Ab initio phonon transport across grain boundaries
in graphene using machine learning based on small dataset
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Abstract

Establishing the structure-property relationship for grain boundaries (GBs) is critical for
developing next generation functional materials, but has been severely hampered due to its
extremely large configurational space. Atomistic simulations with low computational cost and
high predictive power are strongly desirable, but the conventional simulations using empirical
interatomic potentials and density functional theory suffer from the lack of predictive power and
high computational cost, respectively. A machine learning interatomic potential (MLIP) recently
emerged but often requires an extensive size of the training dataset, making it a less feasible
approach. Here we demonstrate that an MLIP trained with a rationally designed small training
dataset can predict thermal transport across GBs in graphene with ab initio accuracy at an
affordable computational cost. In particular, we employed a rational approach based on the
structural unit model to find a small set of GBs that can represent the entire configurational space
and thus can serve as a cost-effective training dataset for the MLIP. Only 5 GBs were found to be
enough to represent the entire configurational space of graphene GBs. Using the atomistic Green’s
function approach and the MLIP, we revealed that the structure-thermal resistance relation in
graphene does not follow the common understanding that large dislocation density causes larger
thermal resistance. In fact, thermal resistance is nearly independent of dislocation density at room
temperature and is higher when the dislocation density is small at sub-room temperature. We
explain this intriguing behavior with the buckling near a GB causing a strong scattering of flexural
phonon modes. Our work shows that a machine learning technique combined with conventional
wisdom (e.g., structural unit model) can extend the recent success of ab initio thermal transport
simulation, which has been mostly limited to single crystals, to complex yet practically important

polycrystals with GBs.
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I. Introduction

Grain boundaries (GBs) are of interest in many applications because they are common
defects and largely affect electrical, mechanical, and thermal properties. For two dimensional (2D)
materials such as graphene, experimental studies showed that GBs commonly exist in graphene
sheets prepared by exfoliation[1-5], causing the fundamental physical properties of polycrystal
samples largely deviate from those of single crystals. Therefore, engineering GBs is an effective
way to achieving desired electronic, thermal, and mechanical properties in many applications[6-
14].

The physical properties are largely dependent on the local atomic structure of GB [5,6,15]
and thus it is important to establish the structure-property relationship on how a GB structure
affects the physical properties. However, establishing such a structure-property relationship has
been challenging mainly for two reasons. The first is that GBs have extremely large configurational
space. For example, three dimensional (3D) materials have 5 degrees of freedom (misorientation
angle noted as Oum hereafter, line angle, and three degrees of freedom of crystalline grain orientation
in 3D space) for GB structures, making the configurational space extremely large. The second is
that the experimental characterization of individual GB requires significant efforts particularly for
preparing samples with a geometrically well-defined GB. The samples with GBs have been
prepared by bonding two wafers with a twist angle but it often leaves a void at the interface [16].
Therefore, it is challenging to experimentally study enough number of GBs to draw a statistically
conclusive finding on the structure-property relationship.

Atomistic simulation can be a useful tool for the study of GBs if it has high predictive
power, but also has major challenges. The atomistic simulation for thermal transport such as
molecular dynamics (MD) [7,8,10,17-19] and the atomistic Green’s function (AGF) [14,20]
require an interatomic potential. A common approach for the interatomic potential has been
empirical potentials that have a rigid functional form parametrized based on quantum mechanical
calculation results and experimental data. Although the empirical potentials have been useful for
promoting the understanding of physical phenomena from an atomistic level, they have clear
limitations. For the physical properties that were not considered for the parametrization, empirical
potentials do not provide an accurate prediction. Also, because of its rigid functional form, it is
usually not flexible enough to describe a wide range of atomic configurations. On the contrary, ab

initio calculation can be highly accurate and have a predictive power without adjustable parameters



as demonstrated by the recent studies. For example, the high thermal conductivity of boron
arsenide was experimentally confirmed [21-23] after the prediction from ab initio simulation [24].
Also, the significant hydrodynamic phonon transport in graphitic materials was predicted using ab
initio simulation first [25,26] and then experimentally confirmed [27,28]. However, the ab initio
simulation for thermal transport has been limited to single crystalline phase and point defect cases.
For the thermal transport across GBs, the ab initio simulation is not feasible due to its high
computational cost considering the size of GB atomic structures.

