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1 Introduction

Over the past few decades, enormous progress has been made towards understanding the
perturbative properties of N' = 4 super Yang-Mills theory [1, 2] (referred to hereafter as
N = 4 SYM). The high symmetry of this theory allows one to gain structural insights
and test computational approaches at higher orders in perturbation theory, possibly pi-
oneering ideas with future applications to phenomenologically-important theories such as
Quantum Chromodynamics; see [3] for a recent review. Particularly impressive perturba-
tive results have been obtained in the leading planar-color limit of the theory. A celebrated
example is the light-like cusp anomalous dimension [4], which can be obtained to arbitrary
loop order [5] in this limit. At full color, analytical 4 loop results have been obtained for
the cusp anomalous dimension [6-10], the collinear anomalous dimension [11, 12] and the
universal anomalous dimension of twist-2 operators [13]. Planar on-shell scattering ampli-
tudes are particularly well understood [14, 15] and have been bootstrapped up to 7 loops
for 6 legs [16]. Form factors for local operators are more complex quantities, but have
nevertheless been obtained up to 5 loops and 3 on-shell states [17] in the planar limit; see
also [18-21] for further recent work on planar and non-planar color form factors and [22, 23]
for reviews.

Sudakov form factors are among the most basic form factors, defined as the matrix
elements of a length-two local operator between a two-particle state and the vacuum. They
allow for a particularly transparent discussion of infrared poles in gauge theories [24-33]. In
particular, the 1/¢? and 1/e poles of the form factor are determined by the cusp and collinear
anomalous dimensions, respectively. In N = 4 SYM, the scalar Sudakov form factor was
calculated to 2 loops in [34] and to 3 loops in [35]. The integrands have been obtained at 4
loops in [36] and at 5 loops in [37]. The poles of the 4-loop form factor have been presented
in [10, 12]. In this paper, we present the calculation of the full-color 4-loop Sudakov form
factor through to the finite part. Our calculation is based on techniques that we developed
for the calculation of 4-loop form factors in Quantum Chromodynamics [8, 12, 38—45].



The remainder of this paper is organized as follows. In section 2 we define the Sudakov
form factor that we consider and review the known reduced integrand at 4 loops. In
section 3 we describe our calculation of the relevant master integrals to transcendental
weight 8. In section 4 we give the result for the Sudakov form factor. In section 5 we
conclude.

2 Reduced integrand

The Sudakov form factor in N/ =4 SYM that we consider in this paper is defined as
1 —iq-T / 4 c ic
F= N /d% e (@ (p1)#T2(p2)| (#54954) () [0), (2.1)

where the expectation value of a local length-two operator is computed between the vacuum
and a state with 2 on-shell scalar particles. The Lorentz scalars ¢{, carry subscripts cor-
responding to the 6 representation of the R-symmetry group SU(4)r and a superscript
corresponding to the adjoint representation of the gauge group SU(N.). The overall nor-
malization NN is chosen such that the tree level contribution is normalized to 1.

For the kinematics, we have p? = p3 = 0 due to the massless on-shell states, such that
the form factor depends only on the external scale ¢? = (p; + p2)%. For the perturbative
expansion of the form factor, we abbreviate

N. ¢? 4 2
= eI p= 0 <“> (2.2)

T 1620 e\ —q2—i0

where ¢ is the original bare coupling of the model, vg =~ 0.577216 is Euler’s constant,
€ = (4—d)/2, d is the number of space-time dimensions used to regularize the theory, and
12 is the 't Hooft scale. We define

o0
F = Z alZeFy (2.3)
L=0
with Fy = 1 and set ¢?> = —1 without loss of generality.
The form factor F has been calculated to two loops in [34] and to three loops in [35].
At four loops, a reduced expression for the form factor in terms of dimensionally regularized
master integrals has been presented in [46], which we reproduce here:
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Figure 1. Irreducible trivalent topologies for the A’ = 4 Sudakov form factor at four loops.

