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Abstract

In this article, we introduce an error representation function to perform adaptivity in time of the recently developed time-
marching Discontinuous Petrov–Galerkin (DPG) scheme. We first provide an analytical expression for the error that is the Riesz
representation of the residual. Then, we approximate the error by enriching the test space in such a way that it contains the
optimal test functions. The local error contributions can be efficiently computed by adding a few equations to the time-marching
scheme. We analyze the quality of such approximation by constructing a Fortin operator and providing an a posteriori error
estimate. The time-marching scheme proposed in this article provides an optimal solution along with a set of efficient and
reliable local error contributions to perform adaptivity. We validate our method for both parabolic and hyperbolic problems.
© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

The Discontinuous Petrov–Galerkin (DPG) method with optimal test functions is a well established method [1,2]
to approximate the solution of Partial Differential Equations (PDEs) proposed by Prof. Demkowicz and Gopalakr-
ishnan about a decade ago [3,4]. The principal idea is to construct optimal test functions in such a way that the
discrete stability of the method is guaranteed. It has been applied in many frameworks [5–11]. It is well known
that the DPG method can be interpreted as a minimum residual method and also as a mixed problem. In the latter,
selecting an enriched test space, the method delivers a stable solution and a built-in error representation usually
employed to perform adaptivity [12–15].

There are previous articles about applying the DPG ideas to time-dependent problems. In [16–19], the authors
apply the DPG method in the space–time domain, enabling local space–time refinements. Conversely, authors
in [20–22] apply and analyze the DPG method in space together with different time-stepping schemes for parabolic
problems. In other works like [23–26], the authors employ DPG-related ideas for solving both transient and
frequency-domain problems, employing minimum residual methods or the corresponding mixed problems.
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Recently, in [27,28], we developed a time-marching scheme based on the DPG method for transient parabolic
and hyperbolic problems, respectively. The main idea of the method is to apply the DPG technology only in the
time variable to the system of Ordinary Differential Equations (ODEs) obtained after semidiscretizing in space a
PDE with a Bubnov–Galerkin method. For that, we first consider a broken ultraweak variational formulation of
the problem where, in the hyperbolic case, we reduce it first to a first order system. Then, the selection of the
adjoint norm in the test space allows us to compute the optimal test functions analytically as we are considering a
1D problem. We found that the optimal test functions corresponding to piecewise polynomials for the trial space
are exponentials of the stiffness matrix coming from the space discretization. We proved that the equation to
compute the trace variables is equivalent to Exponential Integrators [29–31]. Moreover, the solution in the element
interiors delivers an L2-projection of the exact solution. In order to employ the existing software [32] available to
compute exponential-related functions, we relate the optimal test functions to the so-called ϕ-functions employed in
exponential time-integrators. Summarizing, we developed a time-marching scheme that is an exponential integrator
for the traces and, additionally, we can compute the element interiors.

In this work, we present an error representation that we employ to perform adaptivity in time for the time-
marching DPG scheme we introduced in [27,28]. We know from the DPG community that the DPG solution
minimizes the residual of the problem in the dual norm. It is well known that the built-in error representation
function in DPG is the Riesz representation of the residual [1]. Here, as we are considering a 1D problem, we
can also compute this error representation function analytically. We give an explicit expression of the error for
any discrete solution in the trial space as well as for the optimal solution delivered by the DPG time-marching
scheme. However, these expressions are given in integral form and their use requires a suitable study of appropriate
quadrature rules.

Instead, we adopt the so-called practical DPG [33] philosophy and we approximate the error representation
function by enriching the test space. By doing so, we can compute the local error contributions as we solve the
problem in the time-marching scheme by adding a few equations to the system. We construct a global Fortin
operator, which is an orthogonal projection, and a-posteriori error estimation similar to [34] to prove that our
approximation to the analytical error is reliable and efficient. We emphasize that we enrich the test space in such a
way that it contains the analytical optimal test functions. Therefore, the time-marching scheme delivers the optimal
solution and an approximation of the error. For that reason, we employ the Fortin constant for the a posteriori error
estimation only and in this case, it does not affect the stability of the solution. We employ the local contributions
of this approximated error to perform adaptivity in time via the Dörfler marking strategy [35]. We validate our
adaptive method in both parabolic and hyperbolic problems.

This article is organized as follows: Section 2 presents the model problem and summarizes the time-marching
scheme we developed in [27,28]. In Section 3 we show the analytical error representation function for any discrete
ansatz solution on the discrete trial space and, in particular, for the optimal solution obtained with our time-marching
scheme. Section 4 introduces a practical error representation function for the solution of the DPG method that
we employ for adaptivity. Section 5 analyzes the approximation of the practical error to the analytical one by
constructing a Fortin operator and developing an a posteriori error estimate. Section 6 presents numerical results
of performing time adaptivity for both parabolic and hyperbolic problems. Finally, in Section 7, we summarize the
conclusions and future work.

2. Time-marching DPG scheme

This section overviews the time-marching DPG scheme we introduced in [27] for parabolic problems. For
simplicity, we consider a single Ordinary Differential Equation (ODE). The generalizations to hyperbolic problems
and to systems of ODEs coming from the semidiscretization in space by the Bubnov-Galerkin method of Partial
Differential Equations (PDEs) are summarized in [27,28].

2.1. Model problem and variational setting

Let I = (0, 1] ⊂ R. We consider the following first order ODE{
u′

+ λu = f in I,

u(0) = u0,
(1)
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Fig. 1. Approximated solution.

where λ ∈ R\{0}, u0 ∈ R and f ∈ L2(I ) are given data.
We define a partition Ih of I as

0 = t0 < t1 < · · · < tm−1 < tm = 1,

where Ik = (tk−1, tk) and hk = tk − tk−1, ∀ k = 1, . . . ,m. Related to this partition, we introduce the following trial
and test (broken) spaces

U =U 0
× Û = L2(I ) × Rm,

V =H 1(Ih) = {v ∈ L2(I ) | v|Ik
∈ H 1(Ik), ∀ Ik ∈ Ih}.

