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We compute the three-loop helicity amplitudes for the scattering of four gluons in QCD. We employ
projectors in the ’t Hooft-Veltman scheme and construct the amplitudes from a minimal set of physical
building blocks, which allows us to keep the computational complexity under control. We obtain relatively
compact results that can be expressed in terms of harmonic polylogarithms. In addition, we consider the
Regge limit of our amplitude and extract the gluon Regge trajectory in full three-loop QCD. This is the last
missing ingredient required for studying single-Reggeon exchanges at next-to-next-to-leading logarithmic
accuracy.
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Introduction.—Scattering amplitudes in quantum
chromodynamics (QCD) are one of the fundamental
ingredients to describe the dynamics of the high energy
collision events produced at the Large Hadron Collider
(LHC) at CERN. As a matter of fact, such probability
amplitudes for processes involving four or five elementary
particles and up to two loops in perturbation theory, are
routinely used to measure the properties of standard model
particles as the Higgs boson and to study its interactions
with fermions and electroweak bosons [1]. Moreover, by
providing the building blocks for precise estimates of
standard model processes, they also allow us to put
stringent constraints on new physics signals predicted by
various beyond the standard model scenarios.
In addition to their practical use for collider physics, the

analytic calculation of scattering amplitudes in QCD
provides an invaluable source of information to understand
general properties of perturbative quantum field theory
(QFT). In fact, with more loops and more external particles
participating to the scattering process, the analytic structure
of scattering amplitudes becomes increasingly rich, in
particular due to the appearance of new classes of special
functions, whose branch cut and analytical structure are to
reproduce those dictated by causality and unitarity in QFT.

In recent years, a considerable effort has been devoted to
study the properties of these functions from first principles.
The goal is to understand whether an upper bound can be
established for the type of mathematical objects that can
appear in the calculation of physically relevant scattering
processes. While we are far from being able to provide a
complete answer to this question, the multitude of data
collected in the form of increasingly complicated ampli-
tudes, have already revealed crucial to discover and classify
ubiquitous classes of such functions, most notably the so-
called multiple polylogarithms [2–4] and more recently
their elliptic generalizations [5–10]. Most of these discov-
eries have been inspired by analytical results for scattering
amplitudes up to two loops, both in massless and in massive
theories, which have been an important focus of the efforts
of the particle physics community in the last two decades.
A natural step forward in these investigations is to push
these calculations one loop higher to determine which
degree of generalization is required. In combination with
more general results on the simplified universal properties
of QCD in special kinematical limits, perturbative calcu-
lations can also be used to have a glimpse of some all-order
QCD structures, which only emerge summing infinite
classes of diagrams. One of the classical examples of such
kinematical configurations is the so-called Regge limit
[11], where the energy of the colliding partons is assumed
to be much larger than the typical transferred momentum.
In this limit, the Balitskii-Fadin-Kuraev-Lipatov (BFKL)
formalism [12,13] allows one to reformulate the calculation
of scattering amplitudes in terms of the exchange of
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so-called reggeized gluons, which resum specific contri-
bution to the strong interaction among elementary partons
to all orders in the QCD coupling constants.
Motivated by these considerations, in this Letter we

focus on the scattering of four gluons at three loops in
QCD. This is the most complex of all scattering processes
in QCD that involve four massless particles, both for the
number of terms involved in its calculation, and also for its
color and infrared structure. As of today, this process was
known to three-loop order only in the simpler setting of
N ¼ 4 super-Yang-Mills (SYM) theory [14] and in the
planar approximation for pure Yang-Mills theory [15]. The
high-energy limit of these results have been studied in
Refs. [16,17], respectively. In this Letter, we build upon the
techniques that we have developed for the calculations of
simpler four-particle scattering processes [18–20] and
compute the three loop scattering amplitudes for gluon-
gluon scattering in full, nonplanar QCD.
We consider the process

gðp1Þ þ gðp2Þ þ gðp3Þ þ gðp4Þ → 0; ð1Þ

where all momenta are taken to be incoming and massless

pμ
1 þ pμ

2 þ pμ
3 þ pμ

4 ¼ 0; p2
i ¼ 0: ð2Þ

The scattering process above can be parametrized in terms
of the usual set of Mandelstam invariants

