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Locally Recoverable Codes on Surfaces
Cecília Salgado, Anthony Várilly-Alvarado , and José Felipe Voloch

Abstract— A linear error correcting code is a subspace of a
finite-dimensional space over a finite field with a fixed coordinate
system. Such a code is said to be locally recoverable with locality
r if, for every coordinate, its value at a codeword can be
deduced from the value of (certain) r other coordinates of the
codeword. These codes have found many recent applications,
e.g., to distributed cloud storage. We will discuss the problem
of constructing good locally recoverable codes and present some
constructions using algebraic surfaces that improve previous
constructions and sometimes provide codes that are optimal in
a precise sense. The main conceptual contribution of this paper
is to consider surfaces fibered over a curve in such a way that
each recovery set is constructed from points in a single fiber.
This allows us to use the geometry of the fiber to guarantee the
local recoverability and use the global geometry of the surface to
get a hold on the standard parameters of our codes. We look in
detail at situations where the fibers are rational or elliptic curves
and provide many examples applying our methods.

Index Terms— Error correcting codes, locally recoverable
codes, algebraic surfaces.

I. INTRODUCTION

MOTIVATED by applications to distributed cloud stor-
age, Gopalan et al. [6] introduced a particular class of

error correcting codes that efficiently correct erasures, known
now as locally recoverable codes. The successful application
of algebraic geometry to the construction of error-correcting
codes [17] naturally prompted the search for locally recov-
erable codes using algebro-geometric methods [2], [3], [5],
[9]–[12]. In particular, [3] gave a systematic way to produce
optimal locally recoverable codes.
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Algebro-geometric codes are constructed from algebraic
varieties, but the one-dimensional case of curves is the most
amply studied, while surfaces and higher dimensional varieties
have received less attention. The purpose of this article is to
present new systematic constructions of locally recoverable
codes using surfaces fibered over a curve in such a way
that each recovery set is constructed from points in a single
fiber. We use the geometry of the fiber to guarantee local
recoverability the global geometry of the surface to get a hold
on the standard parameters of our codes. We start by setting up
a general framework for such constructions and showing how
some previous constructions of locally recoverable codes fall
into this framework. We then specialize our setup to consider
codes constructed using ruled surfaces and elliptic surfaces.
Some of the examples we produce are optimal (in the sense of
achieving equality in inequality I.1) and are long in the sense
that they have, for example, length n = 4q, where q is the
size of the alphabet. These codes are longer than the other
known explicit codes with same recoverability and dimen-
sion; however, they have bounded recoverability. We obtain
the following theorem as a corollary of Theorem IV.5 (see
Example IV.6).

Theorem I.1: For an integer d divisible by 4 and an integer
b ≤ q such that 4b ≥ d, there exist optimal locally recoverable
codes over Fq with parameters

(n, k, d, r) =
�

4b, 3b− 3
4
d + 1, d, 3

�
.

For arbitrarily large recoverability, we construct, for every
prime p, codes over Fp2 of recoverability p, length n about
2p2, distance d for any d ≤ n, (p + 1) | d, having dimension
just shy of the optimal p(n−d)/(p+1). The precise statement
is as follows (Theorem VI.6)

Theorem I.2: For every odd prime (power) p and integer
d ≤ 2(p + 1)(p − 2), (p + 1) | d, there exists a locally
recoverable code C over Fp2 of recoverability p, length n =
2(p + 1)(p − 2), minimum distance d and dimension

k =
p(n − d)

p + 1
− p − 1

2
.

We believe that codes in this range are new.
Ultimately, the codes we construct are obtained by evaluat-

ing functions on a curve lying on a surface, and thus can be
viewed as codes on curves. However, our proofs of the various
properties these codes enjoy crucially rely on the internal
geometry of the ambient surface. This point of view guided our
work throughout, so we have kept the perspective it affords.
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The work of [11] also uses curves embedded in higher
dimensional varieties to construct locally recoverable codes.
Their construction has some similarities and some differences
to ours. We compare the two constructions, once we set up
some terminology, in Section III-D

A. Locally Recoverable Codes

Let Fq be the finite field of q elements. A linear error
correcting code is a subspace C of Fn

q for some n, which
is called the length of C. We denote by k the dimen-
sion of C as a Fq-vector space and we denote by d the
minimum distance of C, defined as the minimum num-
ber of nonzero coordinates among the nonzero elements
of C.

The code C is said to be locally recoverable (LR) with
locality r if, for each i = 1, . . . , n, there is a subset Ji ⊂
{1, . . . , n}−{i}, #Ji = r (called the recovery set), such that,
if we know the values cj for j ∈ Ji of the coordinates of any
c ∈ C, then we can recover ci. Codes with small locality can
be used in distributed storage systems as they can reconstruct
data erasures with smaller storage overhead than traditional
back-ups. It is desirable to have codes with small locality,
large dimension (equivalently, high information rate k/n)
and large minimum distance for these applications. However,
these parameters are not independent: they satisfy the basic
constraint [6], [13]

d ≤ n − k − �k/r� + 2, (I.1)

and C is called an optimal LR code if equality holds. We write
dopt for the right hand side of (I.1).

An explicit construction of optimal LR codes with n ≤ q is
given in [16]. There are known upper bounds for the length
of LR codes and some general existence theorems [7]. One
of the purposes of this paper is to explicitly construct longer
optimal LR codes.

The LR codes we construct have the property that the sets
Ji ∪{i} form a partition of {1, . . . , n} but not every LR code
has this property. We end this subsection by giving a simple
proof of (I.1) for LR codes with this property.

Theorem I.3: Consider an [n,k,d]-LR code of locality r
whose recovery sets Ji have the property that the union of
the sets Ji ∪ {i} form a partition of {1, . . . , n}. Then (I.1)
holds.

Proof: Note that the recovery map for any coordinate
on inputs all equal to 0 is 0, since the zero vector is a
codeword. Now take b = �k/r� − 1 so br < k and choose
b disjoint sets of the form Ji ∪ {i} and set the r coordinates
indexed by each Ji from this choice to 0. In addition, choose
k − 1 − br coordinates outside the union of the chosen
Ji ∪ {i} and set them equal to 0 as well. Thus, a total of
k − 1 conditions are imposed and there exists a non-zero
codeword satisfying them all as our code has dimension k.
But this non-zero codeword also has zero i-th coordinates for
all of the chosen Ji ∪ {i}. This gives us b additional zero
coordinates. Hence the weight of this codeword is at most
n − (k − 1) − b = n − k − �k/r� + 2. �

B. Algebro-Geometric Codes

Let X be a quasi-projective 1 algebraic variety over a finite
field Fq. Concretely, this means that we select an open subset
of affine or projective space where a collection of polynomials
vanish.

The function field of X is the set of functions that can be
expressed as quotients of polynomials in the coordinates of
the ambient space modulo the equations defining X . Given a
point P on X and an element σ of the function field of X ,
if the denominator of σ does not vanish at P , the function σ
can be evaluated at P giving an element σ(P ) of Fq.

Let P1, . . . , Pn be a subset of the set X(Fq) of Fq-rational
points of X and V a finite-dimensional subspace of the
function field of X . We assume that the evaluation, as above,
of all elements of V at all the points P1, . . . , Pn is defined
and we can consider the image C of evaluation map, which is
an error correcting code:

evV : V → (Fq)n

σ 
→ (σ(P1), . . . , σ(Pn)) .

The length of the code is n. The dimension k of the code is

k = dimFq(im evV ) = dim V − dimFq(ker evV )

which simplifies to dim V if evV is injective. The minimum
distance d is the smallest Hamming distance between elements
of C. This is equal to n minus the largest number of Fq-points
of X vanishing on an element of V \ ker evV .

For X a projective variety and D a divisor on X , we denote
by L(X, D) the Riemann-Roch space of functions σ on X
such that either σ = 0 or (σ)+D is an effective divisor, where
(σ) denotes the divisor of σ. The space L(X, D) is always
finite-dimensional and we denote its dimension by �(X, D).
We will typically define our vector space V as above as a
subspace of some L(X, D).