(2)

We define the jumps of a function v ∈ V at each time tk as

[v]k = v(t+

k ) − v(t−

k ), ∀ k = 1, . . . ,m − 1,
[v]m = −v(t−

m ),
(3)

where v(t±

k ) := lim
ε→0+

v(tk ± ε). We consider an ultraweak variation formulation of (1) that reads{
Find z = (u, û1, . . . , ûm) ∈ U such that
b(z, v) = l(v), ∀ v ∈ V,

(4)

where

b(z, v) :=

m∑
k=1

∫
Ik

u(−v′
+ λv)dt − ûk[v]k,

l(v) :=

m∑
k=1

∫
Ik

f v dt + u0v(0+).

(5)

Finally, we consider the following trial and test norms

∥z∥2
U = ∥u∥

2
+

m∑
k=1

|ûk
|
2
,

∥v∥2
V =

m∑
k=1

∫
Ik

| − v′
+ λv|

2dt + [v]2
k .

(6)

2.2. Optimal test spaces and discrete scheme

We select a discrete trial space Uh,p = U 0
h,p × Û ⊂ U , where U 0

h,p is composed of piecewise polynomials of
order p. We define an element zh = (uh, û1

h, . . . , ûm
h ) ∈ Uh,p (see Fig. 1) where

uk
h(t) := uh(t)|Ik =

p∑
i=0

uk
h,i

(
t − tk−1

hk

)i

.

We define the optimal test space V opt
h,p ⊂ V corresponding to the trial space Uh,p by the span of the functions

solving the following problem: Given zh ∈ Uh,p{
Find v ∈ V such that
(v, δv)V = b(zh, δv), ∀ δv ∈ V,

(7)
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where (·, ·)V is the inner product corresponding to the adjoint test norm defined in (6). We proved in [27] that

V opt
h,p = span{v̂k, vk

j , ∀ j = 0, . . . , p, ∀ k = 1, . . . ,m},

where the optimal test functions can be defined recursively as

v̂k(t) = eλ(t−tk ), ∀ t ∈ Ik,

vk
j (t) =

1
λ

((
t − tk−1

hk

) j

+
j

hk
vk

j−1(t) − v̂k(t)

)
, ∀ t ∈ Ik .

(8)

Moreover, the optimal test functions satisfy the adjoint equation⎧⎪⎨⎪⎩
−(v̂k)′ + λv̂k

= 0, v̂k(tk) = 1,

−(vk
j )

′
+ λvk

j =

(
t − tk−1

hk

) j

, vk
j (tk) = 0, ∀ j = 0, . . . , p.

(9)

Finally, we solve{
Find zh = (uh, û1

h, . . . , ûm
h ) ∈ Uh,p such that

b(zh, vh) = l(vh), ∀ vh ∈ V opt
h,p ,

(10)

and we obtain the following equivalent DPG-based time-marching scheme ∀ k = 1, . . . ,m⎧⎪⎪⎪⎨⎪⎪⎪⎩
ûk

h = ûk−1
h v̂k(tk−1) +

∫
Ik

f v̂kdt,

p∑
i=0

uk
h,i

hk

i + j + 1
= ûk−1

h vk
j (tk−1) +

∫
Ik

f vk
j dt, ∀ j = 0, . . . , p,

(11)

where û0
h = u0.

The optimal test functions (8) for PDEs are exponentials of the stiffness matrix that we obtain after semidis-
cretizing in space by a Bubnov-Galerkin method. We proved in [27,28] that the optimal test functions (8) are linear
combinations of the so-called ϕ-functions employed in exponential integrators. In practice, we employ the software
available from the exponential integrators community [36] to implement the DPG time-marching scheme (11).

3. Analytical error representation

It is well known in the DPG community [1] that the DPG method delivers an error representation function ψ ∈ V
whose norm equals the energy norm of the error of the solution, i.e.,

∥z − zh∥E = ∥ψ∥V , (12)

where the energy norm is defined as ∥z∥E := sup
0̸=v∈V

|b(z, v)|
∥v∥V

. The function ψ is called the error representation

function and it can be employed to perform adaptivity. It is defined as the solution of the following problem: Given
zh ∈ Uh,p{

Find ψ ∈ V such that
(ψ, δv)V = b(zh, δv) − l(δv), ∀ δv ∈ V .

(13)

Function ψ is thus the Riesz representation of the residual. Definition (13) holds for any approximation zh ∈ Uh,p,
including the optimal solution given in (10). For simplicity in the notation, we employ zh in both cases specifying
if it is the optimal solution of (10) or a perturbation of it. Similarly, ψ denotes the analytical error representation
function of both the solution of (10) or any perturbation of it, specifying each case accordingly. As in problem (7),
we can solve (13) analytically.

Proposition 1. The error representation function (13) for any zh ∈ Uh,p with the variational setting defined in
Section 2 is ∀ k = 1, . . . ,m

ψk(t) := ψ(t)|Ik = Ck
1 eλt

+ Ck
2 e−λt

+
eλt

2λ

∫ tk

t
e−λs Rk(s)ds −

e−λt

2λ

∫ tk

t
eλs Rk(s)ds, (14)

4
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where Rk(t) := (uk
h(t))′ + λuk

h(t) − f (t)|Ik is the residual at Ik and constants Ck
1 and Ck

2 are defined recursively as⎧⎪⎪⎨⎪⎪⎩
C1

2 = I 1
2 +

eλt0

2λ
S0

+
,

Ck+1
2 = I k+1

2 + Ck
2 +

eλtk

2λ
[uh]k, ∀ k = 1, . . . ,m − 1,

(15)

⎧⎨⎩
Cm

1 = (2λ− 1)Cm
2 e−2λtm + e−λtm Sm

−
,

Ck
1 = Ck+1

1 + I k+1
1 + 2λCk

2 e−2λtk +
e−λtk

2λ
[uh]k + e−λtk Sk

−
, ∀ k = m − 1, . . . , 1.

(16)

Here, we denote ∀ k = 1, . . . ,m

I k
1 =

1
2λ

∫
Ik

e−λs Rk(s)ds, I k
2 =

1
2λ

∫
Ik

eλs Rk(s)ds,

and also S0
+

= uh(t+

0 ) − u0 and [uh]k = Sk
+

+ Sk
−

with

Sk
−

= ûk
h − uh(t−

k ), Sk
+

= uh(t+

k ) − ûk
h .

