PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: April 18, 2022
ACCEPTED: June 3, 2022
PUBLISHED: July 7, 2022

Proof of a three-loop relation between the Regge
limits of four-point amplitudes in A/ = 4 SYM and
N = 8 supergravity

Stephen G. Naculich and Theodore W. Wecker

Department of Physics and Astronomy, Bowdoin College,
Brunswick, ME 04011 U.S.A.

E-mail: naculich@bowdoin.edu, twecker@bowdoin.edu

ABSTRACT: A previously proposed all-loop-orders relation between the Regge limits of
four-point amplitudes of N' = 4 supersymmetric Yang-Mills theory and N = 8 supergravity
is established at the three-loop level. We show that the Regge limit of known expressions for
the amplitudes obtained using generalized unitarity simplifies in both cases to a (modified)
sum over three-loop ladder and crossed-ladder scalar diagrams. This in turn is consistent
with the result obtained using the eikonal representation of the four-point gravity amplitude.
A possible exact three-loop relation between four-point amplitudes is also considered.

KEYwWORDS: Extended Supersymmetry, Scattering Amplitudes, Supergravity Models,
Supersymmetric Gauge Theory

ARX1v EPRINT: 2204.02417

OPEN AccCESS, © The Authors.

Article funded by SCOAP®. https://doi.org/10.1007/JHEP07(2022)043


mailto:naculich@bowdoin.edu
mailto:twecker@bowdoin.edu
https://arxiv.org/abs/2204.02417
https://doi.org/10.1007/JHEP07(2022)043

Contents
1 Introduction

2 Maximally supersymmetric four-point amplitudes
2.1 N =4 SYM four-point amplitude
2.2 Decomposition in an SU(V) trace basis
2.3 Extended trace basis
2.4 N = 8 supergravity four-point amplitude

3 Omne-loop relation
3.1 One-loop N =4 SYM amplitude
3.2 One-loop N = 8 supergravity amplitude and exact relation
3.3  One-loop Regge limit

4 Two-loop relation
4.1 Two-loop N' =4 SYM amplitude
4.2 Two-loop N = 8 supergravity amplitude and exact relation
4.3 Two-loop Regge limit

5 Three-loop relation
5.1 Three-loop N =4 SYM amplitude
5.2  Three-loop N = 8 supergravity amplitude
5.3 Three-loop Regge limit
5.4 An exact three-loop relation?

6 All-loop order Regge limit of gravity amplitudes
6.1 Ladder and crossed-ladder diagrams
6.2 Eikonal representation

7 Conclusions

EEN BN RN =

© © oo @®©

10
10
12
12

13
14
15
16
20

21
21
23

24

1 Introduction

In recent years, connections between the perturbative amplitudes of gauge theory and gravity

have been explored intensively (see ref. [1] for a recent review). The first hints of such a

connection came from string theory, when Kawai, Lewellen, and Tye obtained a relation

between open and closed supersymmetric string amplitudes at tree level [2]. In the low

energy limit, this implies relations between tree-level gauge-theory and gravity amplitudes.

The most comprehensive current understanding of such relations is through the double

copy of Bern, Carrasco, and Johansson [3, 4]. When gauge-theory amplitudes are written



in terms of color factors and kinematic numerators of graphs with trivalent vertices, with
the kinematic numerators obeying the same algebraic relations as those satisfied by the
color factors (color-kinematic duality), then gravity amplitudes can be obtained from the
gauge-theory amplitudes by replacing the color factors with a second copy of the kinematic
numerators. That this procedure gives correct gravity amplitudes was proven at tree level
in ref. [5]. At higher loops, the gauge-theory amplitudes are written in terms of integrals
over loop momenta of graphs with trivalent vertices, with the kinematic numerators of
the integrands chosen to obey color-kinematic duality. That the double-copy procedure
generates correct loop-level gravity amplitudes was demonstrated through four loops for
four-point amplitudes of N' = 8 supergravity [4, 6]. At five loops and above, it is difficult to
find representations of the N'= 4 SYM four-point amplitude with manifest color-kinematic
duality, but double-copy representations of the N' = 8 supergravity four-point amplitude
have nonetheless been obtained [7, §].

It is important to emphasize that, at loop level, the double-copy prescription applies
at the level of integrands. The double copy does not imply direct relations between the
integrated amplitudes of gauge theory and gravity except in those cases (e.g., one- and
two-loop four-point amplitudes, or one-loop five-point amplitudes) in which kinematic
numerators are independent of loop momenta and therefore can be pulled outside the
integrals [9-13].

A higher-loop relation between gauge-theory and gravity amplitudes was recently
conjectured to hold in the Regge limit by one of the authors [14]. In that paper, the Regge
limit of (nonplanar) ¢-loop N =4 SYM four-point amplitudes was examined, and a basis
of color factors suitable for that limit was presented. The coefficients of the four-point
amplitude in that basis were calculated through three-loop order, using the Regge limit of the
full amplitude previously obtained by Henn and Mistlberger [15]. One of those coefficients,
denoted B%), whose Laurent expansion begins at 1/¢‘, was shown to be proportional to the
Regge limit of the ¢-loop N = 8 supergravity four-point amplitude, at least through the
first three orders in the Laurent expansion, thus motivating the conjecture.

At one and two loops, the conjectured relation reads

MO [4fY + a8Y]

(kp/2)%stu M(©) T g%stAgo) ' (1.1)
1 MO s A7 - Ay

(kp/2)F stu MO 6 ghstA® (1.2)

These are in fact a specialization to the Regge limit of previously known [16, 17] exact
relations (i.e. relations that hold in all kinematic regions), namely eqgs. (3.10) and (4.13),
as will be shown explicitly below. Here M® denotes the ¢-loop four-point amplitude of
N = 8 supergravity, while A(f) denote the color-ordered f-loop four-point amplitudes of
N =4 SYM theory (i.e., the coefficients of the ¢-loop amplitude in the (3¢ + 3)-dimensional
extended trace basis t&ﬁ) defined in section 2). For each theory, the loop- and tree-level
amplitudes carry the same helicity dependence, so the ratios M(e)/ MO and Ag\é) /Ago) are

helicity-independent functions of the Mandelstam variables s, ¢, and u. Since loop-level



amplitudes of massless particles are IR-divergent, we dimensionally regularize them in
D = 4 — 2¢ dimensions, with gp and xkp denoting the gauge and gravitational couplings
in D dimensions,! and the amplitudes are expressed as Laurent expansions in e. Here
and throughout this paper, the long right arrow denotes a relation valid in the Regge
limit [t| < s.

The conjectured relation at three loops

1 M® 52 [4(A7) + 49) — (4D + AP + AP + A7) )
(kp/2)8 stu MO o g%StAgm (1.3)

was shown [14] to hold through O(e®) of the Laurent expansion (i.e., the first four non-
vanishing terms) using the explicit calculations of Henn and Mistlberger [15, 18]. The two-
and three-loop relations, eqs. (1.2) and (1.3), are special cases of the more general all-loop
conjecture, namely

1 MO . s {Ag?—i-l - A:(a?jt?)} even £ 9 (1.4)
(HD/Q)% stu M(0) 2.3¢/2 gQDgstAgo) ’ Z 4,
LMo ot (AR AL ) - (AGL AL+ AL+ AQ))]
(hp/2)% stu MO~ 13007 g2stA”) ’
odd £>3.
(1.5)

In ref. [14], these relations were verified to hold at all loop orders for the first three
(IR-divergent) terms in the Laurent expansion, using the known structure of IR divergences
in both theories.

