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Locally Recoverable Codes on Surfaces

Cecilia Salgado, Anthony Vdrilly-Alvarado™, and José Felipe Voloch

Abstract— A linear error correcting code is a subspace of a
finite-dimensional space over a finite field with a fixed coordinate
system. Such a code is said to be locally recoverable with locality
r if, for every coordinate, its value at a codeword can be
deduced from the value of (certain) r other coordinates of the
codeword. These codes have found many recent applications,
e.g., to distributed cloud storage. We will discuss the problem
of constructing good locally recoverable codes and present some
constructions using algebraic surfaces that improve previous
constructions and sometimes provide codes that are optimal in
a precise sense. The main conceptual contribution of this paper
is to consider surfaces fibered over a curve in such a way that
each recovery set is constructed from points in a single fiber.
This allows us to use the geometry of the fiber to guarantee the
local recoverability and use the global geometry of the surface to
get a hold on the standard parameters of our codes. We look in
detail at situations where the fibers are rational or elliptic curves
and provide many examples applying our methods.

Index Terms—Error correcting codes, locally recoverable
codes, algebraic surfaces.

I. INTRODUCTION

OTIVATED by applications to distributed cloud stor-

age, Gopalan et al. [6] introduced a particular class of
error correcting codes that efficiently correct erasures, known
now as locally recoverable codes. The successful application
of algebraic geometry to the construction of error-correcting
codes [17] naturally prompted the search for locally recov-
erable codes using algebro-geometric methods [2], [3], [5],
[9]-[12]. In particular, [3] gave a systematic way to produce
optimal locally recoverable codes.
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Algebro-geometric codes are constructed from algebraic
varieties, but the one-dimensional case of curves is the most
amply studied, while surfaces and higher dimensional varieties
have received less attention. The purpose of this article is to
present new systematic constructions of locally recoverable
codes using surfaces fibered over a curve in such a way
that each recovery set is constructed from points in a single
fiber. We use the geometry of the fiber to guarantee local
recoverability the global geometry of the surface to get a hold
on the standard parameters of our codes. We start by setting up
a general framework for such constructions and showing how
some previous constructions of locally recoverable codes fall
into this framework. We then specialize our setup to consider
codes constructed using ruled surfaces and elliptic surfaces.
Some of the examples we produce are optimal (in the sense of
achieving equality in inequality I.1) and are long in the sense
that they have, for example, length n = 4q, where ¢ is the
size of the alphabet. These codes are longer than the other
known explicit codes with same recoverability and dimen-
sion; however, they have bounded recoverability. We obtain
the following theorem as a corollary of Theorem IV.5 (see
Example 1V.6).

Theorem I.1: For an integer d divisible by 4 and an integer
b < q such that 4b > d, there exist optimal locally recoverable
codes over [F, with parameters

(n,k,d,r) = (4b,3b— %d+ 1,d,3>.

For arbitrarily large recoverability, we construct, for every
prime p, codes over [, of recoverability p, length n about
2p?, distance d for any d < n, (p + 1) | d, having dimension
just shy of the optimal p(n—d)/(p+1). The precise statement
is as follows (Theorem VI1.6)

Theorem 1.2: For every odd prime (power) p and integer
d < 2(p+1)(p—2),(p+1) | d, there exists a locally
recoverable code C over [F)» of recoverability p, length n =
2(p+ 1)(p — 2), minimum distance d and dimension

_ p(n—d)

p—1
p+1 2

We believe that codes in this range are new.

Ultimately, the codes we construct are obtained by evaluat-
ing functions on a curve lying on a surface, and thus can be
viewed as codes on curves. However, our proofs of the various
properties these codes enjoy crucially rely on the internal
geometry of the ambient surface. This point of view guided our
work throughout, so we have kept the perspective it affords.
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The work of [11] also uses curves embedded in higher
dimensional varieties to construct locally recoverable codes.
Their construction has some similarities and some differences
to ours. We compare the two constructions, once we set up
some terminology, in Section III-D

A. Locally Recoverable Codes

Let F, be the finite field of ¢ elements. A linear error
correcting code is a subspace C of F for some n, which
is called the length of C. We denote by k the dimen-
sion of C as a F,-vector space and we denote by d the
minimum distance of C, defined as the minimum num-
ber of nonzero coordinates among the nonzero elements
of C.

The code C is said to be locally recoverable (LR) with
locality r if, for each ¢ = 1,...,n, there is a subset J; C
{1,...,n}—{i}, #J; = r (called the recovery set), such that,
if we know the values c¢; for j € J; of the coordinates of any
¢ € C, then we can recover ¢;. Codes with small locality can
be used in distributed storage systems as they can reconstruct
data erasures with smaller storage overhead than traditional
back-ups. It is desirable to have codes with small locality,
large dimension (equivalently, high information rate k/n)
and large minimum distance for these applications. However,
these parameters are not independent: they satisfy the basic
constraint [6], [13]

d<n—k—[k/r]+2, (L1)

and C is called an optimal LR code if equality holds. We write
dopt, for the right hand side of (I.1).

An explicit construction of optimal LR codes with n < ¢ is
given in [16]. There are known upper bounds for the length
of LR codes and some general existence theorems [7]. One
of the purposes of this paper is to explicitly construct longer
optimal LR codes.

The LR codes we construct have the property that the sets
J; U{i} form a partition of {1,...,n} but not every LR code
has this property. We end this subsection by giving a simple
proof of (I.1) for LR codes with this property.

Theorem 1.3: Consider an [nk,d]-LR code of locality r
whose recovery sets .J; have the property that the union of
the sets J; U {i} form a partition of {1,...,n}. Then (L.1)
holds.

Proof: Note that the recovery map for any coordinate
on inputs all equal to O is O, since the zero vector is a
codeword. Now take b = [k/r| — 1 so br < k and choose
b disjoint sets of the form J; U {i} and set the r coordinates
indexed by each J; from this choice to 0. In addition, choose
k — 1 — br coordinates outside the union of the chosen
J; U {i} and set them equal to 0 as well. Thus, a total of
k — 1 conditions are imposed and there exists a non-zero
codeword satisfying them all as our code has dimension k.
But this non-zero codeword also has zero i-th coordinates for
all of the chosen J; U {i}. This gives us b additional zero
coordinates. Hence the weight of this codeword is at most
n—(k—1)—b=n—k—[k/r| +2. O
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B. Algebro-Geometric Codes

Let X be a quasi-projective ! algebraic variety over a finite
field IF,. Concretely, this means that we select an open subset
of affine or projective space where a collection of polynomials
vanish.

The function field of X is the set of functions that can be
expressed as quotients of polynomials in the coordinates of
the ambient space modulo the equations defining X. Given a
point P on X and an element o of the function field of X,
if the denominator of o does not vanish at P, the function o
can be evaluated at P giving an element o(P) of F,.

Let Py, ..., P, be a subset of the set X (F,) of IF,-rational
points of X and V a finite-dimensional subspace of the
function field of X. We assume that the evaluation, as above,
of all elements of V at all the points Pi,..., P, is defined
and we can consider the image C of evaluation map, which is
an error correcting code:

evy: V — (Fy)"
o (o(Pr),...,0(Py)).