Proof. Problem (13) reads
m∑

k=1

∫
Ik

(−ψ ′
+ λψ)(−δv′

+ λδv)dt + [ψ]k[δv]k =

m∑
k=1

∫
Ik

uh(−δv′
+ λδv)dt − ûk

h[δv]k

−

m∑
k=1

∫
Ik

f δvdt − u0δv(t+

0 ),

and selecting test functions with local support in Ik , we obtain∫
Ik

(−ψ ′
+ λψ)(−δv′

+ λδv)dt − [ψ]kδv(t−

k ) + [ψ]k−1δv(t+

k−1)

=

∫
Ik

uh(−δv′
+ λδv)dt + ûk

hδv(t−

k ) − ûk−1
h δv(t+

k−1) −

∫
Ik

f δvdt.
(17)

Integrating by parts, we have that ψ(t) satisfies the following m overlapping boundary value problems⎧⎪⎨⎪⎩
−ψ ′′

+ λ2ψ = Rk, ∀ t ∈ Ik,

−ψ ′(t+

k−1) + λψ(t+

k−1) + ψ(t+

k−1) − ψ(t−

k−1) = Sk−1
+
, (BCk

1 )

ψ ′(t−

k ) − λψ(t−

k ) + ψ(t−

k ) − ψ(t+

k ) = Sk
−
, (BCk

2 )

(18)

∀ k = 1, . . . ,m. In particular, for k = 1 and k = m, we have

BC1
1 : −ψ ′(t+

0 ) + λψ(t+

0 ) = S0
+
,

BCm
2 : ψ ′(t−

m ) − λψ(t−

m ) + ψ(t−

m ) = Sm
−
.

(19)

From the first equation of (18), we obtain

ψk(t) = Ck
1 eλt

+ Ck
2 e−λt

+
eλt

2λ

∫ tk

t
e−λs Rk(s)ds −

e−λt

2λ

∫ tk

t
eλs Rk(s)ds,

and we now determine Ck
1 and Ck

2 from the boundary conditions. From BCk
1 in (18), we have ∀ k = 2, . . . ,m

(Ck
1 + I k

1 )eλtk−1 + (Ck
2 − I k

2 )(1 + 2λ)e−λtk−1 = Ck−1
1 eλtk−1 + Ck−1

2 e−λtk−1 + Sk−1
+
, (20)

and from BC1
1 in (19)

2λ(C1
2 − I 1

2 )e−λt0 = S0
+
,

which is the first equation in (15). Similarly, from BCk
2 in (18) we obtain ∀ k = 1, . . . ,m − 1

Ck
1 eλtk + Ck

2 (1 − 2λ)e−λtk − Sk
−

= (Ck+1
1 + I k+1

1 )eλtk + (Ck+1
2 − I k+1

2 )e−λtk (21)

5
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and from BCm
2 in (19)

Cm
1 eλtm + Cm

2 (1 − 2λ)e−λtm = Sm
−
,

which is the first equation in (16). From (20) and (21), we obtain the following system after adjusting the indices
∀ k = 1, . . . ,m − 1{

(Ck+1
1 + I k+1

1 )eλtk + (Ck+1
2 − I k+1

2 )(1 + 2λ)e−λtk = Ck
1 eλtk + Ck

2 e−λtk + Sk
+
,

(Ck+1
1 + I k+1

1 )eλtk + (Ck+1
2 − I k+1

2 )e−λtk = Ck
1 eλtk + Ck

2 (1 − 2λ)e−λtk − Sk
−
,

(22)

Finally, subtracting both equations in (22), we obtain the second equation in (15) and solving for Ck
1 in (22), we

obtain the second equation in (16). □

Corollary 1. From Proposition 1, it holds that

∥ψ∥
2
V =

m∑
k=1

∫
Ik

| − ψ ′
+ λψ |

2dt + [ψ]2
k

=

m∑
k=1

∫
Ik

⏐⏐⏐⏐2λCk
2 e−λt

− e−λt
∫ tk

t
eλs Rk(s)ds

⏐⏐⏐⏐2 dt +
(
−2λCk

2 e−λtk − Sk
−

)2
.

(23)

The error representation function ψ of Proposition 1 is given for any discrete ansatz function in Uh,p. In view of
(12), we can employ the adjoint norm of the error described in Corollary 1 to perform adaptivity. However, we have
not used in any place of the proof that zh is the optimal solution. In the next proposition we give the expression
for the error representation function when zh is the solution of problem (10).

Proposition 2. The error representation function (13) for the solution zh ∈ Uh,p of problem (10) with the variational
setting defined in Section 2 is ∀ k = 1, . . . ,m

ψk(t) := ψ(t)|Ik = Ck
1 eλt

−
Sk

−

2λ
eλ(tk−t)

+
eλt

2λ

∫ tk

t
e−λs Rk(s)ds −

e−λt

2λ

∫ tk

t
eλs Rk(s)ds, (24)

where Rk(t) := (uk
h(t))′ + λuk

h(t) − f (t)|Ik is the residual at Ik and constants Ck
1 are defined recursively as⎧⎪⎨⎪⎩

Cm
1 = −

Sm
−

2λ
e−λtm ,

Ck
1 = Ck+1

1 + I k+1
1 +

e−λtk

2λ
[uh]k, ∀ k = m − 1, . . . , 1.

(25)

Here, we denote ∀ k = 1, . . . ,m

I k
1 =

1
2λ

∫
Ik

e−λs Rk(s)ds,

and also S0
+

= uh(t+

0 ) − u0 and [uh]k = Sk
+

+ Sk
−

with

Sk
−

= ûk
h − uh(t−

k ), Sk
+

= uh(t+

k ) − ûk
h .

Proof. From Proposition 1, we know that the error representation function ψ(t) corresponding to the optimal
solution zh of problem (10) is (14). Additionally, as zh satisfies (10), we have that

(ψ, δvh)V = 0, ∀ δvh ∈ V opt
h,p .

