 
 

 
 
Figure 1. Five representative GBs from (a) TSF and (b) DFT showing distinct features such as 
density of disclinations and their topological arrangements. The angle in each figure shows the 
misorientation angle. The green circle shows the cutoff radius for defining LAE. 
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Figure 2. Validation of GAPTSF against TSF for (a) formation energy of GBs, and (b) 
transmission function. The solid symbols in (a) represent GBs used for training the GAPTSF. The 
solid lines and dots in (b) are from GAPTSF and TSF, respectively. In (b), the two GBs with 
θM=6.0° and 48.36° and the other two GBs with θM=9.43° and 50.57° are from the training and 
testing dataset, respectively. 
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Figure 3. Validation of GAPDFT against DFT for relaxed structures projected onto a-b plane. (a) 
θM=48.36º from the training dataset and (b) θM=9.43º from the test dataset.  The color represents 
out-of-plane displacement in Å. 
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Figure 4. Comparison of DFT, GAPDFT, and TSF for (a) GB formation energy, (b) core energy, 
and (c) strain energy. The solid symbols in (a) represent the GBs that were used for training 
GAPDFT. 
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Figure 5. Thermal resistance with varying misorientation angles at (a) 100 K, (b) 300 K, (c) 500 
K, and (d) 1500 K. 
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Figure 6. Role of out-of-plane buckling for scattering of flexural phonon modes. (a-b) thermal 
conductance normalized by that of perfect crystalline graphene as a function of temperature for (a) 
GBs showing monotonously decreasing behavior and (b) GBs showing increasing behavior at low 
temperatures. The values in the legends represent misorientation angle. (c) Phonon transmissivity 
for two representative GBs showing a remarkable difference in low phonon frequency range below 
15 THz. (d) Comparison of the two representative GBs in terms of out-of-plane buckling. The 
color represents out-of-plane displacement of atoms and the pentagon and heptagon are marked in 
blue and red, respectively.  
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Figure 7. Comparison of TSF and GAPDFT showing inaccuracy of TSF for predicting force 
constants on dislocation cores and transmission function above mid phonon frequency. (a-b) 
normalized error of self-interatomic force constants, defined as 
4∆𝜙𝜙%%,<=> − ∆𝜙𝜙%%,?@AB><4 ∆𝜙𝜙%%,?@AB><7  where ∆𝜙𝜙%%  is the difference of self-interaction force 
constants in GB and perfect graphene. (c-d) suppressed transmission function from perfect 
graphene for 20 GBs. The values in the legend are misorientation angles. 
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