In ref. [14], it was suggested that the three-loop relation (1.3) could be established to
all orders in the Laurent expansion by examining known expressions for the amplitudes in
terms of scalar integrals obtained through generalized unitarity. That is the main aim of this
paper. We will demonstrate that both sides of eq. (1.3) simplify in the Regge limit to the
same (modified) sum over three-loop ladder and crossed-ladder scalar diagrams, thus proving
the conjectured relation. The sum is modified in the sense that two of the crossed-ladder
diagrams are multiplied by a factor of one-half relative to the remaining diagrams.

Alternatively, the eikonal approximation [19-21] may be used to obtain a representa-
tion (6.7) of the supergravity amplitude as an integral over impact-parameter space [22-32].
This may then be evaluated to give an explicit result (6.9) for the ¢-loop supergravity ampli-
tude in the Regge limit [31]. We show that this result is consistent with the representation
obtained in the current paper of the Regge limit of the A/ = 8 supergravity amplitude
at one, two, and three loops as a sum of ladder and crossed-ladder scalar diagrams. The
modification of the sum at three loops mentioned above is crucial for this consistency.

In this paper, we also observe that the three-loop relation (1.3) is the Regge limit of
a certain exact relation (5.28) that would be valid if only a certain subset of the scalar
diagrams were included in the evaluation of the three-loop amplitudes. Testing this exact

LOur convention is (kp/2)? = 87Gp.



relation against the Laurent expansions of the full three-loop amplitudes, we find that it
holds at O(1/€®) and O(1/¢€2), only breaking down at O(1/e), cf. eq. (5.29).

The outline of this paper is as follows: in section 2 we review the form of maximally
supersymmetric four-point amplitudes obtained from generalized unitarity, and the definition
of color-ordered amplitudes in the extended trace basis. In sections 3 and 4 we write down
the one- and two-loop amplitudes for ' = 4 SYM and N = 8 supergravity in terms of
scalar integrals, the exact relations that hold among them, and the Regge limits of these
relations. In section 5 we write down the three-loop N'=4 SYM and N = 8 supergravity
amplitudes in terms of scalar integrals, and then obtain their approximate form in the
Regge limit, thus establishing the three-loop relation (1.3). We also present a putative exact
three-loop relation, and show that it only breaks down at O(1/¢). In section 6, we show that
the expressions obtained in the previous three sections can be recast as a (modified) sum
over ladder and crossed-ladder scalar diagrams, and show how this is related to the eikonal
representation of gravity amplitudes in impact-parameter space. Section 7 summarizes the
results of the paper.

2 Maximally supersymmetric four-point amplitudes

Generalized unitarity [33, 34] has been used to find representations of various loop-level am-
plitudes of maximally supersymmetric N' = 4 SYM and A/ = 8 supergravity theories in terms
of planar and nonplanar scalar integrals [6-9, 35—40]. In this section, we review the results
of this approach, and establish our conventions for integrals and color-ordered amplitudes.

2.1 N =4 SYM four-point amplitude

The ¢-loop N = 4 SYM four-point amplitude can be expressed as a linear combination of
products of color factors ¢() and scalar integrals I(*:1) associated with a set of diagrams
z with trivalent vertices. The color factor ¢*) associated with each diagram is defined
by decorating each vertex of the diagram with a structure constant ¢, related to the
conventionally defined structure constants ¢ by

fabc = iﬂfabc (21)

and then contracting indices connected by internal lines. The scalar integral I(*!) associated
with the diagram z is defined (following the conventions of eq. (2.4) of ref. [39]) as

x, dDE N(I 1)
I( 1)(p1ap25p37p4 /H H3€+1 12 (22)

where N@1 is a specified numerator factor for the diagram. It will later be convenient for
us to define the related scalar integral 1 (#.0)  without a numerator factor,

(.0) d dDe 1
10 (p1, p2, p3, pa) = /H il (2.3)



The ¢-loop amplitude is then given by a sum over all the diagrams and, to ensure Bose
symmetry, a sum over all permutations of the external legs

~> Z)‘ kaz szzl) (2.4)

where 54 denotes that ijkl runs over all permutations of 1234, the A®) are simple combina-
torial factors, and we define

Ii(jxk)l =@ (Pi»Dj» P> D) - (2.5)

The integrals I(*)(py, p2, p3, ps) (with or without numerator factors) are functions of
the Mandelstam invariants

s = (p1 + p2)?, t = (p1+ps)?, u=(p1 + ps3)* (2.6)

and hence are invariant under a four element normal subgroup of permutations isomorphic
to the Klein four-group

1 (p1, pa, p3, pa) = I (p2, p1, pas p3) = I (p3, pa, pr1, p2) = 1@ (pa, 3, p2, ;1) (2.7)

or equivalently,
Iy = I§is = ISh, = T4, - (2.8)

In the following subsection, we will demonstrate that the SU(N) gauge group color
factors are also invariant under the Klein four-group

0512?34 = Cgi43 = Cgf;)u = 051?1,)12 . (2.9)

Hence, using egs. (2.8) and (2.9), the sum over permutations in eq. (2.4) is reduced to

1)
Z z]kl zykl 42 lz]k lfjk (2‘10)

Sy

where S3 denotes that ijk runs over all permutations of 234.

The precise form of the /-loop four-point amplitude for ' = 4 SYM theory is then
given by [39]

A = 4K (—g3)tt Z Z A= clwkI{fj; (2.11)

where gp is the coupling constant in D = 4 — 2¢ dimensions, and K is a factor common to
all loop orders depending on the helicities of the external states. For four external gluons,
for example, K is given by eq. (7.4.42) of ref. [41].



2.2 Decomposition in an SU(N) trace basis

An alternative representation of the ¢-loop four-point amplitude A®) for an SU(N) gauge
theory is the decomposition [42]

6
_ ()
=D Ay (2.12)
A=1
in terms of a six-dimensional basis c[y of single and double traces

ey = Te(TT2TST™) + Te(TTHT*T?), cy) = Te(TT%) Te(T*2T*),
cp = Te(TTTYT®) + Te(TTSTT?), cip) = Te(TT) Te(T2T%), (2.13)
cg) = Te(TTUT2T®S) + Te(TT*ST*T), cig) = Te(T*1T?) Te(T3T)

where a; are the adjoint color indices of the external particles, and 7% are generators? in the

fundamental representation of SU(V). All other possible trace terms vanish for SU(N) since
Tr(7T*) = 0. The coefficients A[(Af called color-ordered amplitudes, are gauge-invariant.