In particular, testing with v̂k in (17) and employing (9), we obtain

[ψ]1 = 0,

[ψ]k = [ψ]k−1v̂
k(tk−1), ∀ k = 2, . . . ,m,

(26)

which implies that [ψ]k = 0, ∀ k = 1, . . . ,m and, therefore, in this case ψ(t) is a globally continuous function
and from (23),

[ψ]k = −2λCk
2 e−λtk − Sk

−
= 0, ∀ k = 1, . . . ,m,

6



J. Muñoz-Matute, L. Demkowicz and D. Pardo Computer Methods in Applied Mechanics and Engineering 391 (2022) 114480

which lead to expressions (24) and (25). Finally, recurrence formulas (15) reduce to

−etk

2λ
Sk

−
= I k

2 +
eλtk−1

2λ
Sk−1

+
, ∀ k = 1, . . . ,m, (27)

and integrating by parts in I k
2 we obtain

2λI k
2 = eλtk uh(t−

k ) − eλtk−1uh(t+

k−1) −

∫
Ik

f eλt dt, (28)

and from the first equation in (11) we have that
∫

Ik

f eλt dt = eλtk ûk
h − eλtk−1 ûk−1

h , therefore conditions (27) are

automatically satisfied. □

Corollary 2. From Proposition 2, it holds that

∥ψ∥
2
V =

m∑
k=1

∫
Ik

| − ψ ′
+ λψ |

2dt + [ψ]2
k

=

m∑
k=1

∫
Ik

⏐⏐⏐⏐−Sk
−

eλ(tk−t)
− e−λt

∫ tk

t
eλs Rk(s)ds

⏐⏐⏐⏐2 dt.

(29)

In this particular case, the error representation function (24) can be computed backwards in time and the adjoint
norm (29) is a sum of local contributions. However, both expressions are given in integral form. In the next section,
we introduce an approximation to the analytical error representation function with the goal of simplifying both ψ(t)
in (24) and its adjoint norm (29).

4. Practical error representation

In order to obtain a computable approximation of the analytical error representation defined in Proposition 2, we
consider the practical DPG framework [33] in this section. The idea is to select a finite dimensional subspace of
V to solve both problems (7) and (13). However, we can take advantage of knowing the analytical solution of both
problems. Our goal is to find a subspace of V that delivers the same optimal test functions as in (7) and a good
approximation for (13).

Given the trial space Uh,p defined in Section 2, we propose to solve both problems (7) and (13) substituting V
by the following subspace

Vh,r = span{v̂k, vk
j , ∀ j = 0, . . . , r, ∀ k = 1, . . . ,m}, (30)

with r ≥ p + 1 and the functions in (30) satisfying (8) and (9). We now define the discrete version of (7) as{
Find vh ∈ Vh,r such that
(vh, δvh)V = b(zh, δvh), ∀ δvh ∈ Vh,r ,

(31)

and the discrete version of (13) as{
Find ψh ∈ Vh,r such that
(ψh, δvh)V = b(zh, δvh) − l(δvh), ∀ δvh ∈ Vh,r .

(32)

This construction leads us to the following remarks, which are the key points of this article.

Remark 1. The space defined in (30) is an enriched test space containing the optimal test functions corresponding
to Uh,p, i.e. V opt

h,p ⊂ Vh,r . It is easy to verify that the constants corresponding to vk
j with j = p + 1, . . . , r are equal

to zero in system (31). Therefore, the optimal test space we obtain from (31) is exactly V opt
h,p and we can conclude

that practical DPG method we propose here delivers the optimal solution (10).

Remark 2. We know from Propositions 1 and 2 that ψ(t) includes negative exponential terms like e−λt , which is not
an element of Vh,r . Therefore, problem (32) does not deliver ψ(t) ∈ V but an approximation of it: ψh(t) ∈ Vh,r ⊂ V .
We study this approximation in the next section by introducing a Fortin operator and a posteriori error estimates.

7
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Summarizing, the practical DPG method defined in this section delivers the optimal solution and an approxima-
tion of the error representation function. Finally, we give an explicit formula to compute the approximated error
ψh ∈ Vh,r for the optimal solution in (10).

Proposition 3. The approximate error representation function (32) for the solution zh ∈ Uh,p of problem (10) with
the variational setting defined in Section 2 is

ψh(t) =

m∑
k=1

(
ψ̂k

h v̂
k
+

r∑
i=0

ψk
h,iv

k
i

)
, (33)

with the coefficients satisfying the following local systems ∀ k = 1, . . . ,m⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r∑
i=0

hk

i + j + 1
ψk

h,i = 0, ∀ j = 0, . . . , p,

r∑
i=0

hk

i + j + 1
ψk

h,i =

p∑
i=0

hk

i + j + 1
uk

h,i −

∫
Ik

f kvk
j dt − ûk−1

h vk
j (tk−1), ∀ j = p + 1, . . . , r,

(34)

and global continuity conditions⎧⎪⎨⎪⎩
ψ̂m

h = 0,

ψ̂k
h = ψ̂k+1

h v̂k+1(tk) +

r∑
i=0

ψk+1
h,i v

k+1
i (tk), ∀ k = m − 1, . . . , 1.

(35)

Proof. From conditions (9) of the basis functions in Vh,r , we have that

− ψ ′

h + λψh =

m∑
k=1

r∑
i=0

ψk
h,i

(
t − tk−1

hk

)i

, (36)

and also

[ψh]k = ψh(t+

k ) − ψh(t−

k ) = ψ̂k+1
h v̂k+1(tk) +

r∑
i=0

ψk+1
h,i v

k+1
i (tk) − ψ̂k

h . (37)

We note that the right-hand-side of (32) vanishes for all functions in V opt
h,p , i.e.,

(ψh, δvh)V = 0, ∀ δvh ∈ V opt
h,p ⊂ Vh,r . (38)

This follows directly from the fact that zh is the solution from problem (10).
We now test problem (32) with the basis functions of Vh,r :

• If we test with v̂k, ∀ k = 2, . . . ,m, as v̂k
∈ V opt

h,p and it has local support in Ik , we obtain∫
Ik

(−ψ ′

h + λψh)(−(v̂k)′ + λv̂k)dt − [ψh]k v̂
k(tk) + [ψh]k−1v̂

k(tk−1) = 0,

and from (9), we have

[ψh]k = [ψh]k−1v̂
k(tk−1), ∀ k = 2, . . . ,m.

In particular, for v̂1, as we do not have a jump in t0, we obtain that [ψh]1 = 0. Therefore, the jumps of ψh

vanish, i.e,

[ψh]k = 0, ∀ k = 1, . . . ,m − 1,

[ψh]m = −ψ̂m
h = 0,

which are the conditions in (35) with the jumps defined in (37). We then conclude from (35) that ψh(t) is a
globally continuous function.