A recently emerging method is to use machine learning schemes to predict the interatomic
interactions based on the dataset from ab initio simulations [29-40]. This so-called machine
learning interatomic potential (MLIP) was motivated by the fact that the interatomic interaction is
a function in a high dimensional space where machine learning outperforms conventional
regression methods. Recently developed MLIPs show that the MLIP can be as accurate as ab initio
calculations while its computational cost is several orders-of-magnitude cheaper than the ab initio
calculations [29-31,41]. In particular, the MLIP was proven for predicting the thermal transport in
the crystalline phase [29,31,34] and partially disordered crystalline phase that has vacancies [29].
This confirms that the MLIP is accurate enough to correctly capture subtle anharmonicity, which
is critical for phonon-phonon scattering and phonon-strain field scattering, and is also flexible
enough to describe various atomic configurations including vacancies. However, extending the
past success of MLIP to spatially extended disorder case (e.g., GBs) has some challenges. Unlike
vacancies, the GBs have extremely large atomic configurational space. Therefore, the training
dataset should be carefully designed such that it can represent the entire configurational space. In
addition, the size of the training dataset should be minimal since generating the training dataset
from ab initio calculation can be prohibitively expensive considering the typical size of GB
structures.

In this work, we develop MLIPs using the Gaussian regression, called the Gaussian
approximation potential (GAP) [41,42], for studying phonon transport across graphene GBs. We
use a systematic framework based on the structural unit model to select the complete and
orthogonal training dataset. With the carefully chosen a few GBs for the training dataset, we show
that the GAP can produce similar results as the ab initio calculations for the wide range of GBs
while its computational cost is 6 orders of magnitude cheaper than the ab initio calculations. Using

the GAP and AGF, we then report several important features of phonon transport across GBs in



graphene with its high predictive power. We distinguish the influence of dislocation core and
extended strain field on phonon scattering, and reveal an intriguing scattering of flexural phonon
modes by out-of-plane buckling in graphene GBs. We also briefly evaluate an empirical Tersoff

potential (TSF) [43,44] that has been widely used in past studies by comparing it to GAP.

I1. Methods
I1.1. Identifying the small set of GBs representing the entire configurational space of GBs

In this work, we consider total 20 GBs that covers the full span of 6m (0° to 60°) which
include a variety of disclination densities and different topological arrangement of disclinations.
We focus on symmetric GBs with zero line angle because several parameters that are expected to
affect phonon scattering such as GB formation energy, dislocation density, and out-of-plane
roughness are nearly unchanged with the line angle in graphene [4]. The Om and coincidence site
lattice (CSL) Z values of the 20 GBs are listed in Table 1. The supercells containing each of GBs
were generated using an algorithm based on the centroidal Voronoi tessellation [4]. Then, we
appended the same supercell that is rotated by 180° resulting in two GBs along the opposite
directions in a supercell. Such supercells are preferred for the subsequent relaxation process using
MD simulation since they have translational symmetry along all directions including the direction
perpendicular to the GB line. An example supercell is shown in Figure S1 in the supplementary
information. We then relaxed the obtained supercell by running MD simulations at 300 K in the
NVT ensemble over 100 ps using the LAMMPS package, with a time step of 0.5 fs and TSF
potential. Those supercells were used for training a GAP based on TSF interatomic potential
(GAPTSF), which was used for the validation of our methods. A separate set of 20 supercells were
further relaxed by density functional theory (DFT) calculation to develop another GAP based on
DFT (GAPDFT) which we used to study the phonon transport across GBs in graphene. For the
DFT calculations, we used the energy minimization scheme in the VASP package using ultrasoft
pseudopotentials with a plane wave cutoff energy of 286 eV. The convergence criteria for energy
and force were set to 10 eV and 10 eV/A, respectively. The resulting supercells relaxed by TSF
and DFT slightly differ as shown in Table 1.