To obtain the color-ordered amplitudes from A®), one replaces the structure constants
fa% of an arbitrary color factor cy;;x appearing in eq. (2.11) with (recalling eq. (2.1))

fabe = Te([T*, T°)T°) (2.14)
and then repeatedly utilizes

Tr(AT®) Te(BT?) = Tr(AB) — — Tr(A) Te(B),

1
N
1
Tr(AT*BT®) = Tr(A) Tr(B) — N Tr(AB) (2.15)
to reduce cy;5; to a linear combination of traces (2.13), for example

6
crase =) Mpjepy  or ciozy = (M, Mig, Mpg; My, Mjs), M) (2.16)
A=1

where My are polynomials in N. By inspection the elements of the trace basis ¢y are

invariant under the Klein four-group, and therefore so are any of the color factors cjo34, as

claimed above in eq. (2.9). Given eq. (2.16), one can write down the decomposition of color
factors with permuted legs as

= (Mg, Mpy, Miz); Mgy, My, Mig)),

= (Mig), My, Myg); Mg, My, Mg

c1324 = (Mps), Mg}, Mpyj; M), Mis), Migy),

= (Mg}, Mj3), M1); Ms), Mig), Miy),

craze = (M), M3}, Mg); Mgy, Mg}, Mis)). (2.17)

20ur conventions are Tr(T°T?) = §*° so that [T*, T"] = iv/2f°T° and f*° = (—i/+/2) Tre([T, T®|T°).




2.3 Extended trace basis

The ¢-loop color-ordered amplitudes Afﬁ can be further decomposed in powers of N as [35]

¥a
L0 _ [T Jo NE-2eA 20, for A =1,2,3, (2.18)
A ZL 3 JNK 2k— lA(Z%'H)’ for A =4,5,6 ‘
o) ‘ ' . e . _
where A\”" are leading-order-in-N (planar) amplitudes, and A", k = 1,--- ¢, are

subleading-order-in- N, yielding (3¢ + 3) color-ordered amplitudes at ¢ loops. This suggests
an enlargement of the six-dimensional trace basis c[y) to an extended (3¢ + 3)-dimensional

trace basis tf\é), defined by

¢ =2k ¢ r—2k—1

th)r6k =N""epy, tz(l—&)-Gk =N Cla] 5
¢ . ¢ ok

tgl@'k =Ny, tg-&)-ﬁk = Ny, (2.19)
(6  _ prt-2k (©) 0—2k—1

tsier = IV C[3] » torer = IV Cle)

Then eq. (2.16) becomes

3043
14
012342277%@5\) or ciggq = (M1, M2, m3; M4, M5, Me; M7, M8, Mo; <) (2.20)
A=1

where m, are integers, and eq. (2.12) becomes

3043 A2 A=1,2,3
AO =5 490 where A ={7A e 2.21
); PRDY A+6k Ag\é,2k+1)’ A=4.5.6. ( )

()

The color-ordered amplitudes Ay’ are not all independent but are related by various
group-theory constraints [43], which were summarized in ref. [14].
Since the tree-level color-ordered amplitude is given by [36]

4O = (—gp2 i (2.22)
st
we can rewrite eq. (2.11) in the form
z) (z x,1
A = (—g3)istA” S Z A@ D 1) (2.23)

In subsequent sections, explicit expressions for the one-, two-, and three-loop color factors
will be used to derive the color-ordered amplitudes in terms of the scalar integrals I(*1).
2.4 N = 8 supergravity four-point amplitude

Using generalized unitarity, the /-loop N/ = 8 supergravity four-point amplitude can also
be expressed as a linear combination of scalar integrals

de N(z2
I(IQ)(plaPQaPBJM =\ /H W (224)



which are analogous to the gauge-theory integrals (2.2), but with different numerator
factors. The sum over all permutations of external legs can again be reduced, using the
invariance (2.8) under the Klein four-group, to a sum over Ss.

The precise form of the /-loop four-point amplitude for N/ = 8 supergravity is then
given by [36, 38|

MO = 16K K (~1)" (HZD) ZZ,\ Iy (2.25)

where the combinatorial factors A(*) are the same as those for the gauge-theory ampli-
tude (2.23). Since the tree-level four-point gravity amplitude is [36]

kp\2 16KK
M(O):<2D> o (2.26)

we may rewrite eq. (2.25) as

MO = (- )€+1< ; > stuM© SN A@ Y (2.27)

zr Sg
3 One-loop relation

In this section we review the one-loop N' =4 SYM and N = 8 supergravity four-point
amplitudes, and the exact relation between them. Finally we examine the limiting form of
the one-loop relation in the Regge limit.

3.1 One-loop N =4 SYM amplitude
Only the box diagram contributes to the one-loop N' =4 SYM four-point amplitude [16, 36]

AW = —ghst A" S L 1 (3.1)
S3

where the one-loop box color factor is

b

523};) fea1 bfbachcagdfda4e (32)
and the box scalar integral is (since the numerator factor N(®o%1) = 1)

(box)
Iliﬁc

dPe 1
I(bOX) s Piy Pg = _/ : 3.3
R Y B T M e e

One easily ascertains that, in addition to being invariant under the Klein four-group (2.8),
the one-loop color factor and box integral satisfy the reflection symmetry

box box box box
ng]k) = Cgkji)’ Ifz’jk) = Ifkji) (3.4)
so eq. (3.1) reduces to
0 box ox ox box box box
AW = —Q%StAg ) {05234)I£234) + 53 )—4342) + §423)If423)} . (3.5)



The one-loop color factor can be decomposed into

o) =tV + 2 + ¢ + ¢y = (1,0,0; 2,2,2) (3.6)

with other permutations satisfying eq. (2.17). Consequently, the one-loop amplitude can be
decomposed in the extended trace basis (2.21) with color-ordered amplitudes given by

AY = —ghsta® 135
A = —ghsta” 11y (37)
A = —ghsta® 15y

and the other color-ordered amplitudes satisfying Agl) = Agl) = Agl) = 2(A§” +A§1) +A§1)).

3.2 One-loop N = 8 supergravity amplitude and exact relation

The one-loop N = 8 supergravity four-point amplitude is [16, 36]
2
1) _ (kD 0 (box)
MO = <2> stuM( >SZ 1o (3.8)
3

(box,2)

where again the numerator factor N = 1. Using the symmetry (3.4), the amplitude

reduces to 9
MO = (52 stut® [1f557 + 1)+ 137 (39)

One can see the double-copy prescription at work in eq. (3.9); one simply replaces the

color factors cg?,?lx) in eq. (3.5) with (constant) kinematic numerators to obtain the gravity
amplitude.

Comparing eq. (3.9) with eq. (3.7), one establishes the exact one-loop relation [16]

1 omm = [A + Al 4 Al
(kp/2)2stu MO g%stAgO)

(3.10)

3.3 One-loop Regge limit

To determine the behavior of the four-point amplitudes in the Regge limit (|t| < s), we
need to examine the individual integrals that contribute. The known exact expression for
the one-loop box integral [44] has the kinematic prefactor

1

159 3.11
Lijk 5151k (3.11)

where
Sij = (pi +pj)2- (312)

In the Regge limit |t| < s (so that u = —s —t ~ —s), one thus has Il(ggz) ~ 1/(st) and
I{Zg’g) ~ 1/(ut) ~ —1/(st) whereas I%Z;) ~1/(su) ~ —1/s?, so that

box box box
If234), I§423) > If342)‘ (3.13)



N

1 4 1/ 4

Figure 1. Two-loop diagrams P and NP.

From eqs. (3.7) and (3.13) one then has that the A’ =4 SYM color-ordered amplitudes
obey

AL AW s AW (3.14)
so the exact one-loop SYM /supergravity relation (3.10) reduces in the Regge limit to
1 MO - [l + 4]
5 ORI ©) (3.15)
(rp/2)stu M ghstAl

in agreement with eq. (1.1). Moreover, eq. (3.13) implies that the one-loop supergravity
amplitude (3.9) reduces in the Regge limit to

MO ED\? (O [7bos) . p(box) 516
— 5 stu 1234" T 11493 (3.16)

the sum of a box and a “crossed-box” diagram. We will revisit this in section 6.

