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Abstract

Relations between words are governed by hi-

erarchical structure rather than linear ordering.

Sequence-to-sequence (seq2seq) models, de-

spite their success in downstream NLP appli-

cations, often fail to generalize in a hierarchy-

sensitive manner when performing syntactic

transformationsÐfor example, transforming

declarative sentences into questions. However,

syntactic evaluations of seq2seq models have

only observed models that were not pre-trained

on natural language data before being trained

to perform syntactic transformations, in spite

of the fact that pre-training has been found to

induce hierarchical linguistic generalizations

in language models; in other words, the syn-

tactic capabilities of seq2seq models may have

been greatly understated. We address this gap

using the pre-trained seq2seq models T5 and

BART, as well as their multilingual variants

mT5 and mBART. We evaluate whether they

generalize hierarchically on two transforma-

tions in two languages: question formation

and passivization in English and German. We

find that pre-trained seq2seq models general-

ize hierarchically when performing syntactic

transformations, whereas models trained from

scratch on syntactic transformations do not.

This result presents evidence for the learnabil-

ity of hierarchical syntactic information from

non-annotated natural language text while also

demonstrating that seq2seq models are capable

of syntactic generalization, though only after

exposure to much more language data than hu-

man learners receive.

1 Introduction

Human language is structured hierarchically. In

NLP tasks like natural language inference, syn-

tactic competence is a prerequisite for robust gen-

eralization (e.g., McCoy et al., 2019). Probing

studies have found that masked language models

(MLMs) contain hierarchical representations (Ten-

ney et al., 2019; Hewitt and Manning, 2019; Clark

Figure 1: The poverty of the stimulus experimental de-

sign. We fine-tune pre-trained seq2seq models and train

small seq2seq models from scratch to perform syntac-

tic transformations. The training set contains ambigu-

ous examples consistent with hierarchical and linear

transformation rules. The generalization set contains

examples where only the hierarchical rule results in the

correct output. Pre-trained models generalize using the

hierarchical rule, while models trained from scratch gen-

eralize using the linear rule.

et al., 2019), while behavioral studies of recurrent

neural language models (Linzen et al., 2016; Mar-

vin and Linzen, 2018; Wilcox et al., 2018; van Schi-

jndel et al., 2019) and MLMs (Goldberg, 2019; Hu

et al., 2020) have found that models are largely able

to capture long-range syntactic dependencies that

require hierarchical representations of sentences.

Recent evidence suggests that MLMs like BERT

(Devlin et al., 2019) and RoBERTa (Liu et al.,

2019) can learn to make hierarchical linguistic gen-

eralizations through exposure to text (Warstadt and

Bowman, 2020), though acquiring many of these

linguistic generalizations requires large amounts of

data (Warstadt et al., 2020). However, this evidence

comes from binary acceptability judgment tasks,

where a classifier head is attached to an MLM and

the model is fine-tuned to classify which sentence

in a given minimal pair is consistent with a hi-

erarchical linguistic generalization, rather than a

positional surface heuristic. Consider the following
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two transformations of Example (1):

(1) The yak that your unicorns have amused hasn’t

entertained a newt.

a. Hasn’t the yak that your unicorns have

amused entertained a newt?

b. *Have the yak that your unicorns amused

hasn’t entertained a newt?

Example (1a) correctly forms the question by mov-

ing the main auxiliary verb to the front of the sen-

tence, while (1b) relies on the incorrect positional

heuristic that the first auxiliary in the declarative

sentence should be moved to the front of the sen-

tence. When differentiating grammatical and un-

grammatical auxiliary movements, a model could

rely on distributional information (Lewis and El-

man, 2001) such as bigram heuristics (Reali and

Christiansen, 2005; Kam et al., 2008) to make cor-

rect judgments in many cases, so high performance

on binary classification tasks may overstate the syn-

tactic competence of a model.