s¼ðp1þp2Þ2; t¼ðp1þp3Þ2; u¼ðp2þp3Þ2; ð3Þ

which satisfy the relation u ¼ −t − s. We work in dimen-
sional regularization to regulate all ultraviolet and infrared
divergences. More precisely, we adopt the ’t Hooft-Veltman
scheme [21], where loop momenta are taken to be d ¼
4 − 2ϵ dimensional, while momenta and polarizations
associated with external particles are kept in four dimen-
sions. The physical scattering process gg → gg (relevant for
dijet production) can be obtained from (1) by crossing
p3;4 → −p3;4. In order to parametrize the kinematics for
this process, it is useful to define the dimensionless ratio

x ¼ −t=s; ð4Þ

so that in the physical region p1 þ p2 → p3 þ p4 we have

s > 0; t < 0; u < 0; 0 < x < 1: ð5Þ

Color and Lorentz decomposition.—We write the scat-
tering amplitude for gg → gg as

Aa1a2a3a4 ¼ 4παs;b
X6

i¼1

A½i&Ci; ð6Þ

where αs;b is the bare strong coupling, A½i& are color-
ordered partial amplitudes, and the color basis fCig reads

C1 ¼ Tr½Ta1Ta2Ta3Ta4 & þ Tr½Ta1Ta4Ta3Ta2 &;
C2 ¼ Tr½Ta1Ta2Ta4Ta3 & þ Tr½Ta1Ta3Ta4Ta2 &;
C3 ¼ Tr½Ta1Ta3Ta2Ta4 & þ Tr½Ta1Ta4Ta2Ta3 &;
C4 ¼ Tr½Ta1Ta2 &Tr½Ta3Ta4 &;
C5 ¼ Tr½Ta1Ta3 &Tr½Ta2Ta4 &;
C6 ¼ Tr½Ta1Ta4 &Tr½Ta2Ta3 &: ð7Þ

Here, the adjoint representation index ai corresponds to the
ith external gluon, while Ta

ij are the fundamental SUðNcÞ
generators normalized such that Tr½TaTb& ¼ 1

2 δ
ab. As it is

well known, the partial amplitudes A½i& are independently
gauge invariant. The advantage of using a color-ordered
decomposition is that, by construction, the amplitudes A½i&

are not all independent under crossings of the external
momenta. We can restrict ourselves to compute only two of
the structures above and obtain all other partial amplitudes
by crossing symmetry. For definiteness, we choose to focus
on A½1& and A½4&.
In order to compute A½1& and A½4&, it is convenient to

further decompose them with respect to a basis of Lorentz
covariant tensor structures. In the following, we denote the
polarization vector of the ith external gluon as ϵðpiÞ ¼ ϵi,
which satisfies the transversality condition ϵi · pi ¼ 0. By
making the cyclic gauge choice ϵi · piþ1 ¼ 0, with
p5 ¼ p1, and restricting ourselves to physical four-dimen-
sional external states, one finds [22,23] that each partial
amplitude can be decomposed as

A½j&ðs; tÞ ¼
X8

i¼1

F ½j&
i Ti; ð8Þ

where the coefficient functions F ½j&
i are usually referred to

as form factors and the tensors Ti are defined as

T1 ¼ ϵ1 · p3ϵ2 · p1ϵ3 · p1ϵ4 · p2;

T2 ¼ ϵ1 · p3ϵ2 · p1ϵ3 · ϵ4; T3 ¼ ϵ1 · p3ϵ3 · p1ϵ2 · ϵ4;

T4 ¼ ϵ1 · p3ϵ4 · p2ϵ2 · ϵ3; T5 ¼ ϵ2 · p1ϵ3 · p1ϵ1 · ϵ4;

T6 ¼ ϵ2 · p1ϵ4 · p2ϵ1 · ϵ3; T7 ¼ ϵ3 · p1ϵ4 · p2ϵ1 · ϵ2;

T8 ¼ ϵ1 · ϵ2ϵ3 · ϵ4 þ ϵ1 · ϵ4ϵ2 · ϵ3 þ ϵ1 · ϵ3ϵ2 · ϵ4: ð9Þ

The form factors can be extracted by defining a set of eight
projectors Pi which are in one to one correspondence with
the tensors in Eq. (9), such that Pi · Tj ¼

P
pol PiTj ¼ δij.