II. BASELINE CODES FROM HIGH-DIMENSIONAL

VARIETIES

Let Am denote affine m-dimensional space over a finite field
Fq. In this section we construct locally recoverable codes, with
local recoverability parameter r from a projection morphism

π : Ar−1 × A1 → A1,

(x1, . . . , xr−1; t) 
→ t.

We shall impose the smallest possible amount of structure on
our choice of points for evaluation. This will give us a baseline
to assess the parameters of other constructions.

1Many codes are naturally described as algebro-geometric (AG) codes
in quasi-projective varieties that are not projective. Witness the classi-
cal Reed-Muller codes; they are AG codes in affine space A

n. Every
quasi-projective variety is an open subset of a projective variety, by definition,
but the choice of a projective compactification is not unique, e.g., An can
be embedded in projective space P

n or in the product (P1)n, which are
different. In this paper, we use specific choices of compatifications when
determining parameters for our codes (e.g., when we consider Hirzebruch
surfaces). In other circumstances, it is preferable not to, e.g., a curve can
always be embedded in a unique projective curve without increasing the
number of singular points. This is not true in higher dimensions.
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Let M and N denote positive integers. We shall use the
space of functions

V [M, N ] := {a0(t) +
r−1�
i=1

ai(t)xi :

deg a0 ≤ M and deg ai ≤ N for i = 1, . . . , r − 1}
to construct an evaluation code (so V [M, N ] plays the rôle of
the vector space V from § I-B). We pick, for some b ≤ q,
some set of b distinct points on the target A1 of the morphism
π and, in each of b fibers of π above these points, we pick r+1
points and take all these b(r + 1) points as the set of points
where we evaluate the above functions. Thus, the length of
the resulting code will be n = b(r +1). The following lemma
falls within the framework of [5, Proposition 4.2].

Lemma II.1: Fix t = t0 ∈ Fq, and let P1, . . . , Pr+1

be Fq-points in the fiber π−1(t0), no r of which lie
on a hyperplane. Let σ ∈ V [M, N ] be a function.
Then the value of σ(Pi) can be recovered from knowl-
edge of the coordinates of P1, . . . , Pr+1 and the r values
σ(P1), . . . , �σ(Pi), . . . , σ(Pr+1).

Proof: Write σ = a0(t) +
�r−1

i=1 ai(t)xi. Let ai = ai(t0)
for i = 1, . . . , r + 1. Then we have the matrix equation⎛⎜⎜⎜⎜⎜⎜⎝

1 x1(P1) · · ·xr−1(P1)
...

1̂ �x1(Pi) · · · �xr−1(Pi)
...

1 x1(Pr+1) · · ·xr−1(Pr+1)

⎞⎟⎟⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎝
a0

a1

...
ar

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

σ(P1)
...

�σ(Pi)
...

σ(Pr+1)

⎞⎟⎟⎟⎟⎟⎟⎠.

(II.1)

Since no r of the points P1, . . . , Pr+1 lie on a hyper-
plane, the r × r matrix in (II.1) is invertible, and
hence we may compute a0, . . . , ar from knowledge of
the coordinates of P1, . . . , �Pi, . . . , Pr+1 and the r values
σ(P1), . . . , �σ(Pi), . . . , σ(Pr+1). We conclude that

σ(Pi) = a0 + a1x1(Pi) + · · · arxr−1(Pi). �

To construct what we will call a baseline code, let (as
above)

{t1, . . . , tb} ⊆ A1(Fq)

be b distinct points on the target A1 of the morphism π, and
for each ti, choose r + 1 points Pi,1, . . . , Pi,r+1 on the fiber
π−1(ti), no r of which lie on a hyperplane.

Proposition II.2: Suppose that b − M, b−N ≥ 1. The
baseline code

C = {(σ(Pi,j))1≤i≤b,1≤j≤r+1 : σ ∈ V [M, N ]}.
has local recoverability r and its parameters satisfy

n = b(r + 1),
k = (M + 1) + (r − 1)(N + 1),

d ≤ (r + 1) (b − (N + 1)) − (M − N) −



M − N

r

�
+ 2,

d ≥ min{(b − M)(r + 1), 2(b − N)}.

Proof: We have already discussed the length of C. The
dimension of the code is simply the Fq-dimension of V [M, N ].
The upper bound on the distance of the code is an application
of (I.1). For the lower bound on d, we argue as follows:
Suppose that σ ∈ V [M, N ] is a function with ai ≡ 0 for
i = 1, . . . r−1, i.e., σ = a0(t) for a polynomial a0(t) of degree
≤ M . Then at least (b − M) of the values a0(t1), . . . , a0(tb)
are nonzero. The weight of the codeword associated to σ is
thus at least (b−M)(r +1). If, on the other hand, σ ∈ S is a
function where at least one ai 
≡ 0 for i = 1, . . . , r − 1, then
at least (b − N) of the values ai(t1), . . . , ai(tb) are nonzero.
In the corresponding fibers of π, the function σ defines a
hyperplane. The hypothesis that no r points on a fiber lie
on a hyperplane ensures that σ takes on a nonzero value on
at least two points in each of the (b − N) fibers. Hence,
d ≥ min{(b − M)(r + 1), 2(b − N)}, as claimed.

Local recoverability of C follows from Lemma II.1. �
Remark II.3: The proof of Proposition II.2 shows that if

min{(b − M)(r + 1), 2(b − N)} = (b − M)(r + 1), then in
fact d = (b − M)(r + 1). In addition, if

M + N > b and 2N > b (II.2)

then it is always possible to construct a function σ whose
associated code word has weight exactly 2(b − N). So under
the conditions (II.2), the lower bound for d in Proposition II.2
is in fact sharp.

Example II.4: We specialize to the case where r = 3, M =
b − 1 and N = b − 2. Then the upper and lower bounds for
d meet and we have d = 4. This gives optimally recoverable
codes with parameters

(n, k, d, r) = (4b, 3b − 2, 4, 3).

Note that the information rate k/n is approximately 75%,
and since b ≤ q, one can construct codes with n = 4q and
high information rate that are optimal locally recoverable.
In particular, over any Fq with q ≥ 9, we can construct a
code with parameters (n, k, d, r) = (32, 22, 4, 3).

Example II.5: If we now take b ≤ q, r arbitrary and M =
N = b−1, then the upper and lower bounds of Proposition II.2
also coincide and the code has distance d = 2.

The last two examples are the only cases where the
upper and lower bounds of Proposition II.2 coincide and a
baseline code with no additional properties is optimal (see
Remark II.3).

To see this, let δ := M − N ; we consider two cases:
• min{(b−M)(r+1), 2(b−N)} = (b−M)(r+1): Then

(b − M)(r + 1) =

(r + 1) (b − (N + 1)) − (M − N) −



M − N

r

�
+ 2,

from which one can conclude that

(r + 1)(δ − 1) − δ −



δ

r

�
+ 2 = 0. (II.3)

Write
�

δ
r

�
= δ

r + �, 0 ≤ � < 1, then

δ(r − 1/r) = r − 1 + �. (II.4)
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This implies in particular that δ > 0. If δ ≥ 2 then, since
r ≥ 3, we have

δ(r − 1/r) ≥ 2r − 1 > r − 1 + �

and hence δ = 1, since it is an integer.
If δ = 1 then the hypothesis 2(b−N) ≥ (b−M)(r + 1)
gives

b ≤ M +
2

r − 1
≤ M + 1 (whenever r ≥ 3),

from which we conclude that b−M = 1, and hence that
b−N = 2. It follows that

(r + 1) = (b − M)(r + 1) = d =
min{(b − M)(r + 1), 2(b − N)} = min{(r + 1), 4},

whence r + 1 ≤ 4. Since we want codes with r ≥ 3,
we must have r = 3 and d = 4.

