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1 Introduction

Over the past few decades, enormous progress has been made towards understanding the
perturbative properties of N = 4 super Yang-Mills theory [1, 2] (referred to hereafter as
N = 4 SYM). The high symmetry of this theory allows one to gain structural insights
and test computational approaches at higher orders in perturbation theory, possibly pi-
oneering ideas with future applications to phenomenologically-important theories such as
Quantum Chromodynamics; see [3] for a recent review. Particularly impressive perturba-
tive results have been obtained in the leading planar-color limit of the theory. A celebrated
example is the light-like cusp anomalous dimension [4], which can be obtained to arbitrary
loop order [5] in this limit. At full color, analytical 4 loop results have been obtained for
the cusp anomalous dimension [6–10], the collinear anomalous dimension [11, 12] and the
universal anomalous dimension of twist-2 operators [13]. Planar on-shell scattering ampli-
tudes are particularly well understood [14, 15] and have been bootstrapped up to 7 loops
for 6 legs [16]. Form factors for local operators are more complex quantities, but have
nevertheless been obtained up to 5 loops and 3 on-shell states [17] in the planar limit; see
also [18–21] for further recent work on planar and non-planar color form factors and [22, 23]
for reviews.

Sudakov form factors are among the most basic form factors, defined as the matrix
elements of a length-two local operator between a two-particle state and the vacuum. They
allow for a particularly transparent discussion of infrared poles in gauge theories [24–33]. In
particular, the 1/ε2 and 1/ε poles of the form factor are determined by the cusp and collinear
anomalous dimensions, respectively. In N = 4 SYM, the scalar Sudakov form factor was
calculated to 2 loops in [34] and to 3 loops in [35]. The integrands have been obtained at 4
loops in [36] and at 5 loops in [37]. The poles of the 4-loop form factor have been presented
in [10, 12]. In this paper, we present the calculation of the full-color 4-loop Sudakov form
factor through to the finite part. Our calculation is based on techniques that we developed
for the calculation of 4-loop form factors in Quantum Chromodynamics [8, 12, 38–45].
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The remainder of this paper is organized as follows. In section 2 we define the Sudakov
form factor that we consider and review the known reduced integrand at 4 loops. In
section 3 we describe our calculation of the relevant master integrals to transcendental
weight 8. In section 4 we give the result for the Sudakov form factor. In section 5 we
conclude.

2 Reduced integrand

The Sudakov form factor in N = 4 SYM that we consider in this paper is defined as

F = 1
N

∫
d4x e−iq·x 〈φa

12(p1)φb
12(p2)| (φc

34φ
c
34)(x) |0〉, (2.1)

where the expectation value of a local length-two operator is computed between the vacuum
and a state with 2 on-shell scalar particles. The Lorentz scalars φa

12 carry subscripts cor-
responding to the 6 representation of the R-symmetry group SU(4)R and a superscript
corresponding to the adjoint representation of the gauge group SU(Nc). The overall nor-
malization N is chosen such that the tree level contribution is normalized to 1.

For the kinematics, we have p21 = p22 = 0 due to the massless on-shell states, such that
the form factor depends only on the external scale q2 = (p1 + p2)2. For the perturbative
expansion of the form factor, we abbreviate

a = Nc g2

16π2 , z = 4π

eγE

(
µ2

−q2 − i0

)

, (2.2)

where g is the original bare coupling of the model, γE ≈ 0.577216 is Euler’s constant,
ε = (4− d)/2, d is the number of space-time dimensions used to regularize the theory, and
µ2 is the ’t Hooft scale. We define

F =
∞∑

L=0
aLzLεFL (2.3)

with F0 = 1 and set q2 = −1 without loss of generality.
The form factor F has been calculated to two loops in [34] and to three loops in [35].

At four loops, a reduced expression for the form factor in terms of dimensionally regularized
master integrals has been presented in [46], which we reproduce here:

F (4) =2
[
8I(1)p,1 + 2I(2)p,2 − 2I(3)p,3 + 2I(4)p,4 +

1
2I

(5)
p,5 + 2I(6)p,6 + 4I(7)p,7 + 2I(9)p,8 − 2I(10)p,9 + I(12)p,10

+ I(12)p,11 + 2I(13)p,12 + 2I(14)p,13 − 2I(17)p,14 + 2I(17)p,15 − 2I(19)p,16 + I(19)p,17 + I(21)p,18 +
1
2I

(25)
p,19

+ 2I(30)p,20 + 2I(13)p,21 + 4I(14)p,22 − 2I(14)p,23 − I(14)p,24 + 4I(17)p,25 − I(17)p,26 − 2I(17)p,27 − 2I(17)p,28

− I(19)p,29 − I(19)p,30 + I(19)p,31 − 1
2I

(30)
p,32

]

+ 48
N2

c

[1
2I

(21)
1 + 1

2I
(22)
2 + 1

2I
(23)
3 − I(24)4 + 1

4I
(25)
5 − 1

4I
(26)
6 − 1

4I
(26)
7

+ 2I(27)8 + I(28)9 + 4I(29)10 + I(30)11 + I(27)12 − 1
2I

(28)
13 + I(29)14 + I(29)15 + I(30)16 + I(30)17

+ I(30)18 + I(22)19 + I(22)20 − I(24)21 + 1
4I

(24)
22 + 1

2I
(28)
23

]
. (2.4)
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(5) (12) (13) (14)

(17) (19) (21) (22)

(23) (24) (25) (26)

(27) (28) (29) (30)

Figure 1. Irreducible trivalent topologies for the N = 4 Sudakov form factor at four loops.

Three integrals appear in both the planar-color and non-planar-color parts,

I(21)1 = I(21)p,18, I(25)5 = I(25)p,19, I(30)11 = I(30)p,20. (2.5)

The definition of the integrals I(ni)
i in eq. (2.4) in terms of propagators for the topology ni

can be found in [46]. Figure 1 shows a subset of the contributing topologies: the set of irre-
ducible twelve-line topologies, whose integrals could not be expressed in terms of integrals
with fewer lines. We note that the “planar-color” part of the form factor involves both
planar and non-planar topologies. A remarkable feature of eq. (2.4) is that the coefficients
of the master integrals are just rational numbers and all dependence on ε is encapsulated
in the master integrals, which are conjectured to be of uniform transcendental weight.

The definitions of the master integrals in ref. [46] can be mapped to just the 10 integral
families (complete sets of propagators) shown in table 1. The integrals are then linear
combinations of four-loop Feynman integrals

If (ν1, . . . , ν18) = (−q2eγE)4ε
∫ ( 4∏

L=1

ddkL
iπd/2

)
1

Dν1
1 · · ·Dν18

18
(2.6)

where f=A,. . . ,J labels the family and q2 = −1. Depending on the topology, up to 12
indices νi in eq. (2.6) are positive and correspond to actual denominators of the integrand;
some of the remaining indices may be negative to denote irreducible numerators. We note
that one family covers in general more than one trivalent graph, family A for example covers
all planar graphs. The propagator denominators Di follow Minkowskian conventions and
depend implicitly on the integral family f . We provide expressions for the master integrals
I(ni)
i in terms of integrals in these families in the supplementary material of this paper. We
note that integration-by-parts reductions allow to remove any reference to family I, which
was used to map I(2)p,2 . For some topologies, only a subset of the irreducible integrals enters
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A B C D E
D1 k21 (k1+k2−k3−k4−p1)2 (k1−k3−p1)2 (k1+k2−k3−k4 −p1)2 (k1−k2+k3−k4+p1)2

D2 k22 (k2−k4−p1)2 (k3−k4 +p1)2 (k2−k3−p1)2 (k1−k2+ k3+p1)2

D3 k23 (k4+p1)2 (k1−k3+ p2)2 (k2−p1)2 (k1−k2+p1)2

D4 k24 (k1+k2−k3−k4+p2)2 (k1−k2+p2)2 (k1+k2−k3−k4 +p2)2 (k1+p1)2

D5 (k1−p1)2 (k1−k4+p2)2 k21 (k1−k4+p2)2 (k1−k2+k3 −k4−p2)2

D6 (k1−k2−p1)2 (k4−p2)2 k22 (k1+p2)2 (k1−k2+k3− p2)2

D7 (k1−k2+k3−p1)2 k21 k23 k21 (k2−k3+p2)2

D8 (k1−k2+k3−k4−p1)2 k22 k24 k22 k21
D9 (k1+p2)2 k23 (k2−k3)2 k23 k22
D10 (k1−k2+p2)2 k24 (k1− k2)2 k24 k23
D11 (k1−k2+k3+p2)2 (k2− k3)2 (k3−k4)2 (k2−k3)2 k24
D12 (k1−k2+k3−k4+p2)2 (k1 −k3)2 (k1−k4)2 (k1−k4)2 (k2− k3)2

D13 (k1−k2)2 (k1−k4−p1)2 (k1−k2−p1)2 (k2−k4−p1)2 (k3 −p2)2

D14 (k2−k3)2 (k2−k4+p2)2 (k3−k4−p2)2 (k1−k3+p2)2 (k1 −k2)2

D15 (k3−k4)2 (k2−k4)2 (k1− p1)2 (k2−k4)2 (k1−k3)2

D16 (k1−k2+k3)2 (k1−k2)2 (k1+p2)2 (k1−k3)2 (k1−k4)2

D17 (k2−k3+k4)2 (k1−k4)2 (k1−k3)2 (k3−k4)2 (k2−k4)2

D18 (k1−k2+k3−k4)2 (k1+k2 −k3−k4)2 (k2−k4)2 (k1−k2)2 (k3−k4)2

F G H I J
D1 (k1+k2−k3−k4−p1)2 (k1 −k2−k3+k4−p1)2 (k1−p1)2 (k1+k3−k4−p1)2 k21
D2 (k1+k2−k4−p1)2 (k1−k2 +k4−p1)2 (k1+k2−p1)2 (k3− k4−p1)2 k22
D3 (k2−p1)2 (k1−k2−p1)2 (k1 +k2−k3−p1)2 (k4+p1)2 k23
D4 (k1+k2−k3−k4+p2)2 (k1 −k2−k3+k4+p2)2 (k1+k2− k3−k4−p1)2 (k2−k4−p1)2 k24
D5 (k1−k3+p2)2 (k2−k4− p2)2 (k2+p2)2 (k1+k3−k4+ p2)2 (k1+p1)2

D6 (k1+p2)2 k23 (k1+k2+ p2)2 (k1−k4+p2)2 (k1−k3+ p1)2

D7 k21 k24 (k1+k2−k3+p2)2 (k4−p2)2 (k1+k2−k3+p1)2

D8 k22 (k1−k2)2 (k1+k2−k3 −k4+p2)2 k21 (k1+k2−k3− k4+p1)2

D9 k23 (k2−k3)2 k21 k22 (k3 +p2)2

D10 (k1−k2)2 (k2−k4)2 k22 k23 (k1−k3−p2)2

D11 (k2−k4)2 (k3−k4)2 k23 k24 (k1−k3−k4−p2)2

D12 (k1−k4)2 (k1−k3)2 k24 (k2−k4)2 (k1+k2−k3−k4− p2)2

D13 (k2−k4−p1)2 (k2+p1)2 (k1−k2)2 (k2−k4+p2)2 (k1− k2)2

D14 (k1+k2−k3+p2)2 (k1−k2 +k4+p2)2 (k1−k3)2 (k1−k2)2 (k1−k3)2

D15 k24 (k2−p2)2 (k1−k4)2 (k1−k3)2 (k1−k4)2

D16 (k3−k4)2 k21 (k2−k3)2 (k1−k4)2 (k2−k3)2

D17 (k1−k3)2 k22 (k2−k4)2 (k2−k3)2 (k2−k4)2

D18 (k2−k3)2 (k1−k4)2 (k3− k4)2 (k3−k4)2 (k3−k4)2

Table 1. A complete set of integral families for massless three-point functions with one off-shell
leg at four loops.

the amplitude: topology (26), for example, contains four irreducible twelve-line integrals
but only two linear combinations of them, I(26)6 and I(26)7 , appear in eq. (2.4). Analytical
results for the master integrals in eq. (2.4) have been given through to weight 6 in [10].
Here, we present their analytical calculation through to weight 8 as required for the finite
part of the Sudakov form factor.

