THE GEOMETRIC DISPOSITION OF DIOPHANTINE EQUATIONS

ANTHONY VARILLY-ALVARADO

In 2005, writer David Foster Wallace delivered a remarkable commencement speech at
Kenyon College. He began by begrudgingly offering a “a standard requirement of US com-
mencement speeches”, the parable-ish story:

There are these two young fish swimming along and they happen to meet an
older fish swimming the other way, who nods at them and says “Morning,
boys. How’s the water?” And the two young fish swim on for a bit, and then
eventually one of them looks over at the other and goes “What the hell is
water?”

This article is a story about water. It is a story about trying to understand the natural
habitat of certain problems that, on their face, look like problems about whole numbers. To
be sure, the problems we discuss are number theoretic in character, but the way to access
them and to think about them is informed by a different part of Mathematics: geometry.

1. THREE PROBLEMS
(1) Which whole numbers can be expressed as a sum of three cubes?
(2) Is there a box such that the distance between any two of its corners is a positive
whole number?
(3) Is there a 3 x 3 magic square whose entries are distinct nonzero squares?

Recall an n x n magic square is an n x n grid, filled with distinct positive integers,
whose rows, columns, and diagonals add up to the same number. For example, in
1514 the German artist Albrecht Diirer included the following 4 x 4 magic square in
Melencolia I (see Figure 1.):
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FIGURE 1. Melencolia I, Albrecht Diirer (1514). There is a 4 x 4 magic square
in the top right of the engraving.

Although seemingly unrelated, the three problems above share many features. They all
ask questions about algebraic relations between whole numbers. They also all have avatars
as problems about rational points on algebraic surfaces. The most vexing commonality of
these three problems is their current status: they are all open.

1.1. Historical Remarks. Problem (1) asks: for which integers n > 0 do there exist
integers x, y, and z such that

2?4y 42 =n? (1.1)
In 1825, Samuel Ryley showed that every integer n (indeed, every rational number) is the sum
of three rational cubes. Further progress through 2007 is nicely documented in [BPTYJ07,
§2], where the first (and smallest!) solution to n = 30 is given:

(—283059965)° 4 (—2218 888 517)° + 2220422 932° = 30.

This solution was found in 1999; Daniel Bernstein found the same solution independently
and contemporaneously, based on ideas suggested by Noam Elkies.! At the beginning of
2019, the only n < 100 not known to be expressible (or not!) as a sum of three integer cubes

ISee http://1listserv.nodak.edu/archives/nmbrthry.html 9 July 1996.
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were n = 33 and n = 42. Shortly thereafter, Andrew Booker [Boo19] showed that
(8866 128 975 287 528)% + (—8 778 405 442 862 239)° + (—2 736 111468 807 040)° = 33,

and this is the smallest solution to the problem! A few months later, Booker joined forces
with Andrew Sutherland to find the smallest solution to n = 42:

(—80538738812075974)% + (80435758 145817 515) + (12602 123 297 335631)" = 42.

For some integers n, the diophantine equation (1.1) admits no integral solutions: indeed,
the set of cubes modulo 9 is {0,1,—1}, and hence three cubes cannot add up to 4 or —4
modulo 9. Based on analytic arguments predicting the distribution of solutions to (1.1),
Heath-Brown [HB92, p. 623] proposed the following conjecture:

Conjecture 1.1. For integers n % mod 4+ 4 mod 9 there exist integers x, y, and z such
that (1.1) holds.

A box witnessing a positive solution to Problem (2) is called a perfect cuboid (Figure 2).
Euler studied the closely related problem of finding boxes whose sides and face diagonals
are positive integers; it seems likely he considered the problem of the existence of a perfect
cuboid, though no written record of such an exploration appears to exist. The literature
surrounding this problem is nicely summarized in van Luijk’s undergraduate thesis [vL00].
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F1GURE 2. Can z1, x2, T3, Y1, Y2, Y3, and z be integers?