• min{(b − M)(r + 1), 2(b − N)} = 2(b − N):
Then

b = N + 1 +
δ

r − 1
+

1
r − 1



δ

r

�
. (II.5)

On the other hand, min{(b − M)(r + 1), 2(b − N)} =
2(b − N) gives

b ≥ M(r + 1) − 2N

r − 1
. (II.6)

Substituting the value for b obtained in (II.5) into the
inequality (II.6) we get

δ

�
1 +

1
r − 1

�
≤ 1 +

1
r − 1



δ

r

�
.

The latter implies that δ ≤ 1. If δ = 1 then M = N + 1
and thus

2(b − N) ≤ (b − (N + 1))(r + 1)

=⇒ b ≥ N + 1 +
2

r − 1
.

We also have

b = N + 1 +
1

r − 1



1
r

�
+

1
r − 1

(by (II.5))

= N + 1 +
2

r − 1
≤ N + 2.

The distance is thus given by d = 2(b − N) ≤ 4 and by
our analysis, the inequality 2(b−N) ≤ (b−(N+1))(r+1)
is sharp, so (b − M)(r + 1) ≤ 4, which forces r ≤ 3.
Finally, since we assumed r ≥ 3, we conclude that in
fact r = 3 and d = 4.
If δ = 0 then (II.5) gives b = N + 1, which implies that
d = 2. If δ ≤ −1, we get b ≤ N which is not possible.

III. CODES FROM RULED SURFACES: AFFINE

INTIMATIONS

A. Tamo-Barg Codes

We present the construction of Tamo and Barg [16] of
optimal LR codes of length at most q from the perspective
of the last section, which we believe is new. We retain the
notation of the previous section.

Let g(x) ∈ Fq[x] be a polynomial of degree r + 1, viewed
as a morphism g : A1 → A1. Choose distinct t1, . . . , tb ∈ Fq

such that the fiber g−1(ti) consists of r + 1 distinct elements
xi,1, . . . , xi,r+1 of Fq , for i = 1, . . . , b. Note that the xi,j are
therefore n = b(r + 1) distinct elements of Fq. We define
the points Pi,j = (xi,j , x

2
i,j , . . . , x

r−1
i,j ) ∈ Ar−1(Fq), and we

consider the projection map

π : Ar−1 × A1 → A1,

(x1, . . . , xr−1; t) 
→ t.

For a fixed i, the fiber above ti is an affine space Ar−1

containing the points Pi,j for j = 1, . . . , r + 1. Moreover,
by their construction, these points lie on an affine rational
normal curve, i.e., they lie on the image of the map

h : A1 → Ar−1,

x 
→ (x, x2, . . . , xr−1).

This guarantees that no r of them lie on a hyperplane. As in
§II, we take the space of functions V [M, N ], but specialize
to the case where M = N , and build a code C. Lemma II.1
guarantees that C has local recoverability r. Put differently,
the fact that the points Pi,j lie on rational normal curves
implies that the r×r matrix in (II.1) is a Vandermonde matrix,
thus invertible.

The parameters n, k, and r for the code C are as before.
However, in this special situation, we get a better lower bound
for the minimum distance d as follows. Note that

σ(Pi,j) = a0(g(xi,j)) +
r−1�
�=1

a�(g(xi,j))x�
i,j

is the value at x = xi,j of a polynomial of degree at most
N(r + 1) + r − 1 in x. This degree is an upper bound on the
number of its zeros and thus d ≥ n − (N(r + 1) + r − 1).
On the other hand, as in the previous section, the upper bound
(I.1) for d when M = N is

(r + 1) (b − (N + 1)) − (M − N) −



M − N

r

�
+ 2 =

n − (N(r + 1) + r − 1),

showing that these codes are optimal LR codes.
As mentioned above, these codes have n ≤ q. To achieve n

near q one needs to choose the polynomial g(x) in such a way
that the preimage of many values of t ∈ Fq under g consists
of r + 1 elements of Fq. One such choice is g(x) = xr+1

if (r + 1) | (q − 1). For other choices and a full discussion,
see [16].
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B. Ruled Surfaces Perspective

An algebraic surface S over a field k is called a ruled
surface if it is endowed with a morphism π : S → B to a
base algebraic curve B such that for all but finitely many
b ∈ B(k̄), the fiber π−1(b) is a smooth rational curve, where
k̄ is a fixed algebraic closure of k. There is a ruled surface
operating behind the scenes in our recasting of the Tamo–Barg
codes [16], which we now describe.

Using the notation of §III-A, we let2 S = A1
x × A1

t , which
maps to Ar−1 × A1

t via

h × id : (x, t) 
→ (x, x2, . . . , xr−1; t).

The variety S fits into the commutative diagram

S
h×id

π′

Ar−1 × A1
t

π

A1
x

g
A1

t

where the map π′ : S → A1
x is projection onto the first

coordinate. The variety S is our ruled surface, and the code
constructed in §III-A can be described as an evaluation code
on S, as follows. Given t1, . . . , tb outside the branch locus
of the morphism g : A1

x → A1
t , i.e., such that the fiber g−1(ti)

consists of b distinct points xi,1, . . . , xi,r+1 in A1
x(Fq), we set

Pi,j = (xi,j , ti) ∈ S(Fq) for 1 ≤ i ≤ b, 1 ≤ j ≤ r + 1,

so that the recovery set for the point Pi,j is

Ji,j := {Pi,k : 1 ≤ k ≤ r + 1, k 
= j}.
Then, letting

V [N ]=

�
a0(t)+

r−1�
i=1

ai(t)xi : deg ai≤N for i=0, . . . , r−1

�
the Tamo–Barg codes are of the form

C = {(σ(Pi,j))1≤i≤b,1≤j≤r+1 : σ ∈ V [N ]}.

C. Recasting and Extending Barg–Tamo–Vlăduţ Codes

Just as §§III-A–III-B gives a reinterpretation of the con-
struction of [16], in this section we reinterpret the construction
of [3] but here we go further and, aided by our geometric point
of view, obtain better codes by a judicious choice of the space
of functions to evaluate. Some of the codes we obtain are
optimal.

In broad terms, we consider a curve C in the surface S =
A1

x ×A1
t and embed S (and consequently C) in Ar−1×A1

t as
above by (x, t) 
→ (x, x2, . . . , xr−1, t). We choose C so that
the projection in the t coordinate has degree r +1 and choose
the values of t ∈ Fq to be those for which their preimage
consists of r + 1 rational points. Then, just as before, we can
evaluate these points on a space of polynomials similar to the
ones considered above to get an LR code with locality r.

2Keen readers will immediately note that S = A2
(x,t)

. We prefer to use

the product A1
x × A1

t because, as we shall see in §IV, the correct projective
compactification of S to work with is P

1 × P
1, and not P

2.

In §III-B all the points in S used for the Tamo–Barg
evaluation code lie on the curve g(x) = t. In this section,
we instead consider the curve

C : xr+1 = t2 + 1, (III.1)

which is a cyclic cover of A1
Fq

via the map (x, t) 
→ t. In order
to have many fibers of cardinality r + 1 over Fq we take q ≡
1 mod r + 1. Fix a positive integer d. The space of functions
we use to define the code consists of functions of the form

σ = a0(t) + a1(t)x + · · · + ar−1(t)xr−1, (III.2)

where the aj(t) vary in the vector space defined by the
inequalities

deg aj ≤ n − d

r + 1
− �j

and

�j =

⎧⎪⎨⎪⎩
0 if j = 0,

1 if 0 < j ≤ (r + 1)/2,

2 otherwise.

The local recoverability with locality r of the resulting code
follows, since for fixed t, with r + 1 distinct values for x,
the matrix determining the missing value is a Vandermonde
matrix. The inequalities defining the space of functions to be
evaluated ensure that the minimum distance of this code is at
least d, because x has a pole of order 2 at infinity and t has
a pole of order r + 1 at infinity.

