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We compute the photon-quark and Higgs-gluon form factors to four-loop order within massless
perturbative quantum chromodynamics. Our results constitute ready-to-use building blocks for N*LO cross
sections for Drell-Yan processes and gluon-fusion Higgs boson production at the LHC. We present complete
analytic expressions for both form factors and show several of the most complicated master integrals.
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Introduction.—A number of experimental results
obtained at the Large Hadron Collider (LHC) at CERN
have reached a precision below the percent level, often
superseding the original expectations. A fundamental
ingredient to the successful interpretation of precise data is
the computation of higher-order quantum corrections, most
importantly those stemming from the strong interaction. In
many cases next-to-next-to-leading order (NNLO) correc-
tions have become standard. In fact, nowadays 2 — 2
scattering processes are routinely computed at this order,
in some cases even taking into account massive particles in
the loops. Also for 2 — 3 processes more and more results
become available (see, e.g., Refs. [1-7]).

There are a few processes which are known to third order,
or N®LO, in perturbative quantum chromodynamics (QCD).
Among them are the Drell-Yan production of W and
Z bosons [8,9] as well as Higgs boson production in gluon
fusion in the infinite top-mass limit [10,11] at the LHC. In the
latter case the high-order corrections are particularly impor-
tant due to the slow convergence of the perturbative series.
Similar observations have been made for the threshold
production cross section of the top quark pairs in electron
positron annihilation, where third-order corrections are
necessary to obtain theory uncertainties of a few percent
[12]. For more generic 2 — 2 processes like dijet production,
virtual corrections at third-order QCD became available only
recently (see, e.g., Refs. [13,14]), providing first ingredients
to such N*LO cross sections.
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In the coming years the precise determination of the Higgs
boson properties will be one of the central topics at the LHC.
In this context it is important to improve the precision for the
production cross section, both experimentally and from
the theory side. First steps towards the N*LO corrections
of the Higgs boson production cross section have been
undertaken in Ref. [15]. In this Letter, we provide the first
ready-to-use ingredient to the N*LO cross section for gg —
H + X by presenting the virtual corrections to the effective
Higgs-gluon vertex up to four-loop order. Similarly, we
provide the four-loop corrections to the photon-quark vertex
which are a building block of the N*LO corrections to the
process gg — Z/W. Historically, also at N°LO the purely
virtual corrections were the first building blocks to become
available with the calculation of the three-loop form factors
more than a decade ago [16-18]. Subsequently, the real-
radiation contributions have been added step-by-step until
first results for the Higgs production cross section became
available [19-25].

The relevant form factors for the ggy* and ggH vertex
functions I'; and I7’, respectively, are given by the
projections

1
Fu(q*) = —WTT(%FZ%YM), (1)

(1 -

(611‘Q29 — 1920 — 91092 )
F (g% — Hv #4920 VA2 ) v )
g(q ) 2(1 _ €) g ( )

Here, the overall normalization is chosen such that both form
factors are one at leading order. We employ conventional
dimensional regularization and use ¢ = (4 — d)/2, where d
is the space-time dimension. The outgoing momentum of the
photon (Higgs) is ¢ = q; + g5, where g, and ¢, are the
incoming momenta of the quark and antiquark (gluons) for
F, (F,), and we have ¢} = ¢3 = 0 and ¢* # 0.
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Sample Feynman diagrams and color factors for the nonfermionic contributions to ¥, and F at four-loop order. Straight and

curly lines denote quarks and gluons, respectively. Both planar and nonplanar diagrams contribute.

The two- and three-loop QCD corrections to F, and F,
are available from Refs. [16,18,26-32] and in Refs. [33,34]
the three-loop results have been obtained up to order €2. At
four loops, only partial results have been obtained so far. In
Fig. 1 we show sample Feynman diagrams for the purely
gluonic corrections to F, and F; in four-loop QCD; sample
diagrams for the fermionic part can be found in Fig. 1 of
Ref. [35]. Altogether 5728 and 43 220 Feynman diagrams
contribute to the quark and gluon form factor at this
perturbative order, respectively.