Magic squares have a long history. Tradition has it that the Lo Shu, the earliest recorded
3 x 3 magic square, was first observed by Emperor Yu upon the back of a turtle (ca. 2,200
BC). The search for a 3 x 3 magic square of squares was popularized by Martin Gardner in
1996 [Gar96]; he attributed the problem to Martin LaBar (1984), though it had been studied
by Euler in 1770 and Lucas in 1876 [Boy05]. Andrew Bremner has used the arithmetic of
elliptic curves and K3 surfaces to study two related problems: finding 3 x 3 squares with
distinct square entries such that as many as possible of the eight row, columns, and diagonals
are equal [Bre99], and finding magic 3 x 3 squares with distinct entries, with as many entries

as possible being squares [Bre01]. Our own investigations [BTVA] into the problem of finding
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3 x 3 magic squares of squares are inspired by a similar geometric point of view, although
we work with surfaces of general type, as explained below.

1.2. Geometry determines arithmetic. The three problems above can all be phrased
as questions involving the rational or integral points on certain algebraic surfaces. We
aim to show how our current understanding of the arithmetic of algebraic surfaces informs
the expectations many arithmetic geometers harbor for the answers to our three problems.
Geometry determines arithmetic shall be our mantra. To develop a feel for this mantra, we
turn to a lower-dimensional situation: the arithmetic geometry of curves.

1.3. Fermat’s Last Theorem: a geometric restatement. Fermat’s Last Theorem, i.e,
the statement that for n > 3 every solution (z,y, 2) € Z? to the equation
satisfies xyz = 0, is a statement about rational points on a smooth, projective plane curve.
Recall that the set of rational points on the projective plane is

Q° —{(0,0,0)}
(,y,2) ~ (Az, Ay, Az)
We write (x : y : z) for the equivalence class of (z,y,2). The projective plane P? can be
thought of as a compactification of the Cartesian plane A?; here we identify (X,Y) € A%(Q)
with the point (X : Y : 1) € P?(Q). The subset of P?(Q) whose z-coordinate is zero gives
the set of rational points on the “line at infinity” that is used to compactify A? to P2. We
define P"(Q) analogously:

P2(Q) = AeqQ

Q™ —{(0,...,0)}

P = A e Q.
(@ (Toy -y Tp) ~ (Ao, .. ., Ap) Q
A trivial but powerful observation is that every point (zo,...,x,) € P"(Q) has a repre-
sentative (unique up to a global sign) with x, ..., z, relatively prime integers, obtained by

clearing denominators and removing common factors from any given representative. This
representation of a rational point is almost unique: its only ambiguity is a global sign. For
example,

275
The zero-set of the Fermat expression 2" +y™ — 2™ defines a curve C), in the projective plane

1
(—1 Do 3) = (—10:5:6) as elements of P*(Q).

IP?, whose rational points are

Co(Q) ={(z:y:2) €P*(Q) [ 2" +y" — 2" =0},

The coordinate axes in P? define a reducible curve ¢’ whose rational points are given by

C'(Q) ={(z:y:2) € PQ) | zyz = 0}.
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Fermat’s Last Theorem can be restated as follows: given an integer n > 3, we have

Cn(Q) € C'(Q).

We describe below some fundamental results on the arithmetic of curves, and apply them
to study the set C,(Q). This will not give a proof of Fermat’s last theorem, as we will not
use anything special about the Fermat curve, other than its smoothness, its degree, and the
fact that it contains rational points (e.g., (0:1:1)). Our goal is thus not a description the
fundamental breakthroughs of Wiles and Taylor-Wiles; rather we use the Fermat curve as
an excuse for a tour of the arithmetic of curves.

2. ARITHMETIC OF CURVES

2.1. The genus of a nice curve. By a nice variety X we mean an algebraic variety over
a field k that satisfies a few technical hypotheses: X should be smooth, projective, and
geometrically integral. A nice curve C' is a 1-dimensional nice variety. For example, suppose
that C' is given by the zero-locus of a homogeneous degree n polynomial f(z,y,z) in the
projective plane P2. Let I be the ideal
of of of
(#5532

considered in the ring k[z,y, z], where k denotes a fixed algebraic closure of k; the generator
f in I is redundant if char k = 0. The Jacobian criterion and the projective Nullstellensatz
together imply that C' is nice if some power of the “irrelevant ideal” (z,y, z) is contained in
I. For the Fermat curve, we take k = Q and f = 2" +y" — 2" (n > 2); the ideal I C Q|x, y, 2]

1S

n—1 n—1 , n—1 n—l)

(" 4+ y" — 2" na" oyt ne ) = (2" gy 2,
and we can check that (z,y, )" C I, so the Fermat curve is nice.

