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In 2005, writer David Foster Wallace delivered a remarkable commencement speech at

Kenyon College. He began by begrudgingly offering a “a standard requirement of US com-

mencement speeches”, the parable-ish story:

There are these two young fish swimming along and they happen to meet an

older fish swimming the other way, who nods at them and says “Morning,

boys. How’s the water?”And the two young fish swim on for a bit, and then

eventually one of them looks over at the other and goes “What the hell is

water?”

This article is a story about water. It is a story about trying to understand the natural

habitat of certain problems that, on their face, look like problems about whole numbers. To

be sure, the problems we discuss are number theoretic in character, but the way to access

them and to think about them is informed by a different part of Mathematics: geometry.

1. Three problems

(1) Which whole numbers can be expressed as a sum of three cubes?

(2) Is there a box such that the distance between any two of its corners is a positive

whole number?

(3) Is there a 3× 3 magic square whose entries are distinct nonzero squares?

Recall an n × n magic square is an n × n grid, filled with distinct positive integers,

whose rows, columns, and diagonals add up to the same number. For example, in

1514 the German artist Albrecht Dürer included the following 4 × 4 magic square in

Melencolia I (see Figure 1.):

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1
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Figure 1. Melencolia I, Albrecht Dürer (1514). There is a 4×4 magic square
in the top right of the engraving.

Although seemingly unrelated, the three problems above share many features. They all

ask questions about algebraic relations between whole numbers. They also all have avatars

as problems about rational points on algebraic surfaces. The most vexing commonality of

these three problems is their current status: they are all open.

1.1. Historical Remarks. Problem (1) asks: for which integers n > 0 do there exist

integers x, y, and z such that

x3 + y3 + z3 = n? (1.1)

In 1825, Samuel Ryley showed that every integer n (indeed, every rational number) is the sum

of three rational cubes. Further progress through 2007 is nicely documented in [BPTYJ07,

§2], where the first (and smallest!) solution to n = 30 is given:

(−283 059 965)3 + (−2 218 888 517)3 + 2220 422 9323 = 30.

This solution was found in 1999; Daniel Bernstein found the same solution independently

and contemporaneously, based on ideas suggested by Noam Elkies.1 At the beginning of

2019, the only n < 100 not known to be expressible (or not!) as a sum of three integer cubes

1See http://listserv.nodak.edu/archives/nmbrthry.html 9 July 1996.
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were n = 33 and n = 42. Shortly thereafter, Andrew Booker [Boo19] showed that

(8 866 128 975 287 528)3 + (−8 778 405 442 862 239)3 + (−2 736 111 468 807 040)3 = 33,

and this is the smallest solution to the problem! A few months later, Booker joined forces

with Andrew Sutherland to find the smallest solution to n = 42:

(−80 538 738 812 075 974)3 + (80 435 758 145 817 515)3 + (12 602 123 297 335 631)3 = 42.

For some integers n, the diophantine equation (1.1) admits no integral solutions: indeed,

the set of cubes modulo 9 is {0, 1,−1}, and hence three cubes cannot add up to 4 or −4

modulo 9. Based on analytic arguments predicting the distribution of solutions to (1.1),

Heath-Brown [HB92, p. 623] proposed the following conjecture:

Conjecture 1.1. For integers n 6≡ mod ± 4 mod 9 there exist integers x, y, and z such

that (1.1) holds.

A box witnessing a positive solution to Problem (2) is called a perfect cuboid (Figure 2).

Euler studied the closely related problem of finding boxes whose sides and face diagonals

are positive integers; it seems likely he considered the problem of the existence of a perfect

cuboid, though no written record of such an exploration appears to exist. The literature

surrounding this problem is nicely summarized in van Luijk’s undergraduate thesis [vL00].
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Figure 2. Can x1, x2, x3, y1, y2, y3, and z be integers?

Magic squares have a long history. Tradition has it that the Lo Shu, the earliest recorded

3 × 3 magic square, was first observed by Emperor Yu upon the back of a turtle (ca. 2,200

BC). The search for a 3× 3 magic square of squares was popularized by Martin Gardner in

1996 [Gar96]; he attributed the problem to Martin LaBar (1984), though it had been studied

by Euler in 1770 and Lucas in 1876 [Boy05]. Andrew Bremner has used the arithmetic of

elliptic curves and K3 surfaces to study two related problems: finding 3 × 3 squares with

distinct square entries such that as many as possible of the eight row, columns, and diagonals

are equal [Bre99], and finding magic 3×3 squares with distinct entries, with as many entries

as possible being squares [Bre01]. Our own investigations [BTVA] into the problem of finding
3



3 × 3 magic squares of squares are inspired by a similar geometric point of view, although

we work with surfaces of general type, as explained below.