4 Two-loop relation

In this section we review the two-loop N'= 4 SYM and N = 8 supergravity four-point
amplitudes [36]. We will then re-establish the known exact relation [17] between them, as
well as its limiting form in the Regge limit.

4.1 Two-loop N = 4 SYM amplitude
The two-loop N' = 4 SYM four-point amplitude is given by [35, 36]

0 P) (P, NP) (NP,
A® = g}, StA(l )Z {Cgij)kjl(ijk;) + ng‘jk)l§ijk )} (4.1)
S3

where P and NP denote the planar double box and non-planar diagrams shown in figure 1,

and the associated two-loop color factors are

P - . ~ - - -
652324 _ fea1 bfbaQCfcgdfdfefgaghfha4f 7

C%g Ii) _ fealb fbagc fcgd f»h fe fgagh ]Fda4 f (4.2)

The two-loop integrals without numerator factors are

I(P’O) :_/ del deg 1
Ligk (2m)P (2m)D 03 (01 4 £2)205 (01 — p1)? (b1 — p1 — pi)? (2 —p)? (L2 —pj — ) *

J(NPO) _ _/ dPey dPiy 1
ik ) (2m)P (2m)D 63 (G + 62)2 63 (61— pi)2 (01 + Lo +p1)2 (b —pj)2 (b2 — pj —pr) 2

~10 -



Including the two-loop gauge-theory numerator factors, we have

(P,l) (P O) (NP 1) (NP 0)
D’ = s1ilyigy s Lp ™ = sulyg - (4.3)

The non-planar color factor and integral have the additional symmetries

NP NP NP1 NP1
cgz]k) = Cgikj)v Ifz‘jk )= Ifikj ) (4.4)
so eq. (4.1) reduces to
0 Pl P1) | (P) /(P1 P1) | (P) (P1), (P) [(P1
AR = g, stAf ){Cg2324[§234) +clts Lz + e lisis + il se +c\naliass +c\aaias
NP) (NP1 1 NP) (NP1
+2¢o00 Tiogy ) +2ci3i e +2ci i I )}' (4.5)

The two-loop color factors may be decomposed in the extended trace basis as

055324 =(1,0,0; 0, 0,6; 2,2, —4),

(NP)

(4.6)
Class’ = (0,0, 0; =2, =2, 4; 2, 2, —4).

Plugging eq. (4.6) together with the other permutations obtained via eq. (2.17) into
eq. (4.5), we compute the color-ordered amplitudes [35]
A?) =9 StA(O) 11(53}1) ggé)]

2 (0 Pl
Ag ) :g tA ) [15243) Jr11342 }
2 0 P11 P1
A:(s )= gD StA( ) {15324) £423)}
)

2 0 P, P, NP1 NP1 NP1
Az(x = 29D StA( 31{342) +3I£324) 21;234 )+4I£342 ) 2I£423 )]a

=

2 0 ) Pl NP1 NP1 NP1
Aé )= 294D StAg _315423) +3I£432) - 15234 )~ 15342 )+4I£423 )]v (4'7)

2 0) [4 (P11 P11 NP1 NP1 NP1
Aé):29%) StAg) 311(234)+3I£243)+4I£234 ) 211(3 42 ) 211(423 )]a

2 0) [ (P11 P1 P1 P,1 P11 P1 NP1 NP1 NP1
Ag ) =2¢7, StAg ) 11(234)+I1(243) 11(342) 11(324) £423)+I£432)+21£234 ) 4I£3 42 )+211(423 )}a

=

2 0 P,1 Pl Pl P11 Pl Pl NP1 NP1 NP,1
Aé ) :294D StAg _11(234)+I§243)+I£342)+I£324)*215423)*215432)+2—r£234 )+QI£342 ) 41;423 )}7

2 o) [ P1 P1 P1 P11 Pl P1 NP1 NP1 NP1
As(a )= 29}4:) StAg ) »‘211(234) —211(243) +I1(342) +I£324) +I£423) +I{432) 41{234 )+21{342 )+211(423 )]-

From these, using s 4+t + u = 0, we easily obtain the linear combination

(2) (2) (2)
uAy + 1A + sA P1 P P11 P1 P1 Pl
T ’ 8 ©) 2 = —6{5(1{234) + 11(243)) + U(I£342) + I£324)) + 75([£423) + I§432))
gpstA;
+ 25050 + 2ul(fn ) + 21| (4.8)

which will be used below.

- 11 -



4.2 Two-loop N = 8 supergravity amplitude and exact relation
The two-loop N = 8 supergravity four-point amplitude is given by [36]
4
KD P2 NP2
M = (2> stuM @S 1D + 17| (4.9)
S3

where the two-loop gravity integrals include the numerator factors

(P2) _ 2 7(P0) (NP2) _ 2 (NP0)
Ilijk = Slz‘Iu’jk ) Ilijk = Slz‘Iujk . (4.10)
Using the symmetry 1{25’2) = If%f’m, we may write eq. (4.9) as

MO (E2\Y @ [P (P2 (B2 (P2 (P2, (P2)
= 9 stu 1234 T L1243 1 L1349° + L4394 + L1493 + L1439

NP2 NP2 NP2
+ 205507 + 210557 + 2145, )}- (4.11)
From egs. (4.3) and (4.10) we have Ig;’,f) = slilg-;’;) and I%g:z) = 51¢I§g,f’1) so that

4
KD P P P P P P
M) = — (2) stuM) {S(I£234) + I§243)) + U(I£342) + I§324)) + t(11(423) + I§432))
+ 281t + 2ul(zs V) + 20155 (4.12)
This expression can be understood in terms of the double copy by replacing the color
factors of eq. (4.5) with kinematic numerators; see ref. [12] for details.
Comparing eqgs. (4.8) and (4.12), one obtains the exact two-loop relation [17]

1 oM@ b [uA? Al 4 Al )
(kp/2)4 stu MO g%stAgO) ' '

4.3 Two-loop Regge limit

To determine the Regge limit of the two-loop amplitude, we examine the kinematic prefactors
of the contributing integrals. The known explicit expression for the planar double box
integral [45] has prefactor

[P0 1

lijk ™ 2 :
J S51;51k

(4.14)

The known explicit expression for the nonplanar integral [46] has separate contributions
with prefactors

1 1

PO —— 4.15

Hak stis1; | sTisuk (419)

which ensures that the symmetry Ig}f,f 01 SZ;D’O) is respected. The gauge-theory integrals
satisfy eq. (4.3) so

1 NP 1 1
SN : ey = . 4.16
Vigk " syis1y, Lijk 51iS15  S1iS1k (4.16)
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Thus in the Regge limit, one has Ifgi), Igéi), Ifﬁé), I{fﬁ? ~ 1/(st) and Ifi?, I§:I;i§) ~

1/52, similar to the one-loop box integral, while all permutations of the nonplanar integral
INPL) 96 as 1/(st). All in all, we have

P1) (P1) (P1) (P1) (NP1) (NP1) (NP1 P1) (Pl
1{234),If324),If432),lf423),1f234 ),I§342 )71.{423 ) > I£243)>I£342)- (4.17)