Nice curves have one fundamental discrete invariant: their genus. It is the dimension of the
vector space of global 1-forms; when C' C P? is a nice plane curve, defined by a homogeneous

polynomial of degree n, this dimension coincides with the quantity

(n—1)(n—2)

g= 5 : (2.1)

If £ < C then the set of complex points C'(C) can be given the structure of a compact

Riemann surface C'*", and the genus above coincides with the number of handles on C*".

2.2. Kodaira dimension of a nice curve. Two nice varieties X and Y defined over a
field k are said to be k-birational if there exist open sets U C X and V C Y (for the Zariski
topology) such that U and V' are isomorphic as varieties over k; informally, the isomorphism
U ~ V should be given by rational functions with coefficients in k. This is a very strong
condition: nonempty open subsets in the Zariski topology of a nice variety are dense! For

example, the proper Zariski-closed subsets on a nice curve over C are finite sets of points.
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Many arithmetic questions about varieties have answers that depend only on the birational
class of the variety; for example, if X and Y are nice Q-varieties that are Q-birational to
each other, then X has a Q-point if and only if Y has a Q-point (this follows from the
Lang-Nishimura Lemma [Pool7, §3.6.4]).

Birational invariants and birational classification theorems thus guide our expectations for
the properties of the set of rational points on an algebraic variety. The genus of a nice curve
C' is a birational invariant. A related birational invariant is the Kodaira dimension x(C'),
whose precise definition is given below in §3.3. For nice curves, suffice it to say for now that

-0 ifg=0,
k(C)=<0 if g=1,
1 if g > 2.

The Kodaira dimension of a nice curve indicates curvature. For example, if k& — C, the
Riemann surface C*" has positive curvature if k(C) = —o0, it has flat curvature if x(C') = 0,
and it is negatively curved if x(C) = 1.

2.3. Rational points on curves vis-a-vis Kodaira dimension. Let C be a nice curve
over Q.

e +(C) = —oo: In this case, if C(Q) # 0, one can show that C' is isomorphic over Q to
the projective line P'. This is done using a stereographic projection; we shall see a
concrete example below (§2.4.1).

e x(C) = 0: In this case, if C'(Q) # 0, then C' is an elliptic curve (by definition!), and
it is well-known that the rational points of C'(Q) can be endowed with the structure
of an abelian group. This group is finitely generated by a theorem of Mordell from
1922 [Sil09, VIIT.4]. The structure theorem for finitely generated abelian groups then
implies that

C(Q) =~ C(Q)rors B Z"

as abelian groups, where C'(Q)ios is the subgroup of C'(Q) consisting of points of
finite order. The integer r is called the rank of C' and it plays a major role in the
Birch—Swinnerton-Dyer conjecture. A spectacular theorem of Mazur says that there
are only 15 possibilities for the isomorphism class of the group C(Q)ors-

e (C) = 1: In this case, we say C'is of general type. Faltings showed in 1983 that for
curves of general type, the set C'(Q) is finite. His work, which simultaneously solved
several major open problems in arithmetic geometry, earned him a Fields Medal.

2.4. Fermat curves. What can the general theory of the arithmetic of curves tell us about
Fermat’s Last Theorem? Let
Cp: z2"+y"=2"
be the Fermat curve of exponent n, considered as a nice curve in the projective plane IP’%Q.
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2.4.1. A rational curve: n = 2. The curve Cy has genus 0 by (2.1), and hence x(Cy) =
—o00. Since (0 : 1 : 1) € Cy(Q), general theory predicts that Cy is Q-isomorphic to the
projective line P!. We construct an isomorphism P! — C, using the (inverse of) stereographic
projection. Recall we identified (X,Y) € A?(Q) with (X : Y : 1) € P*(Q); this identification
is valid in the locus of P? where z # 0, where we have set X = z/z and Y = y/z. The part
of C5 in this affine “patch” is the circle

X24+Y?2=1,

and the point (0 : 1: 1) € Cy(Q) is identified with the point (0,1) € A*(Q). We use this
point to create the isomorphism P* — (5, as follows. Define the map of algebraic varieties

2 2_1
Al 5 A2 s (222 )
s24+17s24+1

This is the inverse map to a stereographic projection, as Figure 3 shows.