)

Three integrals appear in both the planar-color and non-planar-color parts,

o - - 29
The definition of the integrals Ii(”i) in eq. (2.4) in terms of propagators for the topology n;
can be found in [46]. Figure 1 shows a subset of the contributing topologies: the set of irre-
ducible twelve-line topologies, whose integrals could not be expressed in terms of integrals
with fewer lines. We note that the “planar-color” part of the form factor involves both
planar and non-planar topologies. A remarkable feature of eq. (2.4) is that the coefficients
of the master integrals are just rational numbers and all dependence on € is encapsulated
in the master integrals, which are conjectured to be of uniform transcendental weight.

The definitions of the master integrals in ref. [46] can be mapped to just the 10 integral
families (complete sets of propagators) shown in table 1. The integrals are then linear
combinations of four-loop Feynman integrals

( )= (- ? WE)%/ T & ! (2.6)
[¢(vy,...,118) = e | I .
fFLy e V18 q ] iwd/2 | DY ... DYl

where f=A,...,J labels the family and q2 = —1. Depending on the topology, up to 12

indices v; in eq. (2.6) are positive and correspond to actual denominators of the integrand;
some of the remaining indices may be negative to denote irreducible numerators. We note
that one family covers in general more than one trivalent graph, family A for example covers
all planar graphs. The propagator denominators D; follow Minkowskian conventions and
depend implicitly on the integral family f. We provide expressions for the master integrals
Ii(ni) in terms of integrals in these families in the supplementary material of this paper. We
note that integration-by-parts reductions allow to remove any reference to family I, which

was used to map I](,?Q) . For some topologies, only a subset of the irreducible integrals enters