The space of functions at which we evaluate points of the
curve has dimension, for r odd,

k =
r

r + 1
(n − d) −

r−1�
i=0

�j + r =
r

r + 1
(n − d) +

5 − r

2
.

Note that the upper bound dopt for the distance of this code
is

n−k −



k

r

�
+ 2 = n − r

r + 1
(n − d)

+
r − 5

2
−



1

r + 1
(n − d) +

5 − r

2r

�
+ 2

= d +
r − 5

2
+ 2.

The last equality holds for r ≥ 5 whereas, for r = 3, we just
get d. So the codes constructed this way are optimal for r = 3;
for r > 3, these codes are further from the optimal bound the
larger r gets.

For r even, a similar calculation gives d+ r/2 as the upper
bound for the distance when r > 2 and d when r = 2. So
the codes constructed are optimal for r = 2; for r > 3, these
codes are further from the optimal bound the larger r gets.

We note again the similarity with the Tamo-Barg codes
discussed above, which uses a space of functions of the same
form as (III.2) but with deg aj ≤ k/r − 1 and a curve of the
form g(x) = t for a polynomial g(x) in place of C. The length
of their codes is at most q, whereas the codes above can be
longer if the curve C in (III.1) has more than q affine points.
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D. The Construction of Munuera and Tenório

We briefly describe the general construction of [7,
Section 2.2]. Here t (to keep the notation of [11]) is a positive
integer and not a variable as elsewhere in this section. They
consider a map (φ1, . . . , φt) : Am → At and another function
φt+1 : Am → A1. Their evaluation points lie in Am but
they use the map (φ1, φ2, . . . , φt+1) to view them in At+1

and for the purpose of comparison it is enough to consider
At+1 = At × A1 and the natural projections At+1 → At

and At+1 → A1. Their A1 coordinate plays the role of the
A1

x coordinate in the previous section. In particular, they use
the properties of the rational normal curve (under the guise
of Lagrange interpolation) to get local recoverability. Their
At plays the role of what we denote by A1

t in the previous
section.

When it comes to explicit constructions they consider an
algebraic curve mapping to At+1 (so the φi are functions
on the curve) and take the evaluation points from the image
of the curve. Their computation of the other parameters of
the codes they construct use the intrinsic geometry of the
curve and not the geometry of the curve within the ambient
space, which is the viewpoint we will take in Section IV.
This is where our construction and theirs diverge. Moreover,
their examples lead to different code parameters which are not
directly comparable to ours. Particularly, they mostly deal with
values of the locality r different from those that we consider.
In [7, Section 3.2, 3.3] they construct codes with r = 2 and
[7, Section 3.4] they have codes with r = q − 1 over Fq2 .
Whereas we, in Theorems IV.5 and V.7, deal with r such that
(r + 1) | (q − 1) over Fq and, in Theorem VI.6, with codes
with r = q over Fq2 . The one place where these intersect is
the special case of r = 2 in Theorem IV.5 where we deal
with an elliptic curve inside our surface. These codes are then
very similar to those of [7, Section 3.3] that also use an elliptic
curve. The ideas of [11] have been extended in [5] to construct
(r, δ)-LRC codes, which is a direction we do not pursue here.

IV. CODES ON RULED SURFACES: P1 × P1

In this section we add one more layer of geometry to the
codes we constructed in §III by considering codes on the ruled
surface S = P1 × P1, which is a projective compactification
of the surface A1

x × A1
t . This extra layer of geometry affords

important conceptual insights: a lower bound for the minimum
distance of a code can be interpreted as an intersection number
of two curves in S, and good lower bounds for a minimum
distance can be achieved by forcing curves to intersect with
high multiplicity at the point (∞,∞) ∈ S.

We begin with a toy model for our code, that is far from
optimal, but which helps set ideas and notation. We let S :=
P1

(x:y) × P1
(t:u), where (x : y) and (t : u) are respective

homogeneous coordinates for the factors of S.

A. A Coarse Construction

Let r be a positive odd integer, let b ≤ q be a positive
integer, and set n = b(r + 1). Choose an integer d divisible

by r + 1, so that

N :=
n − d

r + 1
is an integer, as well as a positive integer α. Consider a curve
of the form

C : g(x, y; t, u) = 0

in S, where g is a bi-homogeneous polynomial of the bi-degree
(r + 1, α). In other words, every monomial of g has total
degree r + 1 in the variables x and y, and total degree α in
the variables t and u. We say that C is of type (r + 1, α).
Our code will be an evaluation code on the Fq-vector space
of functions of the form

σ = a0(t, u)yr−1 + a1(t, u)yr−2x + · · · ar−1(t, u)xr−1,

(IV.1)

where the ai(t, u) are homogeneous polynomials of degree
N in t and u. We write Vr−1,N for this vector space. Each
function σ ∈ Vr−1,N defines itself a curve in X given by
σ = 0. We write (σ) for this curve3; it is a curve of type
(r − 1, N).

Write p : S → P1
(t:u) for the projection onto the second

factor. To construct our code, we pick b points (ti : ui) ∈
P1

(t:u)(Fq) such that the fiber p−1((ti, ui)) ∩ C consists of
r + 1 distinct points

(xi,1 : yi,1), . . . , (xi,r+1 : yi,r+1) ∈ P1
(x:y)(Fq)

and set

Pi,j = ((xi,j : yi,j), (ti : ui)) ∈ S(Fq).

Proposition IV.1: The code

C := {(σ(Pi,j))1≤i≤b,1≤j≤r+1 : σ ∈ Vr−1,N}
has parameters satisfying

n = b(r + 1)

k = r(N + 1) =
r

r + 1
· (n − d) + r

d ≤ d − r + 1
d ≥ d − α(r − 1)

Proof: The parameter k is simply the dimension of the
Fq-vector space Vr−1,N . The upper bound for the distance is
the bound (I.1):

d ≤ n−k −



k

r

�
+ 2

= n − r

r + 1
· (n − d)−r − 1

r + 1
· (n − d) − 1 + 2

= d − r + 1.

We have used here the divisibility relation (r + 1) | (n − d).
For the lower bound on the distance, we note that the largest
number of zeros in a code word in C is bounded above by

max
σ∈Vr−1,N

# (C ∩ (σ)) ,

3The notation (σ) is the usual notation in algebraic geometry for the divisor
of zeroes of a global section of a line bundle; see §I-B.
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i.e., the largest number of intersection points between C and
the curve (σ) ⊂ S given by σ = 0, as σ varies over the
vector space Vr−1,N . The intersection theory of S shows that
this number is independent of σ: indeed, the intersection of
divisors on S of type (a, b) and (a′, b′) is ab′ + a′b [13,
V, Example 1.4.3]. Since C is a curve of type (r + 1, α) and
(σ) is a curve of type (r − 1, N), we have

# (C ∩ (σ)) = N(r + 1) + α(r − 1)
= n − d + α(r − 1).

Hence, the lowest weight for a code word in C is

d ≥ n − # (C ∩ (σ)) = d − α(r − 1),

as claimed. �
Remark IV.2: The codes in the above proposition have

locality r. However, we defer the discussion of locality until
after we refine the code in the next section.

Remark IV.3: The upper and lower bounds for d in Proposi-
tion IV.1 meet if and only if α = 1; this is precisely the habitat
for the Tamo–Barg codes. In the notation of §III-A, the affine
curve g(x) = t lies in the open set A1

x×A1
t = {y, u 
= 0} of S;

its projective closure in S is given by yr+1g(x/y)u = tyr+1,
which is a curve of type (r + 1, 1) in the notation of this
section.

Remark IV.4: Let us compare the parameters in Proposi-
tion IV.1 with those of a base-line codes in Proposition II.2.
The length n, dimension k, and upper bound for d coincide
since we have specialized to the case where M = N in
Proposition IV.1. If r ≥ 3, then the lower bound for d in
Proposition II.2 is 2(b − N), while the bound for the codes
just studied is

d ≥ (r + 1)(b − N) − α(r − 1)

The latter bound is better as long as b > N + α, i.e., as
long as d > α(r + 1).