By contrast, performing a syntactic trans-

formationÐe.g., given a declarative sentence like

Example (1) as input, transforming it into a polar

question like (1a)Ðis more difficult. It requires

multiple complex but systematic operations that

rely on hierarchical structure, including movement,

number agreement, andÐin languages that have

grammatical case, such as GermanÐcase reinflec-

tion. Evaluations of syntactic transformational

abilities can therefore act as more targeted behav-

ioral indicators of syntactic structural representa-

tions in neural models. McCoy et al. (2018) evalu-

ate non-pre-trained recurrent sequence-to-sequence

(seq2seq) models (Sutskever et al., 2014) on the

question formation task, finding that they rely on

linear/positional surface heuristics rather than hier-

archical structure to perform this syntactic transfor-

mation. More recent studies have also exclusively

considered recurrent seq2seq models and Trans-

former models (Petty and Frank, 2021) trained

from scratch on other transformations like tense

reinflection (McCoy et al., 2020) and passiviza-

tion (Mulligan et al., 2021), finding similar results.

These studies were designed to understand the in-

ductive biases of various seq2seq architectures,

which is why they do not pre-train the models on

non-annotated natural language data before train-

ing them to perform syntactic transformations.

In this study, we create German datasets and

modify English datasets for evaluating the induc-

tive biases of pre-trained models. We use these

datasets to analyze performance in monolingual

and zero-shot cross-lingual settings. Further, we

analyze how pre-trained models perform syntac-

tic transformations. Our findings indicate that pre-

trained models generally perform syntactic transfor-

mations in a hierarchy-sensitive manner, while non-

pre-trained models (including randomized-weight

versions of pre-trained models) rely primarily on

linear/positional heuristics to perform the transfor-

mations. This finding presents additional evidence

to Warstadt et al. (2020) and Warstadt and Bowman

(2020) for the learnability of hierarchical syntactic

information from natural language text input. Our

code and data are publicly available.1

2 Syntactic Transformations

2.1 Languages

We evaluate on syntactic transformations in English

and German. We choose English to allow for com-

parisons to previous results (McCoy et al., 2018;

Mulligan et al., 2021). We further extend our eval-

uations to German because it exhibits explicit case

marking on determiners and nouns; this typological

feature has been found to increase the sensitivity of

language models to syntactic structure (Ravfogel

et al., 2019). This allows us to compare transforma-

tional abilities for languages with different levels

of surface cues for hierarchy.

2.2 Tasks

We employ a poverty of the stimulus experimental

design (Wilson, 2006), where we train the model

on examples of a linguistic transformation that are

compatible with either a hierarchical rule or a lin-

ear/positional rule, and then evaluate the model on

sentences where only the hierarchical rule leads to

the generalization pattern that is consistent with

the grammar of the language (Figure 1).2 In other

words, we are interested in whether T5 and mT5

(henceforth, (m)T5), as well as BART and mBART

(henceforth, (m)BART), demonstrate a hierarchi-

cal inductive bias,3 unlike the linear inductive bias

displayed in prior work by non-pre-trained models.

1
https://github.com/sebschu/

multilingual-transformations
2There are other rules that could properly transform the

stimuli we use, but we find that the models we test do learn
one of these rules or the other.

3When multiple generalizations are consistent with the
training data, ªinductive biasº refers to a model’s choice of
one generalization over others.
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Train, dev, test Generalization

Structure Question Formation Passivization

No RC/PP quest: some xylophones have remembered my yak.

→ have some xylophones remembered my yak?

passiv: your quails amused some vulture.

→ some vulture was amused by your quails.

RC/PP on object quest: my zebras have amused some walrus who has waited.

→ have my zebras amused some walrus who has waited?

passiv: some tyrannosaurus entertained your quail behind your newt.

→ your quail behind your newt was entertained by some tyrannosaurus.

RC/PP on subject quest: my vultures that our peacock hasn’t applauded haven’t read.

→ haven’t my vultures that our peacock hasn’t applauded read?

passiv: the zebra upon the yak confused your orangutans.

→ your orangutans were confused by the zebra upon the yak.

Table 1: The distribution of syntactic structures in the train, test, and generalization sets. To expose the model to

all structures during training and fine-tuning, we also include identity transformations for all structures using the

ªdecl:º prefix, where the input and output sequences are the same declarative or active sentence (see §3.1). We use

the test set to evaluate whether models have learned the task on in-distribution examples, and the generalization set

to evaluate whether models generalize hierarchically. See Appendix A for example sentences in German.