3 Master integrals to weight eight

We employ two different methods to evaluate the master integrals: the direct integration
of finite integrals and the method of differential equations with an auxiliary scale.

In principle, all topologies but two have been shown to be linearly reducible [47, 48] and
are thus accessible to direct integrations based on the Feynman parametric representation.

– 4 –
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Moreover, the only two topologies which have not yet been proven to be linearly reducible
after a change of variables in the Feynman parametric representation were dealt with
in ref. [45] using the method of differential equations. In order to perform parametric
integrations, we select a basis of finite integrals [49–53] with Reduze 2 [54]. Here, the
finite integrals are typically defined in 6 − 2ε dimensions and involve higher powers of
the propagators (“dots”). The basis change is computed with the private code Finred
based on [55–60]. For some topologies, it is necessary to perform variable changes in the
Feynman parametric representation to find a linearly reducible integration order. We then
employ the program HyperInt [61] to expand the Feynman integral around ε = 0 and
integrate the expansion coefficients. In this way, we solved a subset of the master integrals
through to weight 8 with HyperInt. Depending on the integral, however, we found that
the computing resources required to compute the relevant ε orders can be prohibitive, such
that we resorted to the method of differential equations in many cases.

The method of differential equations [62–64] is a powerful technique to solve Feynman
integrals with non-trivial dependence on the kinematics, see e.g. ref. [65, section E.8] for
a recent review. While our integrals have only a trivial dependence on the kinematics,
the method becomes applicable by considering vertex integrals with two off-shell and one
massless leg [66] instead. The differential equations in the auxiliary parameter

x = p22
(p1 + p2)2

(3.1)

then connect the sought after vertex integrals with two massless legs (x = 0) with prop-
agator type integrals (x = 1) known from refs. [67, 68], see ref. [8] for more details. We
employ Fire 6 [69] and LiteRed [59, 70] to find the differential equations in x for some
initial choice of basis. Subsequently, we apply the method of refs. [71, 72] as implemented
in Libra [73] to bring the system in ε form [74]. At this point, we are forced to introduce
algebraic extensions x1 =

√
x, x2 =

√
x − 1/4, and x3 =

√
1/x − 1/4 in order to secure an

ε-form of the differential system. The complete alphabet sufficient for all families consists
of the letters

1
x
,

1
x+ 1 ,

1
x − 1 ,

1
x − 4 ,

1
x − 1/4 ,

1
(1 − x)x1

,
1

xx2
,

1
xx3

(3.2)

appearing in the derivatives with respect to x. In particular, the letters involving x1, x2, x3
are required for topology (26) in figure 1, while the topologies (12) and (25) contain those
involving x1, x3. It turns out that each iterated integral in the results for master integrals
contains at most one of x1, x2, x3, so it is always possible to rationalize the weights by
passing to the corresponding letter.

Note that the differential equations approach allows one to construct uniform transcen-
dentality (UT) bases of one-scale integrals. Indeed, the column of asymptotic coefficients
c0 at x = 0 is expressed via the column of coefficients c1 at x = 1 as (see eq. (28) of ref. [8])

c0 = L−1
0 U01L1c1 . (3.3)

Here the associator U01 is UT by construction. The column of boundary constants C1 =
L1c1 can also be made UT by a judicious choice of an overall normalization of L1. It suffices

– 5 –
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0

x

1

0

x

1

Figure 2. Master integrals j1 and j2 of eq. (3.4). For x = 0 or x = 1 the number of master integrals
in this sector reduces to one.

to pull from L1 an overall, rational in ε, factor which can be determined by examining
the simplest non-zero entry of column c1 (this simplest entry is always known exactly in
terms of a product of Γ functions). So, the column of boundary constants at x = 0, i.e.
C0 = U01C1 = is also UT. On the other hand, from eq. (3.3) we have C0 = L0c0. However,
there is one obstacle here. The column c0 contains not only naive limits (obtained by
setting x = 0 under the integral sign), which correspond to one-scale integrals, but also the
asymptotic coefficients in front of non-integer powers of x. Thus, in general, each entry of
C0 is expressed not only via one-scale integrals, but also via some asymptotic coefficients
in front of non-integer powers of x. This can be fixed by quasi-diagonalizing (reducing
to Jordan normal form) the residue, A0, at x = 0 of the matrix on the right-hand side
of the differential system in ε-form. Since the fractional powers of x in the asymptotics
are in one-to-one correspondence with eigenspaces of A0, the Jordan normal form of A0
necessarily has a block-diagonal structure with blocks corresponding to different fractional
powers of x. The matrix L0 also acquires the same block-diagonal structure. Then, those
entries of C0 which correspond to a block with integer powers of x are expressed solely via
one-scale integrals. Since the matrix L0 is invertible by construction, it is easy to establish,
that the number of such entries is sufficient to furnish a basis.

Let us demonstrate this approach on the example of the two integrals presented in
figure 2, where we use a dot to indicate a squared propagator. The differential system for
those two integrals has the form

d
dx

(
j1
j2

)

=




−2(2ε−1)

x
ε(3ε−1)

x(2ε−1)(5ε−3)
2(2ε−1)2(5ε−3)
(x−1)x(3ε−1) − (x+1)ε

(x−1)x




(
j1
j2

)

. (3.4)

Note that this sector has no non-zero subsectors. We construct the transformation j = TJ

with j = (j1, j2), J = (J1, J2), and

T = f(ε)




(1−3ε)(1+x2)+2εx
2(3−5ε)(1−2ε)2

(1−3ε)(1−x2)
2(3−5ε)(1−2ε)2

1−3ε+xε
(1−3ε)ε

1−3ε−xε
(1−3ε)ε



 (3.5)

which reduces the system to an ε-form. The factor f(ε) will be fixed later to secure uniform
transcendentality of C0 and C1. We have

d
dx

(
J1
J2

)

= εS(x)
(
J1
J2

)

, (3.6)

– 6 –
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where
S(x) = S0

x
+ S1

x − 1 , S0 =
(

−2 1
2 −1

)

, S1 =
(
0 0
0 −2

)

. (3.7)

Using Libra, we find the following relation between asymptotic coefficients at x = 0 and
x = 1: 


[j1]x0

[j1]x2−3ε



 = L−1
0 U01L1




[j1](1−x)0

[j2](1−x)−2ε



 , (3.8)

where [jk]yα denotes the coefficient in front of yα in y → 0 asymptotics of jk. In princi-
ple, also different choices are possible (e.g. [j2]x2−3ε instead of [j1]x2−3ε) with appropriate
modifications of L0 and L1. For our choice the matrices L0 and L1 have the form

L0 = f(ε)−1




2(3−5ε)(1−2ε)2

3(1−3ε)
(3−5ε)(1−3ε)(2−3ε)

2(1−4ε)
4(3−5ε)(1−2ε)2

3(1−3ε) − (3−5ε)(1−3ε)(2−3ε)
2(1−4ε)



 , (3.9)

L1 = f(ε)−1




(3 − 5ε)(1 − 2ε) 0

0 (1−3ε)ε
1−4ε



 . (3.10)

The associator reads

U01 =




1 + 8ζ3ε3 − π4ε4

9 + . . . −π2ε2
3 − 2ζ3ε3 − 5π4ε4

18 + . . .

2π2ε2
3 − 4ζ3ε3 + 5π4ε4

9 + . . . 1 − 8ζ3ε3 − π4ε4
9 + . . .



 . (3.11)

At the point x = 1 we have only “naive” limits, so [j2](1−x)−2ε = 0. The constant [j1](1−x)0

reads
[j1](1−x)0 = e4εγE

Γ(2 − 3ε)Γ(1 − ε)6Γ(ε)2Γ(4ε − 2)
Γ(4 − 5ε)Γ(2 − 2ε)2Γ(2ε) . (3.12)

It is easy to see that for f(ε) = 1−3ε
(1−5ε)(2−5ε)(1−4ε)(1−2ε)2ε2 the quantity

C1 = L1

(
[j1](1−x)0

[j2](1−x)−2ε

)

(3.13)

is uniformly transcendental. Then C0 can be computed from C0 = U01C1 and is also
uniformly transcendental. On the other hand, we have

C0 = L0c0 = f(ε)





2[j1]x0 (5ε−3)(2ε−1)2
3(3ε−1) + [j1]x2−3ε (3ε−2)(3ε−1)(5ε−3)

2(4ε−1)
4[j1]x0 (2ε−1)2(5ε−3)

3(3ε−1) − [j1]x2−3ε (3ε−2)(3ε−1)(5ε−3)
2(4ε−1)



 . (3.14)

We see that each entry of C0 is a linear combination of “naive” limit constant [j1]x0 ,
which corresponds to a specific on-shell vertex integral, and of the constant [j1]x2−3ε , which
corresponds to a contribution of some non-trivial region in x → 0 asymptotics. Thus the
comparison to C0 = U01C1 does not allow for the extraction of [j1]x0 . However, if we
consider C̃0 = Q−1C0, where Q =

(
1 −1
2 1

)
is a transformation diagonalizing S0 in eq. (3.7),

we obtain from eq. (3.14)

C̃0 =




2(2ε−1)2(5ε−3)

3(3ε−1) [j1]x0

− (3ε−2)(3ε−1)(5ε−3)
2(4ε−1) [j1]x2−3ε



 , (3.15)

– 7 –



J
H
E
P
0
1
(
2
0
2
2
)
0
9
1

and the comparison to C̃0 = Q−1U01C1 immediately provides us a result for [j1]x0 . The first
entry of C̃0 is expressed via on-shell vertex integral. Since Q is rational numeric matrix,
C̃0 remains UT and we have achieved our goal.

In this way, we obtain UT bases for the vertex integrals with two massless legs through
to weight 9, written in terms of multiple polylogarithms G with argument 1 and indices
{0,±1, ±i

√
3, e±iπ/3, e±2iπ/3, e±iπ/3/2}. Employing the PSLQ algorithm [75], these results

can be expressed in terms of regular multiple zeta values.
We computed many integral coefficients in both approaches (direct integrations and

differential equations), which allowed us to cross-check a substantial fraction of our results
analytically. To facilitate the checks of our results, we expressed all master integrals
in terms of finite integrals, which we define allowing also for higher dimensions and/or
additional dots. We determined all finite integrals to the required order in ε needed for
complete weight 8 information, which occasionally involved also weight 9 contributions.
We also employed Fiesta [76] for numerical checks of many integrals. By performing these
checks directly for finite integrals defined in 6 − 2ε dimensions, we were able to achieve a
typical relative agreement of 10−4 or better with modest run times.