A challenge in developing an MLIP for GBs is how to prepare a complete set of training
data. Considering the typical period length of GBs and the area strained by a GB, a supercell that

contains a GB can be often too large for the ab initio calculation. Thus, for the training dataset, it



is critical to select a small set of GBs that can represent the entire configurational space of GBs.
In early studies developing an MLIP for general purpose, a fraction of the total database was
chosen for the training dataset without much rationale, with the remaining as the testing dataset
[29,41,42,45,46]. Recently, active learning schemes have been proposed to reduce the size of
training dataset [47-49], making it possible to simulate the dynamic evolution of systems such as
phase change in a large scale for a long time period. While the active learning scheme can be used
for general cases, using preexisting knowledge on the system of study, if it is available, can be
more efficient. As an example, the active learning schemes need to scan the large configurational
space of GBs until it finds no additional GB structures required for the training dataset. Besides,
the active learning scheme is more suitable for molecular dynamics simulation in which a training
dataset is added based on the measured uncertainty at each time step. For phonon transport
simulation, the lattice dynamics-based method (e.g., AGF) has several important advantages over
molecular dynamics simulations such as modal analysis and no statistical error.

We use the fact that most GBs have hierarchical structures with basic building blocks as
demonstrated in the previous studies that analyzed the GB structures with the structural unit model
[50-52]. A basic idea is to identify those basic building blocks or unique local atomic environments
(LAEs) from many GBs and find a small set of GBs that contain the complete set of the unique
LAEs [53]. Then, an MLIP trained with the data from the small set of GBs is expected to accurately
capture the interatomic interactions of GBs in the entire configurational space.

We used the smooth overlap of atomic positions (SOAP) [54] descriptor to find the smallest
GB dataset that contains all the representative LAEs in the 20 GBs. The SOAP descriptor places a

Gaussian function on each atom to construct the density of neighbor atoms p;, which is then

expanded in a basis set of radial functions g,(») and spherical harmonics Y;u(r) as

Pi(1) = Y €2 20 () Vi (1), (1)

@) are the expansion coefficients for atom i. The descriptor is formed from these

where ¢,

coefficients by computing the power spectrum elements
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The resulting descriptor has invariance under translation, rotation, and the permutation of atoms.
For each GB, a SOAP descriptor for each atom i in the GB is calculated and represented as

coefficients of basis functions p; = {p1, 02, ***, Py} . The length of the SOAP vector N is



determined by a radial basis cutoff nmax and an angular basis (spherical harmonic) cutoff /max. We

evaluate the dissimilarity of LAEs using SOAP descriptors which is defined as [53]:

dij = \/Pi " Pi +Pj P; — 2P; " D 3)
where p; and p; are the SOAP vectors for the two atoms i and ;. We introduce a parameter &,
serving as a criteria for the unique LAE. If d;; > ¢, the p; and p; are different from each other
indicating that the two atoms i and j are surrounded by different LAEs. Otherwise, we determine

p; and p; represent the same LAE. In this work, we used 0.04 for the value of ¢.

The 20 GBs covering the full span of Om contain a total of 5544 LAEs and the dissimilarity
analysis show that there exists significant overlap among the 5544 LAE:s; the total 5544 LAEs can
be reduced to only 12 and 13 unique LAEs for the structures relaxed by TSF and DFT, respectively.
The TSF and DFT produce slightly different structures after relaxation, and hence the number of
unique LAEs also differ. The analysis shows that the total 20 GBs covering the full span of Om can
be composed using those 12 or 13 unique LAEs, confirming the idea that the extremely large
configurational space of GBs in fact have a very small number of basic building blocks. We then
identified 5 representative GBs shown in Figure 1 that contain all of the 12 or 13 unique LAEs.
The selected GBs significantly differ from each other in terms of the topological arrangements and
the density of disclinations. We used the 5 GBs to generate a training dataset for our GAP, train
the GAP, and performed the AGF simulation with the GAP to simulate the phonon transport across

GBs as discussed in the method sections.