A B C D E
Dy k3 (k1+ka—ks—ky—p1)? (k1 —ks—p1)? (krtky—ks—ks —p1)? | (ki—ko+ks—ka+p1)?
Ds k3 (k2 —ka—p1)? (ks—kq +p1)? (ka—k3z—p1)? (ki—ka+ k3+p1)?
D; k3 (ka+p1)? (k1—k3+ p2)? (ke—p1)? (k1—ka+p1)?
Dy k2 (k1+ka—ks—ks+p2)? k1—ka+p2)? (ki+ko—ks—k4 +p2)? (ki+p1)?
Ds (k1—p1)? (k1 —ks+p2)? k? (k1 —ka+p2)? (k1—ka+ks —kq—p2)?
D¢ (k1 —ka—p1)? (ky—p2)? k3 (k1+p2)? (k1 —ko+ks— po)?
D; (k1 —ko+ks—p1)? k? k3 k? (ko —ks+p2)?
Dg (kl—k2+k3—k4—p1)2 k‘g k_/% k‘g k%
Dy (ky+p2)? k3 (ka—k3) k2 k2
Duo (k1 —ka+pa)? k2 (ks — o) k2 k2
Dy (k1 —ko+ks+p2)? (ka— ks)? (ks—Fkq)? (ko —k3) k2
Dy | (ki—ka+ks—ky+p2)? (k1 —k3)? (k1—ka4)? (k1 —ka) (ka— k3)?
Dy (k1—k)? (k1—ka—p1)? (k1—ka—p1)? (k2—ka—p1) (ks —p2)?
D1y (ka—Fk3)? (ka—ka+p2)? (ks —ka—p2) (k1 —k3+p2) (k1 —ko)?
Dy (kz—Fky)? (ky—k4)? (k1—p1) (ko —ky) (k1—ks)?
Dy (k1 —ka+k3)? (k1 —ko)? (k1+p2) (k1 —k3)* (k1 —ka)?
Dir | (ha—hgtha)? (k1 —ka)? (k1 —k3) (ks—ka)? (ka—Fa)?
Dig (k1 —ko+ks—ka)? (k1+ky —ks—kq)? (k2 —ka) (k1 —ks)? (ks —kq)?
F G H 1 J
Dy (k1+k271€37k47p1)2 (k1 7k27k:;+k47p1)2 (k1 7p1)2 (/f1+k37/€47p1)2 k%
D, (kitky—ks—p1)* (k1—ky +ks—p1)? (k1+ka—p1)? (ka— ka—p1)? k3
D3 (ka—p1)? (k1—ka—p1)? (ky +ko—ks—p1)? (kg+p1)? k3
Dy | (kithko—ks—ks+pa)? | (k1 —ka—ks+ks4p2)? | (ki+ko— k3—ks—p1)? (kg —ky—p1)? k3
Ds (k1 —ks+p2)? (ky—ks— p2)? (ka+p2)? (k1tks—ks+ p2)? (k1+p1)?
Dg (k1+p2)? k3 (k1+ka+ p2)? (k1 —ka+p2)? (k1—ks+ p1)?
Dy ki k3 (k1+ko—k3+p2)? (ka—p2)? (ky+ky—ks+p1)?
Dy k3 (k1—ks)? (ki+ka—ks —ka+ps2)? k2 (ky+ky—ks— ka+p1)?
Dy k3 (k2—ks)? ki k3 (ks +p2)?
D1 (k1 —k2)? (ko —ka)? k3 k3 (k1 —k3—p2)?
Dy (k2 —ka)? (ks—ka)? k3 k3 (k1 —ks—ka—p2)?
Dy (k1 —ka)? (k1 —k3)? ki (ka—Fk4)? (k1+ky—kz—ka— pa)?
D3 (ke —ks—p1)? (ka+p1)? (k1—k)? (ka—kq-+p2)? (k1— k2)’
Dy (k1+ko—ks+p2)? (k1—ks +ka+p2)? (k1 —Fks3)? (k1—k2) (k1—k3)
D15 k3 (ka—p2)? (k1 —k4)? (k1 —ks)? (k1 —ky)?
D16 (k3—k4)? Kt (ky—k3)? (k1 —ka)? (k2 —ks3)?
D7 (ky—ks)? k3 (ky—k4)? (ky—k3)? (ka—k4)?
D (ky—ks)? (k1 —ky)? (ks— kq)? (ks —ky)? (ks—k4)?
Table 1. A complete set of integral families for massless three-point functions with one off-shell

leg at four loops.

the amplitude: topology (26), for example, contains four irreducible twelve-line integrals
but only two linear combinations of them, Ié%) 4). Analytical
results for the master integrals in eq. (2.4) have been given through to weight 6 in [10].
Here, we present their analytical calculation through to weight 8 as required for the finite
part of the Sudakov form factor.

and I( 6), appear in eq. (2.

3 Master integrals to weight eight

We employ two different methods to evaluate the master integrals: the direct integration
of finite integrals and the method of differential equations with an auxiliary scale.

In principle, all topologies but two have been shown to be linearly reducible [47, 48] and
are thus accessible to direct integrations based on the Feynman parametric representation.



Moreover, the only two topologies which have not yet been proven to be linearly reducible
after a change of variables in the Feynman parametric representation were dealt with
in ref. [45] using the method of differential equations. In order to perform parametric
integrations, we select a basis of finite integrals [49-53] with Reduze 2 [54]. Here, the
finite integrals are typically defined in 6 — 2¢ dimensions and involve higher powers of
the propagators (“dots”). The basis change is computed with the private code Finred
based on [55-60]. For some topologies, it is necessary to perform variable changes in the
Feynman parametric representation to find a linearly reducible integration order. We then
employ the program HyperInt [61] to expand the Feynman integral around ¢ = 0 and
integrate the expansion coefficients. In this way, we solved a subset of the master integrals
through to weight 8 with HyperInt. Depending on the integral, however, we found that
the computing resources required to compute the relevant € orders can be prohibitive, such
that we resorted to the method of differential equations in many cases.

