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Figure 1: Exemplary scanpaths of the same participant eye movements over (a) code and (b) textual syllogism. Note: Red boxes
represent Areas Of Interest (AOIs) hit with at least one fixation. Green boxes depict no fixations detected in the AOL Circles
represent fixations with radius depicts relative fixation duration. Arrows represent saccades. Below the word span probability,

used for entropy calculation, is visualized.

ABSTRACT

A new gaze-based analysis method is presented based on word
span entropy, suitable for comparison of eye movements collected
during reading of code or text. Word span entropy is derived from
gaze transition entropy but differs in that the transition matrix
represents word span instead of gaze transition between Areas
Of Interest (AOIs). Empirical evidence shows that, as expected, an
increase in word span entropy is related to shorter response time,
especially when reading code, showcasing the metric’s analytical
utility.
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1 INTRODUCTION

The study of eye movements in programming dates back at least
to Crosby and Stelovsky [1990], who focused on the impact of
expertise on viewing strategies comparing reading of source code
with prose. Since then, various eye movement metrics have been
used to evaluate gaze over code, most being based on traditional
derivations of fixations, fixation durations, pupil size and blink rate,
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Figure 2: Reading model (from Rayner [1998]).

or scanpath comparison methods such as the Levenshtein string
similarity [Sharafi et al. 2015].

Except for the Levenshtein distance, metrics based on fixations
and saccades are fairly rudimentary, providing what could be called
first-order gaze data analyses. Advanced metrics build on top of
these first-order measures to yield second-order interpretation of
viewing behavior. Examples include analysis of ambient-focal atten-
tion [Krejtz et al. 2016b] and transition entropy analysis [Duchowski
2017].

Transition entropy has previously been developed for gaze com-
parison [Krejtz et al. 2015] and synthesis [Duchowski et al. 2019],
but, to our knowledge, entropy has not yet been applied to analysis
of reading behavior. Here, we develop transition entropy from the
classical word span model of reading [Rayner 1998] as a second-
order eye movement metric being able to predict code reading and
its comprehension.

2 BACKGROUND

Treating words as boxes over which gaze progresses, reading con-
sists of re-fixations of the current word, skips forward, or regressions
backwards. Words are either inspected during a fixation or gaze
is moved forward or backward by a saccade [Rayner 1998]. About
10-15% of saccades are regressions to previously fixated words (or
lines, when reading multi-line text). Some of these are within-word
regressions, considered re-fixations of the word (see Fig. 2). Most
reading models are expressed in terms of span distribution, i.e.,
describing both fixation durations and saccade distributions, e.g.,
re-fixations, regressions, skips [Thibadeau et al. 1982].

2.1 Reading code

Numerous studies showed differences in reading strategy while
reading source code and regular text, e.g., instead of reading code
in a linear manner, there is more jumping to circumspect the code,
to check function signatures, and to obtain preview of function
execution [Feitelson 2019]. The non-linearity of code reading in-
creases with expertise. For example, Busjahn et al. [2015] compared
the eye movements of novice and expert programmers in text and
Java code reading. Experts read code less linearly than novices and
novices read code less linearly than regular text. Using eye tracking,
Jbara and Feitelson [2015] demonstrated that, in regular code com-
prehension, basic repeated patterns tend to attract less attention at
the later than initial code segments. In a longitudinal eye tracking
study of novice programmers, Al Madi et al. [2021] observed fre-
quency and length effects in reading source code, as programmers
progressed through a programming course, analogous to the effects
in reading of regular texts.

The non-linearity of code reading, i.e., switching between code
elements, may be captured by the analysis of transition entropy.
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Gaze transition entropy may provide new insights into understand-
ing of code reading in a non-linear manner.