I1.2. Training GAP

We trained two separate GAPs: GAPTSF for the validation of our methods using relatively
cheap TSF potential and GAPDFT for studying of phonon transport across GBs with ab initio
accuracy. For training dataset, we performed MD simulations of the 5 representative GBs and
obtained the snapshots of the atomic position, force, and energy. The MD simulations were
performed at 300 K in the NVT ensemble with a time step of 0.5 fs. After initial time steps for
thermal equilibration, we took one snapshot every 50 time steps to reduce the correlation between
snapshots. The training datasets for both GAPTSF and GAPDFT include relaxed structures of the
5 selected GB structures and 50 snapshots for each GB at 300K. After obtaining the training dataset,
we used the hyperparameters listed in Table 2 to train GAPTSF and GAPDFT.



I1.3. AGF simulation

For the AGF simulation, the supercell needs to be sufficiently large so that the leads do not
have strain from a GB. The supercell we used for the AGF calculation is 10 times longer in the
direction perpendicular to GBs than those we used for SOAP dissimilarity analysis and training
GAP. Since the AGF simulation does not require translational symmetry along the heat flow
direction, the supercells for the AGF calculation contain only one GB for each unlike those for
training the GAP that have two GBs. The comparison of supercells for GAP training and AGF
simulation in terms of the size can be found in Table S1 in the supplementary information. The
second-order force constants were calculated using phonopy [55] and LAMMPS [56] with
GAPTSF or GAPDFT. In the AGF simulation, we used decimation technique [57,58] to
approximate surface Green’s functions and we used a frequency broadening factor of 1 cm™! for
the continuous representation of discrete eigenfrequencies. We observed a good convergence of
transmission function with 20 transverse wavevectors for the GB with the largest width
(6Mm=50.57°). For other GBs, the number of transverse wavevectors was determined such that the

product of the number of transverse wavevectors and the width of GB is the same for all GBs.

I1I. Results and Discussions

We use the GAPTSF to validate our simulation framework from selecting representative
GBs to the AGF calculation. Unlike the ab initio calculation, the TSF potential is computationally
cheap enough to generate the data of interatomic force constants and transmission function of all
the 20 GBs. Therefore, the GAPTSF can be directly validated against the results from TSF for all
the 20 GBs. In Figure 2, we compare the GAPTSF and TSF for the GB formation energy, and
spectral phonon transmission function. The GAPTSF and TSF agree well with each other for the
prediction of the GB energy for both the training and testing GBs. In particular, the spectral phonon
transmission functions, the property of interest in this work, are similar for all GBs. This confirms
that the 5 GBs chosen from the LAE analysis are enough to represent the entire 20 GBs and thus
the resulting GAP is highly accurate and reliable for a wide range of GBs.

With the success of GAPTSF, we proceeded to developing GAPDFT using the training
dataset from DFT calculation. Like GAPTSF, the GAPDFT also shows excellent accuracy. The
root-mean-square of errors (RMSE) of energy and force are 0.0011 eV and 0.052 eV/A



respectively for the training set, and the RMSE of energy and force are 0.0019 eV and 0.066 eV/A
respectively for the testing set. In Figure 3, we examine the GAPDFT compared to DFT for the
relaxed atomistic structures. The structures relaxed by the GAPDFT are similar to those by DFT
in particular for the out-of-plane atomic displacements.

Figure 4 presents the GB formation energy from GAPDFT and DFT, showing good
agreement between them for the entire range of Om. The overall trend of GB formation energy
from the GAPDFT follows the trend predicted by the Read-Shockley model [59]; the GB
formation energy is linear to Om for low Om (<15°) and high Om (>45°) while the mid-range Oum
show non-monotonic behavior of GB formation energy with respect to Om.

In Figure 4b and 4c, we separate the GB formation energy into the contribution from local
dislocation cores (core energy, E., ) and surrounding strain field (strain energy, Eyain) [60,61]
to better understand the GB formation energy and its effects on phonon transport. The core energy

(Ecore) and strain energy (Esirain) can be defined as:

N
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where N.ore and Ngi,in are the number of atoms forming dislocation cores (pentagons and
heptagons) and hexagon lattices, respectively. The Ny is the total number of atoms. The Ey i
and [, are the energy per atom in the perfect crystalline phase and the length of GB. The core
energy and strain energy from GAPDFT in Figure 4b and 4c seem physically reasonable. The
dislocation density linearly increases with Om, have a maximum value at mid-6m, and linearly
decreases with Oy (see Figure S2 in the supplementary information). Therefore, the core energy in
Figure 4b is maximum in the mid-6m range where the dislocation density is maximum. The strain
energy is minimum in the same Om range where the lattice can open up to insert one additional
lattice plane to form an edge dislocation and thus the strain is minimized [62]. We should note one
of the noteworthy advantages of MLIPs over DFT is that the MLIPs can predict each atom’s
contribution to total energy while DFT cannot in principle. Although partitioning the total energy
into each individual atom’s contribution is somewhat arbitrary in the MLIPs scheme, it provides
qualitatively reasonable results compared to the DFT simulation as shown in the GB formation

energy of the GBs that are not included in the training process.



In Figure 5, we present the thermal resistance as a function of Oum at various temperatures
from the AGF and the Landauer formalism calculations. At high temperatures of 500 K and 1500
K in Figures 5c and 5d, the thermal resistance has a concave shape with respect to Ou, having a
maximum resistance value at mid Om range. This behavior is similar to the case of Si and diamond
at 1000 K that a previous study reports using molecular dynamics simulation with an empirical
potential [8]. A common explanation for this behavior has been that the dislocation density is the
maximum in the mid-Oym and thus the phonon scattering by GBs is expected to be maximum in the
mid-Om range. However, we observe different behaviors at low temperatures at 300 K and 100 K.
At 300 K in Figure 5b, the concave shape of thermal resistance becomes negligible and the
resistance is nearly independent of the Om. As temperature further decreases to 100 K in Figure 5a,
the thermal resistance shows a convex shape with respect to Ov, having the lowest thermal
resistance at mid-Om. The behavior of thermal resistance at 100 K and 300 K is clearly opposite to
the current understanding that the higher dislocation density leads to higher thermal resistance. For
graphene GBs, the higher dislocation density does not necessarily lead to higher thermal resistance.
In particular, at 100 K, the thermal resistance is even higher when the dislocation density is smaller.

A possible explanation for this intriguing behavior of thermal resistance as a function of
Om at different temperatures is that dislocation core and nearby strain field affect the phonon
scattering by GBs to the different extents at different temperatures. At low temperatures, heat is
mostly carried by long wavelength phonons which experience only weak scattering by dislocation
cores since the wavelength is much longer than the characteristic size of the cores. The strain field
can be a major contributor to the phonons scattering at low temperature due to its spatially extended
characteristics. This is supported by the fact that the strain energy distribution in Figure 4c and the
thermal resistance at 100 K in Figure 5a have a similar trend with respect to Om; both thermal
resistance and strain energy are minimum in the mid-Om. At high temperatures where the short
wavelength phonons are the major heat carriers, the wavelengths become comparable to the size
of dislocation cores which thus cause strong scattering due to its nature of large lattice distortion
compared to the strain field. The thermal resistance at 500 K and 1500 K in Figure 5 follow a
similar trend as the core energy in Figure 4b.

Observing the important role of the strain field for phonon scattering at low temperatures,

we further investigate its detailed mechanisms. Figures 6a and 6b show the thermal conductance



normalized by the ballistic thermal conductance of perfect graphene as a function of temperature.
The normalization eliminates the specific heat effects from the conductance and thus shows how
much the thermal conductance is suppressed by phonon scattering at a GB at various temperatures.
The total 20 GBs can be clearly separated into two groups: one showing monotonously decreasing
normalized thermal conductance as a function of temperature shown in Figure 6a and the other
showing increasing at low temperature and then decreasing normalized thermal conductance with
temperature shown in Figure 6b. It is interesting to see that most GBs of the first group are from
mid-Om while the latter group is from the small and large Om. To explain the different behavior of
the two GB groups, we consider spectral transmissivity defined as the phonon transmission
function across a GB normalized by the ballistic phonon transmission function across single
crystalline graphene. In Figure 6¢, we present the spectral transmissivity for the two GBs with Oum
of 6.02° and 32.20° that represent each group. In the frequency range below 15 THz which
dominates the thermal transport below room temperatures, the two GBs show a remarkable
difference. While the spectral transmissivity is high and nearly constant for the GB with 0m=32.20°,
the transmissivity for the GB with Bv=6.02° is low and increases rapidly with frequency. It is
noteworthy that the majority of phonon states below 15 THz are from the flexural acoustic phonon
branch due to the quadratic phonon dispersion and large density-of-states.

