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1 Introduction

The production of two hard photons is an important process at hadron colliders, which
both allows for scrutiny of the structure of the Standard Model and serves as an important
background for many Higgs and new physics analyses.

From a theoretical perspective, the pp — <y process is rather peculiar. Phenomeno-
logically, this process is interesting because an operative definition of isolated photons is
non-trivial, and it requires quite subtle theoretical analysis [1]. Computationally, dipho-
ton production is relatively simple, yet non-trivial. Indeed, photons are massless and
colour-neutral particles, which implies that both the infrared structure and the scatter-
ing amplitudes for the diphoton process are not very complicated. However, compared
to other colour-singlet processes like Higgs or Drell-Yan production, the kinematics of vy
production is more involved as it depends non-trivially on a scattering angle already at
leading order (LO) in the perturbative expansion. Because of these features, diphoton
production is an ideal process for testing and improving our understanding of Quantum
Chromodynamics (QCD) at hadron colliders. Indeed, historically 7 production has often
served as a testing ground for innovative studies in perturbative QCD. For example, ~v
production was the first hadron collider process with non-trivial LO kinematics for which
next-to-next-to-leading order (NNLO) QCD corrections were computed [2]. Furthermore,
qq — v was the first 2 — 2 QCD scattering amplitude that was calculated at the three-
loop level [3]. Photon processes also played a prominent role in the development of NNLO
predictions for 2 — 3 collider reactions [4-11].

The leading mechanism for producing two photons at hadron colliders is through gg
annihilation. The availability of the two-loop QCD scattering amplitudes for qg — vy [12]
enabled detailed phenomenological predictions at NNLO accuracy [2, 13-17]. Starting



from NNLO, the gg partonic channel opens up. There are two contributions to this:
tree-level corrections of the form gg — v + ¢¢ and loop-induced corrections gg — 7.
Phenomenologically, the former are typically very small and we will not discuss them
further. The loop-induced contribution is instead quite interesting. First, the large gluon
flux at the Large Hadron Collider (LHC) compensates for the «g suppression, making
it important for precision phenomenological studies. Being a new channel, it has all the
features of a leading order process, in particular large perturbative uncertainties. Moreover,
being gluon induced one expects particularly large radiative corrections. This has spurred
many investigations, which upgraded the precision in this channel to next-to-leading order
(NLO) in QCD, i.e. to O(a?) [18, 19].

Given the ever-increasing experimental precision on diphoton measurements [20, 21],
it becomes interesting to try and push the theoretical precision even further and consider
NNLO corrections to the gg — v process. While this is desirable for a variety of LHC
analyses, it is of particular importance for Higgs studies. Indeed, in this case there is a
subtle signal/background interference effect between the gg — H — ~7 signal and the
continuum gg — ~y background, which is known to modify the Higgs line-shape [22]. This
effect can in turn be used to constrain the Higgs boson total decay width [23]. This kind
of investigations require an exquisite experimental control, see e.g. ref. [24], as well as
robust control of theoretical predictions for both the signal and the background processes.
Several in-depth analysis [25-28] suggest that reaching NNLO QCD accuracy in the gluon
channel is desirable. A major step towards the calculation of full NNLO QCD corrections
to gg — vy has been made very recently with the computation of NLO QCD corrections
to the gg — v + j process [10, 11]. In this paper, we present a calculation of the last
missing ingredient, the three loop virtual amplitude for the gg — ~y process.

The rest of this paper is organised as follows. In section 2 we set up our notation and
discuss the generic kinematics features of the gg — 7y process. In section 3 we briefly
review the approach of refs [29, 30] to the calculation of helicity amplitudes that we adopt
here. In section 4 we provide more technical details on our three-loop calculation. In
section 5 we discuss the ultraviolet and infrared structure of the scattering amplitude,
and define the renormalised finite remainders which are the main result of this paper. In
section 6 we document the checks that we have performed on our calculation, and briefly
describe the general structure of our result. We also present analytic formulas for the
three loop finite remainder for the simplest helicity configuration. The analytic formulas
for all the relevant helicity configurations can be found in computer-readable format in the
supplementary material that accompany this submission. Finally, we conclude in section 7.