2.2 Gaze transition entropy

Krejtz et al. [2014] introduced a two-stage method for analysis of
individual differences in gaze transitions between AOIs during a
free viewing task. In the first stage individual sequences of saccades
are modeled as first-order Markov chains, wherein the stochastic
transition between states depends only on the previous state. In the
second stage, Shannon’s entropy is computed to allow comparison
of gaze transitions between individuals or between experimental
conditions. Transition entropy was successfully used for under-
standing art perception [Krejtz et al. 2015], multimedia learning
[Krejtz et al. 2016a], and driver attention [Ebeid and Gwizdka 2018].
Transition matrix entropy was originally developed as a means
of expressing gaze transition between AOIs with a 2D matrix, where
the matrix ordinate (y-axis) represented the source of gaze tran-
sitions and the abscissa (x-axis) contained the destination. By its
construction, every Transition Matrix was defined as an nxn square
matrix for the n AOIs defined over the given viewing stimulus.
While Transition Matrix construction serves well for a small
number of AOIs, or even a coarsely-defined grid superimposed over
the viewing surface, it becomes cumbersome for larger n. Stimuli
such as regular text or code typically contain long chains of AQOIs,
where back-and-forth transitions between the AOIs are expected,
unlike over facial AOlIs comprised of only eyes, nose, and mouth
(n = 4). Instead, what is needed is a more intuitive definition of
transitions between relative AOIs, i.e., gaze transitions between
successively (linear) neighbouring AOIs. What is more applicable
to reading behavior are transition matrices that embody word span
more so than direct jumps between source and destination AOIs.
We propose word span entropy as a novel metric of eye movement
dynamics during reading. Based on previous eye tracking studies
of source code reading and the theory of mental models [Johnson-
Laird 1983] we assume that during code reading non-linear eye
movements depict the construction process of a mental represen-
tation of code outcome (better comprehension of the code). Thus
we hypothesized that the word span entropy of code reading will
predict both the accuracy and response time of code comprehension
but not of text reading, i.e., time taken to make a decision regarding
outcome of the code or logical implication of the sylogism.

3 IMPLEMENTATION

Gaze transition entropy [Krejtz et al. 2015] relies on gaze transi-
tion defined as the conditional probability p;; of viewing the j th
AOI given previous viewing of the i AOI, where p; is the simple
or observed probability of viewing the i th AQL Entropy measures
the complexity of the process Hy = — Y;e5 7 2jes Pijlog, pij,
with S={1,..., s} the set of AOIs, 7; the stationary probabilities
(estimated through Eigen analysis, see Krejtz et al. [2015] for de-
tails), and maximum entropy equal to log, s signifying a uniform
distribution of transitions for any of the s AOIs. Minimal entropy
of 0 describes a fully deterministic transition sequence. The higher
the entropy, the more complexity (randomness) there is in the
transitions. Stated another way, entropy refers to the “expected
surprise” of a given gaze transition. Minimum entropy of 0 suggests
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Figure 3: Word span probability used to compute transition entropy. Each cell corresponds to observed probability p; of word
span j. Probability py indicates re-fixation of any given word, p; is the probability of skip forward by one word, and p_; is
the probability of regressing backward by one word. Remaining word span probabilities are indicated analogously with the
length of the word span matrix dependent on the length of the defined sentence. The word span probability matrix shown here

corresponds to the scanpath shown in Fig. 1(a).

no expected surprise, meaning that a gaze transition is always ex-
pected to the same j AOIL More formally, the term —p; i log, pij
is the transition’s contribution to system entropy, modeled by its
probability multiplied by its surprisal [Hume and Mailhot 2013].

To facilitate statistical comparison of mean entropies per exper-
imental condition, H; is computed per individual participant and
per stimuli and normalized, yielding H; = H, /log, s. This results
in a table of entropies (each entropy computed from an individual’s
transition matrix) for each of the stimuli and each of the partici-
pants.

For reading behavior, where an AOI is superimposed atop each
word or code chunk, the transition matrix is computed slightly
differently as we are mainly concerned with the distance covered by
the transition (counted in number of AOIs). The transition matrix,
or rather vector in this case, is computed using the probability
pj of transitioning to the given AOI with inter-AOI distance, or
word span j. For example, re-fixation of any given word is reflected
by probability py, a skip forward by one word by p1, regression
backward by one word by p_i, and so on. Word span entropy is
computed for these vectors as for transition matrices.

4 METHOD

4.1 Experimental Design and Participants

The study followed a within-subjects experimental design with task
(reading code vs. textual syllogism) as the main independent vari-
able. An additional, between-subjects factor controlled in the study
was previous experience with R language code (operationalized
as completion of a university-level course on statistics with the R
language).

Twenty-four university students enrolled in social sciences and
humanities bachelor, master, and doctoral programs participated
in the study. Results of two were discarded from the analysis due
to technical problems during data collection. The final sample con-
sisted of twenty-two participants (17 females) with average age
(M = 27.5,SD = 4.40). There was no significant difference in age
between male and female participants (¢(12.18) =1.29, p =0.22).
Eight participants (5 females) successfully completed a university
course on statistics with the R language, the other 14 were not
enrolled in the course. Ten (10) participants, in total, declared they
had at least basic knowledge of languages other than R (mostly
Python, HTML, and Matlab).

4.2 Procedure and Materials

After signing a consent form, each participant was seated in front
of the computer screen. Participants then completed a demographic

questionnaire. Next, participants placed their head comfortably on
a chin rest (see Fig. 4, top-left). They were introduced to the idea
of eye tracking and a five-point calibration and validation began.
Each participant attained calibration error below 0.5° visual angle.