For the master integrals entering the Sudakov form factor we obtain the following
results through to weight 8:

I(1)p,1 = 1
ε8

( 1
576

)
+ 1

ε6

( 17
288ζ2

)
+ 1

ε5

( 89
432ζ3

)
+ 1

ε4

(677
720ζ22

)
+ 1

ε3

(5489
720 ζ5 +

487
216ζ3ζ2

)

+ 1
ε2

(1571
324 ζ23 + 3919

420 ζ32

)
+ 1

ε

(77677
2016 ζ7 +

16543
360 ζ5ζ2 +

4957
540 ζ3ζ

2
2

)

+
(727

10 ζ5,3 +
15514
135 ζ5ζ3 − 4181

162 ζ23ζ2 +
232093
126000ζ42

)
+O(ε), (3.16)

I(2)p,2 = 1
ε8

( 1
144

)
+ 1

ε6

(
− 13

144ζ2

)
+ 1

ε5

(
− 577

432ζ3

)
+ 1

ε4

(
− 269

80 ζ22

)

+ 1
ε3

(
− 4309

720 ζ5 − 236
27 ζ3ζ2

)
+ 1

ε2

(115529
1296 ζ23 − 13721

1260 ζ32

)

+ 1
ε

(958499
1008 ζ7 +

6442
45 ζ5ζ2 +

16141
120 ζ3ζ

2
2

)

+
(

− 4490
3 ζ5,3 +

340829
1080 ζ5ζ3 +

358051
324 ζ23ζ2 +

39385301
25200 ζ42

)
+O(ε), (3.17)

I(3)p,3 = 1
ε8

(
− 1

288

)
+ 1

ε6

(
− 17

144ζ2

)
+ 1

ε5

(
− 233

216ζ3

)
+ 1

ε4

(
− 173

360ζ22

)

+ 1
ε3

(
− 16529

360 ζ5 +
2033
108 ζ3ζ2

)
+ 1

ε2

(
− 8717

162 ζ23 − 615
14 ζ32

)

+ 1
ε

(
− 3335575

1008 ζ7 +
31937
180 ζ5ζ2 − 30589

270 ζ3ζ
2
2

)

+
(13891

5 ζ5,3 +
26134
135 ζ5ζ3 − 83065

81 ζ23ζ2 − 231920251
63000 ζ42

)
+O(ε), (3.18)

I(4)p,4 = 1
ε8

( 1
288

)
+ 1

ε6

( 17
144ζ2

)
+ 1

ε5

( 89
216ζ3

)
+ 1

ε4

(533
360ζ22

)
+ 1

ε3

(7469
360 ζ5 +

163
108ζ3ζ2

)
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1

+ 1
ε2

(1150
81 ζ23 + 218

35 ζ32

)
+ 1

ε

(124771
252 ζ7 − 26657

180 ζ5ζ2 − 8507
270 ζ3ζ

2
2

)

+
(
33ζ5,3 +

116303
135 ζ5ζ3 − 1022

81 ζ23ζ2 +
1180217
3150 ζ42

)
+O(ε), (3.19)

I(5)p,5 = 1
ε8

( 1
72

)
+ 1

ε6

(
− 13

72ζ2

)
+ 1

ε5

(
− 577

216ζ3

)
+ 1

ε4

(
− 887

120ζ22

)

+ 1
ε3

(
− 21109

360 ζ5 − 4
27ζ3ζ2

)
+ 1

ε2

(193721
648 ζ23 − 2897

30 ζ32

)

+ 1
ε

(
− 239761

504 ζ7 − 30136
45 ζ5ζ2 +

184207
180 ζ3ζ

2
2

)

+
(

− 86152
15 ζ5,3 +

2197469
540 ζ5ζ3 +

48343
162 ζ23ζ2 +

113119649
63000 ζ42

)
+O(ε), (3.20)

I(6)p,6 = 1
ε8

( 1
576

)
+ 1

ε6

( 7
144ζ2

)
+ 1

ε5

(169
864ζ3

)
+ 1

ε4

( 713
1440ζ22

)
+ 1

ε3

(3013
1440ζ5 +

115
216ζ3ζ2

)

+ 1
ε2

(
− 13919

2592 ζ23 + 1759
7560ζ32

)
+ 1

ε

(
− 135691

672 ζ7 +
23921
360 ζ5ζ2 − 38863

2160 ζ3ζ
2
2

)

+
(3443

180 ζ5,3 − 1103603
2160 ζ5ζ3 +

65419
648 ζ23ζ2 − 32463187

252000 ζ42

)
+O(ε), (3.21)

I(7)p,7 = 1
ε8

( 11
576

)
+ 1

ε6

(11
48ζ2

)
+ 1

ε5

(1937
864 ζ3

)
+ 1

ε4

(487
360ζ22

)
+ 1

ε3

(94313
1440 ζ5 − 1505

48 ζ3ζ2

)

+ 1
ε2

(
− 14483

324 ζ23 + 35053
1260 ζ32

)
+ 1

ε

(6002449
4032 ζ7 − 192539

240 ζ5ζ2 − 10093
1080 ζ3ζ

2
2

)

+
(40379

30 ζ5,3 − 191423
270 ζ5ζ3 +

20023
54 ζ23ζ2 − 53988017

84000 ζ42

)
+O(ε), (3.22)

I(9)p,8 = 1
ε8

( 1
576

)
+ 1

ε6

( 1
24ζ2

)
+ 1

ε5

(163
864ζ3

)
+ 1

ε4

(161
160ζ22

)
+ 1

ε3

(5803
1440ζ5 +

253
36 ζ3ζ2

)

+ 1
ε2

(59509
2592 ζ23 + 119

6 ζ32

)
+ 1

ε

(2284607
4032 ζ7 − 3449

120 ζ5ζ2 +
19081
240 ζ3ζ

2
2

)

+
(

− 157
15 ζ5,3 +

3485149
2160 ζ5ζ3 − 23813

108 ζ23ζ2 +
12188279
28000 ζ42

)
+O(ε), (3.23)

I(10)p,9 = 1
ε8

(
− 13

576

)
+ 1

ε6

( 5
48ζ2

)
+ 1

ε5

(743
864ζ3

)
+ 1

ε4

(167
480ζ22

)
+ 1

ε3

(82931
1440 ζ5 − 179

9 ζ3ζ2

)

+ 1
ε2

(425345
2592 ζ23 + 4163

90 ζ32

)
+ 1

ε

(16246723
4032 ζ7 − 1499

4 ζ5ζ2 +
313829
720 ζ3ζ

2
2

)

+
(

− 176657
30 ζ5,3 − 10377031

2160 ζ5ζ3 +
68821
27 ζ23ζ2 +

443297431
84000 ζ42

)
+O(ε), (3.24)

I(12)p,10 = 1
ε8

(
− 1

72

)
+ 1

ε6

(
− 29

144ζ2

)
+ 1

ε5

(
− 577

432ζ3

)
+ 1

ε4

( 31
240ζ22

)

+ 1
ε3

(
− 36367

720 ζ5 +
4019
108 ζ3ζ2

)
+ 1

ε2

(128729
1296 ζ23 − 4741

252 ζ32

)

+ 1
ε

(
− 7604257

4032 ζ7 +
361843
360 ζ5ζ2 +

21493
360 ζ3ζ

2
2

)
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0
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+
(3205

12 ζ5,3 +
6666179
1080 ζ5ζ3 − 797531

648 ζ23ζ2 − 1336955
2016 ζ42

)
+O(ε), (3.25)

I(12)p,11 = 1
ε8

( 1
144

)
+ 1

ε6

(
− 1

144ζ2

)
+ 1

ε5

(
− 1

432ζ3

)
+ 1

ε4

(57
80ζ22

)

+ 1
ε3

(
− 38149

720 ζ5 +
1061
54 ζ3ζ2

)
+ 1

ε2

(
− 237775

1296 ζ23 − 37363
2520 ζ32

)

+ 1
ε

(
− 2582855

504 ζ7 +
99319
45 ζ5ζ2 − 24527

40 ζ3ζ
2
2

)

+
(204143

30 ζ5,3 +
694817
1080 ζ5ζ3 +

316049
162 ζ23ζ2 − 387942419

84000 ζ42

)
+O(ε), (3.26)

I(13)p,12 = 1
ε8

( 1
576

)
+ 1

ε6

( 1
24ζ2

)
+ 1

ε5

(181
864ζ3

)
+ 1

ε4

(57
80ζ22

)
+ 1

ε3

(5833
1440ζ5 +

595
144ζ3ζ2

)

+ 1
ε2

(2083
162 ζ23 + 33163

2520 ζ32

)
+ 1

ε

(1623313
8064 ζ7 +

7001
120 ζ5ζ2 +

4063
80 ζ3ζ

2
2

)

+
(

− 1567
120 ζ5,3 +

201041
270 ζ5ζ3 − 1513

216 ζ23ζ2 +
3031177
12000 ζ42

)
+O(ε), (3.27)

I(14)p,13 = 1
ε8

( 23
576

)
+ 1

ε6

(
− 47

144ζ2

)
+ 1

ε5

(
− 1789

864 ζ3

)
+ 1

ε4

(
− 433

288ζ22

)

+ 1
ε3

(
− 60961

1440 ζ5 +
4765
216 ζ3ζ2

)
+ 1

ε2

(134567
2592 ζ23 − 52957

2520 ζ32

)

+ 1
ε

(
− 2434597

2016 ζ7 +
97279
360 ζ5ζ2 +

295021
2160 ζ3ζ

2
2

)

+
(

− 7319
60 ζ5,3 +

2126603
2160 ζ5ζ3 − 60533

648 ζ23ζ2 − 14105297
42000 ζ42

)
+O(ε), (3.28)

I(17)p,14 = 1
ε8

(
− 3

64

)
+ 1

ε6

(31
96ζ2

)
+ 1

ε5

(3
4ζ3

)
+ 1

ε4

(
− 6541

1440ζ22

)

+ 1
ε3

(
− 1063

20 ζ5 − 781
36 ζ3ζ2

)
+ 1

ε2

(2741
144 ζ23 − 192937

2016 ζ32

)

+ 1
ε

(
− 3518471

2688 ζ7 − 32669
80 ζ5ζ2 +

719429
2160 ζ3ζ

2
2

)

+
(4559

10 ζ5,3 +
268141
40 ζ5ζ3 +

10627
144 ζ23ζ2 − 55582357

48000 ζ42

)
+O(ε), (3.29)

I(17)p,15 = 1
ε8

( 1
576

)
+ 1

ε6

(
− 1

8ζ2

)
+ 1

ε5

(
− 319

432ζ3

)
+ 1

ε4

(1201
2880ζ22

)

+ 1
ε3

(
− 1373

360 ζ5 +
2353
144 ζ3ζ2

)
+ 1

ε2

(7328
81 ζ23 + 67729

4032 ζ32

)

+ 1
ε

(3392399
4032 ζ7 − 27833

120 ζ5ζ2 +
890263
4320 ζ3ζ

2
2

)

+
(

− 7591
40 ζ5,3 +

3939533
1080 ζ5ζ3 − 35209

27 ζ23ζ2 +
952297279
2016000 ζ42

)
+O(ε), (3.30)

I(19)p,16 = 1
ε8

(
− 1

96

)
+ 1

ε6

(
− 53

288ζ2

)
+ 1

ε5

(
− 337

288ζ3

)
+ 1

ε4

(
− 637

240ζ22

)
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+ 1
ε3

(
− 27601

480 ζ5 +
1541
216 ζ3ζ2

)
+ 1

ε2

(
− 4069

288 ζ23 − 524371
10080 ζ32

)

+ 1
ε

(
− 1698595

672 ζ7 +
33556
45 ζ5ζ2 +

8807
360 ζ3ζ

2
2

)

+
(4893

10 ζ5,3 − 83399
80 ζ5ζ3 +

924893
648 ζ23ζ2 − 1110914569

1008000 ζ42

)
+O(ε), (3.31)