The results, which are presented in this Letter, finalize a
long-running effort to compute QCD form factors to four
loops. Firstresults have been obtained in 2016 [36,37] where
planar diagrams for F'; have been presented in the large-N .
limit. Fermionic corrections with two closed fermion
bubbles are available from [38] and the complete contribu-
tion from color structure (d%°°?)? has been computed in
[39.40]. For F, and F, all corrections with three or two
closed fermion loops have been calculated in [41,42],
respectively, including also the singlet contributions. The
complete set of poles of F, and F, in the dimensional
regulator has been obtained through direct diagrammatic
evaluation in [43]. Finally, the complete fermionic correc-
tions to F'y, and F, have been computed in Ref. [35].

Calculation.—The calculation of the four-loop form
factors presents two major challenges. The first one is
connected to a minimal representation of the form factors.
After generating the Feynman diagrams with QGRAF [44],
we apply the projectors and perform the numerator and
color algebra with FORM4 [45] and COLOR.H [46]. In this
way, we can write the form factors as a linear combination
of a large number of scalar Feynman integrals, each
belonging to one of 100 twelve-line top-level topologies
or a subtopology thereof. Fixing the twelve propagators and
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six irreducible numerators of its top-level topology, a scalar
integral can be described by eighteen integers indicating the
exponents of the propagators and numerators. By choosing
the irreducible numerators as suitably defined inverse
propagators, all top-level topologies can be described in
terms of the ten complete sets of denominators described in
[47]. Integration-by-parts (IBP) reductions [48-50] sys-
tematically establish linear relations between the integrals,
allowing us to express the form factors as a linear
combination of a minimal set of so-called master integrals.
For our calculation we use the setup described in [40] based
on the program REDUZE2 [51] and the in-house code
FINRED, employing techniques from [52-58].

The second challenge is the computation of the master
integrals. Here we follow two complementary appro-
aches. The first one is based on the construction of finite
master integrals [34,59,60], in d, — 2¢ dimensions where
dy=4,6,.... Provided a linearly reducible [61,62]
Feynman parametric representation can be found, the e
expansions of such master integrals may be computed
analytically using the program HYPERINT [63]. The dimen-
sionally shifted integrals can be related to master integrals
in 4 — 2¢ dimensions using IBP relations derived with first-
and second-order annihilators in the Lee-Pomeransky
representation [64]. We wish to point out that in this
approach, the integration can be performed at the level
of individual integrals. In practice, evaluating higher orders
of the € expansion gets ever more demanding due to the rise
in algebraic complexity. To determine the form factors F,
and F,, we computed a number of integrals to transcen-
dental weight eight in this approach, including computa-
tionally demanding nonplanar integrals with twelve
different propagators. For one such irreducible topology
with a single twelve-line master integral we find
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in the conventions of Ref. [65]. In particular, the integral is
defined in 6 —2¢ and each dot indicates a squared
propagator. We would like to mention that no integral in
this topology was needed for the calculation of the ' = 4
Sudakov form factor [47]. Our result above is expressed in
terms of regular zeta values, ¢, (n =2,...,7), and
(&)
=2

m=1

-1

3

5~ 0.037707 6729848 (4)

lmn

3
Il

is the only irreducible multiple zeta value at weight eight.

Our second approach for computing master integrals is
the method of differential equations [66—69] based on
“canonical” bases [70]. Since our master integrals only
depend on one kinematic parameter, g°, we have to
introduce a second mass scale such that nontrivial differ-
ential equations can be established. With canonical bases,

g

this idea was first implemented in [71]. For our application
it is advantageous to make one of the massless external legs
massive. Choosing ¢} # 0 has the advantage that the
boundary conditions can be fixed for g7 = ¢* since then
the vertex integrals turn into two-point integrals, which are
well studied in the literature [72,73]. The differential
equations are used to transport the information to
g3 =0, which corresponds to the vertex diagrams we
are interested in. To construct canonical bases we apply
the algorithm of Ref. [74] implemented in [75]. Details of
this approach can, e.g., be found in Ref. [39]. When
constructing canonical bases, we also need IBP reduction
to master integrals. Here, we apply FIRE [76] for this.