The length of the code is n. The dimension & of the code is
k = dimg, (imevy) = dim V' — dimg, (ker evy,)

which simplifies to dim V' if evy is injective. The minimum
distance d is the smallest Hamming distance between elements
of C. This is equal to n minus the largest number of F,-points
of X vanishing on an element of V' \ kerevy.

For X a projective variety and D a divisor on X, we denote
by L£(X, D) the Riemann-Roch space of functions o on X
such that either o = 0 or (o) + D is an effective divisor, where
(o) denotes the divisor of o. The space L£(X, D) is always
finite-dimensional and we denote its dimension by ¢(X, D).
We will typically define our vector space V' as above as a
subspace of some L(X, D).

II. BASELINE CODES FROM HIGH-DIMENSIONAL
VARIETIES

Let A™ denote affine m-dimensional space over a finite field
IF,. In this section we construct locally recoverable codes, with
local recoverability parameter r from a projection morphism

m: AT x Al — AL

(1, Tp_1;t) — L.

We shall impose the smallest possible amount of structure on
our choice of points for evaluation. This will give us a baseline
to assess the parameters of other constructions.

"Many codes are naturally described as algebro-geometric (AG) codes
in quasi-projective varieties that are not projective. Witness the classi-
cal Reed-Muller codes; they are AG codes in affine space A™. Every
quasi-projective variety is an open subset of a projective variety, by definition,
but the choice of a projective compactification is not unique, e.g., A™ can
be embedded in projective space P™ or in the product (P')™, which are
different. In this paper, we use specific choices of compatifications when
determining parameters for our codes (e.g., when we consider Hirzebruch
surfaces). In other circumstances, it is preferable not to, e.g., a curve can
always be embedded in a unique projective curve without increasing the
number of singular points. This is not true in higher dimensions.
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Let M and N denote positive integers. We shall use the
space of functions

r—1
VM, N] := {ao(t) + Zai(t)xi :
i=1
degay < M and dega; < N fori=1,...,r—1}

to construct an evaluation code (so V[M, N| plays the role of
the vector space V from § I-B). We pick, for some b < g,
some set of b distinct points on the target A' of the morphism
m and, in each of b fibers of 7 above these points, we pick 741
points and take all these b(r + 1) points as the set of points
where we evaluate the above functions. Thus, the length of
the resulting code will be n = b(r + 1). The following lemma
falls within the framework of [5, Proposition 4.2].

Lemma 1I.1: Fix t = tg € F,, and let Pp,..., Py
be F,-points in the fiber 7~ !(¢y), no r of which lie
on a hyperplane. Let ¢ € V[M,N] be a function.
Then the value of o(P;) can be recovered from knowl-
edge of the/cgrdinates of Py,...,P.41 and the r values
O'(Pl),...,O'(Pi),...,O'(PT+1).

Proof: Write o = ag(t) + E:;ll a;(t)x;. Let a; = a;(tg)

for: =1,...,7+ 1. Then we have the matrix equation
1 xl(Pl) ---x,n_l(Pl) O'(Pl)
: aon .
. L P ay o
1 (El(P,L) "'(Erfl(Pi) : - O'(PZ)
: . :
U 21(Prg1) - 2p-1(Prgn) o(Pri1)
(IL.1)

Since no r of the points P,..., P41 lie on a hyper-
plane, the = x r matrix in (I.L1) is invertible, and
hence we may compute ag,...,a, from knowledge of
the coordinates of Pp,...,F;, ..., P41 and the r values

o(Pr),... ,@, ..., 0(Pry1). We conclude that
o(P) =ap+ar1x1(P) + -+ - arzr_1(F). O

To construct what we will call a baseline code, let (as
above)

{t1,...,tp} CAYF,)

be b distinct points on the target A! of the morphism 7, and
for each t;, choose r + 1 points F; 1, ..., ;41 on the fiber
7~ 1(t;), no r of which lie on a hyperplane.

Proposition I1.2: Suppose that b — M, b—N > 1. The
baseline code

C={(o(P;;))i<i<vi<j<rs1: 0 € V[M, N}
has local recoverability r and its parameters satisfy

n=>ob(r+1),
E=(M+1)+(r—1)(N+1),

d<(r+1)(b—(N+1))—(M—N)—[M;NW—kQ,

d > min{(b— M)(r+1),2(b— N)}.
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Proof: We have already discussed the length of C. The
dimension of the code is simply the F,-dimension of V[M, N].
The upper bound on the distance of the code is an application
of (I.1). For the lower bound on d, we argue as follows:
Suppose that o € V[M, N] is a function with a; = 0 for
i=1,...r=1,ie., 0 = ag(t) for a polynomial ay(t) of degree
< M. Then at least (b — M) of the values ag(t1),...,ao(ty)
are nonzero. The weight of the codeword associated to o is
thus at least (b — M )(r +1). If, on the other hand, o € S is a
function where at least one a; £ 0 fori =1,...,r — 1, then
at least (b — N) of the values a;(t1),...,a;(ty) are nonzero.
In the corresponding fibers of 7, the function o defines a
hyperplane. The hypothesis that no r points on a fiber lie
on a hyperplane ensures that o takes on a nonzero value on
at least two points in each of the (b — N) fibers. Hence,
d > min{(b— M)(r+1),2(b — N)}, as claimed.

Local recoverability of C follows from Lemma II.1. O

Remark 11.3: The proof of Proposition II.2 shows that if
min{(b — M)(r+1),2(b— N)} = (b — M)(r + 1), then in
factd = (b— M)(r + 1). In addition, if

M+N>b and 2N >b (I1.2)

then it is always possible to construct a function o whose
associated code word has weight exactly 2(b — N). So under
the conditions (I1.2), the lower bound for d in Proposition I1.2
is in fact sharp.

Example 11.4: We specialize to the case where r = 3, M =
b—1and N = b — 2. Then the upper and lower bounds for
d meet and we have d = 4. This gives optimally recoverable
codes with parameters

(n,k,d,r) = (4b,3b — 2,4, 3).

Note that the information rate k/n is approximately 75%,
and since b < ¢, one can construct codes with n = 4¢ and
high information rate that are optimal locally recoverable.
In particular, over any F, with ¢ > 9, we can construct a
code with parameters (n, k,d,r) = (32,22,4, 3).

Example I1.5: If we now take b < ¢,r arbitrary and M =
N = b—1, then the upper and lower bounds of Proposition I1.2
also coincide and the code has distance d = 2.

The last two examples are the only cases where the
upper and lower bounds of Proposition II.2 coincide and a
baseline code with no additional properties is optimal (see
Remark I1.3).