1.2. Geometry determines arithmetic. The three problems above can all be phrased

as questions involving the rational or integral points on certain algebraic surfaces. We

aim to show how our current understanding of the arithmetic of algebraic surfaces informs

the expectations many arithmetic geometers harbor for the answers to our three problems.

Geometry determines arithmetic shall be our mantra. To develop a feel for this mantra, we

turn to a lower-dimensional situation: the arithmetic geometry of curves.

1.3. Fermat’s Last Theorem: a geometric restatement. Fermat’s Last Theorem, i.e,

the statement that for n ≥ 3 every solution (x, y, z) ∈ Z3 to the equation

xn + yn = zn

satisfies xyz = 0, is a statement about rational points on a smooth, projective plane curve.

Recall that the set of rational points on the projective plane is

P2(Q) =
Q3 − {(0, 0, 0)}

(x, y, z) ∼ (λx, λy, λz)
λ ∈ Q∗

We write (x : y : z) for the equivalence class of (x, y, z). The projective plane P2 can be

thought of as a compactification of the Cartesian plane A2; here we identify (X, Y ) ∈ A2(Q)

with the point (X : Y : 1) ∈ P2(Q). The subset of P2(Q) whose z-coordinate is zero gives

the set of rational points on the “line at infinity” that is used to compactify A2 to P2. We

define Pn(Q) analogously:

Pn(Q) =
Qn+1 − {(0, . . . , 0)}

(x0, . . . , xn) ∼ (λx0, . . . , λxn)
λ ∈ Q∗.

A trivial but powerful observation is that every point (x0, . . . , xn) ∈ Pn(Q) has a repre-

sentative (unique up to a global sign) with x0, . . . , xn relatively prime integers, obtained by

clearing denominators and removing common factors from any given representative. This

representation of a rational point is almost unique: its only ambiguity is a global sign. For

example, (
−1 :

1

2
:
3

5

)
= (−10 : 5 : 6) as elements of P2(Q).

The zero-set of the Fermat expression xn+yn− zn defines a curve Cn in the projective plane

P2, whose rational points are

Cn(Q) = {(x : y : z) ∈ P2(Q) | xn + yn − zn = 0}.

The coordinate axes in P2 define a reducible curve C ′ whose rational points are given by

C ′(Q) = {(x : y : z) ∈ P2(Q) | xyz = 0}.
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Fermat’s Last Theorem can be restated as follows: given an integer n ≥ 3, we have

Cn(Q) ⊂ C ′(Q).

We describe below some fundamental results on the arithmetic of curves, and apply them

to study the set Cn(Q). This will not give a proof of Fermat’s last theorem, as we will not

use anything special about the Fermat curve, other than its smoothness, its degree, and the

fact that it contains rational points (e.g., (0 : 1 : 1)). Our goal is thus not a description the

fundamental breakthroughs of Wiles and Taylor–Wiles; rather we use the Fermat curve as

an excuse for a tour of the arithmetic of curves.

2. Arithmetic of Curves

2.1. The genus of a nice curve. By a nice variety X we mean an algebraic variety over

a field k that satisfies a few technical hypotheses: X should be smooth, projective, and

geometrically integral. A nice curve C is a 1-dimensional nice variety. For example, suppose

that C is given by the zero-locus of a homogeneous degree n polynomial f(x, y, z) in the

projective plane P2. Let I be the ideal〈
f,
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
,

considered in the ring k[x, y, z], where k denotes a fixed algebraic closure of k; the generator

f in I is redundant if char k = 0. The Jacobian criterion and the projective Nullstellensatz

together imply that C is nice if some power of the “irrelevant ideal” 〈x, y, z〉 is contained in

I. For the Fermat curve, we take k = Q and f = xn+yn−zn (n ≥ 2); the ideal I ⊆ Q[x, y, z]

is

〈xn + yn − zn, nxn−1, nyn−1, nzn−1〉 = 〈xn−1, yn−1, zn−1〉,
and we can check that 〈x, y, z〉3n−5 ⊂ I, so the Fermat curve is nice.

Nice curves have one fundamental discrete invariant: their genus. It is the dimension of the

vector space of global 1-forms; when C ⊂ P2 is a nice plane curve, defined by a homogeneous

polynomial of degree n, this dimension coincides with the quantity

g =
(n− 1)(n− 2)

2
. (2.1)

If k ↪→ C then the set of complex points C(C) can be given the structure of a compact

Riemann surface Can, and the genus above coincides with the number of handles on Can.