Y

(0,1)

(25 52—1)
52417 5241

X
(5,0)

X2+y?=1

FIGURE 3. Stereographic Projection

We want to extend our construction to a map ¢: P' — Cj in such a way that

(8:1)!—)( 2 ,82—1_1).

241 82417

Let S and T be homogeneous coordinates of P*. Set s = S/T'; this identifies s € Al with
(s: 1) € PL. The map above becomes

| 25T (S/T)R-1
(S/T:1) = ((S/T)2+1 ST 1 '1)

which can be rewritten more pleasantly as

(S:T)— (25T : 5? =T%: S+ T7).
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This is the map ¢ we are looking for! It makes sense even for points like (S : T') = (1 : 0).
By inspection, the map

P Cy — P, (x:y:2z)—=(y+z:2)

is an inverse for ¢, at least for (z : y: 2) # (0:1: —1). Since ¢ is an isomorphism, and
since rational points (S : T') are determined only up to a scalar multiple, we conclude that
every rational point on the curve Cs has a representative of the form

(x:y:2)= (28T, S* - T% S* +T?),

where S and T are relatively prime integers. The point (z : y : z) € Cy(Q) is also determined
only up to a scalar multiple. We conclude that every Pythagorean triple, i.e., every integral
solution to z2 4+ y? = 22, has the form

r=k-(25T), y=k-(S*-T?, z=k-(S*+T?).

where k € %Z and S, T are relatively prime integers. The reason we allow £ to possibly be
a half-integer is that if S and T are both odd, then 2 | ged(25T, S* — T2, 5% + T?).

This account of the shape of Pythagorean triples reflects our mantra: Geometry determines
Arithmetic! Many of us learned a proof of the shape of Pythagorean triples that uses only
basic algebra and divisibility relations; its “elementary nature” undercuts both the beauty
of the geometric proof and a feeling of genuine understanding.

2.4.2. An elliptic curve: n = 3. The curve Cj has genus 1 by (2.1), and hence x(C3) = 0.
Since (0:1:1) € C3(Q), the curve Cj is an elliptic curve, so by Mordell’s Theorem, we have
C3(Q) ~ C3(Q)tors ® Z". We claim that

C3(Qtors ={(1:0:1),(0:1:1),(1:—1:0)}. (2.2)

This can be shown with an important tool: reduction modulo a prime p. Let C3, be the
Fermat curve with n = 3, defined over the finite field F, with p elements. We define a
reduction map C5(Q) — C;,(F,) by sending (z : y : z) € C3(Q) to (x mod p : y mod p :
z mod p), where we have choosen a representative (x : y : z) with z, y, and z relatively prime
integers. As long as p > 3 the curve Cj,, is nice, and crucially we have an injection of groups

03 (Q)tors — O37P(FP)

via the reduction map we just described (see [Sil09, §VII.3]). Because there are only finitely
many solutions to the equation 2 + y* = 23 in F,, it is straightforward to compute that
#C55(F5) = 6 and #C57(F7) = 9. This shows that C3(Q)¢ors is either the trivial group, or
it is Z/3Z.

To show that the rank r of Cj is zero, we may apply deep results of Gross-Zagier and Koly-
vagin on the L-series of elliptic curves with complex multiplication [GZ86, Kol88]. Loosely
speaking, an elliptic curve E/Q has complex multiplication if it has an unusually large en-

domorphism ring. The L-series Lg/q(s) of E is defined by an Euler product over the primes,
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whose individual factors record information about the modulo p reduction of E. The func-
3.
2
we knew that if £ has complex multiplication, then Lg/q(s) has an analytic continuation to

tion Lp/q(s) converges for (s) > 3; even before Wiles’” work on Fermat’s Last Theorem,
the entire complex plane, thanks to work of Deuring and Weil. The Birch-Swinnerton-Dyer
conjecture predicts that the order of vanish of Lg/g(s) at s =1 is equal to the rank r of E;
the results in [GZ86, Kol88] together imply that if Lgg(1) # 0, then r = 0, ie., F(Q) is
finite.

The curve Cj5 is isomorphic to the curve,

E:Y?2-9y = X%-27

considered in the usual affine plane A?@. This curve has j-invariant 0 (see [Sil09, III.1]), and
hence has complex multiplication. Using computer software, we can check that in this case

Lgg(1) ~= 0.588879583428483319104563166550,

and hence C3(Q) is finite, equal to the set given in (2.2).