To see this, let § := M — N; we consider two cases:

e min{(b— M)(r+1),2(b— N)} = (b— M)(r+1): Then
(b—M)(r+1) =

(r+1)(b—(N+1))— (M —N)— [M;NW +2,

from which one can conclude that

(r+1)(0—-1)—6— P—‘ +2=0. (I1.3)
r
Write [%] = % +¢6,0<e<1, then
o(r—1/r)=r—1+e. (IL.4)
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This implies in particular that § > 0. If § > 2 then, since
r > 3, we have

S(r—1/r)y>2r—1>r—1+c¢

and hence § = 1, since it is an integer.
If 6 = 1 then the hypothesis 2(b— N) > (b— M)(r+1)
gives

2
bgM—l——lgM—f—l(wheneverrZ?)),
r—

from which we conclude that b—M = 1, and hence that
b—N = 2. It follows that

r+1)=0-M)(r+1)=d=
min{(b— M)(r +1),2(b— N)} = min{(r + 1),4},

whence r + 1 < 4. Since we want codes with » > 3,
we must have r = 3 and d = 4.

e min{(b—M)(r+1),2(b—N)} =2(b—N):
Then

1
b=N 1t 2 0]
r—1 r—1]|r
On the other hand, min{(b — M)(r +1),2(b — N)} =
2(b— N) gives

(IL.5)

b> w (IL6)

Substituting the value for b obtained in (IL.5) into the
inequality (I1.6) we get

1 1 1)
1+—1<1 —1.
6(+r—1)_ +r—1{r—‘

The latter implies that § < 1. If § =1 then M = N + 1
and thus

20—N) < (b—(N+1))(r+1)

2
= b>N+1+ 1

We also have

1 1 1
b=N+1+—{——‘+—(by(H.5))
r—11r r—1

The distance is thus given by d = 2(b — N) < 4 and by
our analysis, the inequality 2(b—N) < (b—(N+1))(r+1)
is sharp, so (b — M)(r + 1) < 4, which forces r < 3.
Finally, since we assumed r > 3, we conclude that in
fact r =3 and d = 4.

If 6 = 0 then (IL.5) gives b = N + 1, which implies that
d=2.1f 6 <—1, we get b < N which is not possible.
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III. CODES FROM RULED SURFACES: AFFINE
INTIMATIONS

A. Tamo-Barg Codes

We present the construction of Tamo and Barg [16] of
optimal LR codes of length at most ¢ from the perspective
of the last section, which we believe is new. We retain the
notation of the previous section.

Let g(z) € Fy[x] be a polynomial of degree r + 1, viewed
as a morphism ¢g: A! — A'. Choose distinct t1,...,t, € F,
such that the fiber g~ (¢;) consists of 7 -+ 1 distinct elements
Tily. -, Tiry1 Of Fg, for i =1,...,b. Note that the x; ; are
therefore n = b(r + 1) distinct elements of F,. We define
the points P j = (w45,27 ;.- - ,xf}l) € A"1(F,), and we
consider the projection map

m AT x AL — AL

(x1,...,xp_1;t) — L.

For a fixed ¢, the fiber above ¢; is an affine space A1
containing the points P;; for j = 1,...,r + 1. Moreover,
by their construction, these points lie on an affine rational
normal curve, i.e., they lie on the image of the map

h: A — AL

z— (2, .. 2" ).

This guarantees that no 7 of them lie on a hyperplane. As in
§1I, we take the space of functions V[M, N], but specialize
to the case where M = N, and build a code C. Lemma II.1
guarantees that C has local recoverability r. Put differently,
the fact that the points P;; lie on rational normal curves
implies that the r X r matrix in (II.1) is a Vandermonde matrix,
thus invertible.

The parameters n, k, and r for the code C are as before.
However, in this special situation, we get a better lower bound
for the minimum distance d as follows. Note that

r—1

o(P,j) = ao(g(ij)) + > aelg(wij))at

=1

is the value at © = z;; of a polynomial of degree at most
N(r+1)+4r—11in x. This degree is an upper bound on the
number of its zeros and thus d > n — (N(r + 1) +r — 1).
On the other hand, as in the previous section, the upper bound
(I.1) for d when M = N is

(r+1)(b— (N+1))—(M—-N) - [M;NW +2=

n—(N(r+1)+r—1),

showing that these codes are optimal LR codes.

As mentioned above, these codes have n < ¢. To achieve n
near ¢ one needs to choose the polynomial g(z) in such a way
that the preimage of many values of ¢ € I, under g consists
of 7 + 1 elements of F,. One such choice is g(z) = 2" !
if (r+1)] (¢—1). For other choices and a full discussion,
see [16].
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B. Ruled Surfaces Perspective

An algebraic surface S over a field £ is called a ruled
surface if it is endowed with a morphism 7: S — B to a
base algebraic curve B such that for all but finitely many
b € B(k), the fiber 771(b) is a smooth rational curve, where
k is a fixed algebraic closure of k. There is a ruled surface
operating behind the scenes in our recasting of the Tamo—Barg
codes [16], which we now describe.

Using the notation of §III-A, we let? S = A; X Atl, which
maps to A" x Al via

hxid: (z,t) — (z,2%,...,2" "1 t).

The variety S fits into the commutative diagram

hxid,

§ —Ar—1 x Al

/

iy s

Al

o A

where the map 7': S — Al is projection onto the first
coordinate. The variety S is our ruled surface, and the code
constructed in §III-A can be described as an evaluation code
on S, as follows. Given ty,...,t; outside the branch locus
of the morphism g: AL — Al, i.e., such that the fiber g~ 1(¢;)
consists of b distinct points x; 1, ...,z »+1 in AL(F,), we set

P = (zij,t;) € S(Fy) for1<i<b1<j<r+1,
so that the recovery set for the point P; ; is
Jij i ={Pix: 1<k <r+1,k#j}.

Then, letting

r—1
V[N]= {ao(t)+z a;(t)x’ : dega; <N for i=0,.. .,r—l}
i=1

the Tamo—Barg codes are of the form

C={(o(F;))i<i<vi<j<rt1 10 € V[N]}

C. Recasting and Extending Barg—Tamo-VlIddut Codes

Just as §§III-A-III-B gives a reinterpretation of the con-
struction of [16], in this section we reinterpret the construction
of [3] but here we go further and, aided by our geometric point
of view, obtain better codes by a judicious choice of the space
of functions to evaluate. Some of the codes we obtain are
optimal.

In broad terms, we consider a curve C' in the surface S =
Al x A} and embed S (and consequently C) in A"~ x A} as
above by (x,t) — (z,2%,...,2""1,t). We choose C so that
the projection in the ¢ coordinate has degree  + 1 and choose
the values of ¢ € F, to be those for which their preimage
consists of r + 1 rational points. Then, just as before, we can
evaluate these points on a space of polynomials similar to the
ones considered above to get an LR code with locality 7.

2
(@,t)"

the product Aglg X Atl because, as we shall see in §IV, the correct projective
compactification of S to work with is P! x P!, and not P2.

2Keen readers will immediately note that S = A We prefer to use
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In §III-B all the points in S used for the Tamo-Barg
evaluation code lie on the curve g(z) = ¢. In this section,
we instead consider the curve

C: 2™ =441, (I11.1)

which is a cyclic cover of A%q via the map (x,t) — t. In order
to have many fibers of cardinality  + 1 over F, we take g =
1 mod r + 1. Fix a positive integer 0. The space of functions
we use to define the code consists of functions of the form

o=ap(t)+ar(t)r+--+ar_ ()", (I11.2)

where the a,;(t) vary in the vector space defined by the
inequalities

dega; < ——

r—l—l_ej

and
0 if 7 =0,
=41 if0<j<(r+1)/2
2 otherwise.

The local recoverability with locality r of the resulting code
follows, since for fixed ¢, with » + 1 distinct values for z,
the matrix determining the missing value is a Vandermonde
matrix. The inequalities defining the space of functions to be
evaluated ensure that the minimum distance of this code is at
least 9, because x has a pole of order 2 at infinity and ¢ has
a pole of order r 4 1 at infinity.