For one of the most complicated twelve-line topologies
which did not enter the A' =4 Sudakov form factor we
obtain for its two master integrals
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A feature of our second method is that it provides the ne u? " (n)
results for all master integrals of a given family. Often the Fe=T+ 21: 4,, e}’E —¢* - i0 Fx, (7)
n>

simpler integrals with less lines could also be computed
with the first approach, which moreover gave results
through to transcendental weight seven for almost all of
the integrals. This provided us with plenty of analytical
cross checks. For all integrals which were not checked by
redundant analytical calculations, we employed FIESTAS
[77] to verify our analytical results within a typical relative
precision of 10~ using a basis of finite integrals.

Results.—Our calculation of the master integrals through
to weight eight allows us to present complete analytic
results for F, and F,. It is convenient to define their
perturbatwe expans10n 1n terms of the bare strong coupling
constant a? as

with x € {q, g}. Here, yx denotes Euler’s constant, and y is
the 't Hooft scale.

While the ¢ expansion of the fermionic corrections
starts at order 1/¢’, the purely gluonic corrections also
have 1/€® poles and, correspondingly, zeta values with
transcendental weight up to eight in the finite part. Since all
pole parts are known analytically from Ref. [43], see also
[15,36,40,78-87], it is sufficient to consider the finite terms
in the following. The complete expressions can be found in
a computer-readable ancillary file attached to this Letter
available on the arXiv. We obtain for the finite part of the
quark form factor
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and for the finite part of the gluon form factor
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We expressed our results in terms of invariants of a
general Lie algebra, where Cy denotes the quadratic
Casimir operator, d%’“? the fully symmetrical tensor origi-
nating from the trace over generators, and Ny the dimen-
sion of the fundamental and adjoint representation, R = F,
A, respectively. For a SU(N.) gauge group the invariants or
color factors are obtained as

Cr = (Nz=1)/(2N,),
CA :Nc
d‘;,-thdaAde/NF — (N% - 1)(Ng -+ 6)/48,

A= Ny = NEN? +36)/24, (10)

All terms shown in Egs. (8) and (9) are new. The complete
four-loop results for ', and F', are obtained after adding the
fermionic contributions given in Egs. (10) and (11)
of Ref. [35].

We performed several checks of our results, which we
describe in the following. First, the leading-color limit of
Eq. (8) agrees with the result of Ref. [37]. While all color
structures of Eq. (8) contribute in this limit, it can be
derived from just planar loop integrals, see also Ref. [65]
for an independent calculatlon Second, we observe that our
weight-eight result for F / N# agrees with the correspond-
ing expression of the four—loop Sudakov form factor in
N = 4 supersymmetric Yang Mills theory, see Eq. (4.1) of
Ref. [47], after expressing the color factors in terms of N,
using Eqgs. (10). Furthermore, after adjusting the QCD color
factors such that the bosonic and fermionic degrees of
freedom are in the same color representation, i.e.,
Cr— Cy, Np > N, and dbedqebed — gobedgabed | we
obtain identical results for the weight-eight coefficients

of FE,4> and F 24). These relations between the maximal
transcendental parts involve all nonfermionic color coef-

ficients of F 5]4) and F §4) and test both leading and
subleading color contributions.

Conclusions.—In this Letter, we provide the perturbative
corrections to the photon-quark and Higgs-gluon form factors
at relative order a?. This is the first complete calculation of

vertex functions in four-loop massless QCD. Our analytical
results have been obtained by combining two powerful
multiloop techniques: the direct integration of finite master
integrals and the method of differential equations. The final
expressions are presented in terms of zeta values with
transcendental weight up to eight, allowing for a straightfor-
ward numerical evaluation. Our results constitute the virtual
contributions to a number of cross sections and decay rates at
N*LO, including Drell-Yan processes and gluon-fusion
Higgs boson production at the LHC.
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