B. Refining the Construction

In this section, we show that one can narrow the gap
between the upper and lower bounds for d in Proposition IV.1
by

1) choosing C judiciously,

2) using a particular proper subspace V ⊂ Vr−1,N for the
evaluation code,

3) using only points Pi,j = ((xi,j : yi,j), (ti : ui)) with
yi,j = ui = 1.

Intuitively, our construction guarantees that the point

(∞,∞) := ((1 : 0), (1 : 0)) ∈ S(Fq)

lies in the intersection C ∩ (σ) for all σ ∈ V with high multi-
plicity. Note that Pi,j 
= (∞,∞) for i and j by construction of
Pi,j . This allows us certify the code C has minimum distance
d = d.

Consider the curve

C : uαxr+1 − (tα + uα)yr+1 = 0,

which is a particular curve of type (r + 1, α) in S. We shall
use functions of the form (IV.1), but we constrain the degree
in t of the polynomials ai(t, u), as follows:

degt ai(t, 1) ≤ N −



αi

r + 1

�
.

This requires N ≥ �α(r − 1)/(r + 1)�, which we now
assume. In other words, setting

�i :=



αi

r + 1

�
,

we assume that for each 0 ≤ i ≤ r − 1,

ai(t, u) = u�i · a′
i(t, u)

for a homogeneous polynomial a′
i(t, u). When this is the case,

the vector space of functions

V := {σ ∈ Vr−1,N :

σ = a0(t, u)yr−1 + uε1 · a1(t, u)yr−2x + · · · + uεr−1ar−1(t, u)xr−1}

has dimension

k = r(N + 1) −
r−1�
i=0

�i. (IV.2)

The vector space V has the important property that
σ((∞,∞)) = 0 for all σ ∈ V . This is key in improving
our bounds for the minimum distance of the codes we define
using the curve C and the space of functions V . We pick b
points (ti : 1) ∈ P1

(t:u)(Fq) such that the fiber p−1((ti : 1))∩C
consists of r + 1 distinct points

(xi,1 : 1), . . . , (xi,r+1 : 1) ∈ P1
(x:y)(Fq).

Put

Pi,j = ((xi,j : 1), (ti : 1)) ∈ S(Fq).

Theorem IV.5: Assume that α | (r+1) and (r+1) | (q−1).
The code

C := {(σ(Pi,j))1≤i≤b,1≤j≤r+1 : σ ∈ V }
has locality r and its parameters satisfy

n = b(r + 1),

k =

�
r(N + 1) − r(r−1)

2 , if r + 1 = α, and

r(N + 1) + 2α − (α+1)(r+1)
2 , if r + 1 > α,

d ≤ d +
(α − 1)(r − 3)

2
−



2α

r
− (α + 1)(r + 1)

2r

�
,

d ≥ d.

In particular, the code C is an optimal LR code if α = 1 or
r = 3.

Example IV.6: Setting α = 2, r = 3, and picking an integer
d divisible by 4 such that 4b ≥ d, we obtain optimal LR codes
with parameters

(n, k, d, r) =
�

4b, 3b− 3
4
d + 1, d, 3

�
.

Since b ≤ q, one can construct codes with n = 4q with
high information rate that are locally recoverable. Compare
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this with the baseline codes from Example II.4, where a code
with similar parameters is possible only when d = 4.

Proof: [Proof of Theorem IV.5] Assume that r + 1 > α.
By (IV.2), to establish the claim on k = dimFq V , it suffices
to show that

r−1�
i=0

�i =
(α + 1)(r + 1)

2
− 2α.

The sequence of integers �0, . . . , �r−1 has the form

0, 1, . . . , 1� �� �
(r+1)/α

, 2, . . . , 2� �� �
(r+1)/α

, 3, . . . , 3� �� �
(r+1)/α

, . . . , α − 1, . . . , α − 1� �� �
(r+1)/α

, α, . . . , α� �� �
(r+1)/α−2

.

Hence
r−1�
i=0

�i =
α−1�
l=1

l · r + 1
α

+ α

�
r + 1

α
− 2

�
=

(α − 1)α
2

· r + 1
α

+ (r + 1) − 2α

= (α − 1)
r + 1

2
+ (r + 1) − 2α

=
(α + 1)(r + 1)

2
− 2α.

If r + 1 = α, then �i = i and the result follows.
For the lower bound on the distance, note that the largest

number of zeros in a code word in C is bounded above by

max
σ∈V

# (C ∩ (σ)) ,

just as in Proposition IV.1. We have already seen that

C · (σ) = α(r − 1) + n − d.

However, for every σ ∈ V , the curves C and (σ) intersect
at the point (∞,∞) ∈ S(Fq). We claim this happens with
multiplicity at least α(r − 1), and hence

max
σ∈V

# (C ∩ (σ)) ≤ C · (σ) − α(r − 1) = n − d,

from which we deduce that

d ≥ n − max
σ∈V

# (C ∩ (σ)) ≥ d.

To establish the claim on the multiplicity of C and (σ) at
(∞,∞), note that the point (∞,∞) is the origin of the affine
patch A2

(y,u) of S. In this patch, an affine equation for C is

C : uα = (1 + uα)yr+1,

which is in fact singular at the origin (this only helps increase
the multiplicity of the intersection with the curve (σ)). In the
complete local ring of C at the origin, the quantity 1+uα has
an α-th root. More precisely, let

A = k[y, u]/(uα − (1 + uα)yr+1)

be the affine coordinate ring of C, and let m = (y, u) be
the maximal ideal corresponding to the origin. Then in the
completed local ring Âm, the binomial expansion shows that

w=(1+uα)1/α =1+

�
1/α

1

�
uα+

�
1/α

2

�
u2α+

�
1/α

3

�
u3α+· · ·

Let ζ denote an α-th root of unity in an algebraic closure of Fq.
Geometrically, C has α branches at the origin:

u = wy(r+1)/α, u = ζwy(r+1)/α, . . . , u = ζα−1wy(r+1)/α,

For each one of these branches, y is a uniformizer for the ideal
m, and u has valuation (r + 1)/α with respect to this uniformizer.4

For σ ∈ V , a local equation for (σ) in the affine patch A2
(y,u) is

a0(1, u)yr−1 + uε1 · a1(1, u)yr−2 + · · · + uεr−1ar−1(1, u) = 0

The monomial uεiyr−1−i has m-adic valuation�
αi

r + 1

�
· r + 1

α
+ r − 1 − i.

As i ranges through 0, . . . , r−1, the smallest value of this quantity
is r − 1. Hence, on each branch of C the minimal m-adic valuation
of σ ∈ V is r − 1, and therefore C and (σ) intersect at (∞,∞)
with multiplicity ≥ α(r − 1). This concludes the proof of the lower
bound for d.

Next, we compute an upper bound for d using (I.1):

d ≤ n−k −
�

k

r

�
+ 2

= n − r(N + 1) − 2α +
(α + 1)(r + 1)

2

− (N + 1) −
�

2α

r
− (α + 1)(r + 1)

2r

�
+ 2

= d − (r + 1) − 2α +
(α + 1)(r + 1)

2

−
�

2α

r
− (α + 1)(r + 1)

2r

�
+ 2

= d +
(α − 1)(r − 3)

2

−
�

2α

r
− (α + 1)(r + 1)

2r

�
.

Finally, we discuss the locality of the code C. Since all points Pi,j

used to construct C have yi,j = ui = 1, the set {Pi,j} lies entirely
in the affine patch A1

x × A1
t of S. Proceeding as in §III-B, we map

this affine patch to Ar−1 × At via

(x, t) �→ (x, x2, . . . , xr−1; t).