The main experimental procedure consisted of two blocks of 5
trials (reading code vs. textual syllogism) given in random order
(see Fig. 4). Each trial consisted of three elements: a) fixation point
(shown for 500 ms. at the location of the first letter in the reading
task), b) reading task (R code or textual syllogism, shown for 60 s.),
and c) a question with three responses to choose from (participants
chose by pressing a corresponding key). Between each trial a blank
screen was displayed for 1000 ms. After each block of trials par-
ticipants completed the NASA Task Load Index (NASA-TLX) as a
reliable and sensitive multidimensional scale of work load [Hart
and Staveland 1988].

When reading code, participants were asked to read five (5) lines
of R code and to choose an accurate outcome of the code from
three alternatives. Code fragments represented common and basic
tasks in R usage for statistical computing: data frame creation,
data manipulation, graph rendering, ANOVA analysis, and multiple
regression statistical analysis.

In text reading, participants read a categorical syllogism consist-
ing of two premises (presented in four lines of text). The partici-
pant’s task was to decide which conclusion (out of three alterna-
tives) could be drawn from the premises. For example, given two
premises: “all fruits in the box are sour” and “all fruits in the box are
lemons”, the valid conclusion is “all lemons are sour fruits”. We de-
cided to use syllogisms for the text reading task because they imply
logical reasoning, often used in intelligence batteries [Beauducel
and Kersting 2002]. Involving reasoning processes in both tasks,
text and code reading presumably makes both experimental condi-
tions equivalent to each other in cognitive requirements. Moreover,
both experimental tasks were similar in their visual presentation
(same background, font face and size).

For each reading trial, AOIs were defined over words or code
chunks as per Busjahn and Tamm [2021] (see Fig. 1 for AOI defini-
tion on exemplary text and code stimuli).

4.3 Apparatus & Software

Participants completed all parts of the study procedure in a labora-
tory room using a Dell Alienware laptop computer with external
keyboard, computer mouse, and monitor with 1980x 1080 screen
resolution (see Fig. 4 top-left). The demographic questionnaire was
implemented with Qualtrics XM software. The main procedure was
implemented in PsychoPy [Peirce et al. 2019] with the ioHub eye
tracker interface for connection to the Gazepoint HD eye tracker.
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Figure 4: Experimental procedure schematic and experimental settings (top-left inset).

Eye movements were recorded by a GazePoint HD eye tracker with
sampling rate of 150 Hz.

4.4 Data Pre-Processing & Analysis

Data processing generally follows the Gaze Analysis Pipeline de-
scribed by Duchowski [2017], which generally consists of the fol-
lowing steps:

(1) denoise and filter raw gaze data g; = (xj,y;, t;) to classify
raw gaze into fixations f; = (x;, y;, ti, d;), where (x;, y;) coor-
dinates indicate the position of the gaze point or centroid
of the fixation, with #; indicating the timestamp of the gaze
point or fixation and d; the fixation’s duration,

(2) collate fixation-related information for its subsequent statis-
tical comparison,

(3) interpret and visualize statistical tests conducted on pro-
cessed data.

Visualization of the data at each stage of the pipeline is particularly
helpful in fine-tuning parameters.

Statistical analyses were coded in R-computation language (ver-
sion 4.1.2) [R Core Team 2021] using the Ime4 [Bates et al. 2015]
and ImerTest [Kuznetsova et al. 2017] packages. The latter package
uses Satterthwaite’s method to estimate statistical significance for
mixed models.

5 RESULTS

We start by checking whether R language class attendance is related
to task accuracy and response time. First, a Chi-squared test of

independence was run separately for code and text reading tasks,
showing that there was no significant relation between R language
class attendance and task accuracy, neither in code (y?(1) =1.69, p=
0.19) nor in textual syllogism reading task (y?(1)=0.52, p=0.82).

Next, a two way mixed-design ANOVA with response time as
a dependent variable, R language class attendance as a between-
subject factor and task as a within-subjects factor revealed a statis-
tically significant main effect of task (F(1,20)=7.93, p<0.02, n’=
0.125). Response time in code reading task was significantly longer
(M =20.36s, SD=13.63) compared to the text reading task (M =
14.06s, SD=10.73). Other effects were not significant (F(1,20) <1).

A similar two-way ANOVA tested differences in task load with
NASA-TLX score as a dependent variable. Analysis showed no
significant effect of task (F(1,19) < 1), R language class (F(1,19)=
2.61, p = 0.12), and interaction (F(1,19) < 1). Since both tasks
evoked similar task load and R language class attendance did not
differentiate accuracy and response time in either experimental task,
we decided not to include these two predictors in the following
analyses.