8
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• If we test with vk
j , ∀ k = 1, . . . ,m, ∀ j = 0, . . . , p, we have∫

Ik

(−ψ ′

h + λψh)(−(v̂k)′ + λv̂k)dt = 0,

and from (9) and (36) we obtain the first equation in (34)
r∑

i=0

ψk
h,i

∫
Ik

(
t − tk−1

hk

)i+ j

dt = 0.

• Similarly, when we test with vk
j , ∀ k = 1, . . . ,m, ∀ j = p + 1, . . . , r , we obtain the second equation in (34)

r∑
i=0

ψk
h,i

∫
Ik

(
t − tk−1

hk

)i+ j

dt =

p∑
i=0

uk
h,i

∫
Ik

(
t − tk−1

hk

)i+ j

dt −

∫
Ik

f kvk
j dt − ûk−1

h vk
j (tk−1). □

Corollary 3. From Proposition 3, it holds that

∥ψh∥
2
V =

m∑
k=1

∫
Ik

| − ψ ′

h + λψh |
2dt + [ψh]2

k =

m∑
k=1

∫
Ik

⏐⏐⏐⏐⏐
r∑

i=0

ψk
h,i

(
t − tk−1

hk

)i
⏐⏐⏐⏐⏐
2

dt. (39)

We observe that computing the error ψh(t) in (33) involves another time-marching scheme that needs to be
computed backwards in time. We know that ψ̂m

h = 0, then we can compute the local problem (34) for k = m to
calculate ψm

h,i and then employ (35) to compute ψ̂m−1
h . We repeat this process for k = m, . . . , 1.

The error representation function ψh(t) is globally continuous. However, −ψ ′

h(t) + λψh(t) is a discontinuous
function with piecewise polynomials of order r in each element — see Eq. (9). Therefore, computing the adjoint
norm of ψh(t) in (39) reduces to solving local problems (34) and then integrate a polynomial of order r in each
element, which is simpler than the expression given in Proposition 2.

Remark 3. We can also employ (32) to approximate the error representation function of any perturbed solution
zh ∈ Uh,p. However, as it occurs in Proposition 1, the jumps are not zero and (32) is not a time-marching scheme
but a global problem.

5. Error analysis

In this section, we analyze the approximation of the analytical error representation given in (32) by constructing
a Fortin operator [37], and introducing a posteriori error estimates similar to [34].

5.1. Fortin operator

We first recall the notion of Fortin operator [38].

Definition 1. A linear map Π : V −→ Vh,r is called a Fortin operator if it satisfies the following conditions{
b(δzh, v − Π v) = 0, ∀ δzh ∈ Uh,p,

∥Π v∥V ≤ CΠ ∥v∥V .
(40)

The constant CΠ is the operator norm and it is referred to as the Fortin constant.

In the next theorem, we construct a global Fortin operator defined in Definition 1 and we prove that it is an
orthogonal projection, hence its norm is equal one.

Theorem 1. The following operator Π : V −→ Vh,r defined locally at each element Ik as⎧⎨⎩
∫

Im

χh(−Π v′
+ λΠ v)dt =

∫
Im

χh(−v′
+ λv)dt, ∀ χh ∈ Pr (Im),

Π v(t−

m ) = v(t−

m ),
(41)

9
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and ∀ k = m − 1, . . . , 1⎧⎨⎩
∫

Ik

χh(−Π v′
+ λΠ v)dt =

∫
Ik

χh(−v′
+ λv)dt, ∀ χh ∈ Pr (Ik),

Π v(t−

k ) = Π v(t+

k ) − [v]k,

(42)

with Pr (Ik) denoting the space of polynomials up to order r in Ik , satisfies conditions (40). Moreover, Π is an
orthogonal projection of functions from V into Vh,r and therefore

CΠ = 1.

Proof. Employing the test functions defined in (30), we express Π v ∈ Vh,r as

Π v =

m∑
k=1

(
α̂k v̂k

+

r∑
i=0

αk
i v

k
i

)
. (43)

Therefore, (41) and (42) describe a square system of m(r +2) unknowns and equations. We can solve (41) and (42)
as a time-marching-scheme backwards in time and the value Π v(t+

k ) is known from solving the system at Ik+1.
If we multiply the equations at the boundaries by real numbers χ̂ k

h ∈ R and summing up all equations in (41)
and (42), we obtain

m∑
k=1

∫
Ik

χh(−Π v′
+ λΠ v)dt − χ̂ k

h [Π v]k =

m∑
k=1

∫
Ik

χh(−v′
+ λv)dt − χ̂ k

h [v]k, ∀ (χh, χ̂
1
h , . . . , χ̂

m
h ) ∈ Uh,r ,

or equivalently, b(δχh,Π v) = b(δχh, v), ∀ δχh ∈ Uh,r . As Uh,p ⊂ Uh,r , the first condition in Definition 1 is
satisfied.

From (9) and (43), we can rewrite (41) and (42) as⎧⎪⎨⎪⎩
r∑

i=0

αm
i

∫
Im

(
t − tm−1

hm

)i+ j

dt =

∫
Im

(
t − tm−1

hm

) j

(−v′
+ λv)dt, ∀ j = 0, . . . , r,

α̂m
= v(t−

m ),

(44)

and ∀ k = m − 1, . . . , 1⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r∑
i=0

αk
i

∫
Ik

(
t − tk−1

hk

)i+ j

dt =

∫
Ik

(
t − tk−1

hk

) j

(−v′
+ λv)dt, ∀ j = 0, . . . , r,

α̂k
= α̂k+1v̂k+1(t+

k ) +

r∑
i=0

αk+1vk+1
i (t+

k ) − [v]k .

(45)

To see that Π is a projection, we select in the right-hand-side of (44) and (45), v = Πw ∈ Vh,r with w ∈ V and
we express

Πw =

m∑
k=1

(
β̂k v̂k

+

r∑
i=0

βk
i v

k
i

)
.

From (44) and the first equation in (45), it is easy to see that βk
i = αk

i , ∀ k = 1, . . . ,m, ∀ i = 0, . . . , r , and
β̂m

= α̂m . From the second equation in (45), we have

β̂k
= β̂k+1v̂k+1(t+

k ) +

r∑
i=0

βk+1
i vk+1

i (t+

k ) + α̂k
− α̂k+1v(t+

k ) −

r∑
i=0

αk+1
i vk+1

i (t+

k ),

which reduces to β̂k
− β̂k+1v̂k+1(t+

k ) = α̂k
− α̂k+1vk+1(t+

k ), ∀ k = m − 1, . . . , 1. As β̂m
= α̂m , we have that

β̂k
= α̂k, ∀ k = m − 1, . . . , 1. Therefore, Π (Πw) = Πw, ∀ w ∈ V so Π is a projection.