Given eq. (4.17), we see from eq. (4.7) that Ag), Aéz), and Agz) are all comparable in
the Regge limit, so that the exact relation (4.13) reduces in this limit to
2 2
LMo —1s A - APY]
(kp/2)* stu M(©) g}l)stAgo)

(4.18)

in agreement with eq. (1.2).
It is instructive to explicitly express eq. (4.18) in terms of the contributing integrals.
Using eq. (4.7) together with eq. (4.17) we have in the Regge limit

2 2 0)[(P1 P NP1 NP1
A(7 ) - As() I 695 StAg )[I£234) - 1—1(324) + 21—5234 /- 21{342 )}
0 P PO NP0 NP0

—  gh stAP (65) [I£234) + Iiiad + 2050 + 2135 )} : (4.19)

The gravity integrals satisfy eq. (4.10) so egs. (4.14) and (4.15) imply

P2 1 wp2) 1 1

1.7 ~ — I ~N—_— — 4.20
lijk Slk’ lijk S1 ) S1k ( )

P2) +(P2) (NP2 (NP2 . P2) (P2 +(P2) (P2 (NP2
and thus I§234)71§324)71{234 )715342 ) go as 1/t, while 15243)715342)715432)7 5423% §234 ) g0

as 1/s in the Regge limit. All in all,
P2) (P2) (NP2) (NP2 P2) (P2) 7(P2) ;(P2) (NP2
1{234)7 —71(324)7 I§234 )v §342 V> I§243)= I§342), §432), —71(423)7 I§423 . (4.21)
Thus the two-loop supergravity amplitude (4.11) reduces in the Regge limit to
4
MO (52 stam® [+ 1) + 2155 + 21357
4
KD PO PO NP NP0
— - (2) stuMO)s? {11(234) + 1{324) + 21{234 T 21%342 )} : (4.22)

In section 6, we will see that this is just the sum over all ladder and crossed-ladder
diagrams.
Comparing eqgs. (4.19) and (4.22), we can see explicitly that eq. (4.18) is satisfied.

5 Three-loop relation

In this section we present the expressions obtained in refs. [37, 38] for the three-loop N' = 4
SYM and N = 8 supergravity four-point amplitudes in terms of a sum of scalar integrals.
Unlike the one- and two-loop cases, we will not be able to establish an exact relation
between the three-loop amplitudes (but see subsection 5.4). However, by examining the
Regge limits of the relevant integrals we will verify the Regge limit relation

1 M® 2 [4(AP +40) — (4P + AP + AP + AD))] .
— — .
(kp/2)8 stu M) 12 o5 st A§0) (5-1)

that was conjectured in ref. [14].
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Jicay N (1)
(a)—(d) 5T
(e)-(2) 512 S46
(h) s12(m26 + 736) + s14(7T15 + T25) + S12514
(i) S$12545 — S14546 — 5(S12 — S14)12

Table 1. N' =4 SYM numerator factors (from ref. [38]).

5.1 Three-loop N'=4 SYM amplitude
The three-loop N' =4 SYM four-point amplitude is given by [37, 38|

0 a,l c d,1
A(3) = _g%StAg ) Z |: glj)klfljk) + gzzklfuk) + 3¢ gzzkll(z]k) + 1€ gl;klfljk) (52)
S3

)1 f fi1 h h,1 i 1
+ QCgi;kISjk) + QCgiy)'kI£ijk) + 40%)%[&%) +3 gzg)klfzﬂc) + 205?;#3;12}

where ¢ and I®1) are color factors and scalar integrals associated with the nine diagrams
shown in figure 2. The N = 4 SYM numerator factors N(*1) appearing in the integrals
1@ are given in ref. [38] and reproduced in table 1, with the invariants appearing in the
table defined as

(pi +pj)?, i,j <4
2pi - L s {@ruﬁ% i<4<y; (5.3)
(Li + 1), 4 <i,j.

The three-loop color factors may be decomposed in the extended trace basis as

01234 =(1,0,0; 0, 0, 14; 2, 2, 0; 8 8 8),
01234 =(0,0,0; 0, 0, & 0, 0, 4; 8 8 8),
01234 =(0,0,0; 0, 0, 8 0, 0, 4; 8 8, 8),
01234 =(0,0,0; 2, 2, 4, -2, -2, 8 8 8 8),
01234 =(1,0,0; 0, 0, 2 8, —4, —6; —4, —4, —4), (5.4)
01234 0, 0,0; =2, =2, 0; 8, —4, —6; —4, —4, —4),
01234 =(0,0,0; 0, 0,—-4; 6,—6,—2; —4, —4, —4),
01234 (0,0,0; 0, 2, 2;—-6, 4, 4; 4, 4, 4),
01254 =(0,0,0; 0,-2, 2; 0, 2,-2; 0, 0, 0).

To obtain the three-loop color-ordered amplitudes A&S), one simply substitutes eq. (5.4),

together with other permutations obtained via eq. (2.17), into eq. (5.2) and reads off the
coefficient of each tg\g) as a linear combination of the integrals I (1) From these expressions,
which we will not reproduce here, one can compute the particular linear combination

~14 -



2 3 2 /3
Y Y
Z yd
b AN
1 (a) 4 1 (b) 4 1 (c) 4
2 3 2 3
5 5
2 3 < N
1 (d) 4 < <
1 6 (e) 4 1 6 ({-) 4
2 ? 3 2 1112 3 2 /3
8y +6 19 7 46
5
- 74 14 | 13 410 /
6 N T 75
1 (g) 4 1 (h) 4 1 (i) 4

Figure 2. Three-loop diagrams (courtesy of ref. [38]).

appearing on the r.h.s. of the relation (5.1)

4 (AP 4 aP)) — (4P + 47 4+ AP 1 AD)
gfstAY”
= 12[1{55) + 3153 + Ii%a) + 31540 + 211550 + 2050 + § (211550 + 203547 )
+ 4 (205 +215)) + 2 (- 315 - 3185 +2 (-1 — 1)
+4 (-1 - 1) + 3 (153 + 183 | (5.5)

where we have used

(1) _ £(b1) (1) _ 4(c1) (d1) _ 7(d;1)
Ilz'jk = Ilik:j ) Ilgjk = Il?kj ) Ilijk: = Ilikj (5.6)

which are manifestly satisfied for the nonplanar diagrams b, ¢, and d.

5.2 Three-loop N = 8 supergravity amplitude
The three-loop N = 8 supergravity four-point amplitude is given by [37, 38]

6
3) _ (kKD 0 (a,2) (62) | 1702 | 17(d2)
M) = <2> stuM )Z [11?3%; + 1y + 50y + il
S3
(e,2) f,2 ,2) h,2) i,2)
+ Qllfjk + QI{ijk) + 4I£?jk + %Il(ijk + 21&;‘1@] (5.7)

where I(*2) are scalar integrals associated with the nine diagrams shown in figure 2. The
N =8 SYM numerator factors N(*2) appearing in the integrals I(*?) are given in ref. [38]
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\ [(@2) \ N@2) \

(a)-(d) [s75]
(e)—(g) [s12 546
(h) (512580 + 514511,14 — 812514)% — 579(2(889 — s14) + [Z)12 — 534(2(s11,14 — 512) + )12
— 515203130 + 20315 + 1313 + 15130) — sT4 (2031135 + 205503, + 131135 + 1313) + 25125140305
(i) (512845 — 514546)% — (829845 + 57,546 + %812813814)@

Table 2. N = 8 supergravity numerator factors (from ref. [38]).

and reproduced in table 2. In general there are no additional symmetries among the integrals
except for the three nonplanar diagrams b, ¢, and d, which manifestly satisfy
(6,2) _ 7(6,2) (¢,2) _ 7(c2) (d,2) _ 7(d;2)
Dk = kg » N = kg » ik = Tk - (5.8)

5.3 Three-loop Regge limit

We now examine the Regge limit of the integrals appearing in egs. (5.5) and (5.7). In
particular, we will find that

o the leading integrals in the SYM amplitude go as 1/(st),
o the leading integrals in the supergravity amplitude go as s/t, and
o the other integrals are suppressed by one or more factors of t/s.