The method of differential equations [62—64] is a powerful technique to solve Feynman
integrals with non-trivial dependence on the kinematics, see e.g. ref. [65, section E.8| for
a recent review. While our integrals have only a trivial dependence on the kinematics,
the method becomes applicable by considering vertex integrals with two off-shell and one
massless leg [66] instead. The differential equations in the auxiliary parameter

2
p=—12 (3.1)

(p1 + p2)?

then connect the sought after vertex integrals with two massless legs (x = 0) with prop-
agator type integrals (z = 1) known from refs. [67, 68], see ref. [8] for more details. We
employ Fire 6 [69] and LiteRed [59, 70] to find the differential equations in z for some
initial choice of basis. Subsequently, we apply the method of refs. [71, 72] as implemented
in Libra [73] to bring the system in € form [74]. At this point, we are forced to introduce
algebraic extensions z1 = \/Z, 2 = \/r — 1/4, and x3 = \/1/x — 1/4 in order to secure an
e-form of the differential system. The complete alphabet sufficient for all families consists
of the letters

1 1 1 1 1 1 1 1

2 x+1 x—1 x—-4 x—1/4 (1—x)x, zxs a3

(3.2)

appearing in the derivatives with respect to . In particular, the letters involving x1, zs, =3
are required for topology (26) in figure 1, while the topologies (12) and (25) contain those
involving x1, x3. It turns out that each iterated integral in the results for master integrals
contains at most one of x1, x9, x3, so it is always possible to rationalize the weights by
passing to the corresponding letter.

Note that the differential equations approach allows one to construct uniform transcen-
dentality (UT) bases of one-scale integrals. Indeed, the column of asymptotic coefficients
co at x = 0 is expressed via the column of coefficients ¢; at @ = 1 as (see eq. (28) of ref. [8])

co) = LalU()lLlCl . (33)

Here the associator Uy is UT by construction. The column of boundary constants C; =
Lic; can also be made UT by a judicious choice of an overall normalization of L;. It suffices



Figure 2. Master integrals j; and js of eq. (3.4). For x = 0 or = 1 the number of master integrals
in this sector reduces to one.

to pull from L; an overall, rational in €, factor which can be determined by examining
the simplest non-zero entry of column ¢; (this simplest entry is always known exactly in
terms of a product of I' functions). So, the column of boundary constants at =z = 0, i.e.
Cop = Up1Cy = is also UT. On the other hand, from eq. (3.3) we have Cy = Lycy. However,
there is one obstacle here. The column ¢y contains not only naive limits (obtained by
setting x = 0 under the integral sign), which correspond to one-scale integrals, but also the
asymptotic coefficients in front of non-integer powers of x. Thus, in general, each entry of
C) is expressed not only via one-scale integrals, but also via some asymptotic coefficients
in front of non-integer powers of x. This can be fixed by quasi-diagonalizing (reducing
to Jordan normal form) the residue, Ap, at z = 0 of the matrix on the right-hand side
of the differential system in e-form. Since the fractional powers of z in the asymptotics
are in one-to-one correspondence with eigenspaces of Ag, the Jordan normal form of Ay
necessarily has a block-diagonal structure with blocks corresponding to different fractional
powers of x. The matrix L also acquires the same block-diagonal structure. Then, those
entries of Cy which correspond to a block with integer powers of = are expressed solely via
one-scale integrals. Since the matrix Lg is invertible by construction, it is easy to establish,
that the number of such entries is sufficient to furnish a basis.