The remarkably different scattering of flexural modes in the two GB groups is originated
from the structural difference, in particular buckling induced by a GB. This is consistent with the
previous studies [63,64] that showed flexural modes are strongly scattered by buckling of GB
structure. Figure 6d shows that the two groups of GBs are very different in terms of out-of-plane
buckling. The common disclinations in graphene, pentagon and heptagon, create compression and
dilation stress at the tips of disclinations, respectively. When a GB has low or high 0w, the pentagon
and heptagon disclinations are far from each other due to the low density of dislocations, and thus
the out-of-plane buckling is induced to reduce the compressive and dilation strain. On the contrary,
when a GB has a mid 6w, the disclination cores are densely packed along the GB line with the
pentagon and heptagon cores placed next to each other. In such a case, the compressive and dilation
strain are canceled and the out-of-plane buckling does not occur [59]. Therefore, at low
temperatures where the thermal phonon wavelength is comparable to the characteristic length of

buckling, the significant buckling in GBs with low and high Om causes strong scattering of the



flexural phonon modes. As a result, the GBs with low and high Om exhibit higher thermal resistance
at 100 K than those with mid 0w in Figure 5a, although they have lower dislocation density.

Lastly, it would be interesting to present a brief comparison of GAPDFT and TSF since
the TSF has been widely used in past studies while its accuracy for phonon transport across GBs
has not been comprehensively examined. In Figure 4, we compare GAPDFT and TSF for the GB
formation, core, and strain energies. Figure 4a shows that the TSF overestimates the GB formation
energy compared to the GAPDFT. This is because the core energy from TSF is larger than that
from GAPDFT in the mid-Om range where the density of dislocation core is maximum as shown
in Figure 4b. On the contrary, for strain energy in Figure 4c, the TSF and GAPDFT show similar
predictions for the wide range of Oum although the strain energy from TSF is slightly smaller. The
comparison of the core and strain energy from TSF and GAPDFT indicates that TSF is reasonably
accurate in predicting the energy of strained hexagon structure while poor in predicting the energy
of severely distorted structures such as pentagons and heptagons.

The thermal resistances from TSF and GAPDEFT in Figure 5 are observed similar, but the
force constants and spectral transmission functions behind the thermal resistance values are
noticeably different for TSF and GAPDFT. For the self-interaction force constant in the crystalline
phase, the TSF overpredicts by 35% compared to the GAPDFT (see Figure S3 in the
supplementary information). The force constant prediction by TSF has a more pronounced error
in the core region of GBs. In Figures 7a and 7b, we present the error of TSF in predicting force
constant change upon the introduction of GBs. We define the normalized error as
|AD;; 1sF—~ADj; gapprT|/ADii,capprT Where @;; is a self-interaction force constant and A®d;; is the
difference of a self-interatomic force constant from the perfect crystalline case (i.e.,
®;;,6B—Diicrystal). The figure shows that the error in the core region is pronounced and reaches up
to 50% while the error is small for the surrounding hexagons. This agrees with the aforementioned
observation that the TSF has significant error for dislocations while is reasonably accurate for
strained hexagons. As a result, the spectral transmissions from GAPDFT and TSF in Figure 7c and
7d show substantial difference above 20 THz where dislocation cores are important for phonon
scattering. Overall, the suppression of transmission functions from the perfect crystalline phase is
noticeably larger in TSF than in GAPDFT, also supported by the overprediction of core energy by
TSF in Figure 4b. However, below 20 THz where the strain field is the dominant cause for phonon

scattering, the GAPDFT and TSF show similar suppression of the spectral transmission function.