2.4.3. Curves of general type: n > 4. The curves C,, have genus > 2 whenever n > 4 by (2.1),
and hence k(C,) = 1. By Faltings’ Theorem, we know that C,,(Q) is finite; it is however
nonempty, as (0 : 1: 1) € C,(Q). Faltings’ proof of his theorem is not effective. This is
as far as the general qualitative theory of curves will take us. The methods of Wiles and
Taylor—Wiles opened up whole new research programs in Number Theory, but the connection
to Fermat’s Last Theorem uses the explicit shape of Fermat’s equation to construct, from a
putative nontrivial solution, an elliptic curve too exotic to exist.

3. ARITHMETIC OF HIGHER-DIMENSIONAL VARIETIES

We now leave the realm of algebraic curves to explore higher-dimensional spaces. From
here on out, unless otherwise stated, all varieties are assumed to be nice; by a surface, we
mean a nice variety of dimension 2. A concrete example of a surface in projective 3-space
P3, with coordinates z, vy, z, and w, is given by

S/Q : xt + 2y = 2* + 4w

This is an example of a K3 surface; it is simply connected and carries a nowhere-vanishing
holomorphic 2-form. All smooth quartic surfaces in P? have these two properties; the one
above was considered by Swinnerton-Dyer. It has rational points, e.g., (z :y: 2z :w) = (1:
0:1:0)isin S(Q). It is unknown if S(Q) is finite or not.

3.1. Local Obstructions. Because the varieties X/Q we study are projective, and hence
both the denominators of the coordinates of a rational point as well as the denominators
in the defining equations of X can be cleared out, the sets of integral solutions X (Z) and
rational solutions X (Q) coincide; see §1.3. This incidental reframing affords an important

tool: reduction modulo p™ for any prime p and any exponent n > 1. In order to have
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X(Z) # 0, i.e., a nontrivial integral solution to the set of equations defining X, the same
set of equations must have solutions modulo p™ for every prime p and every exponent n; we
call these solutions points modulo p™. Our set of equations must also have solutions in R.
If X/Q fails to have points modulo p™ for some p™, or if X(R) = (), we say there is a local
obstruction to the existence of rational points?.

We have all experienced local obstructions: one of the first proofs many of us are exposed
to is the irrationality of /2. Equivalently, the variety 2> — 2y> = 0 in P! has no Q-points:
there are no nontrivial solutions® to its defining equation modulo 4.

For a given prime p and exponent n there are only finitely many possible solutions modulo
p" to the set of equations defining X. But there are infinitely many primes p and exponents
n. The necessity of local solutions asks us to trade, with no assurance of success, one hard
problem for infinitely many easier problems. Is this a good trade-oftf? Most definitely, thanks
to the Weil Conjectures, now theorems after the revolutionary efforts and insights of Dwork,
Grothendieck, and Deligne (see [Pool7, Ch. 7] for an introduction to the subject). In short,
the Weil Conjectures give a precise bound pg, in terms of the geometry of X, such that
X has solutions modulo p for all p > pg, as long as the reductions of the equations of X
modulo p define a smooth projective variety over F,. By means of Hensel’s lemma, a p-adic
analogue of the Newton—Raphson method, smooth solutions modulo p can be leveraged to
construct solutions modulo p™ for all n > 2; see [Pool7, Theorem 3.5.63]. This leaves a
finite set S of primes to check: those p < pg, and those primes for which X does not have
smooth reduction modulo p. The later can be calculated explicitly with a Grébner basis
computation. It then remains to find solutions modulo p™ for p € § and some small ng that
are liftable to solutions modulo p™ for all n > ny using Hensel’s lemma, whenever possible.
Checking that X (R) # ) often comes down to a Lagrange multipliers problem.