The space of functions at which we evaluate points of the
curve has dimension, for r odd,

r—1
5—r

r r
k= ) =S = - .
r+1(n 0) Ze;—f—r T+1(n 0) + 5

Note that the upper bound d, for the distance of this code
is

k r
—k— |- 2=n— —
n L—‘—l— n r+1(n 0)
r—>5 1 5—r
- - 2
+— [Hl(n o)+ = —‘4-
r—2>5
=0+ + 2.

The last equality holds for » > 5 whereas, for r = 3, we just
get 0. So the codes constructed this way are optimal for r = 3;
for r > 3, these codes are further from the optimal bound the
larger r gets.

For r even, a similar calculation gives 0+ /2 as the upper
bound for the distance when » > 2 and 0 when » = 2. So
the codes constructed are optimal for r = 2; for r» > 3, these
codes are further from the optimal bound the larger r gets.

We note again the similarity with the Tamo-Barg codes
discussed above, which uses a space of functions of the same
form as (IIL2) but with dega; < k/r — 1 and a curve of the
form g(a) = ¢ for a polynomial g(x) in place of C'. The length
of their codes is at most ¢, whereas the codes above can be
longer if the curve C' in (III.1) has more than ¢ affine points.
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D. The Construction of Munuera and Tendrio

We briefly describe the general construction of [7,
Section 2.2]. Here ¢ (to keep the notation of [11]) is a positive
integer and not a variable as elsewhere in this section. They
consider a map (¢1,...,¢;) : A™ — A! and another function
¢i41 : A™ — Al Their evaluation points lie in A™ but
they use the map (¢1,¢2,...,¢11) to view them in A*+!
and for the purpose of comparison it is enough to consider
ATl = A' x A' and the natural projections A‘Tl — A’
and A*t! — A, Their A' coordinate plays the role of the
Al coordinate in the previous section. In particular, they use
the properties of the rational normal curve (under the guise
of Lagrange interpolation) to get local recoverability. Their
A? plays the role of what we denote by A} in the previous
section.

When it comes to explicit constructions they consider an
algebraic curve mapping to A'*! (so the ¢; are functions
on the curve) and take the evaluation points from the image
of the curve. Their computation of the other parameters of
the codes they construct use the intrinsic geometry of the
curve and not the geometry of the curve within the ambient
space, which is the viewpoint we will take in Section IV.
This is where our construction and theirs diverge. Moreover,
their examples lead to different code parameters which are not
directly comparable to ours. Particularly, they mostly deal with
values of the locality r different from those that we consider.
In [7, Section 3.2, 3.3] they construct codes with » = 2 and
[7, Section 3.4] they have codes with » = ¢ — 1 over F .
Whereas we, in Theorems IV.5 and V.7, deal with r such that
(r+1)| (¢ —1) over F, and, in Theorem VL6, with codes
with 7 = ¢ over [Fj2. The one place where these intersect is
the special case of » = 2 in Theorem IV.5 where we deal
with an elliptic curve inside our surface. These codes are then
very similar to those of [7, Section 3.3] that also use an elliptic
curve. The ideas of [11] have been extended in [5] to construct
(r,0)-LRC codes, which is a direction we do not pursue here.

IV. CODES ON RULED SURFACES: P! x P!

In this section we add one more layer of geometry to the
codes we constructed in §III by considering codes on the ruled
surface S = P! x P!, which is a projective compactification
of the surface Al x A}. This extra layer of geometry affords
important conceptual insights: a lower bound for the minimum
distance of a code can be interpreted as an intersection number
of two curves in S5, and good lower bounds for a minimum
distance can be achieved by forcing curves to intersect with
high multiplicity at the point (oo, 00) € S.

We begin with a toy model for our code, that is far from
optimal, but which helps set ideas and notation. We let S :=
P! . x P! where (x : y) and (¢ : wu) are respective

(w:y) (t:u)’
homogeneous coordinates for the factors of S.

A. A Coarse Construction

Let r be a positive odd integer, let b < ¢ be a positive
integer, and set n = b(r + 1). Choose an integer 0 divisible
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by r 4 1, so that
n—0
r—+1

is an integer, as well as a positive integer ««. Consider a curve
of the form

C:g(x,y;t,u) =0

in .S, where g is a bi-homogeneous polynomial of the bi-degree
(r + 1,«). In other words, every monomial of ¢ has total
degree r 4 1 in the variables x and y, and total degree « in
the variables ¢ and u. We say that C' is of type (r + 1, ).
Our code will be an evaluation code on the [F,-vector space
of functions of the form

2 1

r+--- arfl(tvu)xri )
(IV.1)

o= aO(tv u)yril + ay (ta u)yri

where the a;(t,u) are homogeneous polynomials of degree
N in t and u. We write V,._; y for this vector space. Each
function o € V,_; n defines itself a curve in X given by
o = 0. We write (o) for this curve’; it is a curve of type
(r—1,N).

Write p: § — P(lt:u) for the projection onto the second
factor. To construct our code, we pick b points (¢; : u;) €
]P’%t:u)(IFq) such that the fiber p~*((¢;,u;)) N C consists of
r 4 1 distinct points

(@i 2 Yi1)s o (g1 Yiri1) € Plyyy (Fy)
and set
Pij= (i yi), (¢t
Proposition IV.1: The code

P uz)) S S(Fq)

C:= {(U(Pivj))lfigb,lgjgr-i-l o €Viing

has parameters satisfying

n=>b(r+1)

.
—r(N+1)= ——  (n—
k=r(N+1) e (n—20)+r
d<o—r+1

d>v—a(r—1)

Proof: The parameter k is simply the dimension of the
IF,-vector space V,._q1 n. The upper bound for the distance is
the bound (I.1):

d<n—k— {E—‘ +2
r

B r ( D) 1
-n r+1 " " r+

=0—-r+1
We have used here the divisibility relation (r + 1) | (n — ).

For the lower bound on the distance, we note that the largest
number of zeros in a code word in C is bounded above by

max #(CN(0)).

oeV,

3The notation (o) is the usual notation in algebraic geometry for the divisor
of zeroes of a global section of a line bundle; see §I-B.
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i.e., the largest number of intersection points between C' and
the curve (o) C S given by 0 = 0, as o varies over the
vector space V,._1 n. The intersection theory of .S shows that
this number is independent of o: indeed, the intersection of
divisors on S of type (a,b) and (a’,b) is ab’ + a’b [13,
V, Example 1.4.3]. Since C is a curve of type (r + 1, ) and
(o) is a curve of type (r — 1, N), we have

#(CN()=Nr+1)+alr—1)
=n—-0+a(r—1).

Hence, the lowest weight for a code word in C is
d>n—#((Cn(o))=0—a(r—1),

as claimed. (]

Remark 1V.2: The codes in the above proposition have
locality r. However, we defer the discussion of locality until
after we refine the code in the next section.

Remark 1V.3: The upper and lower bounds for d in Proposi-
tion I'V.1 meet if and only if o = 1; this is precisely the habitat
for the Tamo—Barg codes. In the notation of §1II-A, the affine
curve g(z) = t lies in the open set AL x Al = {y,u # 0} of S;
its projective closure in S is given by y"*lg(x/y)u = ty" 1,
which is a curve of type (r + 1,1) in the notation of this
section.