2 Notation and kinematics
We consider virtual QCD corrections to the production of two photons through gluon fusion

g(p1) + g(p2) = v(=p3) +v(=p4), (2.1)

mediated by light quarks. The signs of the momenta are chosen such that all momenta
are incoming, p1 + p2 + p3 + p4 = 0. All particles in the process are on the mass-shell,



p? = pi = pg = p2 = 0. The kinematics is fully described by the usual Mandelstam
invariants

s=(p1+p2), t=(p1+p3)*, u=(p2+p3)?, s+t+u=0. (2.2)

In the physical scattering region, one has s > 0, ¢ < 0, u < 0. For later reference, we also
introduce the dimensionless ratio ;

T=-—, (2.3)
where 0 < x < 1 in the physical region. We work in d = 4 —2e dimensions to regulate ultra-
violet (UV) and infrared (IR) divergences. To be precise, we adopt the 't Hooft-Veltman
(tHV) scheme [31], i.e. we perform computations for generic d but we constrain all the ex-
ternal particles and their polarisations to live in the physical d = 4 subspace. This allows
us to simplify the calculation compared to the Conventional Dimensional Regularisation
(CDR) case, where internal and external degrees of freedom are treated as d-dimensional.

We write the scattering amplitude for the process in eq. (2.1) as

A(s, £) = 64192 (4ra) A(s, 1)
= 6"192 (4ma) AP (s, )en (1) €2, (P2)€3,0(P3)€a,0 (Pa), (2.4)

where a; is the colour index of the gluon of momentum p; and €;,(p;) is the polarisation
vector of the vector boson of momentum p;. For convenience, we have extracted the
leading-order electroweak coupling written in terms of the fine structure constant «, where
e = v4ma is the unit of electric charge. We are interested in the QCD perturbative
expansion of eq. (2.4)

As,t) = 22 | AW (5,8) + 22 AD)(5,¢) + (O‘S)ZA@)(S t) + O(ad) (2.5)

’ 27 ’ 27 ’ 27 ’ s '

where o = a(u) is the MS renormalized QCD coupling and the superscript indicates the
number of loops L. We find it convenient to express the result for A% in terms of the
quadratic Casimir invariants of theory C'4 and C'r. They are defined through

Tf = Crou,  [lf" = Ca0™, (2.6)

where f*¢ and T7; are the SU(3) structure constants and the generators in the fundamental
representation, respectively. We normalise the generators as

Te[T°T°) = Tpé®®2, Tp= . (2.7)

In QCD, C4 =3 and Cr =4/3.

The Feynman diagrams for the process eq. (2.1) can be naturally separated according
to whether the two photons couple to the same or to two different closed fermion lines.
We then introduce the following short hands for the respective electromagnetic coupling
structures

2
e’ = (2e).  np-xa 28)
f f



where the sums run over n light quarks and @ is their charge in units of e, i.e. Quc = 2/3,
Qasp = —1/3. For QCD with 5 flavours, the structures in eq. (2.8) evaluate to (n}c/)2 =
(1/3)% = 1/9 and n}* = 11/9.

3 The helicity amplitudes

In this section, we explain how one can efficiently calculate the amplitude in eq. (2.4) for
specific helicities. We start by discussing the tensor A#*P?. It can be expanded as

AP (5 1) = Fils, )T, (3.1)
7

where F; are scalar form factors! and T'#*?? are independent tensor structures constructed
using external momenta {p!'} and the metric tensor g"”. With three independent external

momenta, the total number of tensor structures that one can write is 138, see e.g. [32]. Since
o

AMYP9 has to be contracted with the external polarisation vectors €, one can use the phys-
ical conditions p; - €; = 0 to remove all tensors proportional to pi, p4, p5, p. This removes
all but 57 structures. By making a specific choice for the reference vectors of the external

gauge bosons, one may eliminate further redundancies. A convenient choice is to impose
€ pir1 =0, where i=1,...,4 and ps = p;1. (3.2)

This leaves one with 10 independent structures, that we choose as

TP = phppips 57 = pspig™

L5777 = phplg™? P37 = pkp3g™

L5777 = piplg"? L6 = pip3g"”

D377 = pipg gt L5 = g"g"

0777 = g"7g"", Lip"” = g g". (33)

For notational convenience, we define the 10 independent structures

vVpo
T, =TH" €1,1€2,0€3,p€4,0 (3.4)

and refer to them, with a slight abuse of language, as tensors. The scattering amplitude
eq. (2.4) can then be written as

A(s,t) = ioz]:i(s,t)Ti. (3.5)
i=1

We stress that eq. (3.5) is valid at any perturbative order and for any space-time dimension.
In four dimensions, it is easy to see that only 8 out of the 10 tensors T; are actually
independent. It turns out that in the tHV scheme, it is possible to separate the purely