We focus on two syntactic transformation tasks:

question formation and passivization. See Table 1

for a breakdown of which structures we present to

the model during training and which we hold out

to evaluate hierarchical generalization. See Table 2

for examples of hierarchical and linear generaliza-

tions for each transformation.

Question formation. In this task, a declarative

sentence is transformed into a polar question by

moving the main (matrix) auxiliary verb to the

start of the sentence; this hierarchical rule is called

MOVE-MAIN. The linear rule, MOVE-FIRST, en-

tails moving the linearly first auxiliary verb to the

front of the sentence. Examples of both rules are

provided in Figure 1 and Example (1). We train the

model on sentences with no relative clauses (RCs)

or with RCs on the object, where the first auxiliary

verb is always the matrix verb. Disambiguating

examples are those which place RCs on the sub-

ject, where the matrix auxiliary verb is the linearly

second auxiliary in the sentence.

In English, we use the auxiliaries ªhasº, ªhasn’tº,

ªhaveº, and ªhaven’tº, with past participle main

verbs (e.g., ªhave entertainedº, ªhas amusedº). We

use affirmative and negative forms to distinguish

between the multiple auxiliaries: exactly one of

the auxiliaries in such sentences is negative and the

other is positive (counterbalanced across examples).

As a result, we can determine whether the induced

mapping is linear or hierarchical. In German, nega-

tion is realized as a separate word that is not fronted

with the auxiliary. To distinguish the multiple aux-

iliaries, we therefore use the modal ªkönnenº (can)

along with the auxiliary ªhabenº (have), together

with infinitival or past participle main verbs as ap-

propriate. This allows us to distinguish models

with a hierarchical bias from those with a linear

bias on the basis of the fronted auxiliary.

Passivization. In this task, an active sentence is

transformed into a passive sentence by moving the

object noun phrase (NP) to the front of the sentence

(MOVE-OBJECT). Our training examples are also

compatible with a linear rule, MOVE-SECOND, in

which the linearly second NP moves to the front of

the sentence. We train on sentences with no prepo-

sitional phrases (PPs) or with PPs modifying the

object, where the second NP is always the object.

Disambiguating examples are those which place

prepositional phrases (PPs) on the subject, where

the object is the linearly third NP in the sentence.

Passivization additionally requires other move-

ments, insertions, tense reinflection, and (for Ger-

man) case reinflection. In Examples (2) and (3)

below, the object (in blue) is fronted; ‘be’/‘werden’

(in red) is inserted and inflected to agree with the

fronted NP; the original subject NP (in brown) is

moved to a ‘by’/‘von’ phrase after the inserted verb;

and the main verb (in orange) is reinflected to be

a past participle or infinitive. In German, the case

of the NPs (reflected largely in the determiners)

must be reinflected, and the main verb needs to be

moved to the end of the sentence.

(2) English Passivization:

a. Your quails amused some vulture.

b. Some vulture was amused by your quails.

(3) German Passivization:

a. Ihr
Your.NOM

Esel
donkey

unterhielt
entertained

meinen
my.ACC

Salamander.
salamander.

b. Mein
My.NOM

Salamander
salamander

wurde
was

von
from

ihrem
your.DAT

Esel
donkey

unterhalten.
entertained.
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Input Output (hierarchical) Output (linear)

quest: My unicorn that hasn’t amused
the yaks has eaten.

Has my unicorn that hasn’t amused the yaks
eaten?

Hasn’t my unicorn that amused the yaks
has eaten?

quest: Die Hunde, die deine Löwen be-
wundern können, haben gewartet.

Haben die Hunde, die deine Löwen bewun-
dern können, gewartet?

Können die Hunde, die deine Löwen
bewundern, haben gewartet?

passiv: Her walruses above my uni-
corns annoyed her quail.

Her quail was annoyed by her walruses
above my unicorns.

My unicorns were annoyed by her wal-
ruses.

passiv: Unsere Papageie bei meinen Di-
nosauriern bedauerten unsere Esel.

Unsere Esel wurden von unseren Papageien
bei meinen Dinosauriern bedauert.

Meine Dinosaurier wurden von un-
seren Papageien bedauert.

Table 2: Examples from the generalization set with hierarchical- and linear-rule transformations. Glossed German

examples are provided in Appendix A.