Helicity amplitudes.—In this Letter we are ultimately
interested in the helicity amplitudes Aλ, where
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λ ¼ fλ1; λ2; λ3; λ4g and λi is the helicity of the ith external
particle. In the four-gluon case we need to consider 24 ¼ 16
possible helicity choices. However, only eight helicity
amplitudes are independent as the remaining ones can be
obtained by parity conjugation, which effectively trans-
forms the helicities as λ → −λ. The independent helicity
amplitudes are in one to one correspondence with the
Lorentz tensors of Eq. (9) and their color stripped counter-
parts can in fact be written as a linear combination of the
form factors F ½j&

i . In order to make this relation explicit, we
start from the tensor decomposition in Eq. (8) and employ
the spinor-helicity formalism [24] to fix the helicities of the
external gluons. We write the gluon polarization vectors for
fixed ' helicity as

ϵμi;þ ¼ ½iþ 1jγμjiiffiffiffi
2

p
½ijiþ 1&

; ϵμi;− ¼ ½ijγμjiþ 1iffiffiffi
2

p
hiþ 1jii

; ð10Þ

where we used the cyclic gauge choice introduced above,
identifying j5&≡ j1& and j5i≡ j1i. By inserting the specific
representation of Eq. (10) in Eq. (8), we can write the color-
ordered partial amplitudes as

A½i&
λ ¼ H½i&

λ sλ; ð11Þ

where sλ is a phase that carries all the spinor weight. The
decomposition (11) is not unique. Here, we follow [25] and
choose

sþþþþ ¼ h12ih34i
½12&½34&

; s−þþþ ¼ h12ih14i½24&
h34ih23ih24i

;

sþ−þþ ¼ h21ih24i½14&
h34ih13ih14i

; sþþ−þ ¼ h32ih34i½24&
h14ih21ih24i

;

sþþþ− ¼ h42ih14i½12&
h13ih23ih12i

; sþþ−− ¼ h12i½34&
½12&h34i

;

sþ−þ− ¼ h13i½24&
½13&h24i

; sþ−−þ ¼ h14i½23&
½14&h23i

: ð12Þ

From now on we will focus on the calculation of H½j&
λ ,

which we will refer to as helicity amplitudes, with a slight
abuse of notation. TheH½j&

λ can be expanded in terms of the
bare QCD coupling in the usual way:

Hλ ¼
X3

k¼0

ᾱks;bS
k
ϵH

ðkÞ
λ þOðᾱ4s;bÞ; ð13Þ

where we have omitted the color structure index ½j& for ease
of reading and defined ᾱs;b ¼ αs;b=ð4πÞ and
Sϵ ¼ ð4πÞϵe−ϵγE . Here, we focus on the computation of
the three-loop amplitude Hð3Þ

λ . As a byproduct we also re-
computed the tree level, one- and two-loop amplitudes as a

check of our framework and found prefect agreement with
previous results in the literature [26,27].
We use QGRAF [28] to produce the relevant Feynman

diagrams: there are four different diagrams at tree level, 81 at
one loop, 1771 at two loops and48723 at three loops.We then
use FORM [29] to apply the projection operatorsPi to suitable
combinations of the Feynman diagrams and in this way write
the helicity amplitudes H½1&

λ , H½4&
λ as a linear combination of

scalar Feynman integrals. The integrals appearing in the
computation of these amplitudes can be written as

I top
n1;…;nN ¼ μ2Lϵ0 eLϵγE

Z YL

i¼1

"
ddki
iπ

d
2

#
1

Dn1
1 ( ( (DnN

N
; ð14Þ

where L stands for the number of loops, ki are the loop
momenta, γE ≈ 0.5772 is the Euler constant, μ0 is the
dimensional regularization scale, and ϵ ¼ ð4 − dÞ=2 is the
dimensional regulator. Here, “top” can be any of the planar or
nonplanar integral families which are given explicitly in
Ref. [19]. At three loops we find that a staggering number of
∼Oð107Þ scalar integrals contribute to the amplitude.
However, these integrals are not linearly independent and
can be related using symmetry relations and integration by
parts identities [30,31]. We performed this reduction with
REDUZE2 [32,33] and FINRED, an in-house implementation
based on Laporta’s algorithm, finite field techniques [34–37]
and syzygy algorithms [38–43]. In this way we were able to
express the helicity amplitudes in terms of the 486 master
integrals (MIs), which were first computed in Ref. [44] and
more recently in Ref. [20] in terms of simple harmonic
polylogarithms (HPLs) [2]. After inserting the analytic
expressions for the master integrals, we obtain the bare
helicity amplitudesHðjÞ