10
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Finally, to prove that Π is an orthogonal projection, we need to see that (v − Π v,Π v)V = 0, ∀ v ∈ V .
Considering the inner product defined in (6), we have from (9) that the optimal test functions satisfy ∀ k = 2, . . . ,m

(v̂k, δv)V = −[δv]k + v̂k(t+

k−1)[δv]k−1 = b((0, 0, . . . , 1
k

, . . . , 0), δv) + v̂k(t+

k−1)[δv]k−1,

(vk
i , δv)V =

∫
Ik

(
t − tk−1

hk

)i

(−δv + λδv)dt + vk
i (t+

k−1)[δv]k−1

= b

(((
t − tk−1

hk

)i

, 0, . . . , 0

)
, δv

)
+ vk

i (t+

k−1)[δv]k−1, ∀ i = 0, . . . , r,

and for k = 1 we obtain the same expression but without the jump term. Therefore, from these equalities and the
definition of Π we obtain

(Π v,Π v)V =

m∑
k=1

α̂k(v̂k,Π v)V +

m∑
k=1

r∑
i=0

αk
i (vk

i ,Π v)V

=

m∑
k=1

α̂kb((0, 0, . . . , 1
k

, . . . , 0),Π v) +

m∑
k=2

v̂k(t+

k−1)[Π v]k−1

+

m∑
k=1

r∑
i=0

αk
i b

(((
t − tk−1

hk

)i

, 0, . . . , 0

)
,Π v

)
+

m∑
k=2

r∑
i=0

vk
i (t+

k−1)[Π v]k−1

=

m∑
k=1

α̂kb((0, 0, . . . , 1
k

, . . . , 0), v) +

m∑
k=2

v̂k(t+

k−1)[v]k−1

+

m∑
k=1

r∑
i=0

αk
i b

(((
t − tk−1

hk

)i

, 0, . . . , 0

)
, v

)
+

m∑
k=2

r∑
i=0

vk
i (t+

k−1)[v]k−1

=

m∑
k=1

α̂k(v̂k, v)V +

m∑
k=1

r∑
i=0

αk
i (vk

i , v)V = (Π v, v)V . □

5.2. A posteriori error estimation

We first analyze the continuity and the inf–sup constants of the continuous broken formulation (4) in the next
theorem.

Theorem 2. The bilinear form defined in (5) satisfies the following inf–sup and continuity conditions

γ ∥z∥U ≤ sup
0̸=v∈V

|b(z, v)|
∥v∥V

≤ M∥z∥U , (46)

with γ = M = 1 and the following uniqueness condition holds

{v ∈ V | b(z, v) = 0, ∀ z ∈ U } = {0}. (47)

Proof. We first prove the uniqueness condition (47). We have that

b(z, v) =

m∑
k=1

∫
Ik

u(−v′
+ λv)dt − ûk[v]k = 0, ∀ z ∈ U.

In particular, it holds for z = (0, 1, . . . , 1), therefore [v]k = 0, ∀ k = 1, . . . ,m. This means that v ∈ H 1(Ω ) and
v(tm) = 0. Now, selecting functions u with local support in Ik , we obtain that v(t) satisfies⎧⎪⎨⎪⎩

−v′
+ λv = 0, ∀ t ∈ Ik,

[v]k = 0, ∀ k = 1, . . . ,m − 1,
v(tm) = 0,

(48)
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The first equation in (48) leads to v(t)|Ik = αkeλ(t−tk ), ∀ k = 1, . . . ,m, and from the second equation in (48), we
have

αk+1eλhk = αk, ∀ k = 1, . . . ,m − 1.

The last condition in (48) implies that αm = 0 and therefore αk = 0, ∀ k = 1, . . . ,m and (47) holds. The continuity
constant of the bilinear form holds directly from the Cauchy–Schwarz inequality

sup
0̸=v∈V

|b(z, v)|2

∥v∥2
V

= sup
0̸=v∈V

⏐⏐⏐⏐⏐
m∑

k=1

∫
Ik

u(−v′
+ λv)dt − ûk[v]k

⏐⏐⏐⏐⏐
2

∥v∥2
V

≤ sup
0̸=v∈V

(
m∑

k=1

∫
Ik

|u|
2dt + |ûk

|
2

)(
m∑

k=1

∫
Ik

| − v′
+ λv|

2dt + [v]2
k

)
∥v∥2

V
≤ ∥z∥2

U .

(49)

For the inf–sup condition, we test with v = u′
+ λu in Ik and [v]k = ûk and we obtain

sup
0̸=v∈V

|b(z, v)|2

∥v∥2
V

≥

⏐⏐⏐⏐⏐
m∑

k=1

∫
Ik

|u|
2dt + |ûk

|
2

⏐⏐⏐⏐⏐
2

m∑
k=1

∫
Ik

|u|
2dt + |ûk

|
2

= ∥z∥2
U . □

In general, Theorem 2 implies that the analytical error representation function ψ(t) provides a reliable and
efficient error control of the error of the solution in the norm of U . In other words, ∥ψ∥V is both an upper bound
and a lower bound of ∥z − zh∥U . It follows directly from (12) and (46)

1
M

∥ψ∥V ≤ ∥z − zh∥U ≤
1
γ

∥ψ∥V .

In this case, as M = γ = 1, the equality ∥ψ∥V = ∥z − zh∥U holds.
The next theorem proves, following the arguments of the more general proofs in [34,39], that the approximated

error representation function ψh(t) introduced in (32) is reliable and efficient. For that, we need the Fortin operator
defined in Section 5.1.

Theorem 3. The approximated error representation function (32) provides a reliable and efficient error control
of the analytical error representation function (13), i.e.,

∥ψh∥V ≤ ∥ψ∥V ≤ ∥ψh∥V + osc. (50)

Here, osc = ∥l ◦ (I −Π )∥V ′ is the oscillation term where V ′ is the dual space of V and l ∈ V ′ is the linear form
defined in (5).