IV. Conclusion

In summary, we demonstrated that MLIPs trained with the rationally designed minimal
dataset can predict phonon transport across GBs with ab initio predictive power and accuracy
while the computational cost is affordable. Special attention was paid on reducing the required
training dataset by employing the idea of structural unit model that GBs have hierarchical
structures and have only a few basic building blocks. Our approach shows that only 5 GBs are
enough to represent the entire configurational space and thus the small training dataset using those
5 GBs is sufficient for an MLIP. Indeed, our test using TSF and GAPTSF shows that force
constants and spectral transmission functions from the TSF and GAPTSF are similar for 20 GBs
covering the entire configurational space.

The GAPDFT trained with the dataset from DFT reveals several intriguing characteristics
of phonon scattering by GBs with ab initio accuracy. Previous studies for three dimensional bulk
materials suggested that thermal resistance increases with dislocation density, but we showed that
graphene does not follow the same trend. The thermal resistance at room temperature does not
depend on the dislocation density and even decreases with increasing dislocation density. We
explained this with the two dimensional structural characteristics of graphene: flexural phonon
modes carrying the majority of heat and out-of-plane buckling induced by GBs. The heat-carrying
flexural phonon modes are strongly scattered by the out-of-plane buckling which is pronounced
for the GBs with low dislocation density. Thus, dislocation density alone cannot determine the
scattering of phonons in polycrystalline graphene but the surrounding strain field plays an
important role.

We also briefly examined the accuracy of TSF for thermal transport across GBs by
comparing it to GAPDFT. The overall thermal resistance values from both TSF and GAPDFT
reasonably agree with each other, but the force constants and spectral transmission functions show
a noticeable difference. In particular, TSF shows inaccuracy in predicting dislocation cores
(pentagons and heptagons) while is reasonably accurate for the strain field. As a result, the
transmission functions from TSF agree with those from GAPDFT at low frequency where the
strain field is important for phonon scattering, but shows noticeable error in the mid to high

frequency range.



Our work provides deep insights into the atomic-level mechanisms governing phonon
transport across graphene GBs, particularly for the buckling effects on phonon transmission and
thermal resistance. This understanding may help to explain phonon transport across GBs in other
two-dimensional materials and also to engineer their thermal properties using GBs. The present
method for developing MLIPs with minimal training dataset can be easily extended to three
dimensional materials. It would help to predict and understand thermal transport in the
polycrystalline phase of emerging materials for which a reliable interatomic potential has not been

developed yet.
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Table 1. List of the 20 GBs with their structural properties. The 5 representative GBs chosen by
the SOAP dissimilarity analysis are indicated with superscripts T and I for the structures relaxed

by TSF and DFT, respectively.

CSL Structures relaxed by TSF Structures relaxed by DFT
index Om (deg.) Disclination Disclination
> GB period (A) GB period (A)
density (A™) density (A™)

1 6.017 91 23.7608 0.0842 23.3084 0.0858
2 7.34 61 19.4537 0.1028 19.0835 0.1048
3 9.43 37 15.1509 0.132 14.8627 0.1346
4 10.99 109 26.0123 0.1537 25.5172 0.1568
5 13.17% 19 10.8593 0.1842 10.6527 0.1877
6 16.43 49 17.4449 0.2293 17.1116 0.2337
7 17.9 93 24.0326 0.2497 23.5727 0.2545
8 21.79* 7 6.6012 0.3029 6.4725 0.309
9 26.01% 79 22.1546 0.3611 21.7306 0.3681
10 27.8 39 15.5647 0.3855 15.2662 0.393
11 29.41 97 24.5397 0.4075 24.0737 0.4154
12 322 13 8.9919 0.4448 8.8178 0.4536
13 35.57 67 20.3977 0.3922 20.0072 0.3998
14 40.3574 103 25.2933 0.3163 24.8106 0.3224
15 42.1 31 13.8792 0.2882 13.6149 0.2938
16 44821 43 16.3393 0.2448 16.0284 0.2496
17 46.83 57 18.8093 0.2127 18.4503 0.2168
18 483614 73 21.2859 0.1879 20.8804 0.1916
19 49.58 91 23.7631 0.1683 23.3122 0.1716
20 50.57 111 26.2369 0.1524 25.7374 0.1554