2.2. Kodaira dimension of a nice curve. Two nice varieties X and Y defined over a

field k are said to be k-birational if there exist open sets U ⊂ X and V ⊂ Y (for the Zariski

topology) such that U and V are isomorphic as varieties over k; informally, the isomorphism

U ' V should be given by rational functions with coefficients in k. This is a very strong

condition: nonempty open subsets in the Zariski topology of a nice variety are dense! For

example, the proper Zariski-closed subsets on a nice curve over C are finite sets of points.
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Many arithmetic questions about varieties have answers that depend only on the birational

class of the variety; for example, if X and Y are nice Q-varieties that are Q-birational to

each other, then X has a Q-point if and only if Y has a Q-point (this follows from the

Lang-Nishimura Lemma [Poo17, §3.6.4]).
Birational invariants and birational classification theorems thus guide our expectations for

the properties of the set of rational points on an algebraic variety. The genus of a nice curve

C is a birational invariant. A related birational invariant is the Kodaira dimension κ(C),

whose precise definition is given below in §3.3. For nice curves, suffice it to say for now that

κ(C) =


−∞ if g = 0,

0 if g = 1,

1 if g ≥ 2.

The Kodaira dimension of a nice curve indicates curvature. For example, if k ↪→ C, the
Riemann surface Can has positive curvature if κ(C) = −∞, it has flat curvature if κ(C) = 0,

and it is negatively curved if κ(C) = 1.

2.3. Rational points on curves vis-à-vis Kodaira dimension. Let C be a nice curve

over Q.

• κ(C) = −∞: In this case, if C(Q) 6= ∅, one can show that C is isomorphic over Q to

the projective line P1. This is done using a stereographic projection; we shall see a

concrete example below (§2.4.1).

• κ(C) = 0: In this case, if C(Q) 6= ∅, then C is an elliptic curve (by definition!), and

it is well-known that the rational points of C(Q) can be endowed with the structure

of an abelian group. This group is finitely generated by a theorem of Mordell from

1922 [Sil09, VIII.4]. The structure theorem for finitely generated abelian groups then

implies that

C(Q) ' C(Q)tors ⊕ Zr

as abelian groups, where C(Q)tors is the subgroup of C(Q) consisting of points of

finite order. The integer r is called the rank of C and it plays a major rôle in the

Birch–Swinnerton-Dyer conjecture. A spectacular theorem of Mazur says that there

are only 15 possibilities for the isomorphism class of the group C(Q)tors.

• κ(C) = 1: In this case, we say C is of general type. Faltings showed in 1983 that for

curves of general type, the set C(Q) is finite. His work, which simultaneously solved

several major open problems in arithmetic geometry, earned him a Fields Medal.

2.4. Fermat curves. What can the general theory of the arithmetic of curves tell us about

Fermat’s Last Theorem? Let

Cn : xn + yn = zn

be the Fermat curve of exponent n, considered as a nice curve in the projective plane P2
Q.
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2.4.1. A rational curve: n = 2. The curve C2 has genus 0 by (2.1), and hence κ(C2) =

−∞. Since (0 : 1 : 1) ∈ C2(Q), general theory predicts that C2 is Q-isomorphic to the

projective line P1. We construct an isomorphism P1 → C2 using the (inverse of) stereographic

projection. Recall we identified (X, Y ) ∈ A2(Q) with (X : Y : 1) ∈ P2(Q); this identification

is valid in the locus of P2 where z 6= 0, where we have set X = x/z and Y = y/z. The part

of C2 in this affine “patch” is the circle

X2 + Y 2 = 1,

and the point (0 : 1 : 1) ∈ C2(Q) is identified with the point (0, 1) ∈ A2(Q). We use this

point to create the isomorphism P1 → C2, as follows. Define the map of algebraic varieties

A1 → A2, s 7→
(

2s

s2 + 1
,
s2 − 1

s2 + 1

)
.

This is the inverse map to a stereographic projection, as Figure 3 shows.

X

Y

(0, 1)

(s, 0)

(
2s

s2+1
, s

2−1
s2+1

)

X2 + Y 2 = 1

•

•

•

Figure 3. Stereographic Projection

We want to extend our construction to a map φ : P1 → C2 in such a way that

(s : 1) 7→
(

2s

s2 + 1
:
s2 − 1

s2 + 1
: 1

)
.

Let S and T be homogeneous coordinates of P1. Set s = S/T ; this identifies s ∈ A1 with

(s : 1) ∈ P1. The map above becomes

(S/T : 1) 7→
(

2S/T

(S/T )2 + 1
:
(S/T )2 − 1

(S/T )2 + 1
: 1

)
which can be rewritten more pleasantly as

(S : T ) 7→
(
2ST : S2 − T 2 : S2 + T 2

)
.
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This is the map φ we are looking for! It makes sense even for points like (S : T ) = (1 : 0).