λ as a Laurent series in ϵ up toOðϵ0Þ in
terms of HPLs up to transcendental weight six.
uv renormalization and ir behavior.—The bare helicity

amplitudes contain both ultraviolet (uv) and infrared (ir)
divergencies that manifest as poles in the series expansions
of the dimensional regulator ϵ. uv divergences can be
removed by expressing the amplitudes in terms of the MS
renormalized strong coupling αsðμÞ using

ᾱs;bμ2ϵ0 Sϵ ¼ ᾱsðμÞμ2ϵZ½ᾱsðμÞ&; ð15Þ

where ᾱsðμÞ ¼ αsðμÞ=ð4πÞ, μ is the renormalization scale,
and

Z½ᾱs& ¼ 1 − ᾱs
β0
ϵ
þ ᾱ2s

"
β20
ϵ2

−
β1
2ϵ

#

− ᾱ3s

"
β30
ϵ3

−
7

6

β0β1
ϵ2

þ β2
3ϵ

#
þOðᾱ4sÞ: ð16Þ

The explicit form of the β-function coefficients βi is
immaterial for our discussion; for the reader’s convenience,
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we provide them in Supplemental Material [45]. The uv-
renormalized helicity amplitudes Hλ;ren are obtained by

expanding Eq. (6) in ᾱsðμÞ. In particular, HðkÞ
λ;ren is the

(color- and helicity-stripped) coefficient of the ᾱks term.
The renormalized amplitudes still contain poles of ir

origin, whose structure is universal. The infrared structure
of QCD scattering amplitudes was first studied at two loops
in [46] and later extended to general processes and three
loops in [47–55]. Up to three loop order, one can write
[50,51]

Hλ;ren ¼ ZirHλ;fin; ð17Þ

where Hλ;fin are finite remainders and Zir is a color matrix
that acts on the fCig basis (7). It can be written in terms of
the so-called soft anomalous dimension Γ as

Zir ¼ P exp
$Z

∞

μ

dμ0

μ0
Γðfpg; μ0Þ

%
; ð18Þ

where the path ordering operator P reorganizes color
operators in increasing values of μ0 from left to right and
is immaterial up to three loops since to this order
½ΓðμÞ;Γðμ0Þ& ¼ 0. The soft anomalous dimension can be
written as

Γ ¼ Γdip þ Δ4: ð19Þ

The dipole term Γdip is due to the pairwise exchange of
color charge between external legs and reads

Γdip ¼
X

1≤i<j≤4
Ta
i T

a
j γ

K ln
"

μ2

−sij − iδ

#
þ 4γg; ð20Þ

where sij ¼ 2pi · pj, γK is the cusp anomalous dimension
[56–62] and γg is the gluon anomalous dimension [63–66].
Their explicit form up to the order ᾱ3s required here is
reproduced in Supplemental Material [45] for convenience.
In Eq. (20) we have also introduced the standard color
insertion operators Ta

i , which only act on the ith external
color index. In particular, in our case their action on fCig is
defined as Ta

i T
bi ¼ −ifabiciTci ¼ ½Tbi ; Ta&.

The quadrupole contribution Δ4 in Eq. (19) accounts
instead for the exchange of color charge among (up to) four
external legs. It becomes relevant for the first time at three
loops, Δ4 ¼

P∞
n¼3 ᾱ

n
sΔ

ðnÞ
4 , where it reads [55]

Δð3Þ
4 ¼ fabefcde

$
−16C

X4

i¼1

X

1≤j<k≤4
j;k≠i

fTa
i ;T

d
i gTb

jT
c
k

þ128½Ta
1T

c
2T

b
3T

d
4D1ðxÞ − Ta

4T
b
1T

c
2T

d
3D2ðxÞ&

%
; ð21Þ

with C ¼ ζ5 þ 2ζ2ζ3. The functions D1ðxÞ and D2ðxÞ in
our notation are reported in Supplemental Material [45].
We verified that the ir singularities of our three-