'We note that the form factors F; also depend on the dimension of the space-time. This dependence is
assumed.



four-dimensional tensor structures from the —2e-dimensional ones through a simple orthog-
onalisation procedure [29, 30]. We briefly sketch how this can be done for our process, and
refer the reader to refs [29, 30] for a thorough discussion. Following ref. [30], we introduce
a new tensor basis T;

A(S, t) = Z?i(s, t)TZ 5 (36)

T,=T,, i=1,...,1, (3.7)
while T is a symmetrised version of Tg
Tg =15+ Ty + Tho. (38)

It turns out [30] that these 8 tensors span the physical d = 4 subspace and do not have any
component in the —2e directions. The last two tensors Tg’lo can then be chosen in such a
way that they are constrained to live in the —2¢ subspace. This can be achieved by simply
removing from the original Ty 19 their projection along T s

8
Z T;,i=9,10, (3.9)

where the projectors P; are defined through

NPT, = by (3.10)

pol

The explicit form of the P; projectors relevant for our case can be found in ref. [30]. The
new tensors 79710 read

_ 1 2T Te To+T5+2T4—2T5—Ts—T T
To = Ty _(_1_ 16 12 3 4 5 6 7+3+T8>,
3 su s t
1 AT 2T To—2T3—T4s+Ts5+2T—T 2T (8.11)
— - + + — =
TlO—T10_3< 3u1+ 56_ 2 3 4t 5 6 T 3+T8>-

The tensors T 19 so constructed identically vanish if they are computed using physical
polarisation vectors in d = 4 space-time dimensions and can be safely dropped if one is
after tHV helicity amplitudes [30]. For a given helicity configuration we then write

8
A>\1>\2)\3)\4 S, t = Z 2A1A2>\3>\4, (3.12)

where Ti)q Aods)n, are the tensors evaluated with polarisation vectors for well-defined he-
licity states A;. It should not be surprising that the generic helicity amplitude can be
parametrised in terms of 8 independent structures. Indeed, in four dimensions we would



need to consider 24 = 16 independent helicity amplitudes. However, half of them can be re-
lated by parity, which leaves us with 8 independent helicity states. These are in one-to-one
correspondence with the 8 form factors F;.

When dealing with helicity amplitudes, we find it convenient to factor out a spinor
function carrying the relevant helicity weight. We achieve this by writing

A>\1>\2>\3>\4 (Sv t) = S>\1>\2>\3>\4 f)\1>\2>\3>\4 (5’ t)? (3'13)
where
S [12](34] S (12)(14)[24] S (21)(24)[14]
T (12)(34) T T (34)(23) (24) T T 34)(13)(14)
S ~(32)(34)[24] S (42)(43)[23] S (12)[34]
TR T 14) (21)(24) T T 13)(21)(23) T T [12](34)
(13)[24] ~(23)[14]
St = [13](24) gt = [23](14) (3:.14)
and
fraqs = 12 <2u}—6 — 27.:3 —1> +78 <Z + % +4) + %(?2 — F4+ Fs —?7),
Jottr = i (2':3 +]:1> +1t <88 +o(Fat T —]:2)> ;
fr—t+ = —i (2.:—6 —]:1> +1t <];8 - %(?2 + F3 +}_5)> ;
fri—y = i (2?)’ +./T1> +1 (J-;S + %(./76 + Fr —.7:5)> ,
fre- = —i (256 - fl) +1t (J;S + %(}"4 + Fr —]:3)> ;

e —
f__.H_:—Z]:l+§t(f2+f3—f6—f7)+2fg,

Fs Fs F¢ F
_p2 (8 _ 3 S6 1
fomr =1 (su % Tou 4 )’

e —
fro—4+ = —Z.Fl+§t(f3—.7:4—|—f5—f6)+2f8. (3.15)
We note that we have chosen the spinor functions in eq. (3.14) following ref. [18]. The
expressions for the spinor-free amplitudes fy,a,x;1, can be easily obtained by computing
the relevant T; with polarisation vectors for fixed helicity states. We also note that we
define “+” helicity states as’

(ps17"1qj] (i7" |pj]

© w
¢ (pj) = s i) = ) (3.16)
g V2lpig] T V2(q;p;)
2See e.g. ref. [33] for a review of the spinor-helicity formalism. We follow the notation of [33], with the
identification |[i*) = |i),|s") = |i], (i*| =[], (i | = (i| , and complex conjugation (ij)* = [ji].



where g; is the reference vector for the boson j, irrespective of whether the particles are in
the initial or the final state.