By inspection, the map

ψ : C2 → P1, (x : y : z) 7→ (y + z : x)

is an inverse for φ, at least for (x : y : z) 6= (0 : 1 : −1). Since φ is an isomorphism, and

since rational points (S : T ) are determined only up to a scalar multiple, we conclude that

every rational point on the curve C2 has a representative of the form

(x : y : z) = (2ST, S2 − T 2, S2 + T 2),

where S and T are relatively prime integers. The point (x : y : z) ∈ C2(Q) is also determined

only up to a scalar multiple. We conclude that every Pythagorean triple, i.e., every integral

solution to x2 + y2 = z2, has the form

x = k · (2ST ), y = k · (S2 − T 2), z = k · (S2 + T 2).

where k ∈ 1
2
Z and S, T are relatively prime integers. The reason we allow k to possibly be

a half-integer is that if S and T are both odd, then 2 | gcd(2ST, S2 − T 2, S2 + T 2).

This account of the shape of Pythagorean triples reflects our mantra: Geometry determines

Arithmetic! Many of us learned a proof of the shape of Pythagorean triples that uses only

basic algebra and divisibility relations; its “elementary nature” undercuts both the beauty

of the geometric proof and a feeling of genuine understanding.

2.4.2. An elliptic curve: n = 3. The curve C3 has genus 1 by (2.1), and hence κ(C3) = 0.

Since (0 : 1 : 1) ∈ C3(Q), the curve C3 is an elliptic curve, so by Mordell’s Theorem, we have

C3(Q) ' C3(Q)tors ⊕ Zr. We claim that

C3(Q)tors = {(1 : 0 : 1), (0 : 1 : 1), (1 : −1 : 0)}. (2.2)

This can be shown with an important tool: reduction modulo a prime p. Let C3,p be the

Fermat curve with n = 3, defined over the finite field Fp with p elements. We define a

reduction map C3(Q) → C3,p(Fp) by sending (x : y : z) ∈ C3(Q) to (x mod p : y mod p :

z mod p), where we have choosen a representative (x : y : z) with x, y, and z relatively prime

integers. As long as p > 3 the curve C3,p is nice, and crucially we have an injection of groups

C3(Q)tors ↪→ C3,p(Fp)

via the reduction map we just described (see [Sil09, §VII.3]). Because there are only finitely

many solutions to the equation x3 + y3 = z3 in Fp, it is straightforward to compute that

#C3,5(F5) = 6 and #C3,7(F7) = 9. This shows that C3(Q)tors is either the trivial group, or

it is Z/3Z.
To show that the rank r of C3 is zero, we may apply deep results of Gross-Zagier and Koly-

vagin on the L-series of elliptic curves with complex multiplication [GZ86,Kol88]. Loosely

speaking, an elliptic curve E/Q has complex multiplication if it has an unusually large en-

domorphism ring. The L-series LE/Q(s) of E is defined by an Euler product over the primes,
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whose individual factors record information about the modulo p reduction of E. The func-

tion LE/Q(s) converges for <(s) > 3
2
; even before Wiles’ work on Fermat’s Last Theorem,

we knew that if E has complex multiplication, then LE/Q(s) has an analytic continuation to

the entire complex plane, thanks to work of Deuring and Weil. The Birch–Swinnerton-Dyer

conjecture predicts that the order of vanish of LE/Q(s) at s = 1 is equal to the rank r of E;

the results in [GZ86,Kol88] together imply that if LE/Q(1) 6= 0, then r = 0, i.e., E(Q) is

finite.

The curve C3 is isomorphic to the curve,

E : Y 2 − 9Y = X3 − 27

considered in the usual affine plane A2
Q. This curve has j-invariant 0 (see [Sil09, III.1]), and

hence has complex multiplication. Using computer software, we can check that in this case

LE/Q(1) ≈ 0.588879583428483319104563166550,

and hence C3(Q) is finite, equal to the set given in (2.2).

2.4.3. Curves of general type: n ≥ 4. The curves Cn have genus ≥ 2 whenever n ≥ 4 by (2.1),

and hence κ(Cn) = 1. By Faltings’ Theorem, we know that Cn(Q) is finite; it is however

nonempty, as (0 : 1 : 1) ∈ Cn(Q). Faltings’ proof of his theorem is not effective. This is

as far as the general qualitative theory of curves will take us. The methods of Wiles and

Taylor–Wiles opened up whole new research programs in Number Theory, but the connection

to Fermat’s Last Theorem uses the explicit shape of Fermat’s equation to construct, from a

putative nontrivial solution, an elliptic curve too exotic to exist.