This will lead to simplified expressions for the four-point amplitudes in the Regge limit.
We begin with the two planar diagrams, a and e, for which explicit expressions for
the gauge-theory integrals are known [47], from which we see that they have kinematic

prefactors
1 1 1
e o= b 5.9
Viak " syis1 Vigk " 5181k (5.9)
This implies that, in the Regge limit,
1 1 )1 1 1 1
I£L2134)7 Ifgzzx) > I§(2143)7 I£§42), —71(;43)7 I§§42) (5.10)

so that the four gauge-theory integrals on the r.h.s. of eq. (5.10), which go as 1/s%, can
be neglected relative to the two on the L.h.s., which go as 1/(st). (We only consider those
integrals appearing in eq. (5.5).)

The numerator factor for the gravity integral I 1((21524) is s},, compared to s2, for gauge
theory, so that Iﬁlji) = si[&,lc) Hence from eq. (5.9), we have
(a,2) S14
Therefore, in the Regge limit
2 2 2 )2 2 2
I§(2134)7 Igzz;) > -7{(2143)= I§§42) > —7332)7[{223) (5.12)
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1 4

Figure 3. Momentum routing for 11(‘21234-

so only the two integrals on the Lh.s. of eq. (5.12), which go as s/t, contribute to eq. (5.7)
for M®) to leading order in the Regge limit.

Next, we expect that, like the two-loop nonplanar integrals (4.16), the three-loop
nonplanar gauge-theory integrals corresponding to b, ¢, d have separate contributions with
kinematic prefactors

(b1) r(el) f(d1) 1 1
Ragies Digie» Duagie. $1i81;  S1iS1k (5.13)

to ensure the symmetry (5.6). Hence the contributions from these integrals appearing in
eq. (5.5) all go as 1/(st) in the Regge limit. The corresponding gravity integrals satisfy

Iﬁvji) = s%illfﬁﬁ), so from eq. (5.13), we have

(6,2) 7(c2) 7(d2)  Sli Sl
L Tuige  Tuigre ~ ;j, P (5.14)

Hence in the Regge limit the gravity integrals satisfy
L5, 15 > Ly for z=b,c.d (5.15)

so only the two integrals on the Lh.s. of eq. (5.15), which go as s/t, contribute to M®) to
leading order in the Regge limit.

Since the numerator factors for diagrams a, b, ¢, and d are independent of loop momenta
for both gauge theory and gravity, the corresponding integrals are simply proportional to
the same integrals without any numerator factors

x,1 x,0 x,1 z,0 z,0

1) =21y, ) =wtrly) — SIGY), forx=abed,  (5.16)
1',2 1',0 l',2 ZB,O 37,0

I§2jk) = 34]523‘13 , If?,jk) = u41§3jk) — 54[53;‘13 , for v =a,b,c,d (5.17)

which will be used below.

Now we turn to the more difficult integrals, whose numerator factors are dependent on
the loop momenta. To determine the Regge limits of these integrals, we consider the routing
of hard momenta through each of the integrals. Consider diagram a shown in figure 3, where
we have adopted the convention that all external momenta are outgoing. In the Regge limit
ps — —p1 and p3 — —po, and the hard momentum associated with each of these external
legs flows through the thick (green and blue) lines of the diagram. The thin (black) lines of
the diagram carry the much softer exchanged momenta, which we generically denote by
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Figure 4. Two possible momentum routings for I 3562%4.

2 4 2 3 4 2

\ NN

oY 3
=Y
(=2

Figure 5. Possible routings for I g}lg, 11(5;4, and IL{%?) respectively.

q in this paper. In the Regge limit, ¢? is of order ¢. Sometimes more than one routing of
hard momenta through the diagram is possible, as shown in figure 4 for the “double-cross”
diagram d. This fact will play a key role in the discussion of ladder diagrams in section 6.

Now consider the routing of hard momenta through the gauge-theory integral Ig;é),
shown in the first diagram of figure 5. The numerator factor for this integral is sj9s36,
where s36 = (p3 + lg)?. The momentum lg flowing through the thick (green) line in the
direction indicated by the arrow is approximately equal to p; (that is, lg = p1 + ¢, where
q is the soft momentum flowing through the line connecting legs 1 and 2). Hence in the
Regge limit the numerator factor sjsssg — s12513 — —2 , which we can then pull out of

the integral. The same reasoning obtains for I g;llz), and also for I {243) and [ %2112)7 so that

f71 f71 f70
11(243) — 11(243)7 15342) — —3211(342)7
1 0 1
15‘343) — —3211(343)’ Ifgm) — —5211(342) (5.18)

(£:2)

Now consider the corresponding gravity integral I;5)5. The numerator factor for this
integral is (s12563)2, which by the reasoning above goes to s* in the Regge limit. Using
similar reasoning with the other integrals we obtain

2 0
I g43) — s 1(543) ) I 1(342) —  $' §342)7
2
—75243) — 4I£243)7 —7%42) — 4I§342) (5.19)

(f,2)

For the gravity integral 1753, one possible routing of hard momentum is shown in the
second diagram of figure 5. The hard momentum continues to flow through 6, so lg — p1,
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Figure 6. Possible momentum routings for I 1(2213.

but the numerator factor in this case is (s12546)? — (s12514)? = s2t2, so this integral is

suppressed relative to Ig;é), and similar reasoning holds I %224), and also for I fgéi) and [ %’2%4).
For the gravity integral I gfg, one possible routing of hard momenta is shown in the third

diagram of figure 5, so that g is soft. Consequently, the numerator factor (s14536)% — 4,

suppressing this integral even further in the Regge limit. Similar reasoning holds for I 1(£é22),

and also for 1551’223) and 181322) . Thus, the only permutations of the f and g integrals that

contribute to M®) in the Regge limit are those shown in eq. (5.19).

Sﬁg) has numerator factor (s1;5x6),

compared to the gauge-theory numerator factor si;sig. If ¢ # 4, the routing of hard

Next, we consider diagram e. The gravity integral I

momentum goes through [lg, so lg — p; in which case si;sp6 — S1581%. Thus in the
Regge limit

Iffﬁg) — 81¢81k1£fj’-1) , fori#4. (5.20)
The kinematic prefactor for the gauge-theory integral Il(fj}f) is given by eq. (5.9), so
we have
ISﬁc) S1iS1k =1L §’ for i 7& 4 (5'21)
51iS1k 13

which is much less than the contribution of the other gravity diagrams. The Regge limit of

(e;1)
Liji
not contribute to M®) at all in the Regge limit.

with ¢ = 4 is even more highly suppressed (since lg is soft), therefore diagram e does

Finally we turn to the formidable integral Ifgjé), through which there are two possible
routings of the hard momentum, as shown in figure 6. For the first routing, one has l5 — py
and lg — p3. The numerator factor for this gauge-theory integral (cf. table 1) simplifies in
the Regge limit to

s12(726 +7u6) + 513(T15 + T25) + 512513 — S12(S23 +534) + S13(S14 + S24) + S12513 — 5.
(5.22)

In the second routing shown in figure 6, one has Il — ps and lg — p;, and the
numerator factor again approaches s in the Regge limit. Similar reasoning holds for I 1(22112).