We have written egs. (3.14), (3.15) for only 8 helicity states. The 8 remaining ones
can be obtained from these by exploiting parity invariance,

A)\1>\2>\3>\4 = A—>x1,—>\2,—)\3,—>\4 (<U> A []Z]) ) (3'17)

where —)\; indicates the opposite helicity of A\;. We also note that the helicity amplitudes
must obey Bose symmetry, i.e. they must be symmetric under the exchange of 1 < 2
and/or 3 <+ 4. In terms of the spinor-free amplitudes, this implies

Froaasad(5,1) = Mo (s, ),

(3.18)
Faderans (5,1) = o (s, ),

with u = —s — t. These relations provide non-trivial checks for our results.

4 Details of the calculation

The spinor-free helicity amplitudes fy,x,x51, can be computed as perturbative series in the
QCD coupling constant «as. For a generic helicity configuration we introduce the short
hand A = (A1, A2, A3, \y) and write

3 L
fi=3. (as’b) 0+ 0(aly), (4.1)

= 2

where o j, is the bare strong coupling constant and f;L’b) is the bare perturbative coefficient

of the helicity amplitude. Since the leading order contribution f/%l’b) to the production of
two photons in gluon fusion already involves one-loop integrals, the next-to-next-to-leading

b)

order contribution f§3’ involves three-loop integrals. The main goal of this paper is to

calculate f§3’b).

As explained in section 3, we can obtain the helicity amplitudes by computing the F;,
i =1,...,8 form factors. In principle, this can be achieved straightforwardly by applying
the projectors P;, i = 1,...,8, of section 3 to the sum of all the relevant Feynman diagrams.
At three loops, this leads to a sum of terms of the form

J(i) g

where k;, i = 1,2, 3, are the loop momenta, D; are the propagators of the graphs and n;
are non-negative integers. Following previous work [34, 35|, the integration measure for

d € v
/D ki—e’YE/i a2 (43)

It is convenient to treat propagators and scalar products involving the loop momenta on

every loop is defined as

the same footings. We do this by writing scalar products in the numerator as additional



(PL). (NPL1). (NPL2).

Figure 1. Representative top level topologies for the planar (PL), single nonplanar (NPL1), and
double nonplanar (NPL2) integral families.

propagators raised to negative powers. For our problem, there are 6 scalar products of the
form k; - k; and 9 of the form k; - pj, so we can write a generic Feynman integral of the

/ (ﬁ D%) ngll;l o)), (4.4)
1
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form eq. (4.2) as

where now n; can also be negative integers. We refer to each set of inequivalent
{D1,...,Di5} as an “integral family”. Within each family, it is well known that not all the
integrals are linearly independent. Indeed, Feynman integrals satisfy integration-by-parts
(IBP) identities [36] of the form

3 w
o
d
/ ( ? k) o DT DR (45)
11 DT D

i=1

where v; can be any loop or external momentum. In principle, it is possible to use these
identities to express all the F; form factors in terms of a minimal set of independent “master
integrals” (MI) [37]. While all the steps described above are well-understood in principle,
the complexity involved in intermediate stages grows very quickly with the number of loops
and external scales. In our case, the three-loop calculation involves 3 different families, each
of which can contribute with 6 independent crossings of the external legs, and more than
4 x 109 integrals to the amplitude. Moreover, using (4.5) directly would lead to a very large
number of equations involving also many additional auxiliary integrals. We now describe
the procedure that we have adopted to keep the degree of complexity manageable.

First, we generated all Feynman diagrams with Qgraf [38] and mapped each diagram to
an integral family using Reduze 2 [39, 40] to generate the required shifts of loop momenta.
At this stage, it is useful to group diagrams that present similar structures together and
perform the P g projections for each of these groups separately. This can be done by
keeping together diagrams that can be mapped to the same crossing of the same integral
families. This allows us to reduce redundancy in the algebraic manipulations required.
Examples of top sectors from our three families of integrals are depicted in figure 1, while
their complete definition can be found in the supplementary material. To evaluate the
contributions to the form factors, we performed the colour, Lorentz and Dirac algebra as
well as further symbolic manipulations described in the following with Form [41].