3. Arithmetic of higher-dimensional varieties

We now leave the realm of algebraic curves to explore higher-dimensional spaces. From

here on out, unless otherwise stated, all varieties are assumed to be nice; by a surface, we

mean a nice variety of dimension 2. A concrete example of a surface in projective 3-space

P3, with coordinates x, y, z, and w, is given by

S/Q : x4 + 2y4 = z4 + 4w4.

This is an example of a K3 surface; it is simply connected and carries a nowhere-vanishing

holomorphic 2-form. All smooth quartic surfaces in P3 have these two properties; the one

above was considered by Swinnerton-Dyer. It has rational points, e.g., (x : y : z : w) = (1 :

0 : 1 : 0) is in S(Q). It is unknown if S(Q) is finite or not.

3.1. Local Obstructions. Because the varieties X/Q we study are projective, and hence

both the denominators of the coordinates of a rational point as well as the denominators

in the defining equations of X can be cleared out, the sets of integral solutions X(Z) and

rational solutions X(Q) coincide; see §1.3. This incidental reframing affords an important

tool: reduction modulo pn for any prime p and any exponent n ≥ 1. In order to have
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X(Z) 6= ∅, i.e., a nontrivial integral solution to the set of equations defining X, the same

set of equations must have solutions modulo pn for every prime p and every exponent n; we

call these solutions points modulo pn. Our set of equations must also have solutions in R.
If X/Q fails to have points modulo pn for some pn, or if X(R) = ∅, we say there is a local

obstruction to the existence of rational points2.

We have all experienced local obstructions: one of the first proofs many of us are exposed

to is the irrationality of
√
2. Equivalently, the variety x2 − 2y2 = 0 in P1 has no Q-points:

there are no nontrivial solutions3 to its defining equation modulo 4.

For a given prime p and exponent n there are only finitely many possible solutions modulo

pn to the set of equations defining X. But there are infinitely many primes p and exponents

n. The necessity of local solutions asks us to trade, with no assurance of success, one hard

problem for infinitely many easier problems. Is this a good trade-off? Most definitely, thanks

to the Weil Conjectures, now theorems after the revolutionary efforts and insights of Dwork,

Grothendieck, and Deligne (see [Poo17, Ch. 7] for an introduction to the subject). In short,

the Weil Conjectures give a precise bound p0, in terms of the geometry of X, such that

X has solutions modulo p for all p > p0, as long as the reductions of the equations of X

modulo p define a smooth projective variety over Fp. By means of Hensel’s lemma, a p-adic

analogue of the Newton–Raphson method, smooth solutions modulo p can be leveraged to

construct solutions modulo pn for all n ≥ 2; see [Poo17, Theorem 3.5.63]. This leaves a

finite set S of primes to check: those p ≤ p0, and those primes for which X does not have

smooth reduction modulo p. The later can be calculated explicitly with a Gröbner basis

computation. It then remains to find solutions modulo pn0 for p ∈ S and some small n0 that

are liftable to solutions modulo pn for all n > n0 using Hensel’s lemma, whenever possible.

Checking that X(R) 6= ∅ often comes down to a Lagrange multipliers problem.

3.2. Local obstructions are not enough. Sadly, there are nice varieties X/Q that have

points modulo pn for all primes p and all exponents n, as well as R-points, for which X(Q) =

∅. The first example of such varieties was found independently by Lindt and Reichardt

around 1940. An example made famous by Selmer is the genus 1 plane curve

3x3 + 4y3 + 5z3 = 0,

which is a ‘twist’ of the Fermat curve C3. An example dear to my heart is one considered

by Birch and Swinnerton-Dyer around 1975:

X ⊂ P4 :

{
x0x1 = x22 − 5x23

(x0 + x1)(x0 + 2x1) = x22 − 5x24

2Motivating the terminology here is the statement that X(k) = ∅ for a locally compact field k that contains
Q, namely k = R, or k = Qp, the field of p-adic numbers.
3More precisely, if the variety has a rational point (x : y), then we may assume that x and y are coprime
integers, because (x, y) ∈ P1(Q). On the other hand, the only solution to x2 − 2y2 ≡ 0 mod 4 requires that
both x and y are divisible by 2.
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This is a del Pezzo surface of degree 4, as is every smooth intersection of two distinct quadrics

in P4 (and vice versa). In 2012, Viray observed that the rational map X 99K P1 given by

(x0 : · · · : x4) 7→ (x0 : x1) can be used to explain why X(Q) = ∅: the fibers of this map

are genus 1 curves that fail to have pn points for some p and some n, although which p and

which n depends on the fiber you are looking at! This is a stunning visual interpretation of

a so-called Brauer-Manin obstruction. Viray and I went on to show that something similar

is true for all del Pezzo surfaces of degree 4 that have a nontrivial Brauer-Manin obstruction

to the existence of rational points [VAV14, Corollary 1.3].