loop amplitudes match perfectly those generated by
Eqs. (17)–(21), which provides a highly nontrivial check
of our results. Our results for the finite remainder Hλ;fin
are relatively compact, but still too long to be presented
here. They are included in computer-readable format in
Supplemental Material [67]. In Fig. 1, we plot our results
for the interference with the tree level, defined as

hHð0ÞjHðLÞi≡N
X6

i;j¼1

C†i Cj
X

λ

H½i&;ð0Þ)
λ H½j&;ðLÞ

λ;fin ; ð22Þ

where N ¼ 1=½2ðN2
c − 1Þ&2 is the initial-state color and

helicity averaging factor and the polarization sum runs over
all the 16 helicity configurations. Further, we have set
μ2 ¼ s, αs ¼ 0.118, Nc ¼ 3, and nf ¼ 5.
High energy limit and the gluon Regge trajectory.—QFT

scattering amplitudes exhibit interesting factorization prop-
erties in the high energy (Regge) limit. In terms of the
variables introduced in this Letter, this limit corresponds to
jsj ≈ juj ≫ jtj, or equivalently x → 0. For studying this
region it is convenient to split scattering amplitudes into
parts of definite signature under the s ↔ u exchange:

Hren;' ¼ 1

2
½Hrenðs; uÞ 'Hrenðu; sÞ&: ð23Þ

It is then useful to define the signature-even combination

L¼− lnðxÞ− iπ
2
≈
1

2

$
ln
"
−s− iδ
−t

#
þ ln

"
−u− iδ
−t

#%
ð24Þ

and the color operators [68,69]

FIG. 1. Tree level amplitude squared and interferences of tree
level with L ¼ 1, 2, 3 loop amplitudes in dependence of
x ¼ −t=s.
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T2
s ¼ðT1þT2ÞaðT1þT2Þa; T2

t ¼ðT1þT3ÞaðT1þT3Þa;

T2
u¼ðT1þT4ÞaðT1þT4Þa; T2

s−u¼
1

2
ðT2

s−T2
uÞ: ð25Þ

At leading power in x and up to the next-to-leading
logarithmic (NLL) accuracy, i.e., up to terms of the form
ᾱisLi−1, the odd amplitude has a simple factorized structure.
Indeed, to all orders in the strong coupling, Hren;− can be
thought of as the amplitude for the exchange of a single
“reggeized” t-channel gluon, whose interaction with the
external high-energy gluons is described by so-called
impact factors [12,70–73]. In the language of complex
angular momentum [74], this single-particle exchange is
usually referred to as the “Regge-pole” contribution.
Starting from next-to-next-to-leading logarithmic

(NNLL) accuracy (i.e., from terms of the form ᾱisLi−2),
this simple factorization is broken and one needs to account
for multiple Reggeon exchanges [16,73,75–80]. These are
usually referred to as the “Regge-cut” contributions. For
the signature-even amplitude, the Regge-cut contribution
already enters at the first nontrivial logarithmic order
(NLL). The presence of Regge cuts greatly increases the
complexity of an all-order analysis. However, if one
restricts oneself to fixed order and only considers the first
nontrivial cut contribution (i.e., one works at NLL or
NNLL for the even or odd amplitude), the problem
simplifies dramatically. Indeed, this case can be dealt with
using LO BFKL theory [73,77–80].
The only missing ingredient to fully characterize the

signature even or odd amplitudes at NLL or NNLL and test
Regge factorization to this accuracy is the three-loop gluon
Regge trajectory. Currently, it is only known in N ¼ 4
SYM [14,16], and in pure gluodynamics under some
assumptions on the trajectory itself [15,17]. The three-loop
calculation presented in this Letter allows us to extract the
trajectory in full QCD, closing this gap.
Before presenting our results, we note that the definition

itself of a Regge trajectory is subtle at NNLL [16,78–80]. In
this Letter, for definiteness we follow the Regge-cut
scheme of Ref. [16]. In particular, we write (in this section,
we set the renormalization scale to μ2 ¼ −t)

Hren;' ¼ Z2
geLT

2
t τg

X3

n¼0

ᾱns
Xn

k¼0

LkO';ðnÞ
k Hð0Þ

ren; ð26Þ

where τg ¼
P

n¼1 ᾱ
n
sτn is the gluon Regge trajectory and

Zg ¼
P

n¼0 ᾱ
n
sZ

ðnÞ
g is a scalar factor accounting for collin-

ear singularities [78] whose explicit value is given in
Supplemental Material [45]. The nonvanishing odd signa-
ture color operators O−;ðnÞ

k read up to NNLL [78]