We find it important to stress that by expressing the result for each ?17._,,8 in terms
of a minimal set of integrals under crossings and shift symmetries, prior to performing the
actual IBP reduction, we saw a significant decrease in complexity. This is expected, as
many equivalent integrals are combined together and redundant structures are removed.
After this simplification, we used the F; to construct the spinor-free helicity amplitudes,
and collected the contributions to different colour structures. This way, we arrived at a
minimal set of gauge-independent building blocks. We found it useful to partial fraction
the rational functions with respect to x in order to reduce their complexity.

The next step is the actual IBP integral reduction. We did this using an in-house
implementation of the Laporta algorithm [37], Finred [42], which exploits syzygy-based
techniques [43-48] and finite-field arithmetics [42, 49-51]. We found in this way that the
three loop helicity amplitudes can be expressed in terms of the 221 MIs computed in ref. [34]
and crossed versions of them, for a total of 486 MIs.> We stress that these MIs are pure
functions, i.e. they do not have any non-trivial rational functions of x or d as prefactors.
Before inserting the IBP relations into the amplitude, we partial fractioned them with
respect to both d and . We found that this step is crucial to keep the complexity under
control. Finally, we performed one last partial fraction decomposition of the full amplitude
after we wrote it in terms of MlIs.

As a last step, we expand in € and substitute the analytic results for the MIs. All of
the integrals required for our calculation were computed in ref. [34]. Their € expansion can
be written in terms of Harmonic Polylogarithms (HPL), that we define iteratively as*

In" r d
G(0,...,0;z) = - x’ G(an,...,al;m):/ : G(ap—1,...,a1;2), (4.6)
—_——— n! 0 2 —anp
n times

with G(z) = 1 and a; € {0,1}. For our case, we need to consider polylogarithms up to
weight 6, i.e. n = 6 in eq. (4.6). We used the Mathematica package PolyLogTools [54]
to manipulate HPLs up to weight 5, augmented by a straightforward generalisation of
its routines up to the required weight 6, as well as an independent package for multiple
polylogarithms written by one of us. As expected from the fact that there are fewer weight
< 6 HPLs than MIs, we observed a noticeable decrease in complexity for the amplitude
after we expressed it in term of HPLs. We summarise the degree of complexity of the
various steps discussed above in table 1.

Before presenting our results, we note that although the MIs have been computed
in ref. [34], for this calculation we have decided to recompute them as an independent
check. We used the same definitions for the MIs as ref. [34], and followed the same strategy
outlined in that reference for obtaining their analytic. First, since the basis [34] is pure
and of uniform weight [55] the MIs obey very simple differential equations

— —

dM (e;s,t,u) = e [Asdlog(s) + A; dlog(t) + A, dlog(u)] M(e; s, t,u), (4.7)

$We note that while the reductions of some integrals were already known from earlier calculations [3, 35],
for this process we had to reduce a significant number of new integrals compared to those references.
“Note that we use the GPL notation of ref. [52], rather than the original HPL notation of ref. [53].



1L | 2L 3L

Number of diagrams 6 138 3299
Number of inequivalent integral families 1 2 3
Number of integrals before IBPs and symmetries 209 | 20935 | 4370070
Number of master integrals 6 39 486
Size of the Qgraf result [kB] 4 90 2820

Size of the Form result before IBPs and symmetries [kB] | 276 | 54364 | 19734644
Size of helicity amplitudes written in terms of MIs [kB| 12 | 562 304409
Size of helicity amplitudes written in terms of HPLs [kB] | 136 | 380 1195

Table 1. Complexity of the various stages of the calculation at different loop orders.

where M is a vector whose components are the MIs and A; are constant matrices. Using
the basis of ref. [34] we have rederived the differential equation from scratch and found
agreement. Given the simple form of eq. (4.7), it is straightforward to iteratively solve it
order by order in €, modulo boundary conditions. The only non-trivial issue is how to fix
the latter. Very interestingly, the authors of ref. [34] noted that at three loops it is enough
to impose regularity conditions to fix all boundary conditions, apart from one simple overall
normalisation. The main idea is to look at the differential equation near singular points
s = 0,t— 0, u— 0. Let us consider s — 0 as an example. In this limit the general
solution of eq. (4.7) behaves like