Remark 1V.4: Let us compare the parameters in Proposi-
tion IV.1 with those of a base-line codes in Proposition II.2.
The length n, dimension k, and upper bound for d coincide
since we have specialized to the case where M = N in
Proposition IV.1. If » > 3, then the lower bound for d in
Proposition 1.2 is 2(b — N), while the bound for the codes
just studied is

d>(r+1)(b—N)—a(r-1)

The latter bound is better as long as b > N + a, i.e., as
long as 0 > a(r + 1).

B. Refining the Construction

In this section, we show that one can narrow the gap
between the upper and lower bounds for d in Proposition IV.1
by

1) choosing C' judiciously,

2) using a particular proper subspace V' C V,._; n for the

evaluation code,

3) using only points P;; = ((z;; : ¥i,j), (ti : u;)) with

Yij = ui = 1.
Intuitively, our construction guarantees that the point

(00,00) :=((1:0),(1:0)) € S(F,)

lies in the intersection C'N (o) for all ¢ € V' with high multi-
plicity. Note that P; ; # (00, 00) for i and j by construction of
P; ;. This allows us certify the code C has minimum distance
d=o.

Consider the curve

C ™ — (™ +u*)y™t =0,
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which is a particular curve of type (r + 1,«) in S. We shall
use functions of the form (IV.1), but we constrain the degree
in ¢t of the polynomials a;(t,u), as follows:

ol
deg, a;(t,1) < N — .
ce,ai(t) < N - | 5]

This requires N > [a(r —1)/(r+1)], which we now
assume. In other words, setting

at
€ =
3 7"—'—1 )

we assume that for each 0 <7 <r —1,

a;(t,u) = u - aj(t, u)

for a homogeneous polynomial a} (¢, u). When this is the case,
the vector space of functions

Vi={oceV,i1n:

o =aop(t,w)y" " +ut - ar(t,u)y" e - urlapq (G u)a" T}

has dimension

I
-

k:T(N-f—].)— €;.

i

(IV.2)

I
o

The vector space V' has the important property that
o((00,00)) = 0 for all ¢ € V. This is key in improving
our bounds for the minimum distance of the codes we define
using the curve C' and the space of functions V. We pick b
points (t; : 1) € P(,.,, (Fy) such that the fiber p~"((; : 1))NC
consists of r + 1 distinct points

(@1 2 1)y (Tigg1 1 1) € Pl (Fy).

Put
P’i,j = ((.1?1‘7]' . 1), (tz . 1)) (S S(Fq)

Theorem IV.5: Assume that o | (r+1) and (r+1) | (¢—1).
The code

C:= {(U(Pi:j))lgigb,1§j§r+1 o€V}
has locality r and its parameters satisfy
n=>b(r+1),
L {T(N—l—l)— trD if r+1 = a, and
r(N +1) +2a — LEDIHD Gy 1 5 @

(a—1)2(r—3) B {2_04_ (a+1)(r+1)—‘,

d<0?
=0+ r 2r
d>0.

In particular, the code C is an optimal LR code if « = 1 or
r=3.

Example IV.6: Setting « = 2, = 3, and picking an integer
d divisible by 4 such that 4b > d, we obtain optimal LR codes
with parameters

3
(n,k,d,r) = (4b,3b— d+ 1,d,3> .

Since b < ¢, one can construct codes with n = 4¢ with
high information rate that are locally recoverable. Compare
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this with the baseline codes from Example 1.4, where a code
with similar parameters is possible only when d = 4.

Proof: [Proof of Theorem IV.5] Assume that » + 1 > a.
By (IV.2), to establish the claim on k = dim]Fq V', it suffices
to show that

=

f;q_w_m

The sequence of integers €, ..., €,—1 has the form

0,1,...,1,2,...,2,3,....,3,...,a—1,....,.a—1, a,...,«.
—— —— — —_——— ——
(r+1)/a (r+1)/a (r+1)/« (r+1)/a (r+1)/a—2
Hence

= A | r+1
S =31 a( - _2)
=0 =1
a—1la r+1
- 2) : +(r+1) —2a
1
:(a—l)r;— F(r+1)—2a
1 1
_xnery

If r +1 = o, then ¢; = 7 and the result follows.
For the lower bound on the distance, note that the largest
number of zeros in a code word in C is bounded above by

max #(C'N(0)),
just as in Proposition IV.1. We have already seen that
C-(o)=alr—1)+n-2.

However, for every o € V, the curves C' and (o) intersect
at the point (co0,00) € S(F,). We claim this happens with
multiplicity at least o(r — 1), and hence

max #(CN(o)<C-(0)—a(r—1)=n—-02,
from which we deduce that

dZn—ma&c #(CnN(o)) >0.
gE

To establish the claim on the multiplicity of C' and (o) at
(00, 00), note that the point (00, c0) is the origin of the affine
patch A%y’u) of S. In this patch, an affine equation for C' is

C:u®=(1+u")y

which is in fact singular at the origin (this only helps increase
the multiplicity of the intersection with the curve (o)). In the
complete local ring of C' at the origin, the quantity 1+ u“ has
an a-th root. More precisely, let

A= kly,ul/(u® — (1 +u®)y"™)

be the affine coordinate ring of C, and let m = (y,u) be
the maximal ideal corresponding to the origin. Then in the
completed local ring Ay, the binomial expansion shows that

() (5)()
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Let ¢ denote an a-th root of unity in an algebraic closure of F,.
Geometrically, C' has « branches at the origin:

(r+1)/« r+1)/a

u = wy Caflwy('rﬁ»l)/a

,uz{wy( LU=

I

For each one of these branches, v is a uniformizer for the ideal
m, and u has valuation (r 4 1)/a with respect to this uniformizer.*
For o € V, a local equation for (o) in the affine patch A%y’u) is

r—2

ao(Luw)y" " +u - ar(Lu)y" > 4+ uT a1 (1,u) = 0

The monomial uy"~'~% has m-adic valuation

at .7"—|—1
r+1

As ¢ ranges through O, . .., r—1, the smallest value of this quantity
is 7 — 1. Hence, on each branch of C' the minimal m-adic valuation
of 0 € Vis r — 1, and therefore C' and (o) intersect at (0o, c0)
with multiplicity > a(r — 1). This concludes the proof of the lower
bound for d.

Next, we compute an upper bound for d using (I.1):

+r—1-—1.

d<n—k— ’72-‘4—2

(a+1)(r+1)
2
_(N+1)_ ’VQTQ_W-‘_FQ

(a+1)(r+1)
2

=n—r(N+1)—2a+

=0—(r+1)—2a+
20 (a+1)(r+1)
[egeea..

:DJr(a—l)Q(r—S)
- "2_047 (a+1)(r+1)-‘
r 2r ’

Finally, we discuss the locality of the code C. Since all points P;_;
used to construct C have y; ; = u; = 1, the set {P; ;} lies entirely
in the affine patch AL x A} of S. Proceeding as in §III-B, we map
this affine patch to AT % Ay via

(@,t) — (z,2%,..., """ t).