Consequently, we see that the gauge-theory integrals corresponding to diagram h go as

h1 10 i1 h0
I£243) — 8211(243)7 I£342) — 52[1(342)- (5.23)
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For the gravity integrals corresponding to diagram h, the numerator factor (given in
table 2) is more complicated. In the Regge limit, however, most of the terms are subleading.
Any term ljz goes either as ¢? (if the momentum flowing through leg is soft, I; ~ q) or as
q - p; (if the momentum flowing through leg is hard, I; ~ p; + ¢, where p; is the momentum
of one of the external legs), both of which are < s. Thus the gravity numerator factor for
I fgf?)) simplifies to

(s12589 + S13511,14 — 812813)2 — st (5.24)

because sgg and s11,14 are both ~ ¢ - p;. Consequently we may write

Iy — s, sy — 'Ly (5.25)
Straightforward consideration of all other permutations of the external legs for this
diagram shows that the corresponding gravity integrals are subleading in the Regge limit.
The same is true for the gravity integrals corresponding to all permutations of external
legs for diagram i. (Note that diagram i does not contribute at all to the gauge theory
expression (5.5).)

We are now in a position to combine all of the results obtained above to evaluate
both egs. (5.5) and (5.7) in the Regge limit. Taking into account eq. (5.10), and us-
ing egs. (5.16), (5.18), and (5.23), we find that the linear combination of gauge-theory
amplitudes (5.5) evaluates in the Regge limit to

(AP + A7) — (4P + 48 + 4P + AD)
gﬁDstAgo)

a,0 a,0 b,0 b,0 c,0 c,0 d,0 d,0
—  125° {I£234) + 15324) + 2—7§232 + 2I§342) +35 (215232 + 2I§342)> + 1 (2-’£2341) + 2I£342))

0 0 0 0 1,0 1,0
+2 (Ig@) + Ig@)) +4 (Igzm) + 1%42)) + % (11(243) + I§34 )) ] (5.26)

Similarly, we can evaluate the gravity amplitude (5.7) by omitting all the integrals
suppressed in the Regge limit, and using egs. (5.17), (5.19), and (5.25) to obtain

1 MB)

(kp/2)6 stu M)

(a,0)

s a,0 b,0 b,0 c,0 0
- 34{11234 + 15 3 o ) )

c,0 d, d,0
)+ 200550 + 20050 + & (21§234 + 21{342)) +3 <2I§234 + 21%342))
;0 ,0 ,0 ,0 h,0 h,0
+2 (Ig@) + 15542)) +4 (I§g43) + Igzm)) +3 <I£243) + 15342)> } (5.27)

Comparing egs. (5.26) and (5.27), we immediately see that the conjectured three-loop
SYM /supergravity relation (5.1) is confirmed in the Regge limit.

5.4 An exact three-loop relation?

It might be asked whether the three-loop relation (5.1) proved in the previous subsection is
a specialization to the Regge limit of some exact relation, as was the case at one and two
loops. Because the three-loop kinematic numerators for both supergravity and SYM theory
are dependent on the loop momenta for diagrams (e) through (i) of figure 2 (see tables 1
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and 2), the double-copy procedure, which relates the integrands of these amplitudes, does
not give a straightforward relation between the integrated amplitudes (unlike the one- and
two-loop cases).

Interestingly, if one were to include only diagrams (a) through (d) of figure 2 (namely,
those with numerator factors that are independent of loop momenta) in the expressions for
the three-loop amplitudes (5.2) and (5.7) then one can derive a unique exact (i.e. not only
in the Regge limit) relation between them, namely?®

1 M®3) 2
(kp/2)8 stu MO —

2057 +u2 = 26%) (AP + AP + AD)) — (u? = 1) AP — (s* — %) A"

— (w24 2)AP — 3224 _ (24 2t2)A§3)}/ (12g%stA§0)> .
(5.28)

Moreover this relation indeed reduces to eq. (5.1) in the Regge limit.

One might then ask whether the relation (5.28) could be valid for the full amplitudes,
despite the fact that it was obtained using only some of the contributing diagrams. Henn and
Mistlberger have computed the Laurent expansions (through O(e)) of the three-loop N = 8
supergravity amplitude, which starts at O(1/€3), in ref. [18] and the color-ordered amplitudes
of the three-loop N = 4 SYM amplitude, which start at O(1/€%), in ref. [15]. Using their
results, one finds, somewhat remarkably, that the relation (5.28) is satisfied through O(1/¢2),
with the difference between the two sides given by the rather simple expression

(s~ hs)y, s = ¢ 87:2)3 G +€2<2C3 +O(D). (5.29)

Thus, while the relation (5.28) is not generally valid (except in the Regge limit), it holds
better than one might have anticipated. Note that the leading kinematical dependence on
both sides of eq. (5.28) goes as ~ s/t in the Regge limit so that the discrepancy (5.29) is
subleading in an expansion in t/s. It would be interesting to understand the reason for
this discrepancy.

6 All-loop order Regge limit of gravity amplitudes

In this section, we show that AN/ = 8 supergravity four-point amplitudes at one, two, and
three loops reduce in the Regge limit to a (modified) sum of ladder and crossed-ladder scalar
diagrams, and explain how this is related to the eikonal representation of gravity amplitudes.

6.1 Ladder and crossed-ladder diagrams

The expressions for the Regge limits of the ¢-loop N = 8 supergravity amplitudes (and
therefore the equivalent linear combinations of color-ordered ¢-loop NV =4 SYM amplitudes)
obtained in the previous three sections take a very specific form: they are (almost) the sum
over all ladder and crossed-ladder scalar diagrams at that loop order. To show this, we

3Note that AE\S) with A = 5,10, 11, and 12 do not appear in this relation because they have been eliminated
using the three-loop group theory relations; see eq. (2.13) of ref. [14].
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1 4

Figure 7. Crossed-ladder diagram corresponding to the integral I [(iii)l].

introduce a special notation for (crossed-)ladder diagrams (see figure 7). The ¢-loop crossed-

(lad)

ladder integral I[abc...} is defined with precisely the same prefactors (and no numerator
factors) as 19 (cf. eq. (2.3)), with the subscript in brackets describing how the rungs are
connected between the rails of the ladder: the first vertex in the thick (green) line running
from 1 to 4 is attached to the ath vertex in the thick (blue) line running from 2 to 3, the
second vertex to the bth vertex, etc. The specific diagram shown in figure 7 corresponds

lad)
to I[(3?24].