Let us demonstrate this approach on the example of the two integrals presented in
figure 2, where we use a dot to indicate a squared propagator. The differential system for
those two integrals has the form

) _ 2(2e-1) €(3e—1) )
d <31> B T z(26—1)(5e—3) <31> (3.4)
do \jo ) | 22e=1)2(5¢-3)  (z+1)e io | ’
J2 CEVEIESY CEE J2

Note that this sector has no non-zero subsectors. We construct the transformation j =T'J

with j = (jl,jg), J = (Jl,JQ), and

(1-3¢)(1+x2)+2ex  (1—3¢)(1—22)
2(3—5€)(1—2¢)2  2(3—5¢)(1—2¢)2

1—3e+ze 1—3e—xe
(1—3e)e (1—-3e)e

T = f(e) (3.5)

which reduces the system to an e-form. The factor f(e) will be fixed later to secure uniform
transcendentality of Cp and C;. We have

d (. Ji
P (Jg) =eS(x) <J2> , (3.6)



where

x x—1

s S g (—22 _11> L <8 _02> . (3.7)

Using Libra, we find the following relation between asymptotic coeflicients at « = 0 and

( .[jl]mo ) L ULy ( [.jl}(l—x)o ) | .
[]g2-se 2l (1—a)-2¢

where [ji]yo denotes the coefficient in front of y* in y — 0 asymptotics of ji. In princi-

ple, also different choices are possible (e.g. [j2],2-3c instead of [j1],2-3¢) with appropriate
modifications of Ly and L. For our choice the matrices Ly and L have the form

2(3—56)(1—-2¢)2  (3—5¢€)(1—3¢)(2—3¢)
3(1—-3¢) 2(1—4e¢)

_ -1
Lo = f(e) 4(3-5¢)(1-2¢)2  (3—5€)(1-3€)(2—3¢) | ’ (3.9)
3(1—-3¢) 2(1—4e)
(3—5¢)(1—2¢) 0
Ly = f(e)™? : (3.10)
0 (1—3e)e
1—4e
The associator reads
148G — T ... T gt el
Uo1 = 022 5 i s i (3.11)
T — 4G + T+ 1 =80 — T+
At the point z = 1 we have only “naive” limits, so [ja](1_z)-2c = 0. The constant [j1]_z)o
e D(2 — 39T(1 — T(0)*I(4e — 2
2—-3¢)I'(1 — € € €—2
: — olevE 12
da—ep =€ T(4 — 56)0(2 — 2€)2T(2¢) (312)

1-3¢
1—5€)(2—5¢)(1—4¢€)(1—2¢)

Cr - L1<[[jl](1:1:)0 > (3.13)

17.2](1—36)—26

It is easy to see that for f(e) = ( s the quantity

is uniformly transcendental. Then Cy can be computed from Cy = Uy Cq and is also
uniformly transcendental. On the other hand, we have

2[j1] 0 (56—3)(2—1)? [71],2—3¢(3e—2)(3e—1)(5¢—3)

+
B B 3@3—1) A1)
Co = Loco = f(e) A[h],0(2e—1)2(5¢-3)  [1],2—5¢ (3e—2)(3e—1)(5¢—3) (3.14)
3(3e—1) - 2(4e-1)

We see that each entry of Cj is a linear combination of “naive” limit constant [ji],o0,
which corresponds to a specific on-shell vertex integral, and of the constant [j1],2-3c, which
corresponds to a contribution of some non-trivial region in  — 0 asymptotics. Thus the
comparison to Cy = UpC; does not allow for the extraction of [ji],0. However, if we

consider Cy = Q~'Cp, where Q = (% _11> is a transformation diagonalizing Sy in eq. (3.7),

e—1)2(5e— .
5 W[‘h]xﬂ 315
07| Be=2)(3e=1)(5¢-3) ’ (3.15)

2(4e—1) [1]a2-5¢

we obtain from eq. (3.14)




and the comparison to Cy = Q1Uy C immediately provides us a result for [71]z0. The first
entry of Cj is expressed via on-shell vertex integral. Since @ is rational numeric matrix,
Cp remains UT and we have achieved our goal.

In this way, we obtain UT bases for the vertex integrals with two massless legs through
to weight 9, written in terms of multiple polylogarithms G with argument 1 and indices
{0, 41, +£iy/3, e*7/3_ E2im/3 o+im/3 /91 Employing the PSLQ algorithm [75], these results
can be expressed in terms of regular multiple zeta values.