The image of the points {P; ;} lie on a rational normal curve,
so no r of them lie on a hyperplane, and hence Lemma II.1 shows
the code C has locality 7. (|

Remark IV.7: Let us compare the parameters in Proposi-
tion IV.5 with those of a base-line codes in Proposition II.2.
The length n is the same for both constructions. The dimension
is smaller in Proposition IV.5; however, on the one hand,
0= (b— N)(r+1), and on the other hand, when M = N
and r > 3 the lower bound for the distance in the base-line
codes is 2(b — N). Hence, the lower bound 0 represents an
improvement on base-line codes of (r — 1)(b — N). For a
numerical example, take » + 1 = o = 5 and ¢ = 16. Then
we can take b = 10, so n = 50 and 0 can be any integer
divisible by 5 with 0 < 35 and the parameters are given as in
Proposition IV.5 with equality d = 0.

4By this we mean: let B = Fyly, u]/(u— Clwy"1)/@) be the geometric
local coordinate ring of one of the branches of C'. Then the m-adic completion
By at the maximal ideal m = (y,u) corresponding to the origin is
a local discrete valuation ring. Hence the ideal mBy, is principal [14,
Proposition 9.2]. The equation of the branch shows that y is a generator
for this ideal, and that u € m("+1)/a\ m(r+1)/a=1 which is to say that u
has m-adic valuation (r + 1)/a.
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V. CODES ON HIRZEBRUCH SURFACES

The ruled surface P! x P! is an example of a Hirzebruch
surface, which are ruled surfaces determined by a non-negative
integer m. After recalling some of the geometry of these
surfaces, we adapt the construction of codes in §IV to the
setting of Hirzebruch surfaces.

A. Hirzebruch Surfaces F(m)

Let m € Z>; we let two copies of the multiplicative group
Gy, X Gy, act on the product of two punctured affine planes

A%\ {(0,0)} x A%\ {(0,0)} via
A1) (zyyst,u) = (AN, y; A, Au)
(Lp)« (@38, u) = (ux, pys ¢, u).
The Hirzebruch surface S = IF(m) is the quotient
A\ {(0,0)} x A%\ {(0,0)} /Gy X G-

Such surfaces are endowed with a natural fibration p: S —
P%m) given by

((x:y), (t:u) — (t:u). V.1)

Note that P* x P! = F(0).
Lemma V.I: Let S = F(m) be as above. The following
hold:

1) The Picard group Pic(S) is isomorphic to Z?, generated
by the classes of the curves

A={t—u=0} and B = {z =0},

which are, respectively, a fiber of (V.1) and the so-called
negative section of S.

2) The intersection pairing on Pic(S) is determined by
A’=0, A-B=1 and B?>=—m.

3) Let M = mA+ B € Pic(S). The canonical divisor Kg
is linearly equivalent to (m — 2)A — 2M.

4) For non-negative integers «, (3 satisfying a > m( — 1,
the Riemann—Roch space £(S, «A+ $B) has dimension
BB+1)

(S, ad+BB) = (a+1)(B+1) = m——F—.

Proof: For (1), (2) and (3) see [14], Sections B.2.9 and B
2.7. The Riemann—Roch theorem for surfaces gives the Euler
characteristic of the class A + 3B:

(A +BB) - (@A + BB - Ks)
2

+1:(a+1)(,@+1)—n@.

By, e.g., [16, Thm. 2.1.], the conditions # > 0 and « >
m/3 — 1 guarantee that this Euler characteristic coincides with
the dimension of the Riemann—Roch space L£(S,aA + (GB).

O

Remark V.2: The morphism ¢: X — X C P™ defined by
the sections generating the projectivized Riemann-Roch space
|M| is the natural resolution of the cone over the rational
normal curve of degree n. The map ¢ contracts B to the vertex
of the cone (see [15, B 2.9]).
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B. Riemann-Roch Spaces for Codes

In this section, we give an explicit description of the ele-
ments of the Riemann—Roch spaces Vs o := L(S,aA + 3B)
appearing in Lemma V.1. We assume throughout that o and
(3 are non-negative integers.

Lemma V.3: Let a = ¢ +mf with € > 0. The elements of
V3,o have the form

o =ao(t,u)y’ +ar(t,u)y’ e+ +ap(t,u)z’ (V.2)

where a;(t,u) is a homogeneous polynomial of degree & +im
fori=20,...,3. We have

pB+1)

5

Proof: Let o be as in the statement of the lemma. First,
we show that 0 € V3. Since A and B generate Pic(S),
there are o’ and (' such that (0) = o’ A + 3'B as classes in
Pic(S). To determine o’ and 3’ we use the intersection pairing
on Pic(9).

Since A is a curve defined by fixing the ratio ¢/u, we have

that

dimVg o =(a+1)(f+1)—m

(0)-A=p.
On the other, since B = {x = 0}, we see that
(0)-B=c¢.

We obtain the system of equations
B=(0)-A=d - A2+ A-B=7f,
e=(0)-B=d’A-B+p'B?*=d —mp.

Thus # = 8 and o = &€ + m@3 = « as claimed. Note that
the condition that a;(¢, ) is homogeneous of degree € + im
ensures that the monomials are invariant under the action
(N 1) € Gy X Gy,

The subspace of Vp,. generated by elements of the

form (V.2) has dimension

k=E+D)+E+14+m)+ -+ (e+1+ pm)

B
=> (e+1)+im
i=0
+1
= (6+1)(5+1)+m%
+1
=(a+1)(B+1) —m%
and hence must be equal to the entire vector space,
by Lemma V.1(4). ]

C. A Coarse Construction
Let r and b < ¢ be positive integers, and set n = b(r + 1).
Choose an integer 0, divisible by r 4 1, so that
n—70
r+1
is an integer, as well as a positive integer . Set § =1 — 1,
and consider a curve of the form

C:ygz,y;t,u) =0
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in S, where ¢ is an element of
Viit,a4mr+) = L((@+m(r +1))A+ (r+1)B).

We say C' is of type (r + 1, + m(r + 1)). The fibration
p: S — P%t:u) in (V.1) gives S the structure of a ruled surface.
To construct evaluation codes using C, pick b points (¢; : u;) €
P! (F,) such that the fiber p~1((¢; : u;)) N C consists of

(t:u)
r + 1 distinct points

(x’%l : yi,l)v SEEE) (xi,T’+1 : yi,r+1)~
Put
Py = ((zij :yij) (s

so that there are n = b(r + 1) points of the form P; ; in total.
We shall use the vector space

cu;)) € S(Fy),

Vo, N+ms = Vo1 Nym(r—1)

to construct our evaluation codes.
Proposition V.4: The code

constructed using C, has locality r and its parameters satisfy

n=>b(r+1)
kz(N—l—l)r—i—mM

dgb—(r—l)—m$

d>0—(r—1)(a+m(r+1)).