The image of the points {Pi,j} lie on a rational normal curve,
so no r of them lie on a hyperplane, and hence Lemma II.1 shows
the code C has locality r. �

Remark IV.7: Let us compare the parameters in Proposi-
tion IV.5 with those of a base-line codes in Proposition II.2.
The length n is the same for both constructions. The dimension
is smaller in Proposition IV.5; however, on the one hand,
d = (b − N)(r + 1), and on the other hand, when M = N
and r ≥ 3 the lower bound for the distance in the base-line
codes is 2(b − N). Hence, the lower bound d represents an
improvement on base-line codes of (r − 1)(b − N). For a
numerical example, take r + 1 = α = 5 and q = 16. Then
we can take b = 10, so n = 50 and d can be any integer
divisible by 5 with d ≤ 35 and the parameters are given as in
Proposition IV.5 with equality d = d.

4By this we mean: let B = F̄q[y, u]/(u−ζiwy(r+1)/α) be the geometric
local coordinate ring of one of the branches of C. Then the m-adic completion
B̂m at the maximal ideal m = (y, u) corresponding to the origin is
a local discrete valuation ring. Hence the ideal mB̂m is principal [14,
Proposition 9.2]. The equation of the branch shows that y is a generator
for this ideal, and that u ∈ m(r+1)/α \m(r+1)/α−1, which is to say that u
has m-adic valuation (r + 1)/α.
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V. CODES ON HIRZEBRUCH SURFACES

The ruled surface P1 × P1 is an example of a Hirzebruch
surface, which are ruled surfaces determined by a non-negative
integer m. After recalling some of the geometry of these
surfaces, we adapt the construction of codes in §IV to the
setting of Hirzebruch surfaces.

A. Hirzebruch Surfaces F(m)

Let m ∈ Z≥0; we let two copies of the multiplicative group
Gm × Gm act on the product of two punctured affine planes
A2 \ {(0, 0)} × A2 \ {(0, 0)} via

(λ, 1) : (x, y; t, u) 
→ (λ−mx, y; λt, λu)
(1, μ) : (x, y; t, u) 
→ (μx, μy; t, u).

The Hirzebruch surface S = F(m) is the quotient

A2 \ {(0, 0)} × A2 \ {(0, 0)} /Gm × Gm.

Such surfaces are endowed with a natural fibration p : S →
P1

(t:u) given by

((x : y), (t : u)) → (t : u). (V.1)

Note that P1 × P1 = F(0).
Lemma V.1: Let S = F(m) be as above. The following

hold:
1) The Picard group Pic(S) is isomorphic to Z2, generated

by the classes of the curves

A = {t − u = 0} and B = {x = 0},
which are, respectively, a fiber of (V.1) and the so-called
negative section of S.

2) The intersection pairing on Pic(S) is determined by

A2 = 0, A · B = 1 and B2 = −m.

3) Let M = mA+ B ∈ Pic(S). The canonical divisor KS

is linearly equivalent to (m − 2)A − 2M .

4) For non-negative integers α, β satisfying α ≥ mβ − 1,
the Riemann–Roch space L(S, αA+βB) has dimension

�(S, αA + βB) = (α + 1)(β + 1) − m
β(β + 1)

2
.

Proof: For (1), (2) and (3) see [14], Sections B.2.9 and B
2.7. The Riemann–Roch theorem for surfaces gives the Euler
characteristic of the class αA + βB:

(αA + βB) · (αA + βB − KS)

2
+ 1 = (α + 1)(β + 1) − n

β(β + 1)

2
.

By, e.g., [16, Thm. 2.1.], the conditions β ≥ 0 and α ≥
mβ − 1 guarantee that this Euler characteristic coincides with
the dimension of the Riemann–Roch space L(S, αA + βB).

�
Remark V.2: The morphism φ : X → X̄ ⊂ Pm defined by

the sections generating the projectivized Riemann-Roch space
|M | is the natural resolution of the cone over the rational
normal curve of degree n. The map φ contracts B to the vertex
of the cone (see [15, B 2.9]).

B. Riemann-Roch Spaces for Codes

In this section, we give an explicit description of the ele-
ments of the Riemann–Roch spaces Vβ,α := L(S, αA + βB)
appearing in Lemma V.1. We assume throughout that α and
β are non-negative integers.

Lemma V.3: Let α = ε + mβ with ε ≥ 0. The elements of
Vβ,α have the form

σ = a0(t, u)yβ + a1(t, u)yβ−1x + · · · + aβ(t, u)xβ (V.2)

where ai(t, u) is a homogeneous polynomial of degree ε+ im
for i = 0, . . . , β. We have

dim Vβ,α = (α + 1)(β + 1) − m
β(β + 1)

2
.

Proof: Let σ be as in the statement of the lemma. First,
we show that σ ∈ Vβ,α. Since A and B generate Pic(S),
there are α′ and β′ such that (σ) = α′A + β′B as classes in
Pic(S). To determine α′ and β′ we use the intersection pairing
on Pic(S).

Since A is a curve defined by fixing the ratio t/u, we have
that

(σ) · A = β.

On the other, since B = {x = 0}, we see that

(σ) · B = ε.

We obtain the system of equations

β = (σ) · A = α′ · A2 + β′A · B = β′,

ε = (σ) · B = α′A · B + β′B2 = α′ − mβ′.

Thus β′ = β and α′ = ε + mβ′ = α as claimed. Note that
the condition that ai(t, u) is homogeneous of degree ε + im
ensures that the monomials are invariant under the action
(λ, 1) ∈ Gm × Gm.

The subspace of Vβ,α generated by elements of the
form (V.2) has dimension

k = (ε + 1) + (ε + 1 + m) + · · · + (ε + 1 + βm)

=
β�

i=0

(ε + 1) + im

= (β + 1)(ε + 1) + m
β(β + 1)

2

= (α + 1)(β + 1) − m
β(β + 1)

2
and hence must be equal to the entire vector space,
by Lemma V.1(4). �

C. A Coarse Construction

Let r and b ≤ q be positive integers, and set n = b(r + 1).
Choose an integer d, divisible by r + 1, so that

N :=
n − d

r + 1
is an integer, as well as a positive integer α. Set β = r − 1,
and consider a curve of the form

C : g(x, y; t, u) = 0
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in S, where g is an element of

Vr+1,α+m(r+1) = L ((α + m(r + 1))A + (r + 1)B) .

We say C is of type (r + 1, α + m(r + 1)). The fibration
p : S → P1

(t:u) in (V.1) gives S the structure of a ruled surface.
To construct evaluation codes using C, pick b points (ti : ui) ∈
P1

(t:u)(Fq) such that the fiber p−1((ti : ui)) ∩ C consists of
r + 1 distinct points

(xi,1 : yi,1), . . . , (xi,r+1 : yi,r+1).

Put

Pi,j = ((xi,j : yi,j), (ti : ui)) ∈ S(Fq),

so that there are n = b(r + 1) points of the form Pi,j in total.
We shall use the vector space

Vβ,N+mβ = Vr−1,N+m(r−1)

to construct our evaluation codes.
Proposition V.4: The code

C := {(σ(Pi,j))1≤i≤b,1≤j≤r+1 : σ ∈ Vr−1,N+m(r−1)},
constructed using C, has locality r and its parameters satisfy

n = b(r + 1)

k = (N + 1)r + m
r(r − 1)

2

d ≤ d − (r − 1) − m
(r2 − 1)

2
d ≥ d − (r − 1)(α + m(r + 1)).

Proof: By Lemma V.2, we have

k = dim Vr−1,N+m(r−1) = r(N + 1) + m
r(r − 1)

2
. (V.3)

Next, if r is odd or m even, we have

k

r

�
= N + 1 + m

(r − 1)
2

.

Otherwise,

k

r

�
= N + 1 + m

(r − 1)
2

+
1
2
≥ N + 1 + m

(r − 1)
2

.