M ~ 54 My, (4.8)

where Mo,s is a constant vector. It was argued in ref. [34] that the MIs considered here can
only develop branch cuts of the form s~ with a > 0. This implies that the coefficient of s*¢
in sAseﬂo,s must vanish for a > 0. As a consequence, there must exist non-trivial relations
between different MIs in the s — 0 limit. When combined with analogous relations derived
from the limits ¢, u — 0, the authors of ref. [34] found that for the case under study one can
completely constrain all the boundary conditions up to an overall normalisation factor. We
have independently verified that this is the case, which allowed us to rederive an analytic
expression for all the master integrals. We have then verified that our results to weight 6
are identical to the ones of ref. [34], provided that the latter are analytically continued to
the physical Riemann sheet. Since in ref. [34] final results are only presented for one single
crossing, for convenience we decided to provide analytic results for all the three-loop master
integrals and all their crossings in the supplementary material accompanying this publica-
tion. We also provide weight 6 results for a uniform-weight basis of the two-loop integrals.

5 UV renormalisation and IR regularisation

Following the steps outlined above, we obtained analytical expressions for the bare helicity

amplitudes f;L’b) defined in eq. (4.1) for L = 1,2,3. The féL’b) are affected by both

ultraviolet (UV) and infrared (IR) divergences, which manifest themselves as poles in the

~10 -



dimensional regularisation parameter ¢ = (4 — d)/2. While the former are removed by
UV renormalisation, the latter can be regularised using universal IR operators acting on
lower-loop amplitudes. We now discuss in detail how this can be done.

We first consider UV divergences. We define as(u) to be the renormalised strong
coupling constant in the MS scheme at the scale

Setip sy = p*as(p) Zlas(p)], (5.1)
with Se = (4m)%e™7E¢ and
Bo (as) 85 B (%)2 3
Zlal]=1—— | = === . 2
o] € \2m * e 2 ) \ 27 +0(a}) (5:2)
The first two coefficients of the QCD beta function read
11 2 17 5
ﬂoz FCA—gTan, b1 = gCi—Tan <30A+CF) . (5.3)

We then expand the spinor-free helicity amplitudes f; in terms of the renormalised strong
coupling as(p) as
> Qs (:u) L (L)
= (27r> 57 (5.4)
L=1

The expression for the renormalized amplitudes f§L> can be obtained by substituting
eq. (5.1) in eq. (4.1) and expanding in the renormalised coupling. For convenience, we
will set 42 = s in the following. The result for arbitrary scale can be easily obtained using
renormalisation group methods.

We now consider IR divergences. The IR structure of the amplitude is governed by
the soft and collinear behaviour of virtual quarks and gluons and it is universal, i.e. it
only depends on the colour and nature of the external legs. This allows one to write the
renormalised amplitude as

(1) _ p(1,fin)
X

)\ )
(2) _ 1) (2,fin)
fX =1 fx + fx )
(3) _ 1) (2) (3.fin)
fX —I2fx +1-le ‘|‘fx ) (5'5)

where fg’ﬁn) are finite in four dimensions. The IR structure is encoded in the operators
T;, that for our case (with u? = s) read [56]

e’l‘7T€€’YE€ CA BO)
Lhie)=————|—5 +— .
1(6) 1—\(1 — 6) ( 62 6 ) (5 6)
1 2080 e BT (1 — 2¢) (ﬂo ) e
To(e) = —=T T -— — | =4+ K |T4(2 2——H
2(€) = =35 1(6)(1(€)+ 6>+ T . 1(2€) + T =
where K is the next-to-leading-order coefficient of the cusp anomalous dimension
67 2 10
=5 = — —n T
<18 5 )CA o " Tr (5.7)

- 11 -



and [57]

1{/¢B) 5 1172\ , Cr 29 w2 10, 5
H,y=— [[&2 2 Tome [ 22 (247 Y o) + 1202 . (5.
97 9 [( § Tai T g ) Cat |5 o7 T | Ca) g TEmy| - (5:8)

In egs (5.5) we used the fact that diphoton production in gluon fusion starts at one loop.
(L, fin)

The finite remainders for the helicity amplitudes f)\

result of this paper, and we provide analytic results for them in the supplementary material.

up to three loops are the main

6 Checks and structure of the result

We have performed various checks on the correctness of our results. First, we have employed
two derivations of the three-loop JF; form factors at the integrand level and verified that
they agree. We have also compared the one- and two-loop helicity amplitudes against the
results of ref. [18] and found agreement. To validate our numerical evaluation procedure, we
also checked the helicity-summed one-loop squared amplitude against OpenLoops [58, 59],
and one helicity configuration at two loops against MCFM [60, 61]. Finally, we have verified
that the UV and IR poles up to three loops follow the structure described in the previous
section. This provides a strong check of the correctness of the three-loop amplitudes.