Proof: By Lemma V.2, we have

-1
k:dim‘/;,l’NJ’,m(r,l) :T(N—f—l)—'—m% (V3)
Next, if r is odd or m even, we have

k _
[—W —N14mTl
T 2
Otherwise,
-1 1 -1
E :N+1+mu+_2N+1+mu.
r 2 2 2
Hence, an upper bound for d using (I.1) is
d<n-—k— {E—‘ +2
r
-1 -1
§n—r(N+1)—m%—(N+l)—m%+2
-1 -1
:n—(n—b)—(r—f—l)—mr(r2 )—m(rz )—|—2

(r* = 1)
OB

As in the proof of Proposition IV.5, a lower bound for the
minimum distance of C is

=0—(r—1)—m

dZn—IglEa&( #(CnN(0))

>n—C-(o)forany o € Vi1 yimr—1)
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Since the equation for C' is an element of V, 1 oqpm(rs1)s
we may use Lemma V.1(2) to compute
C- (o)
=({(a+m(r+1)A+ (r+1)B)-
(N+m(r—1)A+ (r—1)B)
= —-—D(a+m@r+1)+(N+m(r—1)r+1)
—m(r? — 1)
=@ —-1(a+m(r+1))+n-—02,
and hence
d>0—(r—1)(a+m(r+1)).

as claimed. Finally, the locality is r by the same argument as
in the end of the proof of Proposition IV.5. 0
Remark V.5: When m = 0, we have S = F(0) = P! x PL.
In this case, the bounds on the distance for C coincide with
the bounds of Proposition IV.1, as one would expect.
Remark V.6: The upper and lower bounds for the minimum
distance in Proposition V.4 meet when

1
1+m(T+T)=oz+m(r+1).

Since o, m and r are non-negative, we must have m = 0
(e, S=P! x P and o = 1.

D. Refining the Construction
Consider the curve C' C S with affine model given by

C:ammt =t 4 1.
The projective closure of this curve in S is given by:

potm(r+1) o+l (ta + ua)errl =0. (V.4)

The left hand side of the above equation is an element of
the vector space Vi1 atm(rs1)-
To construct evaluation codes using C, as usual, pick b

points (t; : u;) € P, (Fy) such that the fiber p~'((t; :

u;)) N C consists of r 4 1 distinct points

(x’%l : yi,l)v SEEE) (xi,T’+1 : yi,r+1)~

Put

Pij = (i yig) (ti s ui)) € S(Fy),

so that there are n = b(r + 1) points of the form P; ; in total.
For the vector space of function on which we evaluate the
P; ;, we constrain the degree in ¢ of the polynomials a;(t, u),
as follows:

r+1
Again, this requires N > [a(r —1)/(r+1)], which we
now assume. In other words, setting
o i(a+m(r+1))
1 T r + 1 )

we assume that for each 0 < i <r —1,

deg, a;(t,1) < N + im — {ww

a;(t,u) = u - al(t,u)
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for a homogeneous polynomial a/ (¢, ). When this is the case,
the calculation (V.3) shows that the vector space of functions

V= {U € VT*l,N«&»m(T*l) :
o=ap(t,u)y" "t +ut - ar(tu)y e+ ut a1 (tu)z" 1}

has dimension

r—1
-1
k':r(N—i—l)—i—mT(r )—Zei
i=0
If o« =r + 1 then
r—1 r—1
B . B r(r—1)
Zelfz:z—l—zm (m+1) 5
i=0 i=0
Otherwise, if » + 1 > « then
r—1 r—1
XeY .
€ = —+1m
=0 i= [T%—lw
1 1 -1
:7054— )2(T+ )—2a erz )

where the second equality follows by our work in the proof
of Proposition IV.5. We conclude that

~ {r(N+1)—

(N +1)+2a —

T(’"Ql) if r+1=q, and

r(r 1)
2

(et (rtl) _ fr+1>a,

Theorem V.7: Assume that o | (r+1) and (r+1) | (¢—1).
The code

C:={(a(P, ,J))1<z<b 1<j<r+1 ° o€V}

has locality r and its parameters satisfy

n=>b(r+1),
(N+1)7TT D ifr4+1=o, and
r(N+1)+2a— <°‘+1)2(T+1)fmr<r2 Doifr4+1>a,
d§0+(a71)(r73)7"2_oci(a+1)(r+1)“+m(r271)7
2 r 2r 2
d>0.

Proof: We have already discussed the values of n and

k above. The upper bound for d is obtained from (I.1),
proceeding as in the proof of Proposition IV.5.

For the lower bound on the distance, we note that, as before,

d <max #(CN(2)),

just as in Proposition IV.1. In the course of the proof of

Proposition V.4, we saw that
C-(o)=r—-1)(a+m(r+1))+n—02.

However, for every o € V, the curves C' and (o) intersect

at the point
[z,y;t,u] = [1,0;1,0] € F(m).

We claim this happens with multiplicity ar least (r—1)(a+
m(r + 1)), and hence

max #(CN(0)<C-(0) = (r=1(a+m(r+1))=n—2,
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from which we deduce that

d>n—max #(CN(o)) >0.

o€V
The claim on the multiplicity is established as in the proof
of Proposition IV.5: the point [1,0;1,0] € F(m) is the origin
of the affine patch of C' given by

ua+m(r+1) _ (1 + ua)errl’

In the complete local ring of C at the origin, the quantity
1 + u® has an (a + m(r 4+ 1))-th root. Let ¢ denote an
(a + m(r + 1))-th root of unity in an algebraic closure of
[F,. Geometrically, C' has aw+m(r + 1) branches at the origin:

(r+1)/(a+m(r+1)) (r+1)/(atm(r+1)

u = wy ,u = Cwy

w= C(oﬂrrn(ﬂrl))*lwy(T’Jrl)/(oHrrn(rJrl))7

For each one of these branches, y is a uniformizer for
the maximal ideal at the origin of C, and u has valuation
(r4+1)/(ac+m(r+ 1)) with respect to this uniformizer (see
the proof of Proposition IV.5 for more details). For oceV,

a local equation for (o) in the affine patch A( o) b

ao(Lu)y" ' +ut - a (1, u)y" 24 +uta,_1(1,u)=0
The monomial v“y"~'~% has m-adic valuation

F(a—l—m(r—i—l))—‘. r+1
r+1 (a+m(r+1))

As ¢ ranges through O,...,7 — 1, the smallest value of
this quantity is » — 1. Hence, on each branch of C' the
minimal valuation at the origin of ¢ € V is r — 1, and
therefore C' and (o) intersect at [1,0;1,0] with multiplicity
> a(r — 1)(a + m(r + 1)). This concludes the proof of the
lower bound for d. 0

When m = 0, we recover Proposition IV.5. The parameters
get slightly worse for m > 0 but this more general construction
might still be interesting.

+r—1-—1.

VI. LocALLY RECOVERABLE CODES FROM
ELLIPTIC SURFACES

A. Elliptic Surfaces

The definitions of this section hold over an arbitrary
field k.

An algebraic surface £ is called an elliptic surface if it is
endowed with a morphism 7 : £ — B to a base algebraic
curve B such that

i) for all but finitely many ¢t € B(k), the fiber 7=1(¢) is

a genus one curve, where k is a fixed algebraic closure
of k.

ii) there is a section o to m, i.e., a morphism o : B — &£

such that 7w oo = idp.

The morphism 7 is called an elliptic fibration. Condition ii)
implies that all but finitely many fibers of 7 are indeed elliptic
curves.

Let 7 : £ — B be an elliptic fibration. A section P : B — &£
is, by definition, a regular map such that 7wo P is the identity on
B. We denote by O the zero section and by abuse of notation
also the zero element of any fiber. The set of sections of the
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fibration 7 in the above sense can be made into an abelian
group with identity O (in the same way one defines the group
law on an elliptic curve). This group is called the Mordell-Weil
group of £ and it is finitely generated by the Néron-Severi-
Mordell-Weil theorem.