Proof. We first denote ε = ψ − ψh ∈ V . Restricting (13) to Vh,r and subtracting (32), we obtain

(ε, δvh)V = 0, ∀ vh ∈ Vh,r . (51)

In particular, (ε,Πψ)V = 0, which implies that Πψ = ψh as Π is an orthogonal projection. Therefore, Π ε = 0
and the first inequality of (50) holds directly from (40). From (51), we have

∥ψ∥
2
V = ∥ε∥2

V + ∥ψh∥
2
V . (52)

and also

∥ε∥2
V = (ε, ε)V = (ψ − ψh, ε)V = (ψ, ε)V = (ψ, ε − Π ε)V

= l(ε − Π ε) − b(zh, ε − Π ε) = l(ε − Π ε).
(53)
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Therefore,

∥ε∥V ≤ ∥l ◦ (I − Π )∥V ′ = osc,

and finally from (52), we obtain the second inequality in (50). □

Remark 4. In Theorem 3, the oscillation term osc measures the data approximation error. From [34,39], we have
the following bound

osc ≤ MCΠ min
zh∈Uh,p

∥z − zh∥U = min
zh∈Uh,p

∥z − zh∥U .

Numerical results show that an enrichment in the order of the test space improves the approximation of the practical
error to the analytical one, which implies that the oscillation term becomes negligible. For practical purposes, we
set r = p + 1 in our experiments.

Remark 5. The construction of the Fortin operator in this section is consistent with the fact that our practical DPG
method delivers the optimal solution. We know from [1] that the existence of a Fortin operator implies the discrete
inf–sup condition with γh ≥

γ

CΠ
. In our case, as we proved that CΠ = 1, we have that

γh ≥
γ

CΠ
= γ.

Conversely, as the optimal test space for Uh,p is contained in the discrete test space, i.e. Vh,p ⊂ Vh,r , our practical
DPG method delivers the optimal solution. Therefore, the stability at the discrete level is inherited from the
continuous problem γh ≥ γ by construction [1]. Finally, we know from [40] that the discrete inf–sup condition
implies the existence of a Fortin operator Π that is idempotent with constant CΠ ≥

M
γh

. In Theorem 1, we constructed
such idempotent Fortin operator explicitly and, in addition, we proved that it is the orthogonal projection of V into
Vh,r .

Therefore, in this article we present a practical DPG method that delivers the optimal solution and an approximate
error representation function ψh that satisfies (50). In the numerical results in the next section, we employ the
element contributions of ∥ψh∥V as error indicators to guide the adaptivity in time. For that, we employ the classical
Dörfler marking strategy [35] with parameter θ ∈ [0, 1]. Note that, as we have a time-marching scheme, we only
need to re-compute the values of the solution in the elements to the right of the first marked element in each
iteration.

6. Numerical results

In this section, we present numerical results of adaptivity in time for both parabolic and hyperbolic problems.
For the space discretization, we employ a Bubnov-Galerkin method with piecewise linear functions. As in [27,28],
we employ the expression of the optimal test functions in terms of the ϕ-functions from exponential integrators
in both the time marching (11) scheme and the error representation function (33). We employ the EXPINT [36]
package in MATLAB for the evaluation of the corresponding ϕ−functions.

6.1. Approximation of the Riesz representation

Here, we show an example of how close is the solution of (32) to (13) for a given right-hand-side. First, we
consider a single element and we define the following functional

R(v) =

∫ 1

0
f (t)v(t)dt,

with f (t) = t p and p ≥ 0. and we solve the following Riesz representation problem{
Find ψ ∈ V such that
(ψ, δv)V = R(δv), ∀ δv ∈ V,

(54)
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Fig. 2. Functions ψ and ψh for λ = 1 and different values of p and r .

Table 1
Relative L2-error ||ψ − ψh ||/||ψ || (Fig. 2) for λ = 1 and different values of p and r .

r = 0 r = 1 r = 2 r = 3

p = 0 7.09 · 10−2 5.99 · 10−3 3.54 · 10−4 1.71 · 10−5

p = 1 8.27 · 10−2 1.12 · 10−2 6.63 · 10−4 3.19 · 10−5

p = 2 7.09 · 10−2 2.04 · 10−2 1.93 · 10−3 9.34 · 10−5

and also its discrete version{
Find ψh ∈ Vh,r such that
(ψh, δvh)V = R(δvh), ∀ δvh ∈ Vh,r .

(55)

We know the analytical solution ψ from Proposition 1 and we study its approximation ψh for different values of
r , p and λ.

Fig. 2 shows the solution of (54) and (55) for λ = 1 and different values of p and r . Table 1 displays the relative
L2-error for λ = 1 and different values of p and r . Fig. 3 presents the solutions for p = 0, r = 1 and different
values of λ. Table 2 displays the relative L2-error for λ = 1 and different values of p and r . We observe that as
we increase r , the practical error representation function ψh better approximates the analytical one ψ . In practice,
we select r = p + 1.
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Fig. 3. Functions ψ and ψh for p = 0, r = 1 and different values of λ.

Table 2
Relative L2-error ||ψ − ψh ||/||ψ || (Fig. 3) for p = 0, r = 1 and different values of λ.

λ = 1 λ = 0.1 λ = 5 λ = −1 λ = −0.1 λ = −5

5.99 · 10−3 4.48 · 10−4 3.02 · 10−2 2.42 · 10−3 4.09 · 10−4 1.45 · 10−2

6.2. Parabolic problem: single ODE

We consider a similar example as in [27]. In (1), we set f (t) =
M

eM − 1
, M = 30, λ = −M and I = (0, 1]. The

exact solution to this problem is

u(t) =
eM(t−1)

− e−M

1 − e−M
.

Fig. 4 shows the convergence of the exact error for p = 0, 1, 2 for uniform refinements and for adaptive refinements
employing the Dörfler strategy with θ = 0.5 and enriched test space with r = p + 1. We conclude that to achieve
a desirable error, the adaptive strategy needs about an order of magnitude less degrees of freedom than when
employing uniform refinements. Fig. 5 presents the adapted solutions for p = 0, 1, 2 for a fixed tolerance error and
the corresponding local discrete error contribution function −(ψk

h (t))′ +λψk
h (t). Note that from (9) and Corollary 3,

these functions are piecewise polynomials of order r at each element. Finally, Fig. 6 shows the convergence of the
exact error for p = 0, 1, 2 with uniform refinements and the convergence of the discrete error ∥ψh∥V for r = p +1.
We conclude that ∥ψh∥V is an efficient and reliable error control to perform adaptivity.