We computed many integral coefficients in both approaches (direct integrations and
differential equations), which allowed us to cross-check a substantial fraction of our results
analytically. To facilitate the checks of our results, we expressed all master integrals
in terms of finite integrals, which we define allowing also for higher dimensions and/or
additional dots. We determined all finite integrals to the required order in € needed for
complete weight 8 information, which occasionally involved also weight 9 contributions.
We also employed Fiesta [76] for numerical checks of many integrals. By performing these
checks directly for finite integrals defined in 6 — 2¢ dimensions, we were able to achieve a
typical relative agreement of 10™* or better with modest run times.

For the master integrals entering the Sudakov form factor we obtain the following
results through to weight 8:

0 _ 1 1/17 677 ) (5489 487 )
1= <576) (288C2> <432C3) (720<2 720 & T o165
1571 3919 TT677 16543 4957
( 324 G + 420 CQ) ( 5016 " 360 9% 310 CS@)
727 15514 4181 232093
+ (10C5 C5C3 162 — GG+ 126000C2) O(e), (3.16)

%= x(m) 1( )+ (%) + a (- 59)
IP72_68(144 ts 144C2 S\ T mp®)ta G2

(- 00 Bc) s A(M g
)
" (_ 44390C5,3 3?8239@43 353820451C3Cz 3923582503001C2> O(e), (3.17)
=3 )+ B ) +3(- 0) 2 e
(I W) 1 (s o)
1(_ 33130505875 et 31937<5<2 B 3gi§9 C3422)
(13891 Gos+ 26134C5C3 83065 83065 a0, _ 232238351C§> O(e), (3.18)

1= % (555) + 5 (356 + (216<3) = (5e0@) + 5 (56 + 1pg%ste)



(G + 220 + (T — a0 — g a3
+ (330 + TG — TG+ i) + Oe), (3.19)
IS; = ;(712) + 516(_ 13(2) + 615< Zzg@) 614 ( - f%éﬁ)
(- B - 0) + 5 (T - )
n 1( _ 23590161 30136 CsCa+ 184207(3@)
N ( 86152 Cos+ 2197469 197469 s+ 4?24213 Cg ot 112;(1)3349 C%) 0(6), (3'20)
13- 38(5176) 1 (144<2> +(562%) + o (10%) + & (T * 2169¢)
612< B 123599129C ;;23 C2> 1 ( _ 136576291< 23921(5{2 _ 328186603 C3C2>
(T50.553 — “prgn 656+ “ogg Gl — “agonin ch) +0(e) (3.21)
- () - 3(Z5e) - 3(50) - 32 - B2
n 612< B 1§;i3 C;? n 315206503 ng) : (604002;249 o 192539 CsCo — 110008903 C3C22>
(40379 Cos — 192174023 CsCs + 20023C3 o — 5389480800017C§> 0(6)7 (3.22)
=) )+ 30) - 3) - 32 B
n 3 <529559029 C32 119 C2> 1 <22480436207 o 3449 C5 G+ 19081 C?, C2>
(- T+ T e - Bl + 1221880802079 Cz) o), (3.23)
- 3(- )32+ 5E50) - 35 - B )
n ;(4;23;15 <3 4163C2> <1623§;Q3 Gr — 1499 CsCa + 313829 C3C2>
n ( 176657C5 . 10;:;83145@ 68821(3 G+ 44:13;33161) O(E), (3.24)
4% <;(_é>+;< IM@> ;( ig@) (M&J

1 36367 4019 128729 4741
+63<— G5+ C3C2> 62( G- C23)

720 1296 252
1/ 7604257 361843 21493
e<_ 032 Ot GG + @@>



(3205 6666179 797531 1336955C >
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53+ —og0 3% ———3G — 5016 O(e), (3.25)
1
p,1121 - 8(
1
73

D) me) 615( 43243) ()