Hence, an upper bound for d using (I.1) is

d ≤ n − k −



k

r

�
+ 2

≤ n − r(N + 1) − m
r(r − 1)

2
− (N + 1) − m

(r − 1)
2

+ 2

= n − (n − d) − (r + 1) − m
r(r − 1)

2
− m

(r − 1)
2

+ 2

= d − (r − 1) − m
(r2 − 1)

2
.

As in the proof of Proposition IV.5, a lower bound for the
minimum distance of C is

d ≥ n − max
σ∈V

# (C ∩ (σ))

≥ n − C · (σ) for any σ ∈ Vr−1,N+m(r−1)

Since the equation for C is an element of Vr+1,α+m(r+1),
we may use Lemma V.1(2) to compute

C · (σ)
= ((α + m(r + 1))A + (r + 1)B) ·
((N + m(r − 1))A + (r − 1)B)
= (r − 1)(α + m(r + 1)) + (N + m(r − 1))(r + 1)

− m(r2 − 1)
= (r − 1)(α + m(r + 1)) + n − d,

and hence

d ≥ d − (r − 1)(α + m(r + 1)).

as claimed. Finally, the locality is r by the same argument as
in the end of the proof of Proposition IV.5. �

Remark V.5: When m = 0, we have S = F(0) = P1 × P1.
In this case, the bounds on the distance for C coincide with
the bounds of Proposition IV.1, as one would expect.

Remark V.6: The upper and lower bounds for the minimum
distance in Proposition V.4 meet when

1 + m
(r + 1)

2
= α + m(r + 1).

Since α, m and r are non-negative, we must have m = 0
(i.e., S = P1 × P1) and α = 1.

D. Refining the Construction

Consider the curve C ⊂ S with affine model given by

C : xr+1 = tα + 1.

The projective closure of this curve in S is given by:

uα+m(r+1)xr+1 − (tα + uα)yr+1 = 0. (V.4)

The left hand side of the above equation is an element of
the vector space Vr+1,α+m(r+1).

To construct evaluation codes using C, as usual, pick b
points (ti : ui) ∈ P1

(t:u)(Fq) such that the fiber p−1((ti :
ui)) ∩ C consists of r + 1 distinct points

(xi,1 : yi,1), . . . , (xi,r+1 : yi,r+1).

Put

Pi,j = ((xi,j : yi,j), (ti : ui)) ∈ S(Fq),

so that there are n = b(r +1) points of the form Pi,j in total.
For the vector space of function on which we evaluate the
Pi,j , we constrain the degree in t of the polynomials ai(t, u),
as follows:

degt ai(t, 1) ≤ N + im −



i(α + m(r + 1))
r + 1

�
.

Again, this requires N ≥ �α(r − 1)/(r + 1)�, which we
now assume. In other words, setting

�i :=



i(α + m(r + 1))
r + 1

�
,

we assume that for each 0 ≤ i ≤ r − 1,

ai(t, u) = u�i · a′
i(t, u)
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for a homogeneous polynomial a′
i(t, u). When this is the case,

the calculation (V.3) shows that the vector space of functions

V := {σ ∈ Vr−1,N+m(r−1) :

σ = a0(t, u)yr−1 + uε1 · a1(t, u)yr−2x + · · · + uεr−1ar−1(t, u)xr−1}

has dimension

k = r(N + 1) + m
r(r − 1)

2
−

r−1�
i=0

�i

If α = r + 1 then

r−1�
i=0

�i =
r−1�
i=0

i + im = (m + 1)
r(r − 1)

2

Otherwise, if r + 1 > α then

r−1�
i=0

�i =
r−1�
i=0



iα

r + 1

�
+ im

=
(α + 1)(r + 1)

2
− 2α + m

r(r − 1)
2

.

where the second equality follows by our work in the proof
of Proposition IV.5. We conclude that

k =

�
r(N + 1) − r(r−1)

2 , if r + 1 = α, and

r(N + 1)+2α− (α+1)(r+1)
2 − m r(r−1)

2 , if r+1>α,

Theorem V.7: Assume that α | (r+1) and (r+1) | (q−1).
The code

C := {(σ(Pi,j))1≤i≤b,1≤j≤r+1 : σ ∈ V }
has locality r and its parameters satisfy

n = b(r + 1),

k =

�
r(N + 1) − r(r−1)

2
, if r + 1 = α, and

r(N + 1) + 2α − (α+1)(r+1)
2

− m r(r−1)
2

, if r + 1 > α,

d ≤ d +
(α − 1)(r − 3)

2
−
�

2α

r
− (α + 1)(r + 1)

2r

�
+m

(r2 − 1)

2
,

d ≥ d.

Proof: We have already discussed the values of n and
k above. The upper bound for d is obtained from (I.1),
proceeding as in the proof of Proposition IV.5.

For the lower bound on the distance, we note that, as before,

d ≤ max
σ∈V

# (C ∩ (σ)) ,

just as in Proposition IV.1. In the course of the proof of
Proposition V.4, we saw that

C · (σ) = (r − 1)(α + m(r + 1)) + n − d.

However, for every σ ∈ V , the curves C and (σ) intersect
at the point

[x, y; t, u] = [1, 0; 1, 0] ∈ F(m).

We claim this happens with multiplicity at least (r−1)(α+
m(r + 1)), and hence

max
σ∈V

# (C ∩ (σ))≤C · (σ) − (r − 1)(α + m(r + 1))=n−d,

from which we deduce that

d ≥ n − max
σ∈V

# (C ∩ (σ)) ≥ d.

The claim on the multiplicity is established as in the proof
of Proposition IV.5: the point [1, 0; 1, 0] ∈ F(m) is the origin
of the affine patch of C given by

uα+m(r+1) = (1 + uα)yr+1,

In the complete local ring of C at the origin, the quantity
1 + uα has an (α + m(r + 1))-th root. Let ζ denote an
(α + m(r + 1))-th root of unity in an algebraic closure of
Fq. Geometrically, C has α+m(r+1) branches at the origin:

u = wy(r+1)/(α+m(r+1)), u = ζwy(r+1)/(α+m(r+1)), . . . ,

u = ζ(α+m(r+1))−1wy(r+1)/(α+m(r+1)),

For each one of these branches, y is a uniformizer for
the maximal ideal at the origin of C, and u has valuation
(r + 1)/(α + m(r + 1)) with respect to this uniformizer (see
the proof of Proposition IV.5 for more details). For σ ∈ V ,
a local equation for (σ) in the affine patch A2

(y,u) is

a0(1, u)yr−1+u�1 · a1(1, u)yr−2+· · · + u�r−1ar−1(1, u)=0

The monomial u�iyr−1−i has m-adic valuation

i(α + m(r + 1))

r + 1

�
· r + 1
(α + m(r + 1))

+ r − 1 − i.

As i ranges through 0, . . . , r − 1, the smallest value of
this quantity is r − 1. Hence, on each branch of C the
minimal valuation at the origin of σ ∈ V is r − 1, and
therefore C and (σ) intersect at [1, 0; 1, 0] with multiplicity
≥ α(r − 1)(α + m(r + 1)). This concludes the proof of the
lower bound for d. �

When m = 0, we recover Proposition IV.5. The parameters
get slightly worse for m > 0 but this more general construction
might still be interesting.

VI. LOCALLY RECOVERABLE CODES FROM

ELLIPTIC SURFACES

A. Elliptic Surfaces

The definitions of this section hold over an arbitrary
field k.

An algebraic surface E is called an elliptic surface if it is
endowed with a morphism π : E → B to a base algebraic
curve B such that

i) for all but finitely many t ∈ B(k̄), the fiber π−1(t) is
a genus one curve, where k̄ is a fixed algebraic closure
of k.

ii) there is a section σ to π, i.e., a morphism σ : B → E
such that π ◦ σ = idB .

The morphism π is called an elliptic fibration. Condition ii)
implies that all but finitely many fibers of π are indeed elliptic
curves.