3.3. Kodaira dimension of a variety. The Kodaira dimension κ(X) of a variety X/k is

an element of the set {−∞, 0, 1, . . . , dimX} that captures the largest eventual dimension of

the image of X by maps constructed out of pluricanonical forms of increasing weight. More

precisely, it is

κ(X) := lim sup
m→∞

(
dim

(
im

(
φm : X 99K P

(
H0(X,ω⊗m

X )∨
))))

,

where P
(
H0(X,ω⊗m

X )∨
)
denotes the projectivization of the (dual) vector space of global

pluricanonical forms of weight m, and φm is the map given by evaluating a chosen basis

of this vector space at a given point. Projective n-space Pn has no nonzero pluricanonical

forms, i.e., H0(Pn, ω⊗m
Pn ) = 0 for all m ≥ 1, so κ(Pn) = −∞. At the other end of a spectrum,

a nice hypersurface Xd ⊂ Pn defined by a homogeneous polynomial of degree d has Kodaira

dimension κ(Xd) = dimXd = n − 1 if d > n + 1. Enriques gave a classification of nice

surfaces S/C at the beginning of the 20th century, parceling out surfaces by their Kodaira

dimension (we give their modern names here):

κ(S) =


−∞ S is rational or ruled;

0 S is abelian, K3, Enriques, or bi-elliptic;

1 S is properly elliptic;

2 S is of general type.

For a nice surface Sd ⊂ P3 defined by a homogeneous polynomial of degree d, we have

κ(Sd) =


−∞ if d = 1, 2, 3;

0 if d = 4;

2 if d ≥ 5.

(3.1)

As in the case of curves, the arithmetic of a surface S/Q, understood here as a qualitative

and quantitative description of the set of rational points S(Q), becomes harder to study

and access the larger its Kodaira dimension. Varieties with κ(X) = dimX are said to be of

general type; they are very difficult to study from a number theoretic perspective.
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4. Three problems revisited

The three questions posed in §1 can all be recast as questions about rational points on

algebraic surfaces.

4.1. Sums of three cubes. The sum of three cubes problem involves the part of the pro-

jective Q-surface

Xc
n ⊂ P3 : x3 + y3 + z3 − nw3 = 0

contained in the affine patch Xn := Xn
c ∩ {w = 1}. The variety Xc

n is a del Pezzo surface of

degree 3, and κ(Xc
n) = −∞ by (3.1).

Since Xn is not itself a projective variety, there is a difference between the sets of integral

points Xn(Z) and rational points Xn(Q). For example, we have(
n3 − 36

32n2 + 34n+ 36

)3

+

(
−n3 + 35n+ 36

32n2 + 34n+ 36

)3

+

(
a2 − 34n

32n2 + 34n+ 36

)3

= n

showing that Xn(Q) 6= ∅ for all n ∈ Z. On the other hand, we have seen that Xn(Z) =

∅ whenever n ≡ ±4 mod 9, because there is a local obstruction at p = 3 in this case.

A conjecture of Colliot-Thélène and Sansuc predicts that the absence of rational points

on a locally soluble (projective) del Pezzo surface can be explained by a Brauer-Manin

obstruction [CTS80]. It is less clear what to expect for the set of integral points on an affine

part of a del Pezzo surface (e.g., [Har17]). Nevertheless, Colliot-Thélène and Wittenberg

computed the Brauer group for the affine surfaces Xn, and showed that there is no integral

Brauer-Manin obstruction to the existence of integral points when n 6≡ ±4 mod 9 [CTW12].

Some arithmetic geometers, myself included, view this as positive evidence for Conjecture 3.1,

although recent results of Harpaz [Har17] call for caution.

4.2. Perfect Cuboids. A perfect cuboid with edges labeled as in Figure 2 gives rise to a

rational point with nonzero coordinates on the variety S ⊂ P6 defined by the relations

x21 + x22 = y23

x22 + x23 = y21

x23 + x21 = y22

x21 + x22 + x23 = z2,

which are derived from the Pythagorean constraints imposed by the box. The variety S has

dimension 2, but it is not smooth: its singular locus consists of 48 ordinary double points

(each of which looks locally like the vertex of a cone). Each of these nodal singularities has at

least one zero coordinate, so none of these special points give rise to a perfect cuboid. They

are mild singularities, and a desingularization S̃ of S has κ(S̃) = 2, so we say that S is of

general type. A deep conjecture of Lang, informed by conjectures of Bogomolov, Bombieri,

Green-Griffiths, Kobayashi, and Vojta, predicts that a nice surface of general type over a

number field contains very few rational points.
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Conjecture 4.1 ([Lan86, Conj. 5.8]). Let X be a nice variety of general type defined over

a number field K. Then there is a proper, Zariski-closed subset Z ⊂ X, such that for all

number fields L containing K, the set X(L) \ Z(L) is finite.