We also have that £ has a Weierstrass equation

y2 + a1y + asy = x3 + aga:Q —+ asx + ag

where a; € k(B). We consider the divisor D = n-oco+m-O,
where oo is the “fiber above co”, and O is the zero section.
A function on £ whose polar divisor is bounded by D is of

the form
i+ > By,

2i<m 2i4-3<m

where «; and (3; are functions in the Riemann Roch space
L(B,n - 00).

Each fiber E is embedded in P"~! by the linear system
[nO| (where O is the identity of F).

B. General Code Construction

Let 7 : £ — B be an elliptic fibration. We denote by O the
zero section and by abuse of notation also the zero element
of any fiber. We denote by F; = 7 1(t) the fiber above ¢ and
by E:[2] its subgroup of elements of order at most 2.

Lemma VI.1: Assume that for each ¢ in a subset of B(F,)
such that the fiber F; over ¢ is an elliptic curve, we are given
Iy € Ey(F,) — E;[2] all of same cardinality » + 1 for some
integer 7 with the property that » . P € E;[2] in the group
law of Ej.

Let T'=J,T; and V a finite-dimensional F-vector space
of functions on & such that the restriction of any element
of V' to a fiber above any ¢ is in the Riemann-Roch space
L(Ey,rO). We form a code C by evaluating the functions on
V on the points of I". The code C is locally recoverable with
locality r.

Proof: Given a function f and codeword ¢ = (f(P))per
and suppose we need to recover f(F). We have that P, € T,
for some ¢. Now, the restriction of f to E} is a rational function
ft on E;, which is an element of the Riemann-Roch space
L(E;, rO). We claim that f;(FPy) can be uniquely recovered
from the values of f;(P),P € I'y — {Py}. If there are two
such functions with the same values, their difference vanishes
at 'y — {Py} but has a pole of order at most r at O. The
only possibilty is that this function then has simple zeros at
the points of Ty — { Py}, a pole of order  at O and no other
zeros or poles. That would imply, using Abel’s theorem on F;
([17, Corollary III 3.5]), that ZPEFt—{PO} P = O and thus
Py € E[2], which contradicts our hypothesis. This shows that
the map L(rO) — Fy,h — (h(P))per,—{p,} is injective.
As these spaces have the same dimension by Riemann-Roch,
it is also surjective. U

A natural example is to take sections P;,7 = 1,...,r of the
elliptic fibration 7 : £ — B. If we let P,y = — >\, P; and
Ty ={Pi(t),...,P.41(t)}, we are in the above situation.

We can also use an irreducible curve C' in €. Then we have
amap C' — B and we assume that it has degree r+1 and take
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as I'; the fibers of this map above points that split completely.
To ensure that the points of I'; add to zero we need to check
the algebraic point defined by C has trace zero. Often the
following lemma is useful.

Lemma VI.2: Let m : £ — B be an elliptic surface with
finite Mordell-Weil group of order prime to the characteristic
of k. Let C be an irreducible curve in £ such that the map
C — B is separable of degree r + 1. If, for one ¢t € B with
7~ 1(t) an elliptic curve and whose preimage I'; = (7|c) ™1 (¢)
in C has r + 1 distinct points we have that Per, P =0,
then for all other such ¢, we also have Y, P =0O.

Proof: We can base change 7 : £ — Bton' : & — C
via C' — B and C itself pulls back to a section s of 7’ and
we can then take the C' — B trace of this section to get a
section of 7. Concretely, this section consists of adding the
points on (7|c)~!(¢) and viewing that as a function of ¢ € B.
By the assumption on the Mordell-Weil group, this section is
of finite order. From [17, Proposition VII 3.1], for sections of
finite order prime to the characteristic, the specialization map
to a smooth fiber is injective. By assumption, for one such
fiber, the specialization of s is zero. It follows that s itself is
Zero. U

Here are some explicit examples.

Example VI.3: Take £ the Legendre family y? = x(x —
1)(z — t) and consider the curve C : (u? +t + 1)% = u(u —
1)(u —t) of genus 1 embedded in £ by taking = u,y =
u? +t4+1, sor = 3. Lemma VL2 applies with t = —1.
If T has n points and d < n,4|(n — d), we consider functions
of the form f = a(t) + b(t)x + ¢(t)y with dega < (n —
d)/4,degb,degc < (n — d)/4 and these restrict to C' as a
function of degree at most n — d, so the minimum distance is
at least d. The dimension is kK = 3(n—d)/4+ 1 and it follows
that d = n—k—[k/3]+2, 1i.e., the code is optimal, but typically
not as long as the optimal codes from the previous sections.

Example VI4: Let £ be the elliptic surface y? = 2% + 2 —
t2 — 1 over F, and C the curve given by x = y? inside &,
which is % = ¢2 + 1. The elliptic surface has trivial Mordell
Weil group over Fy(t) so the multisection corresponding to
C automatically has trace zero. This leads to the same family
of codes corresponding to the case » = 5 of subsection III-
C by considering evaluation on functions of the form f =
ao(t) + a1 (t)r + az(t)y + az(t)z? + as(t)zy.

Example VI.5: We can also recover the case » = 3 of
subsection III-C by taking & to be the elliptic surface 3% +xy =
x3 + 1% + 2 over F, and C the curve given by 2° =y = u
inside &, which is u* = t2 4+ 2 and evaluation on functions
of the form f = ag(t) + a1(t)x + a2(t)y. We can take, for
q = 5,13 respectively, sets of size b = 2,4 and get codes of
length n = §, 16.

Yet another example is a variant of the examples constructed
by Ulmer [18] leading to the following theorem.

Theorem VI.6: For every odd prime (power) p and integer
d < 2(p+1)(p—2), (p+1)|d, there exists a locally recoverable
code C over FF 2 of recoverability p, length n = 2(p+1)(p—2),
minimum distance d and dimension

_pln—d) p-1
p+1 2
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Proof: Consider the surface £ : y? = x(x+1)(x+t>+1)
over F2, p odd and the curve C defined by uP*! = + 1.
Then C embeds in £ by taking = = u,y = u(u + 1)PTD/2,
The points on C' on the fiber above ¢ = b are of the form
(c,c(c+ 1)PTD/2) for each ¢ satisfying c?t! = b? + 1. The
function y(z +1)P~1/2 — (2 +b% 4- 1) has degree p + 2 and
vanishes on all these points and on the point (—b% — 1,0) of
order 2. So lemma VI.1 applies once we exclude the points
on C with ¢ = 0,c?*! = 1. Each allowed value of ¢ gives
two values of b since ¢?™' — 1 € F, so has square roots in
[F,2. So we have n = 2(p+ 1)(p — 2) points in C' we can use
to form T

To construct a code we consider the following vector space,
where z; = z("t1/2 i odd and z; = yz"=2)/2 i even, i > 0.

V= ao(t)—l—pi:lai(t)xi :dega; <N, fori=0,...,p—1
=1
where Ng = ZT_d’
NizzJ:f—Li odd
= pnfl —92.i even,i> 0. (VL1)

chosen so that the elements of V' restrict to functions of
degree n — d on C and the codewords have weight at least d.
The dimension k satisfies k = S_"~) (N; + 1) and the result
follows. (]

Remark VI.7: Note that, in the above theorem dop = n —
k—[k/pl+2=d+ (p+3)/2.
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