3.2. Local obstructions are not enough. Sadly, there are nice varieties X/Q that have
points modulo p™ for all primes p and all exponents n, as well as R-points, for which X (Q) =
(). The first example of such varieties was found independently by Lindt and Reichardt
around 1940. An example made famous by Selmer is the genus 1 plane curve

32° + 4y° +52° = 0,

which is a ‘twist’ of the Fermat curve C5. An example dear to my heart is one considered
by Birch and Swinnerton-Dyer around 1975:

X Pt Tory = w3 — b}
(ro + x1)(x0 + 277) = 23 — 522

2Motivating the terminology here is the statement that X (k) = 0 for a locally compact field k that contains
Q, namely £ =R, or k = Q,, the field of p-adic numbers.
3More precisely, if the variety has a rational point (z : y), then we may assume that « and y are coprime
integers, because (x,y) € P*(Q). On the other hand, the only solution to #? — 2y* = 0 mod 4 requires that
both x and y are divisible by 2.
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This is a del Pezzo surface of degree 4, as is every smooth intersection of two distinct quadrics
in P* (and vice versa). In 2012, Viray observed that the rational map X --» P! given by
(kg : +++ : xy) — (zo : 1) can be used to explain why X (Q) = (): the fibers of this map
are genus 1 curves that fail to have p™ points for some p and some n, although which p and
which n depends on the fiber you are looking at! This is a stunning visual interpretation of
a so-called Brauer-Manin obstruction. Viray and I went on to show that something similar
is true for all del Pezzo surfaces of degree 4 that have a nontrivial Brauer-Manin obstruction
to the existence of rational points [VAV14, Corollary 1.3].

3.3. Kodaira dimension of a variety. The Kodaira dimension x(X) of a variety X/k is
an element of the set {—00,0,1,...,dim X} that captures the largest eventual dimension of
the image of X by maps constructed out of pluricanonical forms of increasing weight. More
precisely, it is
£(X) = limsup (dim (im (¢ : X --» P (H(X,w%™)Y))))
m—r0o0

where P (H°(X,w$%™)") denotes the projectivization of the (dual) vector space of global
pluricanonical forms of weight m, and ¢,, is the map given by evaluating a chosen basis
of this vector space at a given point. Projective n-space P" has no nonzero pluricanonical
forms, i.e., H'(P", wi™) = 0 for all m > 1, so x(P") = —occ. At the other end of a spectrum,
a nice hypersurface X; C P" defined by a homogeneous polynomial of degree d has Kodaira
dimension k(Xy) = dimX; = n —1if d > n+ 1. Enriques gave a classification of nice
surfaces S/C at the beginning of the 20th century, parceling out surfaces by their Kodaira
dimension (we give their modern names here):

(
—oo0 S is rational or ruled;

0 S is abelian, K3, Enriques, or bi-elliptic;
r(S) =
1 S is properly elliptic;

k2 S is of general type.

For a nice surface S; C P? defined by a homogeneous polynomial of degree d, we have

—o0 ifd=1,2,3;
K(S4) =<0 if d=4; (3.1)
2 if d > 5.

As in the case of curves, the arithmetic of a surface S/Q, understood here as a qualitative
and quantitative description of the set of rational points S(Q), becomes harder to study
and access the larger its Kodaira dimension. Varieties with x(X) = dim X are said to be of

general type; they are very difficult to study from a number theoretic perspective.
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4. THREE PROBLEMS REVISITED

The three questions posed in §1 can all be recast as questions about rational points on
algebraic surfaces.

4.1. Sums of three cubes. The sum of three cubes problem involves the part of the pro-
jective Q-surface
XCP 2 +y° +2° —nw® =0
contained in the affine patch X,, := X N {w = 1}. The variety X¢ is a del Pezzo surface of
degree 3, and k(X¢) = —oo by (3.1).
Since X, is not itself a projective variety, there is a difference between the sets of integral
points X,,(Z) and rational points X,,(Q). For example, we have

n® — 36 3+ —n3 + 3°n + 3¢ 3+ a? — 3%n ’
=n
32n? + 3*n + 36 32n2 + 34n + 36 32n2 4 3%*n + 36
showing that X,,(Q) # 0 for all n € Z. On the other hand, we have seen that X, (Z) =
() whenever n = #£4 mod 9, because there is a local obstruction at p = 3 in this case.

A conjecture of Colliot-Thélene and Sansuc predicts that the absence of rational points
on a locally soluble (projective) del Pezzo surface can be explained by a Brauer-Manin
obstruction [CTS80]. It is less clear what to expect for the set of integral points on an affine
part of a del Pezzo surface (e.g., [Harl7]). Nevertheless, Colliot-Thélene and Wittenberg
computed the Brauer group for the affine surfaces X,,, and showed that there is no integral
Brauer-Manin obstruction to the existence of integral points when n # £4 mod 9 [CTW12].
Some arithmetic geometers, myself included, view this as positive evidence for Conjecture 3.1,
although recent results of Harpaz [Harl7] call for caution.