The one-loop supergravity amplitude in the Regge limit, eq. (3.16), is easily seen to be
the sum of a ladder and a crossed ladder diagram

2
MO (52 stam® [0 1] (6.1)

The two-loop supergravity amplitude in the Regge limit, eq. (4.22), which is equivalent
by egs. (2.8) and (4.4) to

4

KD 0 0 NP NP NP
MEB - (2) SWM(O)52[ (234) + I§32 )+ I§234 )+ 15321 )+ —7§324 )+ I§231 )}
(6.2)

is written in the ladder notation as

4
KD (1 d) (lad) lad (lad) (lad) lad
M(z) o <2> StUM [ [133] + 1[331] + I[(lgz}) + I[2a1L3] + 1[3?2] + I[(2§1H (6'3)

in which all six permutations of the three rungs are present. (This was observed in ref. [27].)

Finally, we recall from eq. (5.27) the three-loop supergravity amplitude in the Regge

limit

6
MO (""”21’) stuM@ 4 [1{55) + 157 + 21(33) + 21(3.)
d,0 d,0 f

+3 (2155 + 211342)) +1 (21.1(234) + 211(342)) +2 (11(243) + I£342)>

(21
4 (13 + 183) + 5 (15w + L) | (6.4)
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Using the invariance of the integrals under the Klein four-group (2.8), this may be
recast as

6
KD a,0 a,0 b0 b0 5,0 b,0
M (2) stuM ) st [11(234) + Iid + Isd + Iiaa) + Iiood + Ligt
c0 c0 d,0 d,0 0 0 0 0
+ {55 + Iiood + 3 (1—1(234) + 1—5324)) + I + L5 + 0 + 12 (6.5)

0 0 0 0 0 0 0 0 h,0 h,0
+ 183 + L) + 1) + 180 + 118 + 1) + 1500) + 180 + (I£243) + 15, )> } -

We recognize all of these integrals as corresponding to ladders and crossed ladders

6
3 KD 0) 4[r(ad) | yQad) | ,(ad) | ;(lad) , ,(lad) , r(lad)
MO — (2) stuM®s {I[(1334]+I[(4gzi]+I[1;43]+I[2?34]+I[4§12}+I[(3221]
(lad) |, (ad) (ad) | y(ad) (ad) | (ad) , y(ad) , ,(ad)
+ 11300 + a1 3 (I 14y 1 [3212}) 11439+ o1+ Lanas) 341 (6.6)

(lad) (lad) (lad) (lad) (lad) (lad) (lad) (lad) (lad) (lad)
T 1140 H 340 T L3104 T g1+ Laasa) T Lpaz) 213 T L3001 3142 T [2413]} -

One slightly subtle point deserves to be noted in going from eq. (6.5) to eq. (6.6).

Fach of the integrals I fg&%) and [ %}3 has two possible momentum routings, as shown in

(lad) (lad)
[321142] and [ [2213}7

which accounts for the disappearance of the factor of 1/2 multiplying the last pair of terms
in eq. (6.5).
Examination of eq. (6.6) shows that it contains all 24 permutations of the rungs of

figure 6. Fach routing contributes to separate crossed-ladder integrals, I

the crossed ladders, except that two of them include a factor of 1/2. This is a blessing in
disguise, as we will now see.

6.2 Eikonal representation

An alternative approach to evaluating the Regge limit of supergravity uses the eikonal
approximation [19-21] to write the gravitational amplitude (to all loop orders) in impact-
parameter space [22-32]

M~ /dD—QXLe—iQL’xL (eiX(xL) — 1) (6.7)

where x| is a (D — 2)-dimensional vector transverse to the incoming particle direction, and
q. is the (D — 2)-dimensional momentum transfer that is Fourier-conjugate to x; (where
t ~ —|q.|? in the leading Regge limit). The quantity ix(x, ) is known as the eikonal phase,
and is given in D = 4 — 2¢ dimensions by

—iGps

ix(x1) = D(1—)(mx3) . (6.8)

By expanding the exponential in eq. (6.7) in a Taylor series in Gp and Fourier trans-
forming one obtains [31]

2(1—¢ € w\¢ [/ —iGps ¢
o st (5 (0 oo o

~ 93 -



where
41— 26)T(1 + Le)

G0 = T g + O = 6+ D9

(6.10)

As explained in ref. [31], this result is consistent with the Regge limits of the Laurent
expansions of the one-, two-, and three-loop N' = 8 supergravity amplitudes obtained
in ref. [18]. (A proposed extension [32] of the eikonal representation (6.7) to include
subleading-level, i.e. O(—t/s), corrections also agrees with the results of ref. [18], up to a
small discrepancy at the three-loop level that has still not been fully accounted for.)

What do egs. (6.7) and (6.9) have to do with the expressions for N' = 8 supergravity am-
plitudes in terms of scalar integrals (without numerator factors) obtained in egs. (6.1), (6.3),
and (6.6) above? Starting in the 1960’s, efforts were made to derive the eikonal repre-
sentation (6.7) from the sum of ladder and crossed-ladder scalar diagrams [21, 48]. (See
appendix C of ref. [49] for a detailed accounting.) While successful at one and two loops,
this project was discovered to fail at three loops and above [49-51]. At three loops, the
obstacle is the fact that there are two possible routings of hard momentum through the
“double-cross” ladder diagram d (as shown in figure 4) so that the contribution from this
integral in the Regge limit is twice what it needs to be to give the eikonal result (6.9).

We found above, however, that the double-cross ladder diagrams that appear in the
Regge limit of the three-loop N' = 8 supergravity amplitude (6.6) obtained using generalized
unitarity in refs. [37, 38] come equipped with a factor of 1/2, which precisely corrects for
this overcounting. Thus, in the Regge limit, the (modified) sum of ladders and crossed
ladders given in eq. (6.6) yields the (correct) eikonal three-loop result (6.9).

7 Conclusions

In a previous paper, one of the authors analyzed the structure of the Regge limit of the
(nonplanar) N' = 4 SYM four-point amplitude [14], and based on those results, conjectured
an all-loop-orders relation between the Regge limits of the four-point amplitudes of N' = 4
SYM theory and N = 8 supergravity, viz. egs. (1.4) and (1.5). The one- and two-loop Regge
limit relations, egs. (1.1) and (1.2), are consequences of known exact relations, egs. (3.10)
and (4.13), between N' =4 SYM and N = 8 supergravity amplitudes.

In this paper, we established the conjectured (Regge limit) relation at the three-loop
level, viz. eq. (1.3). We showed that the Regge limit of exact expressions for the amplitudes,
obtained using generalized unitarity, simplifies in both cases to the same (modified) sum
over three-loop ladder and crossed-ladder scalar diagrams, thus proving the conjectured
relation. The sum is modified in the sense that two of the crossed-ladder diagrams are
multiplied by a factor of one-half relative to the remaining diagrams.

We also presented an exact three-loop relation (5.28) that would be valid if only a
certain subset of the scalar diagrams were included in the evaluation of the three-loop
amplitudes, and which reduces to eq. (1.3) in the Regge limit. We tested this putative
relation against the Laurent expansions of the full three-loop amplitudes, and found rather
remarkably that it holds at O(1/€®) and O(1/¢€?), and only breaks down at O(1/e).
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The supergravity four-point amplitude can alternatively be evaluated in the Regge limit
using the eikonal approximation to give a representation in impact-parameter space (6.7).
This may in turn be evaluated [31] to give the expression (6.9), and shown to agree with
the known Regge limit of the N' = 8 supergravity amplitude through three loops.

In this paper, we showed that the modification of the sum over crossed-ladder scalar
diagrams described above is precisely what is required for the Regge limit of the sum to
agree with correct three-loop result, whereas it is known that the unmodified sum fails to
do so [49-51].
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