Let π : E → B be an elliptic fibration. A section P : B → E
is, by definition, a regular map such that π◦P is the identity on
B. We denote by O the zero section and by abuse of notation
also the zero element of any fiber. The set of sections of the
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fibration π in the above sense can be made into an abelian
group with identity O (in the same way one defines the group
law on an elliptic curve). This group is called the Mordell-Weil
group of E and it is finitely generated by the Néron-Severi-
Mordell-Weil theorem.

We also have that E has a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

where ai ∈ k(B). We consider the divisor D = n ·∞+m ·O,
where ∞ is the “fiber above ∞”, and O is the zero section.
A function on E whose polar divisor is bounded by D is of
the form �

2i≤m

αix
i +

�
2i+3≤m

βix
iy,

where αi and βi are functions in the Riemann Roch space
L(B, n · ∞).

Each fiber E is embedded in Pn−1 by the linear system
|nO| (where O is the identity of E).

B. General Code Construction

Let π : E → B be an elliptic fibration. We denote by O the
zero section and by abuse of notation also the zero element
of any fiber. We denote by Et = π−1(t) the fiber above t and
by Et[2] its subgroup of elements of order at most 2.

Lemma VI.1: Assume that for each t in a subset of B(Fq)
such that the fiber Et over t is an elliptic curve, we are given
Γt ⊂ Et(Fq) − Et[2] all of same cardinality r + 1 for some
integer r with the property that

�
P∈Γt

P ∈ Et[2] in the group
law of Et.

Let Γ =
�

t Γt and V a finite-dimensional Fq-vector space
of functions on E such that the restriction of any element
of V to a fiber above any t is in the Riemann-Roch space
L(Et, rO). We form a code C by evaluating the functions on
V on the points of Γ. The code C is locally recoverable with
locality r.

Proof: Given a function f and codeword c = (f(P ))P∈Γ

and suppose we need to recover f(P0). We have that P0 ∈ Γt

for some t. Now, the restriction of f to Et is a rational function
ft on Et, which is an element of the Riemann-Roch space
L(Et, rO). We claim that ft(P0) can be uniquely recovered
from the values of ft(P ), P ∈ Γt − {P0}. If there are two
such functions with the same values, their difference vanishes
at Γt − {P0} but has a pole of order at most r at O. The
only possibilty is that this function then has simple zeros at
the points of Γt − {P0}, a pole of order r at O and no other
zeros or poles. That would imply, using Abel’s theorem on Et

([17, Corollary III 3.5]), that
�

P∈Γt−{P0} P = O and thus
P0 ∈ Et[2], which contradicts our hypothesis. This shows that
the map L(rO) → Fr

q, h 
→ (h(P ))P∈Γt−{P0} is injective.
As these spaces have the same dimension by Riemann-Roch,
it is also surjective. �

A natural example is to take sections Pi, i = 1, . . . , r of the
elliptic fibration π : E → B. If we let Pr+1 = −�r

i=1 Pi and
Γt = {P1(t), . . . , Pr+1(t)}, we are in the above situation.

We can also use an irreducible curve C in E . Then we have
a map C → B and we assume that it has degree r+1 and take

as Γt the fibers of this map above points that split completely.
To ensure that the points of Γt add to zero we need to check
the algebraic point defined by C has trace zero. Often the
following lemma is useful.

Lemma VI.2: Let π : E → B be an elliptic surface with
finite Mordell-Weil group of order prime to the characteristic
of k. Let C be an irreducible curve in E such that the map
C → B is separable of degree r + 1. If, for one t ∈ B with
π−1(t) an elliptic curve and whose preimage Γt = (π|C)−1(t)
in C has r + 1 distinct points we have that

�
P∈Γt

P = O,
then for all other such t, we also have

�
P∈Γt

P = O.
Proof: We can base change π : E → B to π′ : E ′ → C

via C → B and C itself pulls back to a section s of π′ and
we can then take the C → B trace of this section to get a
section of π. Concretely, this section consists of adding the
points on (π|C)−1(t) and viewing that as a function of t ∈ B.
By the assumption on the Mordell-Weil group, this section is
of finite order. From [17, Proposition VII 3.1], for sections of
finite order prime to the characteristic, the specialization map
to a smooth fiber is injective. By assumption, for one such
fiber, the specialization of s is zero. It follows that s itself is
zero. �

Here are some explicit examples.
Example VI.3: Take E the Legendre family y2 = x(x −

1)(x − t) and consider the curve C : (u2 + t + 1)2 = u(u −
1)(u − t) of genus 1 embedded in E by taking x = u, y =
u2 + t + 1, so r = 3. Lemma VI.2 applies with t = −1.
If Γ has n points and d < n, 4|(n− d), we consider functions
of the form f = a(t) + b(t)x + c(t)y with deg a ≤ (n −
d)/4, deg b, deg c < (n − d)/4 and these restrict to C as a
function of degree at most n− d, so the minimum distance is
at least d. The dimension is k = 3(n−d)/4+1 and it follows
that d = n−k−�k/3�+2, i.e., the code is optimal, but typically
not as long as the optimal codes from the previous sections.

Example VI.4: Let E be the elliptic surface y2 = x3 + x−
t2 − 1 over Fq and C the curve given by x = y2 inside E ,
which is y6 = t2 + 1. The elliptic surface has trivial Mordell
Weil group over Fq(t) so the multisection corresponding to
C automatically has trace zero. This leads to the same family
of codes corresponding to the case r = 5 of subsection III-
C by considering evaluation on functions of the form f =
a0(t) + a1(t)x + a2(t)y + a3(t)x2 + a4(t)xy.

Example VI.5: We can also recover the case r = 3 of
subsection III-C by taking E to be the elliptic surface y2+xy =
x3 + t2 + 2 over Fq and C the curve given by x2 = y = u
inside E , which is u4 = t2 + 2 and evaluation on functions
of the form f = a0(t) + a1(t)x + a2(t)y. We can take, for
q = 5, 13 respectively, sets of size b = 2, 4 and get codes of
length n = 8, 16.

Yet another example is a variant of the examples constructed
by Ulmer [18] leading to the following theorem.

Theorem VI.6: For every odd prime (power) p and integer
d ≤ 2(p+1)(p−2), (p+1)|d, there exists a locally recoverable
code C over Fp2 of recoverability p, length n = 2(p+1)(p−2),
minimum distance d and dimension

k =
p(n − d)

p + 1
− p − 1

2
.
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Proof: Consider the surface E : y2 = x(x+1)(x+ t2 +1)
over Fp2 , p odd and the curve C defined by up+1 = t2 + 1.
Then C embeds in E by taking x = u, y = u(u + 1)(p+1)/2.
The points on C on the fiber above t = b are of the form
(c, c(c + 1)(p+1)/2) for each c satisfying cp+1 = b2 + 1. The
function y(x + 1)(p−1)/2 − (x + b2 + 1) has degree p + 2 and
vanishes on all these points and on the point (−b2 − 1, 0) of
order 2. So lemma VI.1 applies once we exclude the points
on C with c = 0, cp+1 = 1. Each allowed value of c gives
two values of b since cp+1 − 1 ∈ Fp so has square roots in
Fp2 . So we have n = 2(p + 1)(p− 2) points in C we can use
to form Γ.

To construct a code we consider the following vector space,
where xi = x(i+1)/2, i odd and xi = yx(i−2)/2, i even, i > 0.

V =

�
a0(t)+

p−1�
i=1

ai(t)xi : deg ai≤Ni for i=0, . . . , p − 1

�
where N0 = n−d

p+1 ,

Ni =
n − d

p + 1
− 1, i odd ,

Ni =
n-d

p + 1
− 2, i even , i > 0. (VI.1)

chosen so that the elements of V restrict to functions of
degree n− d on C and the codewords have weight at least d.
The dimension k satisfies k =

�p−1
i=0 (Ni + 1) and the result

follows. �
Remark VI.7: Note that, in the above theorem dopt = n −

k − �k/p� + 2 = d + (p + 3)/2.
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