I(19)p,17 = 1
ε8

( 5
288

)
+ 1

ε6

(
− 139

288ζ2

)
+ 1

ε5

(
− 3809

864 ζ3

)
+ 1

ε4

(
− 2609

240 ζ22

)

+ 1
ε3

(
− 56425

288 ζ5 +
10235
432 ζ3ζ2

)
+ 1

ε2

(80651
1296 ζ23 − 184073

1008 ζ32

)

+ 1
ε

(
− 27831739

4032 ζ7 +
630593
720 ζ5ζ2 +

39206
45 ζ3ζ

2
2

)

+
(50049

20 ζ5,3 +
11313389
1080 ζ5ζ3 +

474319
162 ζ23ζ2 − 1865882993

504000 ζ42

)
+O(ε), (3.32)

I(21)p,18 = 1
ε8

( 1
576

)
+ 1

ε6

( 1
36ζ2

)
+ 1

ε5

(151
864ζ3

)
+ 1

ε4

(173
288ζ22

)
+ 1

ε3

(5503
1440ζ5 +

505
216ζ3ζ2

)

+ 1
ε2

(9895
2592ζ23 + 6317

720 ζ32

)
+ 1

ε

(
− 169789

4032 ζ7 +
3419
45 ζ5ζ2 +

89593
2160 ζ3ζ

2
2

)

+
(407

15 ζ5,3 − 263897
2160 ζ5ζ3 +

41719
162 ζ23ζ2 +

43695623
504000 ζ42

)
+O(ε), (3.33)

I(25)p,19 = 1
ε8

( 1
288

)
+ 1

ε6

( 1
144ζ2

)
+ 1

ε5

(209
216ζ3

)
+ 1

ε4

(623
120ζ22

)
+ 1

ε3

(39449
360 ζ5 − 205

108ζ3ζ2

)

+ 1
ε2

(11621
162 ζ23 + 38501

315 ζ32

)
+ 1

ε

(2997077
504 ζ7 − 290821

180 ζ5ζ2 +
8023
90 ζ3ζ

2
2

)

+
(

− 62426
15 ζ5,3 − 493027

135 ζ5ζ3 − 210472
81 ζ23ζ2 +

69281143
15750 ζ42

)
+O(ε), (3.34)

I(30)p,20 = 1
ε8

( 1
288

)
+ 1

ε6

(
− 1

32ζ2

)
+ 1

ε5

(
− 187

864ζ3

)
+ 1

ε4

(
− 403

720ζ22

)

+ 1
ε3

(
− 38659

1440 ζ5 +
191
36 ζ3ζ2

)
+ 1

ε2

(
− 14047

2592 ζ23 − 284189
10080 ζ32

)

+ 1
ε

(
− 1150361

1008 ζ7 +
25019
60 ζ5ζ2 − 77089

1080 ζ3ζ
2
2

)

+
(

− 7253
15 ζ5,3 − 2593651

2160 ζ5ζ3 +
40867
108 ζ23ζ2 − 7941559

48000 ζ42

)
+O(ε), (3.35)

I(13)p,21 = 1
ε5

( 1
24ζ3

)
+ 1

ε3

( 7
12ζ5 − 5

12ζ3ζ2

)

+ 1
ε2

(
− 193

72 ζ23 + 6389
2520ζ32

)
+ 1

ε

(44
3 ζ7 +

189
4 ζ5ζ2 − 2431

120 ζ3ζ
2
2

)

+
(

− 2621
60 ζ5,3 − 45341

180 ζ5ζ3 − 9161
72 ζ23ζ2 +

228869
5250 ζ42

)
+O(ε), (3.36)

I(14)p,22 = 1
ε6

( 1
48ζ2

)
+ 1

ε5

(
− 7

48ζ3

)
+ 1

ε4

(
− 13

240ζ22

)
+ 1

ε3

(
− 281

48 ζ5 +
17
9 ζ3ζ2

)
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1

+ 1
ε2

(439
144ζ23 − 8053

2520ζ32

)
+ 1

ε

(
− 16135

96 ζ7 − 544
15 ζ5ζ2 +

8497
180 ζ3ζ

2
2

)

+
(

− 15557
60 ζ5,3 − 3373

360 ζ5ζ3 − 55691
216 ζ23ζ2 +

3474517
126000 ζ42

)
+O(ε), (3.37)

I(14)p,23 = 1
ε4

(
− 7

20ζ22

)
+ 1

ε3

(
− 377

24 ζ5 +
97
12ζ3ζ2

)

+ 1
ε2

(433
24 ζ23 − 8531

840 ζ32

)
+ 1

ε

(
− 92183

64 ζ7 +
1387
3 ζ5ζ2 +

5609
60 ζ3ζ

2
2

)

+
(30512

15 ζ5,3 +
168463
36 ζ5ζ3 − 17131

36 ζ23ζ2 − 32238699
28000 ζ42

)
+O(ε), (3.38)

I(14)p,24 = 1
ε8

( 5
48

)
+ 1

ε6

(
− 65

72ζ2

)
+ 1

ε5

(
− 293

48 ζ3

)
+ 1

ε4

(
− 2171

480 ζ22

)

+ 1
ε3

(
− 4019

48 ζ5 +
11495
216 ζ3ζ2

)
+ 1

ε2

(82361
432 ζ23 − 163871

10080 ζ32

)

+ 1
ε

(
− 707127

448 ζ7 +
41611
72 ζ5ζ2 +

47639
144 ζ3ζ

2
2

)

+
(42559

60 ζ5,3 +
1714063
360 ζ5ζ3 − 967087

648 ζ23ζ2 − 102398431
144000 ζ42

)
+O(ε), (3.39)

I(17)p,25 = 1
ε8

( 1
96

)
+ 1

ε6

(
− 11

96ζ2

)
+ 1

ε5

(
− 11

9 ζ3

)
+ 1

ε4

(
− 2743

960 ζ22

)

+ 1
ε3

(
− 2329

80 ζ5 − 11
36ζ3ζ2

)
+ 1

ε2

(26141
864 ζ23 − 642007

20160 ζ32

)

+ 1
ε

(
− 1937119

2688 ζ7 +
1101
20 ζ5ζ2 +

169157
1440 ζ3ζ

2
2

)

+
(9449

120 ζ5,3 +
399373
240 ζ5ζ3 +

27517
432 ζ23ζ2 − 754079597

2016000 ζ42

)
+O(ε), (3.40)

I(17)p,26 = 1
ε8

( 5
144

)
+ 1

ε6

(
− 2

9ζ2

)
+ 1

ε5

(
− 331

216ζ3

)
+ 1

ε4

(1171
240 ζ22

)

+ 1
ε3

(3857
36 ζ5 +

2041
216 ζ3ζ2

)
+ 1

ε2

(72223
1296 ζ23 + 67171

504 ζ32

)

+ 1
ε

(14485195
4032 ζ7 − 21157

45 ζ5ζ2 − 39241
180 ζ3ζ

2
2

)

+
(1664

5 ζ5,3 − 4344341
1080 ζ5ζ3 − 343849

324 ζ23ζ2 +
339481019
252000 ζ42

)
+O(ε), (3.41)

I(17)p,27 = 1
ε5

( 1
48ζ3

)
+ 1

ε4

(
− 7

160ζ22

)
+ 1

ε3

(91
48ζ5 − 113

48 ζ3ζ2

)
+ 1

ε2

(1063
288 ζ23 − 13751

5040 ζ32

)

+ 1
ε

(46099
192 ζ7 − 9517

48 ζ5ζ2 +
3617
80 ζ3ζ

2
2

)

+
(6849

20 ζ5,3 +
999253
720 ζ5ζ3 − 943

36 ζ23ζ2 − 11407999
72000 ζ42

)
+O(ε), (3.42)

I(17)p,28 = 1
ε6

( 1
24ζ2

)
+ 1

ε5

(
− 1

8ζ3

)
+ 1

ε4

( 1
60ζ22

)
+ 1

ε3

(20
3 ζ5 − 29

36ζ3ζ2

)
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0
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(
2
0
2
2
)
0
9
1

+ 1
ε2

(703
24 ζ23 + 11281

1260 ζ32

)
+ 1

ε

(25855
48 ζ7 − 121

5 ζ5ζ2 +
2807
45 ζ3ζ

2
2

)

+
(

− 12944
15 ζ5,3 − 37447

180 ζ5ζ3 − 7802
27 ζ23ζ2 +

103912481
126000 ζ42

)
+O(ε), (3.43)

I(19)p,29 = 1
ε8

(
− 1

36

)
+ 1

ε6

(
− 1

16ζ2

)
+ 1

ε5

(
− 107

432ζ3

)
+ 1

ε4

(9
2ζ22

)

+ 1
ε3

(18091
720 ζ5 +

467
12 ζ3ζ2

)
+ 1

ε2

(155179
1296 ζ23 + 348347

5040 ζ32

)

+ 1
ε

(920383
1008 ζ7 +

25153
60 ζ5ζ2 +

1225
24 ζ3ζ

2
2

)

+
(1189

6 ζ5,3 +
3745369
1080 ζ5ζ3 − 40175

24 ζ23ζ2 +
12545753
14400 ζ42

)
+O(ε), (3.44)

I(19)p,30 = 1
ε5

(
− 7

24ζ3

)
+ 1

ε4

(
− 5

48ζ22

)
+ 1

ε3

(69
8 ζ5 +

7
4ζ3ζ2

)

+ 1
ε2

(1885
72 ζ23 + 8131

1008ζ32

)
+ 1

ε

(15071
48 ζ7 − 266

3 ζ5ζ2 +
16751
360 ζ3ζ

2
2

)

+
(3269

30 ζ5,3 +
11363
20 ζ5ζ3 − 641

3 ζ23ζ2 +
32252011
168000 ζ42

)
+O(ε), (3.45)

I(19)p,31 = 1
ε8

(
− 11

288

)
+ 1

ε6

( 65
288ζ2

)
+ 1

ε5

(
− 2005

864 ζ3

)
+ 1

ε4

(63
80ζ22

)

+ 1
ε3

(115559
1440 ζ5 − 4519

432 ζ3ζ2

)
+ 1

ε2

(18203
162 ζ23 + 22915

252 ζ32

)

+ 1
ε

(21937549
4032 ζ7 − 125525

144 ζ5ζ2 − 4009
20 ζ3ζ

2
2

)

+
(

− 287479
60 ζ5,3 − 941249

108 ζ5ζ3 − 956701
324 ζ23ζ2 +

183065759
36000 ζ42

)
+O(ε), (3.46)

I(30)p,32 = 1
ε8

(
− 1

12

)
+ 1

ε6

(35
48ζ2

)
+ 1

ε5

(445
144ζ3

)
+ 1

ε4

(
− 269

240ζ22

)

+ 1
ε3

(2767
80 ζ5 − 1433

36 ζ3ζ2

)
+ 1

ε2

(
− 14051

432 ζ23 − 8363
630 ζ32

)

+ 1
ε

(89105
336 ζ7 − 3639

4 ζ5ζ2 +
162007
360 ζ3ζ

2
2

)

+
(
899ζ5,3 +

25969
8 ζ5ζ3 +

31201
27 ζ23ζ2 − 2959007

8400 ζ42

)
+O(ε), (3.47)

I(21)1 = I(21)p,18, (3.48)

I(22)2 = 1
ε8

( 1
192

)
+ 1

ε6

(
− 19

72ζ2

)
+ 1

ε5

(
− 61

32ζ3

)
+ 1

ε4

(
− 5089

1440ζ22

)