If X is a nice surface, then a set Z as in Conjecture 4.1 consists of a finite union of isolated

points and curves. Any isolated points and curves of genus ≥ 2 can be safely removed from

Z without altering the conclusion of the conjecture, by Faltings’ theorem. Hence, if X is a

surface then the conjectured set Z can be reduced to a finite union of curves of (geometric)

genus 0 or 1. On the other hand, because any curve of genus 0 and 1 has infinitely many

rational points, at least over some finite extension L/K, any such curve on X would have

to be included in Z. Thus, when dimX = 2, Conjecture 4.1 implies that X contains only

finitely many curves of genus 0 or 1.

Applying Conjecture 4.1 to S̃, taking advantage of the mild nature of the singularities of S,

we deduce that S contains only finitely many curves of genus 0 or 1, and that outside of those

curves there are only finitely many points in S(Q). Lang’s conjecture has thus motivated a

detailed study of the locus of curves of genus 0 and 1 on S [vL00,ST10,GFU,BTVA].

In his undergraduate thesis [vL00], van Luijk showed that S contains at least 32 curves

of genus 0 and 60 curves of genus 1. For example, 24 of the genus 0 curves are obtained by

looking at the irreducible components of the intersection

S ∩ {x1x2x3 = 0}.

These curves are defined over Q, but every rational point on them has at least one zero

coordinate, so we do not obtain a perfect cuboid from these points. More generally, none

of the rational points on van Luijk’s list of 92 curves of genus 0 or 1 give rise to a perfect

cuboid over Q, but some of the genus 1 curves do have nontrivial points over higher-degree

number fields. For example,

(x1 : x2 : x3 : y1 : y2 : y3 : z) = (2
√
6 : 2

√
6 : 1 : 5 : 5 : 4

√
3 : 7) ∈ S

(
Q(

√
2,
√
3)
)
.

Garćıa-Fritz and Urzúa [GFU], and later Bruin, Thomas and I [BTVA] exploited the presence

of symmetric differentials on S, a phenomenon made possible by the existence of the 48 nodal

singularities on S, to constrain the locus of genus 0 and 1 curves on S. Our efforts show

that any genus 0 curve on S must pass through at least 6 nodes of S, that any genus 1 curve

on S must pass through at least 2 nodes, and that there are only finitely many genus 0 or

1 curves passing through at most 13 nodes. The curves in van Luijk’s thesis satisfy these

constraints. New ideas are required to push these two bounds closer to each other; it would

be very interesting to show that the surface S does indeed have finitely many curves of genus

0 or 1, and to have set of equations defining these curves. In particular, are the curves in

van Luijk’s thesis the only curves of genus 0 or 1 on S?
13



Although Conjecture 4.1 is agnostic about the existence of perfect cuboids, when taken

together with our current (sadly incomplete) knowledge of the low genus curves on the surface

S, it suggests that the problem of finding perfect cuboids is hard for good reasons.

4.3. Magic squares of squares. A 3× 3 magic square of squares

x21 x22 x23

x24 x25 x26

x27 x28 x29

gives rise to a rational point with nonzero coordinates on the variety M ⊂ P8 defined by the

relations

x21 + x22 + x23 = x24 + x25 + x26 = x27 + x28 + x29 = x21 + x24 + x27

= x22 + x25 + x28 = x21 + x25 + x29 = x23 + x25 + x27.

A priori, it looks like we missed the sum x23 + x26 + x29, corresponding to the third column of

the magic square, but you can convince yourself that if the sums of the three rows and first

two columns are equal to each other, then the sum in the third column is also equal to their

common value. The variety M again has dimension 2, although as in the case of the surface

of perfect cuboids, M is slightly singular: its singular locus comprises 256 isolated ordinary

double points. Its minimal desingularization M̃ satisfies κ(M̃) = 2, so we say that M is of

general type.

The surface M contains rational points. For example,

(x1 : x2 : x3 : x4 : x5 : x6 : x7 : x8 : x9) = (1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1) ∈M(Q),

but the corresponding magic square of squares is not interesting: its entries are not distinct.

A similar conclusion is true of all rational points on M known to date. As with the surface

S parametrizing perfect cuboids, Conjecture 4.1 predicts that M contains only finitely many

curves of genus 0 or 1, and that outside these curves it has only finitely many Q-points. The

methods of [BTVA] are strong enough to confirm part of this prediction.

Theorem 4.2 ([BTVA]). The surface parametrizing 3×3 magic squares of squares contains

only finitely many curves of genus 0 or 1.