O−;ð0Þ
0 ¼1; O−;ð1Þ

0 ¼2Ig
1;

O−;ð2Þ
0 ¼½2Ig

2þðIg
1Þ2&þB−;ð2Þ

$
ðT2

s−uÞ2−
N2

c

4

%
;

O−;ð3Þ
1 ¼B−;ð3Þ

1 T2
s−u½T2

t ;T2
s−u&þB−;ð3Þ

2 ½T2
t ;T2

s−u&T2
s−u; ð27Þ

while the even signature ones are up to NLL [78]

Oþ;ð1Þ
0 ¼ iπBþ;ð1ÞT2

s−u; Oþ;ð2Þ
1 ¼ iπBþ;ð2Þ½T2

t ;T2
s−u&;

Oþ;ð3Þ
2 ¼ iπBþ;ð3Þ½T2

t ; ½T2
t ;T2

s−u&&: ð28Þ

In these equations, the coefficients B';ðLÞ describe the
Regge-cut contribution and are known [77,78]. Ig

j are the
perturbative expansion coefficients of the gluon impact
factor and can be extracted from a one- and two-loop
calculation [27]. For convenience, we report both B';ðLÞ

and Ig
1;2 in Supplemental Material [45]. As we noted

earlier, the NNLL Regge trajectory instead requires a full
three-loop calculation. To present our result for it, we
define

K½αsðμÞ& ¼ −
1

4

Z
μ2

∞

dλ2

λ2
γK½αsðλ2Þ&; ð29Þ

together with its perturbative expansion K ¼
P

n¼1 Kiᾱis
whose coefficients are given in Supplemental Material [45].
The expansion coefficients of the gluon Regge trajectory τi
can then be written as

τ1 ¼ K1 þOðϵÞ;

τ2 ¼ K2 −
56nf
27

þ Nc

"
404

27
− 2ζ3

#
þOðϵÞ;

τ3 ¼ K3 þ N2
c

"
16ζ5 þ

40ζ2ζ3
3

−
77ζ4
3

−
6664ζ3
27

−
3196ζ2
81

þ 297029

1458

#
þ

nf
Nc

"
−4ζ4 −

76ζ3
9

þ 1711

108

#

þ Ncnf

"
412ζ2
81

þ 2ζ4
3

þ 632ζ3
9

−
171449

2916

#
þ n2f

"
928

729
−
128ζ3
27

#
þOðϵÞ; ð30Þ

PHYSICAL REVIEW LETTERS 128, 212001 (2022)

212001-5



where the higher orders in ϵ for τ1 and τ2 can be found in
Supplemental Material [45]. As expected, our lower-loop
results are consistent with Ref. [81], see also [82]. For τ3,
the nf-independent part of our result agrees with Ref. [17].
Furthermore, the highest transcendental-weight terms of
the trajectory agree with the N ¼ 4 SYM result [14,16],
as predicted by the maximal transcendentality principle
[83–86]. On its own, the result (30) is not particularly
illuminating. However, we have found the same trajectory
using both the calculation outlined in this Letter and our
previous qq0 → qq0 three-loop calculation [19]. This pro-
vides an important test of QCD Regge factorization at the
three-loop level. We also stress that now all the ingredients
for a NLL and NNLL analysis of the signature-even and
signature-odd elastic amplitudes are known. In particular,
we can now fully predict the yet unknown qg → qg three-
loop amplitude to NNLL accuracy. Explicitly checking
these predictions against a full calculation will provide a
highly nontrivial test of the universality of Regge factori-
zation in QCD.
Conclusion.—In this Letter, we have presented the first

computation of the helicity amplitudes for the scattering of
four gluons up to three loops in full QCD. We obtained
compact results for the finite part of all independent helicity
configurations in terms of harmonic polylogarithms up to
weight six and we verified that the ir poles of our analytic
amplitudes follow the predicted universal pattern up to
three loops, which includes dipole and quadruple correla-
tions. We also considered the high-energy (Regge) limit of
our amplitudes, and extracted the full three-loop QCD
gluon Regge trajectory. This was the last missing building
block to describe single-Reggeon exchanges at NNLL
accuracy.
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