4.2. Perfect Cuboids. A perfect cuboid with edges labeled as in Figure 2 gives rise to a
rational point with nonzero coordinates on the variety S C P® defined by the relations

2 2 9
T]+ Ty = Y3
2 2 9
Ty + T3 =Y
2 2 9
T3+ 17 =Y

2 2 2 _ .2
]+ x5 a3 =27,

which are derived from the Pythagorean constraints imposed by the box. The variety S has
dimension 2, but it is not smooth: its singular locus consists of 48 ordinary double points
(each of which looks locally like the vertex of a cone). Each of these nodal singularities has at
least one zero coordinate, so none of these special points give rise to a perfect cuboid. They
are mild singularities, and a desingularization S of S has /<a(§ ) = 2, so we say that S is of
general type. A deep conjecture of Lang, informed by conjectures of Bogomolov, Bombieri,
Green-Griffiths, Kobayashi, and Vojta, predicts that a nice surface of general type over a

number field contains very few rational points.
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Conjecture 4.1 ([Lan86, Conj. 5.8]). Let X be a nice variety of general type defined over
a number field K. Then there is a proper, Zariski-closed subset Z C X, such that for all
number fields L containing K, the set X (L) \ Z(L) is finite.

If X is a nice surface, then a set Z as in Conjecture 4.1 consists of a finite union of isolated
points and curves. Any isolated points and curves of genus > 2 can be safely removed from
Z without altering the conclusion of the conjecture, by Faltings’ theorem. Hence, if X is a
surface then the conjectured set Z can be reduced to a finite union of curves of (geometric)
genus 0 or 1. On the other hand, because any curve of genus 0 and 1 has infinitely many
rational points, at least over some finite extension L/K, any such curve on X would have
to be included in Z. Thus, when dim X = 2, Conjecture 4.1 implies that X contains only
finitely many curves of genus 0 or 1.

Applying Conjecture 4.1 to S, taking advantage of the mild nature of the singularities of .S,
we deduce that S contains only finitely many curves of genus 0 or 1, and that outside of those
curves there are only finitely many points in S(Q). Lang’s conjecture has thus motivated a
detailed study of the locus of curves of genus 0 and 1 on S [vL00,ST10, GFU, BTVA].

In his undergraduate thesis [vL00], van Luijk showed that S contains at least 32 curves
of genus 0 and 60 curves of genus 1. For example, 24 of the genus 0 curves are obtained by
looking at the irreducible components of the intersection

SN {1’11‘21’3 = 0}

These curves are defined over QQ, but every rational point on them has at least one zero
coordinate, so we do not obtain a perfect cuboid from these points. More generally, none
of the rational points on van Luijk’s list of 92 curves of genus 0 or 1 give rise to a perfect
cuboid over QQ, but some of the genus 1 curves do have nontrivial points over higher-degree
number fields. For example,

(xl::L‘Q:atgzyl:ygzygzz):(Q\/E:Q\/g:1:5:5:4\/§:7)€S<@(\/§,\/§)>.

Garcia-Fritz and Urzida [GFU], and later Bruin, Thomas and I [BTVA] exploited the presence
of symmetric differentials on S, a phenomenon made possible by the existence of the 48 nodal
singularities on S, to constrain the locus of genus 0 and 1 curves on S. Our efforts show
that any genus 0 curve on S must pass through at least 6 nodes of S, that any genus 1 curve
on S must pass through at least 2 nodes, and that there are only finitely many genus 0 or
1 curves passing through at most 13 nodes. The curves in van Luijk’s thesis satisfy these
constraints. New ideas are required to push these two bounds closer to each other; it would
be very interesting to show that the surface S does indeed have finitely many curves of genus
0 or 1, and to have set of equations defining these curves. In particular, are the curves in

van Luijk’s thesis the only curves of genus 0 or 1 on S7
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Although Conjecture 4.1 is agnostic about the existence of perfect cuboids, when taken
together with our current (sadly incomplete) knowledge of the low genus curves on the surface
S, it suggests that the problem of finding perfect cuboids is hard for good reasons.