144
( 38149 1061C3C2> 12 ( B 237775 3% B 37363 S)
1296 2520
n 1(_ 25;2)255C 99319CSC2 _ 24527<3<2)
(2 BB SO SO o)
18- 5(55) + 5 (32 + - (;2}143) = (56%) + 5 (Tams * 1119
i <2106823 < 323512603 <2) 6 <16820365113 o+ 7001 <5 G+ 4063 CS C2>
n (_ 1152607<5 201041 CoCs — 1251163 C3 G+ 3?2(1)(1)(7)7<2) 0(e), (3.27)
14 1 3 1 1 1789 1 433 o
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We also provide these analytical solutions in the supplementary material of this paper.
Our results are expressed in terms of regular and multiple zeta values

-3

We see from egs. (3.16)—(3.70) that the integrals Ii(n") through to weight 8 are of uniform
transcendental weight. Moreover, we reduced several of the master integrals I Z-(”i) to the UT

oo m—1
s ), Gs3= >, Z ~ 0.0377076729848 . (3.71)

1
m mlnl

basis integrals employed in our differential equations calculations and found the coefficients
to be rational numbers, showing that their UT property extends to higher orders in € as well.

4 Result for the Sudakov form factor

Inserting our results for the master integrals in the reduced expression (2.4) we obtain for
the four-loop contribution to the Sudakov form factor

r=l5(3)+5(Ge) + 5 (- 50) + 2(58) + 5 (a6 + 2aa)

612(1058453% 92;1;7<2> 6 (541126619C7 15529 CsCa+ 3?2?7@@2)
n ( @Cs .t 499927(5(3 _ 35707C3 G+ 7138185808061@)}
+ = (186 + 54) + (- To - 19266+ g
+ (39065 1638656 — 246362 - T10H) + 0. (4.1)

While the poles in € are known, the finite term of the form factor is new and represents
the main result of this paper.
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It is useful to consider the logarithm of the form factor
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1 1
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4 _de L o o 1.
+az F4—F3F1—§F2 +F2F1 —zFl +, (43)

which can be written in the form [30, 77]

ZaL Le <— Ei)? 2gL +LL> (4.4)

defining the finite remainders L%“. The pole terms are fixed by the cusp anomalous dimen-
sion [9, 10]
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+ O(a®) (4.6)

and the collinear anomalous dimension [12]
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= a?(—4¢3) +a (32C5 + ?Cs(z) (4.8)

+ a4< 300¢7 — 256(5C2 — 384C4(3 + —5 N2

C

[5226@ + 1536(5¢2 — 552c4c3D O(a®).

Using the one-, two- and three-loop results of [35] and our four-loop result (4.1), we find
for the finite remainders of the logarithm of the form factor
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4 5 (5,3 + (5C3 +41¢5¢ + 10500 Ga
1 248383
+ 73 [390Cs,3 — T6385C3 — 24¢2¢o — Wé +O(e). (4.12)
C

We observe that the subtraction of exponentiated terms leads to somewhat simpler rational
prefactors in the finite remainder (4.12) compared to the weight 8 terms of (4.1).

5 Conclusions

We presented the analytical calculation of the Sudakov form factor in N' = 4 supersym-
metric Yang-Mills theory to four loop order. To solve the master integrals to weight 8, we
employed direct parametric integrations and the method of differential equations with an
auxiliary scale.

To the best of our knowledge, this is the first time that a form factor has been computed
to four-loop order in full-color Yang-Mills theory, and we hope that our explicit results are
helpful in further studies of formal and phenomenological theories at high perturbative
orders. The master integrals entering the present calculation form a subset of the most
complicated integrals needed for general massless three-point functions with one off-shell
leg. Our methods allow us to calculate also the remaining master integrals, providing
the last missing building block for the calculation of the massless corrections to the quark-
photon vertex and the effective gluon-Higgs vertex in four-loop Quantum Chromodynamics.
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