To be sure, there are curves of genus 0 or 1 on M . For example, the components of the

intersection of M with a hyperplane of the form xi ± xj = 0 for i, j ∈ {1, . . . , 9} give rise

to such curves. Points on these curves, however, give rise in turn to uninteresting cuboids,

because x2i = x2j (or x2i = 0 if i = j). A similar phenomenon happens for other curves of

genus 0 or 1 on M that we know of. It would be interesting to explicitly determine the

totality of curves of low genus on M . In [BTVA], we explain some incipient ideas that could

be used towards such a computation, but likely some new ideas are required to execute this

task. In any case, Conjecture 4.1 together with Theorem 4.2 and empirical observations of
14



low genus curves on M suggest that perhaps there are no 3× 3 magic squares of squares, or

that if they exist, they will be hard to find.

Curiously, there do exist 4 × 4 magic squares of squares! Euler found one in 1770:

682 292 412 372

172 312 792 322

592 282 232 612

112 772 82 492

In fact, Euler sent this square to Lagrange in a letter, without any explanation of how he

constructed it. However, he presented his ideas to the St. Petersburg Academy of Sciences

the same year; the construction is based on the observation that the product of two sums

of four squares can itself be expressed as a sum of four squares. This idea, combined with

some partial progress by Euler, led Lagrange to the first complete proof of the four squares

theorem: every positive integer is the sum of at most four square integers [Boy05].

A cursory internet search will reveal to the reader that there are n × n magic squares

for several values of n > 3. To a geometer, this not surprising. An n × n magic square of

squares will be a rational point on a variety cut out by 2n quadrics in the space Pn2−1. If

this intersection were smooth (which it is not, but the singularities are not horrific), then

its Kodaira dimension would be −∞ for n ≥ 5. In other words, these spaces are strongly

positively curved. It is quite reasonable from a geometric point of view that these spaces

would carry many rational points. I would expect the following to be true.

Conjecture 4.3. There is a positive integer n0 such that for every integer n ≥ n0 there

exists an n× n magic square of squares, whose entries are nonzero and distinct.

I would further expect that Conjecture 4.3 holds with n0 = 4. Ultimately, if an integer n0

making Conjecture 4.3 hold must be > 4, or if Conjecture 4.3 is false, it will be on account

of some interesting geometry of the variety parametrizing n×n magic squares of squares for

small values of n.

5. Conclusion

I hope I have convinced you that geometry and arithmetic are inextricably linked. Histor-

ically, our understanding of geometry has preceded our understanding of arithmetic; witness

the case of elliptic curves, where unsolved arithmetic problems abound, yet our geometric un-

derstanding of them is mature. The diophantine enthusiast, whether amateur or professional,

would do well to learn and use geometric techniques. General geometric considerations will

rarely suffice to solve hard diophantine problems, but they will likely provide mathematical

inspiration, as well as a deeper understanding of the difficulties involved in such problems.
15



Acknowledgements

I would like to thank the organizers of JMM 2020 at Denver for the invitation and op-

portunity to share with a large audience a slice of the story of how geometry determines

arithmetic. I would also like to thank my family, mentors, friends and colleagues, who pro-

vided opportunities, encouragement, and the support without which the invitation to JMM

2020 would not have happened in the first place. I hope you know who you are; the list is

too long to include in this margin.

I thank Ronald van Luijk for comments on an earlier version of this article, and the

anonymous referees for the helpful and constructive feedback.

References

[BPTYJ07] M. Beck, E. Pine, W. Tarrant, and K. Yarbrough Jensen, New integer representations as the

sum of three cubes, Math. Comp. 76 (2007), no. 259, 1683–1690. ↑1.1
[Boo19] A. R. Booker, Cracking the problem with 33, Res. Number Theory 5 (2019), no. 3, Paper No.

26, 6. ↑1.1
[Boy05] C. Boyer, Some notes on the magic squares of squares problem, Math. Intelligencer 27 (2005),

no. 2, 52–64. ↑1.1, 4.3
[Bre99] A. Bremner, On squares of squares, Acta Arith. 88 (1999), no. 3, 289–297. ↑1.1
[Bre01] , On squares of squares. II, Acta Arith. 99 (2001), no. 3, 289–308. ↑1.1
[BTVA] N. Bruin, J. Thomas, and A Várilly-Alvarado, Explicit Computation of Symmetric Differentials

and its Application to Quasi-hyperbolicty. arXiv:1912.08908. ↑1.1, 4.2, 4.3, 4.2, 4.3
[CTS80] J.-L. Colliot-Thélène and J.-J. Sansuc, La descente sur les variétés rationnelles, Journées de
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