3 Experimental Setup

3.1 Data

We modify and supplement the context-free gram-

mar of McCoy et al. (2020) to generate our training

and evaluation data.4 For each transformation, our

training data consists of 100,000 examples with

an approximately 50/50 split between identity ex-

amples (where the input and output sequences are

the same) and transformed examples. The identity

examples include the full range of declarative or ac-

tive structures (including sentences with RCs/PPs

on subjects), thereby exposing the network to the

full range of input structures we test. For the trans-

formed examples, however, training data includes

only examples with no RCs/PPs or RCs/PPs on

the object NPÐi.e., cases that are compatible with

both the hierarchical and linear rules. We also gen-

erate development and test sets consisting of 1,000

and 10,000 examples, respectively, containing sen-

tences with structures like those used in training;

these are for evaluating in-distribution transforma-

tions on unseen sentences.

For each transformation, we also generate a gen-

eralization set consisting of 10,000 transformed ex-

amples with RCs/PPs on the subject NP. For such

examples, models relying on the linear rules will

not generalize correctly.

3.2 Models

We experiment with T5 (Raffel et al., 2020) and

BART (Liu et al., 2020), two English pre-trained

sequence-to-sequence models. We also experiment

with their multilingual variants mT5 (Xue et al.,

2021) and mBART (Liu et al., 2020).5 These are

4We generate our evaluation set such that it consists of
grammatical but semantically improbable sentences which
are unlikely to occur in a natural language corpus. This is to
alleviate the confound of token collocations in the pre-training
corpus.

5We use HuggingFace implementations (Wolf et al., 2020).

12-layer Transformer-based (Vaswani et al., 2017)

architectures with bidirectional encoders and au-

toregressive decoders. While we use the base sizes

of (m)T5, we use the large sizes of (m)BART to

keep the sizes of the models similar.

When fine-tuning (m)T5 and (m)BART, we use

task prefixes in the source sequence. We use

ªquest:º for question formation and ªpassiv:º for

passivization. As in previous work, we also in-

clude identity transformation examples (prefixed

with ªdecl:º), i.e., examples for which the model

has to output the unchanged declarative or active

sentence. When training seq2seq baselines from

scratch, we follow McCoy et al. (2020) and append

the task markers to the end of the input sequence.

For fine-tuning on syntactic transformations, we

use batch size 128 and initial learning rate 5×10−5.

We fine-tune for 10 epochs and evaluate every 500
iterations. We find that the validation loss generally

converges within 1±2 epochs.

To confirm the finding of McCoy et al. (2020)

and Petty and Frank (2021) that non-pre-trained

models fail to generalize hierarchically, we also

train baseline seq2seq models similar to the models

used in those studies. We implement 1- and 2-layer

LSTM-based seq2seq models, as well as 1- and

2-layer Transformer-based seq2seq models where

the Transformers have 4 attention heads.6 We find

that the 1-layer models consistently achieve higher

sequence accuracies on the dev sets, so we focus

on the 1-layer baselines. We re-use all hyperparam-

eters from McCoy et al. (2020). All baseline scores

are averaged over 10 runs.

3.3 Metrics

For all transformations, we are primarily interested

in sequence accuracy: is each token in the tar-

6Our implementations are based on the syntactic-
transformation-focused transductions repository: https:

//github.com/clay-lab/transductions
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Question Formation Passivization

Model English German English German

LSTM 0.95 0.94 0.97 0.97

Transformer 0.95 0.93 0.98 0.98

T5 1.00 ± 1.00 ±

mT5 1.00 1.00 1.00 1.00

BART 0.96 ± 0.95 ±

mBART 1.00 1.00 1.00 1.00

Table 3: Sequence accuracies on the (in-distribution)

test sets for English and German syntactic transforma-

tions. All models learn the in-distribution transforma-

tions.

Question Formation Passivization

Model English German English German

LSTM 0.11 0.33 0.05 0.44

Transformer 0.07 0.05 0.04 0.07

T5 0.87 ± 1.00 ±

mT5 0.99 1.00 1.00 1.00

BART 0.96 ± 1.00 ±

mBART 0.59 0.82 0.80 0.98

Table 4: Main auxiliary accuracies (for question forma-

tion) or object noun accuracies (for passivization) on the

generalization sets for English and German syntactic

transformations. Only pre-trained models generalize

hierarchically.

get sequence present in the proper order in the

predicted sequence? However, it is possible that

models could generalize hierarchically while mak-

ing some other mistake, so we also use two more

relaxed metrics. For question formation, we use

main auxiliary accuracy, which evaluates whether

the correct auxiliary was moved to the front of the

sentence. The first word in the target sequence is al-

ways the main auxiliary verb, so we calculate main

auxiliary accuracy by checking if the first word

is the same in the predicted and target sequences.