+ 1
ε3

(
− 41237

480 ζ5 +
4111
216 ζ3ζ2

)
+ 1

ε2

(
− 2881

864 ζ23 − 8259
112 ζ32

)

+ 1
ε

(
− 819241

224 ζ7 +
314971
360 ζ5ζ2 +

325133
2160 ζ3ζ

2
2

)
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2
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2
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1

+
(27142

15 ζ5,3 +
1433501
240 ζ5ζ3 +

88663
162 ζ23ζ2 − 994787867

504000 ζ42

)
+O(ε), (3.49)

I(23)3 = 1
ε8

( 1
144

)
+ 1

ε6

(
− 5

18ζ2

)
+ 1

ε5

(
− 401

216ζ3

)
+ 1

ε4

(19
16ζ22

)

+ 1
ε3

(
− 16277

360 ζ5 +
13151
216 ζ3ζ2

)
+ 1

ε2

(248513
1296 ζ23 + 751

45 ζ32

)

+ 1
ε

(
− 2796859

4032 ζ7 +
37751
36 ζ5ζ2 − 653

5 ζ3ζ
2
2

)

+
(

− 39277
60 ζ5,3 +

5465129
1080 ζ5ζ3 − 378593

81 ζ23ζ2 +
53058307
126000 ζ42

)
+O(ε), (3.50)

I(24)4 = 1
ε8

(
− 5

576

)
+ 1

ε6

( 65
144ζ2

)
+ 1

ε5

(1645
864 ζ3

)
+ 1

ε4

(
− 109

40 ζ22

)

+ 1
ε3

(2093
288 ζ5 − 9361

216 ζ3ζ2

)
+ 1

ε2

(
− 166229

2592 ζ23 − 289223
10080 ζ32

)

+ 1
ε

(995315
4032 ζ7 − 24133

36 ζ5ζ2 +
39527
120 ζ3ζ

2
2

)

+
(

− 1533
40 ζ5,3 − 339469

432 ζ5ζ3 +
134365

81 ζ23ζ2 +
29437571
1008000 ζ42

)
+O(ε), (3.51)

I(25)5 = I(25)p,19, (3.52)

I(26)6 = 1
ε8

(
− 25

576

)
+ 1

ε6

(313
288ζ2

)
+ 1

ε5

(1241
216 ζ3

)
+ 1

ε4

(
− 3671

720 ζ22

)

+ 1
ε3

(275
9 ζ5 − 7033

54 ζ3ζ2

)
+ 1

ε2

(
− 210031

648 ζ23 − 9349
105 ζ32

)

+ 1
ε

(3509717
2016 ζ7 − 366929

180 ζ5ζ2 +
284633
540 ζ3ζ

2
2

)

+
(

− 10763
6 ζ5,3 − 3150517

540 ζ5ζ3 +
1847833
324 ζ23ζ2 +

2984111
1575 ζ42

)
+O(ε), (3.53)

I(26)7 = 1
ε8

( 1
288

)
+ 1

ε6

( 1
144ζ2

)
+ 1

ε5

(209
216ζ3

)
+ 1

ε4

(43
40ζ22

)
+ 1

ε3

(
− 5761

360 ζ5 +
59
27ζ3ζ2

)

+ 1
ε2

(27179
648 ζ23 − 17501

2520 ζ32

)
+ 1

ε

(4704689
2016 ζ7 +

22139
180 ζ5ζ2 +

11471
60 ζ3ζ

2
2

)

+
(

− 64211
10 ζ5,3 +

4526447
540 ζ5ζ3 − 41461

81 ζ23ζ2 +
1215668297
252000 ζ42

)
+O(ε), (3.54)

I(27)8 = 1
ε8

(
− 1

64

)
+ 1

ε6

( 5
24ζ2

)
+ 1

ε5

(55
48ζ3

)
+ 1

ε4

( 49
320ζ22

)
+ 1

ε3

(1183
240 ζ5 − 3395

288 ζ3ζ2

)

+ 1
ε2

(
− 20561

576 ζ23 − 39377
1680 ζ32

)
+ 1

ε

(
− 8686441

5376 ζ7 +
217
6 ζ5ζ2 +

1617
20 ζ3ζ

2
2

)

+
(233423

80 ζ5,3 +
882581
288 ζ5ζ3 +

136097
108 ζ23ζ2 − 412195213

168000 ζ42

)
+O(ε), (3.55)

I(28)9 = 1
ε8

(
− 1

96

)
+ 1

ε6

( 97
288ζ2

)
+ 1

ε5

(271
144ζ3

)
+ 1

ε4

(
− 3793

2880ζ22

)
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+ 1
ε3

(4291
120 ζ5 − 21359

432 ζ3ζ2

)
+ 1

ε2

(
− 19235

144 ζ23 + 1397
576 ζ32

)

+ 1
ε

(909513
896 ζ7 − 420149

720 ζ5ζ2 +
487043
4320 ζ3ζ

2
2

)

+
(

− 23879
40 ζ5,3 − 1003741

180 ζ5ζ3 +
4318261
1296 ζ23ζ2 +

1298874221
2016000 ζ42

)
+O(ε), (3.56)

I(29)10 = 1
ε8

(
− 1

1152

)
+ 1

ε6

(
− 1

576ζ2

)
+ 1

ε5

(
− 13

1728ζ3

)
+ 1

ε4

(169
640ζ22

)

+ 1
ε3

(26357
2880 ζ5 +

685
1728ζ3ζ2

)
+ 1

ε2

(186637
10368 ζ23 + 57191

5040 ζ32

)

+ 1
ε

(4990045
8064 ζ7 − 504581

2880 ζ5ζ2 +
13379
960 ζ3ζ

2
2

)

+
(

− 86383
480 ζ5,3 +

1612597
8640 ζ5ζ3 − 1324753

2592 ζ23ζ2 +
134849039
504000 ζ42

)
+O(ε), (3.57)

I(30)11 = I(30)p,20, (3.58)

I(27)12 = 1
ε8

( 35
1152

)
+ 1

ε6

(
− 73

192ζ2

)
+ 1

ε5

(
− 1015

432 ζ3

)
+ 1

ε4

(
− 4069

1440ζ22

)

+ 1
ε3

(
− 8693

144 ζ5 +
5809
288 ζ3ζ2

)
+ 1

ε2

(260783
5184 ζ23 − 36499

2240 ζ32

)

+ 1
ε

(
− 57455

288 ζ7 +
255661
480 ζ5ζ2 +

85981
432 ζ3ζ

2
2

)

+
(

− 10607
5 ζ5,3 +

2369983
864 ζ5ζ3 − 23653

48 ζ23ζ2 +
4065832699
2016000 ζ42

)
+O(ε), (3.59)

I(28)13 = 1
ε8

(
− 13

1152

)
+ 1

ε6

( 35
192ζ2

)
+ 1

ε5

(305
432ζ3

)
+ 1

ε4

( 461
1440ζ22

)

+ 1
ε3

(4001
180 ζ5 − 461

72 ζ3ζ2

)
+ 1

ε2

(11243
324 ζ23 + 4295

336 ζ32

)

+ 1
ε

(1798807
8064 ζ7 − 3411

16 ζ5ζ2 +
2686
27 ζ3ζ

2
2

)

+
(535

8 ζ5,3 − 229363
108 ζ5ζ3 − 34495

144 ζ23ζ2 − 12987991
50400 ζ42

)
+O(ε), (3.60)

I(29)14 = 1
ε5

(
− 1

32ζ3

)
+ 1

ε4

( 9
320ζ22

)
+ 1

ε3

(
− 371

96 ζ5 +
91
48ζ3ζ2

)

+ 1
ε2

(
− 223

96 ζ23 + 653
576ζ32

)
+ 1

ε

(
− 4871

48 ζ7 +
789
8 ζ5ζ2 +

2287
480 ζ3ζ

2
2

)

+
(7507

60 ζ5,3 +
421943
720 ζ5ζ3 +

2945
144 ζ23ζ2 +

13457111
672000 ζ42

)
+O(ε), (3.61)

I(29)15 = 1
ε8

(
− 1

18

)
+ 1

ε6

(53
48ζ2

)
+ 1

ε5

(2621
432 ζ3

)
+ 1

ε4

(
− 1423

1440ζ22

)

+ 1
ε3

(54437
720 ζ5 − 7751

72 ζ3ζ2

)
+ 1

ε2

(
− 413683

1296 ζ23 − 410153
10080 ζ32

)
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+ 1
ε

(12394561
8064 ζ7 − 386357

240 ζ5ζ2 − 221929
2160 ζ3ζ

2
2

)

+
(13907

120 ζ5,3 − 1866583
270 ζ5ζ3 +

664117
144 ζ23ζ2 − 251120053

1008000 ζ42

)
+O(ε), (3.62)

I(30)16 = 1
ε8

( 7
192

)
+ 1

ε6

(
− 35

96ζ2

)
+ 1

ε5

(
− 271

144ζ3

)
+ 1

ε4

(
− 49

160ζ22

)

+ 1
ε3

(
− 6037

240 ζ5 +
3343
144 ζ3ζ2

)
+ 1

ε2

(42271
864 ζ23 + 1711

315 ζ32

)

+ 1
ε

(
− 32891

96 ζ7 +
22439
48 ζ5ζ2 − 3241

48 ζ3ζ
2
2

)

+
(
-256ζ5,3 +

280219
720 ζ5ζ3 − 166087

216 ζ23ζ2 +
2656651
16800 ζ42

)
+O(ε), (3.63)

I(30)17 = 1
ε5

(
− 1

32ζ3

)
+ 1

ε4

( 37
960ζ22

)
+ 1

ε3

(49
96ζ5 +

9
16ζ3ζ2

)

+ 1
ε2

(
− 625

96 ζ23 + 81401
20160ζ32

)
+ 1

ε

(307
16 ζ7 +

703
6 ζ5ζ2 − 81341

1440 ζ3ζ
2
2

)

+
(

− 3505
24 ζ5,3 − 505507

720 ζ5ζ3 +
3259
48 ζ23ζ2 +

57616759
403200 ζ42

)
+O(ε), (3.64)

I(30)18 = 1
ε8

( 1
288

)
+ 1

ε6

( 11
288ζ2

)
+ 1

ε5

(
− 1

864ζ3

)
+ 1

ε4

(
− 241

160ζ22

)

+ 1
ε3

(
− 18559

1440 ζ5 − 9749
864 ζ3ζ2

)
+ 1

ε2

(
− 153467

5184 ζ23 − 763019
20160 ζ32

)

+ 1
ε

(
− 1102943

1008 ζ7 − 249299
1440 ζ5ζ2 +

2177
30 ζ3ζ

2
2

)

+
(6098

15 ζ5,3 − 5763491
4320 ζ5ζ3 +

1405787
1296 ζ23ζ2 − 2039554577

2016000 ζ42

)
+O(ε), (3.65)

I(22)19 = 1
ε8

( 1
576

)
+ 1

ε6

( 29
288ζ2

)
+ 1

ε5

(269
432ζ3

)
+ 1

ε4

(553
360ζ22

)
+ 1

ε3

(43109
720 ζ5 − 349

27 ζ3ζ2

)

+ 1
ε2

(57485
1296 ζ23 + 142267

2520 ζ32

)
+ 1

ε

(995699
252 ζ7 − 49408

45 ζ5ζ2 +
2279
108 ζ3ζ

2
2

)

+
(

− 17607
5 ζ5,3 − 6097903

1080 ζ5ζ3 − 980735
648 ζ23ζ2 +

203235527
63000 ζ42

)
+O(ε), (3.66)