We now discuss the general structure of our result. The amplitude can be expressed
in terms of the two quadratic Casimirs C'4 and Cr and the flavour structures ny, n}/ and
n}é defined in eq. (2.8). At L loops the amplitude is a homogeneous degree-L polynomial
Vs
f I

in these 5 variables. At one-loop, the amplitude is only proportional to n:*, since the

two photons must both couple to the same fermion line. At two loops, the structures

n}/Q x {Cp,C4} appear in the bare amplitude. The finite remainder contains in addition

a term proportional to n}/Qn ¢ stemming from Sy in the UV/IR regularisation. We note
that there is no (n}{)2 contribution. It is easy to understand why this is the case. The
(n}/)2 colour factor only appears if the two photons are attached to two different (closed)
fermion lines. Such diagrams do appear at two loops, but they are of the form of two vgg*
one-loop triangles connected through a gluon propagator. Due to an argument analogous
to Furry’s theorem, these diagrams give no net contribution to the amplitude. A similar
argument allows one to conclude that there is no net contribution from Feynman diagrams
with colour factors ny (n}/)2 at three loops. Furthermore, it is easy to see that the structure

2 contribution at

nfen}/2 is absent in the three-loop bare amplitude.® Since there is no (n}/)
lower loops, the (n}/)Q term in the bare three loop amplitude must be finite. We observe,
however, that it is non-zero. Indeed, at three loops this colour factor appears in triple-box
diagrams for which the Furry argument outlined above is no longer applicable.

We now move to the discussion of the kinematic features of the three-loop ampli-
tude, i.e. its  dependence. The amplitude contains terms of the form G(ay,...,an;z)/z"
(-2 <k <2)and G(a1,...,an;2)/(1 —2)F (1 <k <2), where a; € {0,1}, 0 < n < 6,
and G are the Harmonic Polylogarithms defined in eq. (4.6). Instead of the HPLs, we

SWe note however that the nfcn}/z structure contributes to our finite remainders, since it is induced by
the ny dependence of the UV/IR counterterms.
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found it useful to also consider the alternative functional basis described in ref. [35] to
speed up the numerical evaluation of the final result. Using the algorithm of [62], we have
constructed a basis of logarithms, classical polylogarithms and multiple polylogarithms to
rewrite the HPLs without introducing any new spurious singularities. We used products
of lower weight functions whenever possible and preferred functions whose series represen-
tation requires a small number of nested sums. In this way, we found that 23 independent
transcendental functions and products thereof suffice to represent our HPLs up to weight 6.
The new basis consists of 2 logarithms, In(z) In(1—=z), 12 classical polylogarithms, Lis of z,
Liz of x and 1 —x and Liy, Lis, Lig of 2,1 —2z and —z/(1—x), as well as 9 multiple polyloga-
rithms Li3’2(1, .%'), Ligz(l—l’, 1), Li3’2($, 1), L1373(1—$, 1), L1373([B, 1), Ligyg (%, 1) ,Li472(1—
x,1),Ligo(x,1),Lisaa(x,1,1). Here, we follow the conventions of ref. [52] and define

' T

Limy,mg (T1, @) = Y o e (6.1)

. ( 1
i1>..>i,>0 1

In the supplementary material, we provide our analytic results written both in terms of
HPLs and in terms of this minimal set of functions. For convenience, we also provide results
for the finite remainders of the one- and two-loop helicity amplitudes up to weight 6.

Finally, we present our results. Although intermediate expressions are rather compli-
cated, see table 1, we find that the final results are remarkably compact. The X= (++++)
helicity configuration is particularly simple. This is of course expected, since the one-loop
amplitude does not have support on any cut, hence it is purely rational rather than a
weight-2 function. This simplicity persists at higher loops. For illustration, we now report
here the result for the finite reminders defined in eq. (5.5) up to three loops for this helicity
configuration. At one and two loops one has