6.3. Parabolic problem: single ODE with a strong gradient

We consider in (1) the data corresponding with the following exact solution

u(t) =

(
1 + e−M

(
t− 1

2

))−1

,

with λ = M = 103, which has strong gradients nearby t =
1
2 . Fig. 7 compares the convergence of the exact error

for uniform vs adaptive refinements with θ = 0.5. Fig. 8 displays the adaptive solution and error contributions for
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Fig. 4. Convergence of the exact error for p = 0, p = 1 and p = 2 performing uniform refinements and the Dörfler adaptive strategy with
θ = 0.5.

Fig. 5. Adapted solution with p = 0, p = 1 and p = 2 for a fixed tolerance error (top row) and the corresponding local error contributions
for r = p + 1 (bottom row).

p = 1, 2 and r = p +1 for a fixed tolerance. We conclude that the error representation captures the strong gradient
of the solution and performs refinements around t =

1
2 .

6.4. Parabolic problem: 1D+time

We consider the following 1D+time parabolic problem that we introduced in [27]⎧⎪⎪⎨⎪⎪⎩
∂u
∂t

− α2 ∂
2u
∂x2 = f (x, t), ∀ (x, t) ∈ Ω × I,

u(x, t) = 0, ∀ (x, t) ∈ ∂Ω × I,

u(x, 0) = u0(x), ∀ x ∈ Ω .

(56)

16
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Fig. 6. Convergence of the exact error for p = 0, p = 1 and p = 2 and the error estimator ∥ψh∥V for r = p + 1 when performing uniform
refinements.

Fig. 7. Convergence of the exact error for p = 1, 2 performing uniform refinements and the Dörfler adaptive strategy with θ = 0.5.

We set Ω = (0, 1), I = (0, 0.5] and the data of the problem corresponding to the exact solution

u(x, t) = e−2π2t sin(πx).

Fig. 9 shows the adapted solutions and cross sections at x = 0.5 for p = 0, 1, 2 and 600 elements in space and
θ = 0.5. Fig. 10 presents the corresponding error contribution functions and their cross sections at x = 0.5. In this
case, the errors are space–time tensor products with polynomials of order r = p + 1 in time. Fig. 11 compares the
relative error of the solutions when we perform uniform refinements and adaptivity with 600 elements in space and
θ = 0.5. We conclude that the adaptive strategy is more efficient. Finally, Fig. 12 shows the convergence of the
relative errors when we employ 50 elements in space. We observe that the adaptive strategy in time stops converging
when the error in space becomes dominant, as expected.

6.5. Hyperbolic problem

We consider the model hyperbolic problem presented in [28]{
U ′(t) + AU (t) = F(t), in I,

U (0) = U0,
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Fig. 8. Adapted solution with p = 1, 2 for a fixed tolerance error and local error contributions for r = p + 1.

Fig. 9. Adapted solution with p = 0, p = 1 and p = 2 for a fixed tolerance error (top row) and the corresponding cross sections at x = 0.5
(bottom row).

where v = u′ and

U (t) =

[
u(t)
v(t)

]
, A =

[
0 −1
α2 0

]
, F(t) =

[
0

f (t)

]
, U0 =

[
u0
v0

]
.

In this example, we set the data corresponding to the following exact solution

U (t) =

[
eβt sin(γ t)

βeβt sin(γ t) + γ eβt cos(γ t)

]
in I = (0, 1] with β = −4π and γ = 18π .
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Fig. 10. Error representation functions with p = 0, p = 1 and p = 2 for a fixed tolerance error (top row) and the corresponding cross
sections at x = 0.5 (bottom row).

Fig. 11. Relative error for p = 0, p = 1 and p = 2 when performing uniform refinements and the Dörfler adaptive strategy with θ = 0.5.
Number of elements in space: 600.

Fig. 13 displays the convergence of the exact error for p = 0, 1, 2 for uniform refinements and for adaptive
refinements fixing θ = 0.5 and r = p + 1. Figs. 14 and 15 present the adapted solutions for p = 0, 1, 2 and the
corresponding local error contribution functions for u(t) and v(t), respectively. In this case, as explained in [27],
the source is time dependent and p = 0 is insufficient to obtain a good approximation since we would require a
very fine mesh. We observe here that for p = 2, the error of integrating the source is of lowest order and we obtain
a good adapted solution after a few iterations.

7. Conclusions and future work

In this article, we study an error representation function to perform adaptivity in time in the DPG time-marching
scheme we recently introduced in [27,28]. We apply the DPG method in the time variable only so we can compute
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Fig. 12. Relative error for p = 0, p = 1 and p = 2 when performing uniform refinements and the Dörfler adaptive strategy with θ = 0.5.
Number of elements in space: 50.

Fig. 13. Convergence of the exact error for p = 0, p = 1 and p = 2 performing uniform refinements and the Dörfler adaptive strategy with
θ = 0.5.

analytically the error representation function by inverting the Riesz operator of the residual. However, in order to
obtain computable error estimators, we approximate the analytical error by enriching the test space. The enriched
test space we propose contains the analytical optimal test functions so our method still delivers the optimal DPG
solution. We compute both the solution and the error contributions in a time marching-scheme that has a few more
equations than the ones presented in [27,28]. We prove via analysis confirmed with numerical evidence that our
proposed approximation error is reliable and efficient to perform adaptivity.

Possible extensions of this work include: (a) to combine the adaptivity in time together with adaptivity in
space for the Bubnov–Galerkin method; (b) to combine the adaptive DPG-based time-marching scheme together
with DPG in space; (c) to design goal-oriented adaptive strategies; (d) to extend the method to non-linear
problems.
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Fig. 14. Adapted solution of u(t) with p = 0, p = 1, and p = 2 for a fixed tolerance error (top row) and the corresponding local error
contributions for r = p + 1 (bottom row).

Fig. 15. Adapted solution of v(t) with p = 0, p = 1, and p = 2 for a fixed tolerance error (top row) and the corresponding local error
contributions for r = p + 1 (bottom row).
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