I(22)20 = 1
ε2

(1
4ζ23 + 31

140ζ32

)
+ 1

ε

(
− 199

64 ζ7 − 39
8 ζ5ζ2 +

7
5ζ3ζ

2
2

)

+
(78

5 ζ5,3 + -61ζ5ζ3 +
13
8 ζ23ζ2 − 515773

28000 ζ42

)
+O(ε), (3.67)

I(24)21 = 1
ε8

( 5
576

)
+ 1

ε6

( 37
288ζ2

)
+ 1

ε5

(229
432ζ3

)
+ 1

ε4

(
− 541

360ζ22

)

+ 1
ε3

(1799
144 ζ5 − 13385

432 ζ3ζ2

)
+ 1

ε2

(
− 259405

2592 ζ23 − 222371
10080 ζ32

)

+ 1
ε

(858061
4032 ζ7 − 397679

720 ζ5ζ2 − 61453
2160 ζ3ζ

2
2

)

– 16 –



J
H
E
P
0
1
(
2
0
2
2
)
0
9
1

+
(7949

24 ζ5,3 − 5618761
2160 ζ5ζ3 +

2322067
1296 ζ23ζ2 − 27047381

67200 ζ42

)
+O(ε), (3.68)

I(24)22 = 1
ε8

( 1
144

)
+ 1

ε6

(
− 1

18ζ2

)
+ 1

ε5

(
− 263

216ζ3

)
+ 1

ε4

(
− 3127

720 ζ22

)

+ 1
ε3

(
− 27287

360 ζ5 +
683
108ζ3ζ2

)
+ 1

ε2

(35743
648 ζ23 − 71705

1008 ζ32

)

+ 1
ε

(
− 9118279

4032 ζ7 +
161671
360 ζ5ζ2 +

483137
1080 ζ3ζ

2
2

)

+
(2023

12 ζ5,3 +
4183531
540 ζ5ζ3 +

109561
648 ζ23ζ2 − 30490193

100800 ζ42

)
+O(ε), (3.69)

I(28)23 = 1
ε4

(1
4ζ22

)
+ 1

ε3

(5
4ζ5 +

3
4ζ3ζ2

)
+ 1

ε2

(117
8 ζ23 − 659

168ζ32

)

+ 1
ε

(
− 65ζ7 − 443

4 ζ5ζ2 +
421
6 ζ3ζ

2
2

)

+
(
69ζ5,3 +

9349
12 ζ5ζ3 − 111

2 ζ23ζ2 − 780079
5600 ζ42

)
+O(ε). (3.70)

We also provide these analytical solutions in the supplementary material of this paper.
Our results are expressed in terms of regular and multiple zeta values

ζi =
∞∑

m=1

1
mi

(i = 2, . . . , 7), ζ5,3 =
∞∑

m=1

m−1∑

n=1

1
m5n3 ≈ 0.0377076729848 . (3.71)

We see from eqs. (3.16)–(3.70) that the integrals I(ni)
i through to weight 8 are of uniform

transcendental weight. Moreover, we reduced several of the master integrals I(ni)
i to the UT

basis integrals employed in our differential equations calculations and found the coefficients
to be rational numbers, showing that their UT property extends to higher orders in ε as well.

4 Result for the Sudakov form factor

Inserting our results for the master integrals in the reduced expression (2.4) we obtain for
the four-loop contribution to the Sudakov form factor

F4 =
[ 1

ε8

(2
3

)
+ 1

ε6

(2
3ζ2

)
+ 1

ε5

(
− 38

9 ζ3

)
+ 1

ε4

( 5
18ζ22

)
+ 1

ε3

(1082
15 ζ5 +

23
3 ζ3ζ2

)

+ 1
ε2

(10853
54 ζ23 + 95477

945 ζ32

)
+ 1

ε

(541619
126 ζ7 − 15529

45 ζ5ζ2 +
39067
135 ζ3ζ

2
2

)

+
(

− 808
45 ζ5,3 +

499927
45 ζ5ζ3 − 35707

27 ζ23ζ2 +
71888861
31500 ζ42

)]

+ 1
N2

c

[ 1
ε2

(
18ζ23 + 372

35 ζ32

)
+ 1

ε

(
− 2613

4 ζ7 − 192ζ5ζ2 +
138
5 ζ3ζ

2
2

)

+
(
390ζ5,3 − 7638ζ5ζ3 − 24ζ23ζ2 − 248383

175 ζ42

)
+O(ε)

]
. (4.1)

While the poles in ε are known, the finite term of the form factor is new and represents
the main result of this paper.
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It is useful to consider the logarithm of the form factor

ln(F ) = ln
(
1 + azεF1 + a2z2εF2 + a3z3εF3 + a4z4εF4 + . . .

)
(4.2)

= azεF1 + a2z2ε
(
F2 − 1

2F
2
1

)
+ a3z3ε

(
F3 − F2F1 +

1
3F

3
1

)

+ a4z4ε
(
F4 − F3F1 − 1

2F
2
2 + F2F

2
1 − 1

4F
4
1

)
+ . . . , (4.3)

which can be written in the form [30, 77]

ln(F ) =
∞∑

L=1
aLzLε

(
− ΓL

2(Lε)2 − GL

2Lε
+ Lfin

L

)
, (4.4)

defining the finite remainders Lfin
L . The pole terms are fixed by the cusp anomalous dimen-

sion [9, 10]

Γ =
∞∑

L=1
aLΓL (4.5)

= a
(
4
)
+ a2

(
-8ζ2

)
+ a3

(
88ζ4

)
+ a4

(
− 876ζ6 − 32ζ23 + 1

N2
c

[
− 1488ζ6 − 576ζ23

])

+O(a5) (4.6)

and the collinear anomalous dimension [12]

G =
∞∑

L=1
aLGL (4.7)

= a2
(

− 4ζ3
)
+ a3

(
32ζ5 +

80
3 ζ3ζ2

)
(4.8)

+ a4
(

− 300ζ7 − 256ζ5ζ2 − 384ζ4ζ3 +
1
N2

c

[
5226ζ7 + 1536ζ5ζ2 − 552ζ4ζ3

])
+O(a5) .

Using the one-, two- and three-loop results of [35] and our four-loop result (4.1), we find
for the finite remainders of the logarithm of the form factor

Lfin
1 =

(
ζ2
)
+ ε
(14

3 ζ3

)
+ ε2

(47
20ζ22

)
+ ε3

(62
5 ζ5 − 7

3ζ3ζ2

)
+ ε4

(
− 49

9 ζ23 + 949
280ζ32

)
(4.9)

+ ε5
(254

7 ζ7 − 31
5 ζ5ζ2 − 329

60 ζ3ζ
2
2

)
+ ε6

(
− 434

15 ζ5ζ3 +
49
18ζ23ζ2 +

55779
11200ζ42

)
+O(ε7) ,

Lfin
2 = ε

(
39ζ5 − 5

3ζ3ζ2

)
+ ε2

(235
3 ζ23 + 2623

70 ζ32

)
+ ε3

(
978ζ7 − 437

5 ζ5ζ2 +
219
2 ζ3ζ

2
2

)

+ ε4
(
-264ζ5,3 +

2238
5 ζ5ζ3 − 1351

9 ζ23ζ2 + 508ζ42

)
+O(ε5) , (4.10)

Lfin
3 =

(
− 104

9 ζ23 − 12352
945 ζ32

)
+ ε
(

− 21181
18 ζ7 +

748
9 ζ5ζ2 − 856

45 ζ3ζ
2
2

)

+ ε2
(

− 11368
45 ζ5,3 − 15376

3 ζ5ζ3 +
4228
9 ζ23ζ2 − 1989614

3375 ζ42

)
+O(ε3) , (4.11)
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Lfin
4 = 24

5 ζ5,3 + 184ζ5ζ3 + 41ζ23ζ2 +
1505381
10500 ζ42

+ 1
N2

c

[
390ζ5,3 − 7638ζ5ζ3 − 24ζ23ζ2 − 248383

175 ζ42

]
+O(ε) . (4.12)

We observe that the subtraction of exponentiated terms leads to somewhat simpler rational
prefactors in the finite remainder (4.12) compared to the weight 8 terms of (4.1).

5 Conclusions

We presented the analytical calculation of the Sudakov form factor in N = 4 supersym-
metric Yang-Mills theory to four loop order. To solve the master integrals to weight 8, we
employed direct parametric integrations and the method of differential equations with an
auxiliary scale.

To the best of our knowledge, this is the first time that a form factor has been computed
to four-loop order in full-color Yang-Mills theory, and we hope that our explicit results are
helpful in further studies of formal and phenomenological theories at high perturbative
orders. The master integrals entering the present calculation form a subset of the most
complicated integrals needed for general massless three-point functions with one off-shell
leg. Our methods allow us to calculate also the remaining master integrals, providing
the last missing building block for the calculation of the massless corrections to the quark-
photon vertex and the effective gluon-Higgs vertex in four-loop Quantum Chromodynamics.

Acknowledgments

AvM and RMS gratefully acknowledge Erik Panzer for related collaborations. This re-
search was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Grant No. 396021762 — TRR 257 “Particle Physics Phenomenology
after the Higgs Discovery” and by the National Science Foundation (NSF) under Grant
No. 2013859 “Multi-loop amplitudes and precise predictions for the LHC”. The work of
AVS and VAS was supported by the Russian Science Foundation under Agreement No.
21-71-30003 (IBP reduction) and by the Ministry of Education and Science of the Russian
Federation as part of the program of the Moscow Center for Fundamental and Applied
Mathematics under Agreement No. 075-15-2019-1621 (numerical checks of results for the
master integrals with FIESTA). We acknowledge the High Performance Computing Center
at Michigan State University for computing resources. The Feynman diagrams were drawn
with the help of Axodraw [78] and JaxoDraw [79].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills theories, Nucl. Phys. B
121 (1977) 77 [INSPIRE].

– 19 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0550-3213(77)90328-5
https://doi.org/10.1016/0550-3213(77)90328-5
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB121%2C77%22


J
H
E
P
0
1
(
2
0
2
2
)
0
9
1

[2] F. Gliozzi, J. Scherk and D.I. Olive, Supersymmetry, supergravity theories and the dual
spinor model, Nucl. Phys. B 122 (1977) 253 [INSPIRE].

[3] J.M. Henn, What can we learn about QCD and collider physics from N=4 super
Yang-Mills?, Ann. Rev. Nucl. Part. Sci. 71 (2021) 87 [arXiv:2006.00361] [INSPIRE].

[4] G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson loops beyond the
leading order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].

[5] N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. 0701
(2007) P01021 [hep-th/0610251] [INSPIRE].

[6] A. Grozin, J. Henn and M. Stahlhofen, On the Casimir scaling violation in the cusp
anomalous dimension at small angle, JHEP 10 (2017) 052 [arXiv:1708.01221] [INSPIRE].

[7] J.M. Henn, T. Peraro, M. Stahlhofen and P. Wasser, Matter dependence of the four-loop cusp
anomalous dimension, Phys. Rev. Lett. 122 (2019) 201602 [arXiv:1901.03693] [INSPIRE].

[8] R.N. Lee, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Four-loop quark form factor with
quartic fundamental colour factor, JHEP 02 (2019) 172 [arXiv:1901.02898] [INSPIRE].

[9] J.M. Henn, G.P. Korchemsky and B. Mistlberger, The full four-loop cusp anomalous
dimension in N = 4 super Yang-Mills and QCD, JHEP 04 (2020) 018 [arXiv:1911.10174]
[INSPIRE].

[10] T. Huber, A. von Manteuffel, E. Panzer, R.M. Schabinger and G. Yang, The four-loop cusp
anomalous dimension from the N = 4 Sudakov form factor, Phys. Lett. B 807 (2020) 135543
[arXiv:1912.13459] [INSPIRE].