4.3. Magic squares of squares. A 3 x 3 magic square of squares

gives rise to a rational point with nonzero coordinates on the variety M C P® defined by the
relations

2 2 2 2 2 2 2 2 2 2 2 2
rit+xy+ a5 =4 +x5 + 5 =x; + 25+ Tg = x] + Ty + %
2 2 2 2 2 2 2 2 2

=5+ T5 + T3 =2] +T5+ Ty = T3+ x5+ T7.

A priori, it looks like we missed the sum z3 + 22 + 3, corresponding to the third column of
the magic square, but you can convince yourself that if the sums of the three rows and first
two columns are equal to each other, then the sum in the third column is also equal to their
common value. The variety M again has dimension 2, although as in the case of the surface
of perfect cuboids, M is slightly singular: its singular locus comprises 256 isolated ordinary
double points. Its minimal desingularization M satisfies IQ(M ) = 2, so we say that M is of
general type.
The surface M contains rational points. For example,

(1 @y @g Xy W5 @6 Ty g xg) =(1:1:1:1:1:1:1:1:1) € M(Q),

but the corresponding magic square of squares is not interesting: its entries are not distinct.
A similar conclusion is true of all rational points on M known to date. As with the surface
S parametrizing perfect cuboids, Conjecture 4.1 predicts that M contains only finitely many
curves of genus 0 or 1, and that outside these curves it has only finitely many Q-points. The
methods of [BTVA] are strong enough to confirm part of this prediction.

Theorem 4.2 ([BTVA]). The surface parametrizing 3 x 3 magic squares of squares contains
only finitely many curves of genus 0 or 1.

To be sure, there are curves of genus 0 or 1 on M. For example, the components of the
intersection of M with a hyperplane of the form z; £ z; = 0 for 4,5 € {1,...,9} give rise
to such curves. Points on these curves, however, give rise in turn to uninteresting cuboids,

2 _ 2 2 _ . . . . .
i =af (or z7 = 0if i = j). A similar phenomenon happens for other curves of

because x
genus 0 or 1 on M that we know of. It would be interesting to explicitly determine the
totality of curves of low genus on M. In [BTVA], we explain some incipient ideas that could
be used towards such a computation, but likely some new ideas are required to execute this

task. In any case, Conjecture 4.1 together with Theorem 4.2 and empirical observations of
14



low genus curves on M suggest that perhaps there are no 3 x 3 magic squares of squares, or
that if they exist, they will be hard to find.
Curiously, there do exist 4 x 4 magic squares of squares! Euler found one in 1770:

682292|412372
17%(312|792|322
592|282|23%612
112|772| 8% 1492

In fact, Euler sent this square to Lagrange in a letter, without any explanation of how he
constructed it. However, he presented his ideas to the St. Petersburg Academy of Sciences
the same year; the construction is based on the observation that the product of two sums
of four squares can itself be expressed as a sum of four squares. This idea, combined with
some partial progress by Euler, led Lagrange to the first complete proof of the four squares
theorem: every positive integer is the sum of at most four square integers [Boy05].

A cursory internet search will reveal to the reader that there are m x n magic squares
for several values of n > 3. To a geometer, this not surprising. An n X n magic square of
squares will be a rational point on a variety cut out by 2n quadrics in the space Pt If
this intersection were smooth (which it is not, but the singularities are not horrific), then
its Kodaira dimension would be —oo for n > 5. In other words, these spaces are strongly
positively curved. It is quite reasonable from a geometric point of view that these spaces
would carry many rational points. I would expect the following to be true.

Conjecture 4.3. There is a positive integer ng such that for every integer n > ng there
exists an n X n magic square of squares, whose entries are nonzero and distinct.

I would further expect that Conjecture 4.3 holds with ng = 4. Ultimately, if an integer ng
making Conjecture 4.3 hold must be > 4, or if Conjecture 4.3 is false, it will be on account
of some interesting geometry of the variety parametrizing n x n magic squares of squares for
small values of n.

5. CONCLUSION

I hope I have convinced you that geometry and arithmetic are inextricably linked. Histor-
ically, our understanding of geometry has preceded our understanding of arithmetic; witness
the case of elliptic curves, where unsolved arithmetic problems abound, yet our geometric un-
derstanding of them is mature. The diophantine enthusiast, whether amateur or professional,
would do well to learn and use geometric techniques. General geometric considerations will
rarely suffice to solve hard diophantine problems, but they will likely provide mathematical

inspiration, as well as a deeper understanding of the difficulties involved in such problems.
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