Table 2. List of hyperparameters for GAPTSF and GAPDFT

Hyperparameter Note 2-body | 3-body | SOAP
Feut (A) Cutoff radius of the descriptor 4.0 4.0 4.0
Transition width over which the
d(A) magnitude of SOAP descriptor - - 1.0
monotonically decrease to 0
o(eV) Weight of different descriptors 10.0 3.7 0.07
Number of representative atomic
M environments selected using the 50 200 650
corresponding sparse method
Sparse method Uniform | Uniform | CUR
Fimax Radial basis cutoff - - 12
Imax Angular basis cutoff - - 12
Oenergy (€V/atom) Expected error for atomic energy 0.001
Otorce (€V/A) Expected error for force 0.0005




Figure 1. Five representative GBs from (a) TSF and (b) DFT showing distinct features such as
density of disclinations and their topological arrangements. The angle in each figure shows the
misorientation angle. The green circle shows the cutoff radius for defining LAE.
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Figure 2. Validation of GAPTSF against TSF for (a) formation energy of GBs, and (b)
transmission function. The solid symbols in (a) represent GBs used for training the GAPTSF. The
solid lines and dots in (b) are from GAPTSF and TSF, respectively. In (b), the two GBs with
Om=6.0° and 48.36° and the other two GBs with O,=9.43° and 50.57° are from the training and
testing dataset, respectively.



(a) B,,=48.36°

Figure 3. Validation of GAPDFT against DFT for relaxed structures projected onto a-b plane. (a)

Om=48.36° from the training dataset and (b) Om=9.43° from the test dataset. The color represents
out-of-plane displacement in A.
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Figure 4. Comparison of DFT, GAPDFT, and TSF for (a) GB formation energy, (b) core energy,

and (c) strain energy. The solid symbols in (a) represent the GBs that were used for training
GAPDFT.



%2.0 Z 0.40
s @ ¢ 100 K N (b) 300 K
AL D 8 € 0.35 g
- O ~ =
816 o ° : 8 8 0 0?00 0l
& 0% ° . IS 0% * o oo 00°%%
3 o 0.30 o
7} ° * 7 %o, L Son,
o 1.4 o ¢ o forl 7] hd
o 0% % 7 ¢ 2
= 60, ° 0 < 0.25
€12 ° £
2 § 0.20
1% 20 40 60 0 20 40 60
_ 8y (deg.) 8, (deg.)
& 0.30 5 0.18
S (o]
X (c) 500 K 2 (d) 1500 K
= 0.25 £0.16 . ° o
[0 . (0]
g o e ® Fo 80’8:
% [ ° o (o % 0.14 oo<> M *
g 0.20 © 8@ > 9&39 8 soe @ 0200 * TSF-train °
© ®® < 012t ¢ © TSF-test
g g ® GAPDFT-train
_?:) 015 E O GAPDFT-test
) 20 40 60 = 0105 20 40 60
8y (deg.) 6y, (deg.)

Figure 5. Thermal resistance with varying misorientation angles at (a) 100 K, (b) 300 K, (c) 500
K, and (d) 1500 K.
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Figure 6. Role of out-of-plane buckling for scattering of flexural phonon modes. (a-b) thermal
conductance normalized by that of perfect crystalline graphene as a function of temperature for (a)
GBs showing monotonously decreasing behavior and (b) GBs showing increasing behavior at low
temperatures. The values in the legends represent misorientation angle. (c¢) Phonon transmissivity
for two representative GBs showing a remarkable difference in low phonon frequency range below
15 THz. (d) Comparison of the two representative GBs in terms of out-of-plane buckling. The
color represents out-of-plane displacement of atoms and the pentagon and heptagon are marked in

blue and red, respectively.
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Figure 7. Comparison of TSF and GAPDFT showing inaccuracy of TSF for predicting force
constants on dislocation cores and transmission function above mid phonon frequency. (a-b)
normalized error of self-interatomic force constants, defined as
|A¢ii,TSF —A¢ii'GAPDFT| /Ad)ii,GAPDFT where A¢;; is the difference of self-interaction force
constants in GB and perfect graphene. (c-d) suppressed transmission function from perfect
graphene for 20 GBs. The values in the legend are misorientation angles.