[11] L.J. Dixon, The principle of maximal transcendentality and the four-loop collinear anomalous
dimension, JHEP 01 (2018) 075 [arXiv:1712.07274] [INSPIRE].

[12] B. Agarwal, A. von Manteuffel, E. Panzer and R.M. Schabinger, Four-loop collinear
anomalous dimensions in QCD and N = 4 super Yang-Mills, Phys. Lett. B 820 (2021)
136503 [arXiv:2102.09725] [INSPIRE].

[13] B.A. Kniehl and V.N. Velizhanin, Non-planar universal anomalous dimension of twist-two
operators with general Lorentz spin at four loops in N = 4 SYM theory, Nucl. Phys. B 968
(2021) 115429 [arXiv:2103.16420] [INSPIRE].

[14] Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally
supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001
[hep-th/0505205] [INSPIRE].

[15] V. Del Duca, C. Duhr and V.A. Smirnov, The two-loop hexagon Wilson loop in N = 4 SYM,
JHEP 05 (2010) 084 [arXiv:1003.1702] [INSPIRE].

[16] S. Caron-Huot, L.J. Dixon, F. Dulat, M. von Hippel, A.J. McLeod and G. Papathanasiou,
Six-gluon amplitudes in planar N = 4 super-Yang-Mills theory at six and seven loops, JHEP
08 (2019) 016 [arXiv:1903.10890] [INSPIRE].

[17] L.J. Dixon, A.J. McLeod and M. Wilhelm, A three-point form factor through five loops,
JHEP 04 (2021) 147 [arXiv:2012.12286] [INSPIRE].

[18] A. Brandhuber, M. Kostacinska, B. Penante and G. Travaglini, Tr(F 3) supersymmetric form
factors and maximal transcendentality Part I: N = 4 super Yang-Mills, JHEP 12 (2018) 076
[arXiv:1804.05703] [INSPIRE].

– 20 –

https://doi.org/10.1016/0550-3213(77)90206-1
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB122%2C253%22
https://doi.org/10.1146/annurev-nucl-102819-100428
https://arxiv.org/abs/2006.00361
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.00361
https://doi.org/10.1016/0550-3213(87)90277-X
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB283%2C342%22
https://doi.org/10.1088/1742-5468/2007/01/P01021
https://doi.org/10.1088/1742-5468/2007/01/P01021
https://arxiv.org/abs/hep-th/0610251
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0610251
https://doi.org/10.1007/JHEP10(2017)052
https://arxiv.org/abs/1708.01221
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1708.01221
https://doi.org/10.1103/PhysRevLett.122.201602
https://arxiv.org/abs/1901.03693
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.03693
https://doi.org/10.1007/JHEP02(2019)172
https://arxiv.org/abs/1901.02898
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.02898
https://doi.org/10.1007/JHEP04(2020)018
https://arxiv.org/abs/1911.10174
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.10174
https://doi.org/10.1016/j.physletb.2020.135543
https://arxiv.org/abs/1912.13459
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.13459
https://doi.org/10.1007/JHEP01(2018)075
https://arxiv.org/abs/1712.07274
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.07274
https://doi.org/10.1016/j.physletb.2021.136503
https://doi.org/10.1016/j.physletb.2021.136503
https://arxiv.org/abs/2102.09725
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.09725
https://doi.org/10.1016/j.nuclphysb.2021.115429
https://doi.org/10.1016/j.nuclphysb.2021.115429
https://arxiv.org/abs/2103.16420
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2103.16420
https://doi.org/10.1103/PhysRevD.72.085001
https://arxiv.org/abs/hep-th/0505205
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0505205
https://doi.org/10.1007/JHEP05(2010)084
https://arxiv.org/abs/1003.1702
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1003.1702
https://doi.org/10.1007/JHEP08(2019)016
https://doi.org/10.1007/JHEP08(2019)016
https://arxiv.org/abs/1903.10890
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.10890
https://doi.org/10.1007/JHEP04(2021)147
https://arxiv.org/abs/2012.12286
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.12286
https://doi.org/10.1007/JHEP12(2018)076
https://arxiv.org/abs/1804.05703
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.05703


J
H
E
P
0
1
(
2
0
2
2
)
0
9
1

[19] T. Ahmed, P. Banerjee, A. Chakraborty, P.K. Dhani and V. Ravindran, Form factors with
two operator insertions and the principle of maximal transcendentality, Phys. Rev. D 102
(2020) 061701 [arXiv:1911.11886] [INSPIRE].

[20] A. Sever, A.G. Tumanov and M. Wilhelm, Operator product expansion for form factors,
Phys. Rev. Lett. 126 (2021) 031602 [arXiv:2009.11297] [INSPIRE].

[21] G. Lin and G. Yang, Non-planar form factors of generic local operators via on-shell unitarity
and color-kinematics duality, JHEP 04 (2021) 176 [arXiv:2011.06540] [INSPIRE].

[22] B. Penante, On-shell methods for off-shell quantities in N = 4 super Yang-Mills: from
scattering amplitudes to form factors and the dilatation operator, arXiv:1608.01634
[INSPIRE].

[23] G. Yang, On-shell methods for form factors in N = 4 SYM and their applications, Sci.
China Phys. Mech. Astron. 63 (2020) 270001 [arXiv:1912.11454] [INSPIRE].

[24] A.H. Mueller, On the Asymptotic Behavior of the Sudakov Form-factor, Phys. Rev. D 20
(1979) 2037 [INSPIRE].

[25] J.C. Collins, Algorithm to compute corrections to the Sudakov form-factor, Phys. Rev. D 22
(1980) 1478 [INSPIRE].

[26] A. Sen, Asymptotic behavior of the Sudakov form-factor in QCD, Phys. Rev. D 24 (1981)
3281 [INSPIRE].

[27] L. Magnea and G.F. Sterman, Analytic continuation of the Sudakov form-factor in QCD,
Phys. Rev. D 42 (1990) 4222 [INSPIRE].

[28] G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys. Lett.
B 552 (2003) 48 [hep-ph/0210130] [INSPIRE].

[29] V. Ravindran, J. Smith and W.L. van Neerven, Two-loop corrections to Higgs boson
production, Nucl. Phys. B 704 (2005) 332 [hep-ph/0408315] [INSPIRE].

[30] S. Moch, J.A.M. Vermaseren and A. Vogt, The quark form-factor at higher orders, JHEP 08
(2005) 049 [hep-ph/0507039] [INSPIRE].

[31] S. Moch, J.A.M. Vermaseren and A. Vogt, Three-loop results for quark and gluon
form-factors, Phys. Lett. B 625 (2005) 245 [hep-ph/0508055] [INSPIRE].

[32] L.J. Dixon, L. Magnea and G.F. Sterman, Universal structure of subleading infrared poles in
gauge theory amplitudes, JHEP 08 (2008) 022 [arXiv:0805.3515] [INSPIRE].

[33] G. Falcioni, E. Gardi and C. Milloy, Relating amplitude and PDF factorisation through
Wilson-line geometries, JHEP 11 (2019) 100 [arXiv:1909.00697] [INSPIRE].

[34] W.L. van Neerven, Infrared behavior of on-shell form-factors in a N = 4 supersymmetric
Yang-Mills field theory, Z. Phys. C 30 (1986) 595 [INSPIRE].

[35] T. Gehrmann, J.M. Henn and T. Huber, The three-loop form factor in N = 4 super
Yang-Mills, JHEP 03 (2012) 101 [arXiv:1112.4524] [INSPIRE].

[36] R.H. Boels, B.A. Kniehl, O.V. Tarasov and G. Yang, Color-kinematic duality for form
factors, JHEP 02 (2013) 063 [arXiv:1211.7028] [INSPIRE].

[37] G. Yang, Color-kinematics duality and Sudakov form factor at five loops for N = 4
supersymmetric Yang-Mills theory, Phys. Rev. Lett. 117 (2016) 271602 [arXiv:1610.02394]
[INSPIRE].

– 21 –

https://doi.org/10.1103/PhysRevD.102.061701
https://doi.org/10.1103/PhysRevD.102.061701
https://arxiv.org/abs/1911.11886
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.11886
https://doi.org/10.1103/PhysRevLett.126.031602
https://arxiv.org/abs/2009.11297
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.11297
https://doi.org/10.1007/JHEP04(2021)176
https://arxiv.org/abs/2011.06540
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.06540
https://arxiv.org/abs/1608.01634
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.01634
https://doi.org/10.1007/s11433-019-1507-0
https://doi.org/10.1007/s11433-019-1507-0
https://arxiv.org/abs/1912.11454
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.11454
https://doi.org/10.1103/PhysRevD.20.2037
https://doi.org/10.1103/PhysRevD.20.2037
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD20%2C2037%22
https://doi.org/10.1103/PhysRevD.22.1478
https://doi.org/10.1103/PhysRevD.22.1478
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD22%2C1478%22
https://doi.org/10.1103/PhysRevD.24.3281
https://doi.org/10.1103/PhysRevD.24.3281
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD24%2C3281%22
https://doi.org/10.1103/PhysRevD.42.4222
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD42%2C4222%22
https://doi.org/10.1016/S0370-2693(02)03100-3
https://doi.org/10.1016/S0370-2693(02)03100-3
https://arxiv.org/abs/hep-ph/0210130
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0210130
https://doi.org/10.1016/j.nuclphysb.2004.10.039
https://arxiv.org/abs/hep-ph/0408315
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0408315
https://doi.org/10.1088/1126-6708/2005/08/049
https://doi.org/10.1088/1126-6708/2005/08/049
https://arxiv.org/abs/hep-ph/0507039
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0507039
https://doi.org/10.1016/j.physletb.2005.08.067
https://arxiv.org/abs/hep-ph/0508055
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0508055
https://doi.org/10.1088/1126-6708/2008/08/022
https://arxiv.org/abs/0805.3515
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0805.3515
https://doi.org/10.1007/JHEP11(2019)100
https://arxiv.org/abs/1909.00697
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.00697
https://doi.org/10.1007/BF01571808
https://inspirehep.net/search?p=find+J%20%22Z.Phys.%2CC30%2C595%22
https://doi.org/10.1007/JHEP03(2012)101
https://arxiv.org/abs/1112.4524
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1112.4524
https://doi.org/10.1007/JHEP02(2013)063
https://arxiv.org/abs/1211.7028
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1211.7028
https://doi.org/10.1103/PhysRevLett.117.271602
https://arxiv.org/abs/1610.02394
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1610.02394


J
H
E
P
0
1
(
2
0
2
2
)
0
9
1

[38] J.M. Henn, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, A planar four-loop form factor
and cusp anomalous dimension in QCD, JHEP 05 (2016) 066 [arXiv:1604.03126]
[INSPIRE].

[39] J. Henn, A.V. Smirnov, V.A. Smirnov, M. Steinhauser and R.N. Lee, Four-loop photon quark
form factor and cusp anomalous dimension in the large-Nc limit of QCD, JHEP 03 (2017)
139 [arXiv:1612.04389] [INSPIRE].

[40] R.N. Lee, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, The n2
f contributions to

fermionic four-loop form factors, Phys. Rev. D 96 (2017) 014008 [arXiv:1705.06862]
[INSPIRE].