Jfin
FER = 2ny?, (6.2)
(2,in) Va .
At three loops, we write the finite remainder as
PO = AL(@)n}2C3 + Aa(2) P CACE + As(z) npn¥2Ca + Ag(z) (n})2Ca
+ Ajs(x) n}/QC’% + Ag(x) (n}/)2CF + Az(x) nfn}/QC’F + Ag(x) nfm}@
+{(z) & (1-2)} (6.4)
with
23L1 (L1 +2im)  32L1(Ly+2im)—46(L,+im) 17 , 19 1 ,
Ai(z)=— — L2~ " LyLi+-Lo—2irL
1) 922 + 9z 360 35 01Tl Mo
+i7r4—% —§ﬂ'2 745194-11'71( +£i7r3+gi7r+§L x
288 72 % 72 324 2 144 12 g
7
—§a:2 ((Lo—L1)2+7T2),
8Ly (L1 42im)  16(Ly4im)—8Ly(Li+2im) 1_4 5 17 5
Ag(z)= ——Li4+ Lol +—1L Lo——
2(7) 32 3z grotghobat g hotimbom o
1 1 4
—%—&W—?Lox—i-gx? ((Lo—L)?*+?),
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 Ly(Ly+2im)  2(Ly+im)— Ly (L +2im) 1 1, 475

A ——L — LoLi—=Lo——
3(®) 1822 189: 360 ggloli—glo C?’ 132"
025 1.5 175
el . Bkl Loz+—a2((Lo—L
324 727 54 ”+9 OH%I (( 0=L1)’ 4w )
5Ly (Ly+2im) Ly(Li+2in)—8(Li+imr) 1., 1 1, 1
A4(.I')—— 12 o7 +ZL3_ZLOL1_2LO_6<3+§W2_§
+4Loz—a? ((Lo—L1)*+77),
Li(Ly+2in)  Ly(Ly+2imt)—2(Ly+ir) 1 .. . 39
As(a)=— 1 ;2 z7r)+ 1(L1 ml (L1 W)—QLg—mLo+4+m+2L0x
1 2 2 2
—5.'1: ((LO—Ll) —+ ),
10Ly (L +2im)  32(Li+in)—AL{(Li+2i7) 2., 2 16 1
AG(ZL‘): (351;2 )—|— ( )3,7; ( )—3L(2)—|—3L0L1+3L0+16C3—37T2
4 32 8 5 y
+§—§L09€+3 ((Lo—L1) +7 ),
5Ly(Li+2im) 10(Li+in)—8Ly(Li+2i7) 2 ., 1 10 ,
Aq(z)= 1(3;2 >+ (L1 )393 1L )+3L3+3L0L1—3L0+2mL0+4<3
2 10 1
—%+5—3i7r—§L0x+§x2((LO—L1)2+7r2),
23 5
Ag(a:):—mﬂ—kﬁm. (6.5)

In eq. (6.5), we have defined Ly = In(x) and L; = In(1 — z). We note that these are the
only transcendental functions that are needed to describe our result.

Although the results for the remaining helicity configurations are still rather compact,
they are much larger than for the X = (+ + ++) case. We provide them in electronically-
readable format in the supplementary material. In figure 2(Lv§e) plot our result for the
s )L LA

5 o as functions of z. We
™ X

fix ay = 0.118 and show graphs for the helicity configurations X = (4 + ++), (— + +-+),
(++ —+), (— —++) and (— + —+). All the other helicity amplitudes can be obtained
from these through Bose symmetry (z <> 1 — x) and parity.

one-, two- and three-loop finite remainders M(XL) = (

7 Conclusions

In this paper, we have computed the helicity amplitudes for the process gg — vy in three-
loop massless QCD. This is the last missing ingredient required for the calculation of the
NNLO QCD corrections to diphoton production in the gg channel. For our analytical three-
loop calculation, we have adopted a new projector-based prescription to compute helicity
amplitudes in the 't Hooft-Veltman scheme. The expressions at the intermediate stages
of our calculation were quite sizable, and we employed recent ideas for the demanding
integration-by-parts reductions. Our final results though are remarkably compact. They
can be expressed either in terms of standard Harmonic Polylogarithms of weight up to six,
or in terms of only 23 transcendental functions defined by up to three-fold sums. This
makes the numerical evaluation of our result both fast and numerically stable. Analytical
results for both choices of the transcendental functions are provided in the supplementary
material that accompany this publication.
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We envision several possible future directions of investigations. On a more phenomeno-
logical side, it would be interesting to combine our results with those of refs [10, 11] to
obtain NNLO predictions for the gg — v~ process. On a more theoretical side, the simplic-
ity of our final results begs for an exploration of new ways to perform multiloop calculations.
Finally, it would be very interesting to promote our calculation to the fully non-abelian case
and consider three-loop scattering amplitudes for the gg — gg process. We look forward
to pursuing these lines of investigation in the future.
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