5.1 Predicting response accuracy from eye
movement characteristics

Following the hypotheses, to predict the response accuracy we ran
a logit Generalized Linear Mixed Model (logit - GLMM) analysis.
We included response accuracy as a binomial dependent variable.
The fixed effects of task and eye tracking measures (average fixation
duration, number of fixations, and entropy), and interaction effects
between task type and each eye tracking measure were included in
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Figure 5: Main effects for (a) average fixation duration (b) fixation number, and (c) word-span entropy on overall response time.
(Note: lines represent the predicted slopes for each main effect; gray areas around each line represent their 95% confidence

intervals for the slopes.)

the model. We defined participant nested in task as a random effect.
At first the null model was fitted only with the random effect, then
the model was updated with task and each eye movement measure
predictors as well as interaction terms.

The final model showed a significant main effect of task on
response accuracy (f=4.98, z=1.97, p<0.05). Response accuracy
in text reading was significantly higher (M =66%, SD=47) than in
code reading (M =52%, SD=50). None of the other model effects
was statistically significant.

5.2 Predicting response time from eye
movement characteristics

Linear Mixed Model (LMM) analysis was run with response time as
dependent variable. The structure of both fixed effects and random
effects was the same as for GLMM analysis. Additionally, response
accuracy was added as a fixed factor to the model.

The final model revealed a significant main effect of accuracy
on response time (f=-3.50, #(205.39) =2.35, p<0.02). Response
time was significantly lower when the response was accurate (M=
15.30s, SD=11.37) than when it was not (M =19.96s, SD=13.88).

We also noted main effects of average fixation duration (f =
0.04, $(106.26) = 3.94, p < 0.001, see Fig. 5a) and number of
fixations (f = 0.18, #(132.51) = 3.15, p < 0.01, see Fig. 5b). In-
crease in average fixation duration and number of fixations predicts
longer response time. A main effect of entropy was also significant
(B = —28.92, $(205.37) = 2.39, p < 0.02, see Fig. 5¢). In line with
predictions, increased word span entropy suggests shorter response
time.

The main effects of number of fixations and entropy were mod-
erated by task. Interaction of task and number of fixations was
significant (f=-0.19, $(170.51) =2.63, p<0.01, see Fig. 6a). Sim-
ple slope analysis showed that the slope of the relation between
number of fixations and response time differs significantly between
text and code reading (#(189) =2.52, p=0.01). Increase in number

of fixations in code reading significantly predicts an increase in
response time ($=0.18, SE=0.06) but it does not predict response
time in text reading (f=-0.01, SE=0.04), see Fig. 6a.

The interaction of task and entropy was marginally significant
(B =38.49, t(219.50) = 1.82, p=0.069, see Fig. 6b). Simple slope
analysis showed that the difference in slopes between text and
code reading is marginally significant (#(228) =1.77, p=0.077). The
slope of relation between entropy as a predictor and response time
is negative for code reading (f = —28.92, SE =12.40) but for text
reading it is slightly positive (§=9.57, SE=17.80), see Fig. 6b.

6 DISCUSSION & CONCLUSIONS

The present study examined the utility of a novel eye movement
measure, word span entropy, in predicting reading and compre-
hension of source code and text. The two reading tasks involved
reasoning, evoking similar work load. Response time was predicted
by average fixation duration, number of fixations, and word span
entropy. Longer fixation duration indicated more time needed to re-
spond. As predicted, the higher the entropy the shorter the response
time when reading code but not textual syllogisms.

To understand the role of word span entropy in predicting re-
sponse time, an intuitive interpretation of entropy is helpful. The
higher the entropy, the more complex (random) the visual switching
between different code chunks, since transition from source AOI
to any destination AOI (code chunk) is equally likely. Higher word
span entropy indicates a more random scanpath (i.e., not following
expected reading order from word to word) over code, leading to
faster response time linked to code comprehension. This result is in
line with several studies showing that code reading is substantially
different from text reading by involving more eye jumps in various
directions (even between code lines) [Busjahn et al. 2015; Feitelson
2019; McChesney and Bond 2019].

One limitation of word span entropy is that it is dependent on
the number and size of AOIs defined. Non-uniformly sized AOIs
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Figure 6: Interaction effects of (a) number of fixations and task type and (b) entropy and task type on response time. Note: lines
represent the predicted slopes in each task (code vs. text reading).

are likely to garner greater probability of fixation on larger AOIs.
Ideally, AOI sizes and their number should be held constant be-
tween conditions. Exact effects of AOI non-uniformity on word
span entropy need further investigation.

To conclude, word span entropy is a promising measure of the
reading process that is simple to implement. As a second-order
metric, it complements other eye movement measures useful in
interpreting programming behavior while reading and comprehend-
ing source code. The full understanding of relationship between
gaze entropy of code reading needs further experimental research.
Future studies may examine differences in word span entropy be-
tween experts and novices while reading code.
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