[41] A. von Manteuffel and R.M. Schabinger, Quark and gluon form factors to four-loop order in
QCD: the N3

f contributions, Phys. Rev. D 95 (2017) 034030 [arXiv:1611.00795] [INSPIRE].
[42] A. von Manteuffel and R.M. Schabinger, Quark and gluon form factors in four loop QCD:

The N2
f and NqγNf contributions, Phys. Rev. D 99 (2019) 094014 [arXiv:1902.08208]

[INSPIRE].
[43] A. von Manteuffel and R.M. Schabinger, Planar master integrals for four-loop form factors,

JHEP 05 (2019) 073 [arXiv:1903.06171] [INSPIRE].
[44] A. von Manteuffel, E. Panzer and R.M. Schabinger, Cusp and collinear anomalous

dimensions in four-loop QCD from form factors, Phys. Rev. Lett. 124 (2020) 162001
[arXiv:2002.04617] [INSPIRE].

[45] R.N. Lee, A. von Manteuffel, R.M. Schabinger, A.V. Smirnov, V.A. Smirnov and
M. Steinhauser, Fermionic corrections to quark and gluon form factors in four-loop QCD,
Phys. Rev. D 104 (2021) 074008 [arXiv:2105.11504] [INSPIRE].

[46] R.H. Boels, T. Huber and G. Yang, The Sudakov form factor at four loops in maximal super
Yang-Mills theory, JHEP 01 (2018) 153 [arXiv:1711.08449] [INSPIRE].

[47] F. Brown, The massless higher-loop two-point function, Commun. Math. Phys. 287 (2009)
925 [arXiv:0804.1660] [INSPIRE].

[48] F.C.S. Brown, On the periods of some Feynman integrals, arXiv:0910.0114 [INSPIRE].
[49] E. Panzer, On hyperlogarithms and Feynman integrals with divergences and many scales,

JHEP 03 (2014) 071 [arXiv:1401.4361] [INSPIRE].
[50] A. von Manteuffel, E. Panzer and R.M. Schabinger, A quasi-finite basis for multi-loop

Feynman integrals, JHEP 02 (2015) 120 [arXiv:1411.7392] [INSPIRE].
[51] A. von Manteuffel, E. Panzer and R.M. Schabinger, On the computation of form factors in

massless QCD with finite master integrals, Phys. Rev. D 93 (2016) 125014
[arXiv:1510.06758] [INSPIRE].

[52] R.M. Schabinger, Constructing multiloop scattering amplitudes with manifest singularity
structure, Phys. Rev. D 99 (2019) 105010 [arXiv:1806.05682] [INSPIRE].

[53] B. Agarwal, S.P. Jones and A. von Manteuffel, Two-loop helicity amplitudes for gg → ZZ
with full top-quark mass effects, JHEP 05 (2021) 256 [arXiv:2011.15113] [INSPIRE].

[54] A. von Manteuffel and C. Studerus, Reduze 2 — Distributed Feynman Integral Reduction,
arXiv:1201.4330 [INSPIRE].

[55] F.V. Tkachov, A theorem on analytical calculability of four loop renormalization group
functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].

– 22 –

https://doi.org/10.1007/JHEP05(2016)066
https://arxiv.org/abs/1604.03126
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1604.03126
https://doi.org/10.1007/JHEP03(2017)139
https://doi.org/10.1007/JHEP03(2017)139
https://arxiv.org/abs/1612.04389
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.04389
https://doi.org/10.1103/PhysRevD.96.014008
https://arxiv.org/abs/1705.06862
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.06862
https://doi.org/10.1103/PhysRevD.95.034030
https://arxiv.org/abs/1611.00795
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.00795
https://doi.org/10.1103/PhysRevD.99.094014
https://arxiv.org/abs/1902.08208
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.08208
https://doi.org/10.1007/JHEP05(2019)073
https://arxiv.org/abs/1903.06171
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.06171
https://doi.org/10.1103/PhysRevLett.124.162001
https://arxiv.org/abs/2002.04617
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.04617
https://doi.org/10.1103/PhysRevD.104.074008
https://arxiv.org/abs/2105.11504
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2105.11504
https://doi.org/10.1007/JHEP01(2018)153
https://arxiv.org/abs/1711.08449
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.08449
https://doi.org/10.1007/s00220-009-0740-5
https://doi.org/10.1007/s00220-009-0740-5
https://arxiv.org/abs/0804.1660
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0804.1660
https://arxiv.org/abs/0910.0114
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0910.0114
https://doi.org/10.1007/JHEP03(2014)071
https://arxiv.org/abs/1401.4361
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.4361
https://doi.org/10.1007/JHEP02(2015)120
https://arxiv.org/abs/1411.7392
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1411.7392
https://doi.org/10.1103/PhysRevD.93.125014
https://arxiv.org/abs/1510.06758
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1510.06758
https://doi.org/10.1103/PhysRevD.99.105010
https://arxiv.org/abs/1806.05682
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.05682
https://doi.org/10.1007/JHEP05(2021)256
https://arxiv.org/abs/2011.15113
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.15113
https://arxiv.org/abs/1201.4330
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1201.4330
https://doi.org/10.1016/0370-2693(81)90288-4
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB100%2C65%22


J
H
E
P
0
1
(
2
0
2
2
)
0
9
1

[56] K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate
β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].

[57] S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations,
Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].

[58] A. von Manteuffel and R.M. Schabinger, A novel approach to integration by parts reduction,
Phys. Lett. B 744 (2015) 101 [arXiv:1406.4513] [INSPIRE].

[59] R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf.
Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].

[60] T. Bitoun, C. Bogner, R.P. Klausen and E. Panzer, Feynman integral relations from
parametric annihilators, Lett. Math. Phys. 109 (2019) 497 [arXiv:1712.09215] [INSPIRE].

[61] E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with applications to
Feynman integrals, Comput. Phys. Commun. 188 (2015) 148 [arXiv:1403.3385] [INSPIRE].

[62] A.V. Kotikov, Differential equations method: new technique for massive Feynman diagrams
calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].

[63] Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl.
Phys. B 412 (1994) 751 [hep-ph/9306240] [INSPIRE].

[64] T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl.
Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].

[65] A. Blondel et al., Standard model theory for the FCC-ee Tera-Z stage, in Mini Workshop on
Precision EW and QCD Calculations for the FCC Studies: Methods and Techniques,
January 12–13, Geneva, Switzerland (2019) [arXiv:1809.01830] [INSPIRE].

[66] J.M. Henn, A.V. Smirnov and V.A. Smirnov, Evaluating single-scale and/or non-planar
diagrams by differential equations, JHEP 03 (2014) 088 [arXiv:1312.2588] [INSPIRE].

[67] P.A. Baikov and K.G. Chetyrkin, Four loop massless propagators: an algebraic evaluation of
all master integrals, Nucl. Phys. B 837 (2010) 186 [arXiv:1004.1153] [INSPIRE].

[68] R.N. Lee, A.V. Smirnov and V.A. Smirnov, Master integrals for four-loop massless
propagators up to transcendentality weight twelve, Nucl. Phys. B 856 (2012) 95
[arXiv:1108.0732] [INSPIRE].

[69] A.V. Smirnov and F.S. Chuharev, FIRE6: Feynman Integral REduction with modular
arithmetic, Comput. Phys. Commun. 247 (2020) 106877 [arXiv:1901.07808] [INSPIRE].

[70] R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685
[INSPIRE].

[71] R.N. Lee, Reducing differential equations for multiloop master integrals, JHEP 04 (2015) 108
[arXiv:1411.0911] [INSPIRE].

[72] R.N. Lee and A.A. Pomeransky, Normalized Fuchsian form on Riemann sphere and
differential equations for multiloop integrals, arXiv:1707.07856 [INSPIRE].

[73] R.N. Lee, Libra: A package for transformation of differential systems for multiloop integrals,
Comput. Phys. Commun. 267 (2021) 108058 [arXiv:2012.00279] [INSPIRE].

[74] J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.
110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].

– 23 –

https://doi.org/10.1016/0550-3213(81)90199-1
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB192%2C159%22
https://doi.org/10.1142/S0217751X00002159
https://arxiv.org/abs/hep-ph/0102033
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0102033
https://doi.org/10.1016/j.physletb.2015.03.029
https://arxiv.org/abs/1406.4513
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1406.4513
https://doi.org/10.1088/1742-6596/523/1/012059
https://doi.org/10.1088/1742-6596/523/1/012059
https://arxiv.org/abs/1310.1145
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1310.1145
https://doi.org/10.1007/s11005-018-1114-8
https://arxiv.org/abs/1712.09215
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.09215
https://doi.org/10.1016/j.cpc.2014.10.019
https://arxiv.org/abs/1403.3385
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1403.3385
https://doi.org/10.1016/0370-2693(91)90413-K
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB254%2C158%22
https://doi.org/10.1016/0550-3213(94)90398-0
https://doi.org/10.1016/0550-3213(94)90398-0
https://arxiv.org/abs/hep-ph/9306240
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9306240
https://doi.org/10.1016/S0550-3213(00)00223-6
https://doi.org/10.1016/S0550-3213(00)00223-6
https://arxiv.org/abs/hep-ph/9912329
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9912329
https://arxiv.org/abs/1809.01830
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.01830
https://doi.org/10.1007/JHEP03(2014)088
https://arxiv.org/abs/1312.2588
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1312.2588
https://doi.org/10.1016/j.nuclphysb.2010.05.004
https://arxiv.org/abs/1004.1153
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1004.1153
https://doi.org/10.1016/j.nuclphysb.2011.11.005
https://arxiv.org/abs/1108.0732
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1108.0732
https://doi.org/10.1016/j.cpc.2019.106877
https://arxiv.org/abs/1901.07808
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.07808
https://arxiv.org/abs/1212.2685
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1212.2685
https://doi.org/10.1007/JHEP04(2015)108
https://arxiv.org/abs/1411.0911
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1411.0911
https://arxiv.org/abs/1707.07856
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.07856
https://doi.org/10.1016/j.cpc.2021.108058
https://arxiv.org/abs/2012.00279
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.00279
https://doi.org/10.1103/PhysRevLett.110.251601
https://doi.org/10.1103/PhysRevLett.110.251601
https://arxiv.org/abs/1304.1806
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1304.1806


J
H
E
P
0
1
(
2
0
2
2
)
0
9
1

[75] S. Arno, D.H. Bailey and H.R.P. Ferguson, Analysis of PSLQ, an integer relation finding
algorithm, Math. Comp. 68 (1999) 351.

[76] A.V. Smirnov, N.D. Shapurov and L.I. Vysotsky, FIESTA5: numerical high-performance
Feynman integral evaluation, arXiv:2110.11660 [INSPIRE].

[77] V. Ravindran, Higher-order threshold effects to inclusive processes in QCD, Nucl. Phys. B
752 (2006) 173 [hep-ph/0603041] [INSPIRE].

[78] J.A.M. Vermaseren, Axodraw, Comput. Phys. Commun. 83 (1994) 45 [INSPIRE].
[79] D. Binosi and L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman

diagrams, Comput. Phys. Commun. 161 (2004) 76 [hep-ph/0309015] [INSPIRE].

– 24 –

https://arxiv.org/abs/2110.11660
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2110.11660
https://doi.org/10.1016/j.nuclphysb.2006.06.025
https://doi.org/10.1016/j.nuclphysb.2006.06.025
https://arxiv.org/abs/hep-ph/0603041
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0603041
https://doi.org/10.1016/0010-4655(94)90034-5
https://inspirehep.net/search?p=find+J%20%22Comput.Phys.Commun.%2C83%2C45%22
https://doi.org/10.1016/j.cpc.2004.05.001
https://arxiv.org/abs/hep-ph/0309015
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0309015

	Introduction
	Reduced integrand
	Master integrals to weight eight
	Result for the Sudakov form factor
	Conclusions