For passivization, we use object noun accuracy,

which measures whether the correct object noun

was moved to the subject position. The second

word in the target sequence is always the original

object noun, so we calculate object noun accuracy

by checking if the second word is the same in the

predicted and target sequences.

4 Results

All models learn the in-distribution transfor-

mations. We first present results on unseen sen-

tences whose structures were seen in training,

where both the hierarchical and the linear rules

result in correct generalization (Table 3). All

models perform well in this setting, including

the LSTM- and Transformer-based models trained

from scratch. However, (m)T5 converges to higher

sequence accuracies than the non-pre-trained mod-

els. Additionally, while the non-pre-trained models

require about 15±20 epochs of training to converge

to a high score, (m)T5 and (m)BART converge to

near-perfect sequence accuracy after only a fraction

of an epoch of fine-tuning.

Only pre-trained models generalize hierarchi-

cally. Evaluations on the generalization-set ex-

amples (where the linear rule leads to incorrect

generalization) reveal that none of the trained-from-

scratch models have learned the hierarchical rule.

These models consistently stay at or near 0% se-

quence accuracy on the generalization set through-

out training, so we present main auxiliary/object

noun accuracies (Table 4). Accuracy remains low

even on these more forgiving metrics, indicating

that the non-pre-trained models have not acquired

the hierarchical rules.

Low accuracies do not necessarily indicate

reliance on the linear MOVE-FIRST or MOVE-

SECOND rules. To test whether the non-pre-trained

models have learned the linear rules, we imple-

ment metrics which calculate the proportion of

generalization-set examples for which the MOVE-

FIRST rule (for question formation) or MOVE-

SECOND rule (for passivization) were used; we

refer to these as the move-first frequency and move-

second frequency, respectively. For each model and

language, the sum of the main auxiliary accuracy

and move-first frequency for question formation is

≈ 1.0; the sum of the object noun accuracy and

move-second frequency for passivization is also

≈ 1.0. Thus, where the model did not move the

main auxiliary or object noun, it generally used the

linear rule. In other words, the non-pre-trained

models demonstrate linear inductive biases. This

finding is in line with prior evaluations of non-pre-

trained seq2seq models (McCoy et al., 2020; Mul-

ligan et al., 2021; Petty and Frank, 2021).7

By contrast, (m)T5 and (m)BART achieve very

high main auxiliary/object noun accuracies on the

generalization sets. mBART struggles with En-

7Nonetheless, higher accuracies on German transforma-
tions support the hypothesis that more explicit cues to syn-
tactic structure (here, case-marked articles and nouns) allow
models to learn hierarchical syntactic generalizations more
easily. This agrees with the findings of Ravfogel et al. (2019)
and Mueller et al. (2020).
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Figure 2: Accuracies at every 500 fine-tuning iterations across 10 epochs of fine-tuning on each syntactic trans-

formation. Xs indicate mean accuracies across epochs. T5 models are generally better at performing syntactic

transformations than BART models. Monolingual models tend to achieve higher accuracies than multilingual

models. We present full learning curves in Appendix B.

glish question formation, achieving an average 59%

main auxiliary accuracy throughout fine-tuning.

However, it does achieve a maximum accuracy

>90%, indicating that it is capable of hierarchi-

cal generalization after observing certain training

examples. These accuracies are still well above the

≈0% accuracies of the non-pre-trained models.

Because sequence accuracy on the generalization

set is often unstable for all pre-trained models, we

present plots showing the distribution of accuracies

sampled at every 500 fine-tuning iterations through-

out 10 epochs of fine-tuning (Figure 2). Each pre-

trained model learns the in-distribution transforma-

tion before the first 500 iterations of fine-tuning,

so each plotted accuracy can be taken as indicative

of model preferences after they have learned the

transformations. (m)T5’s sequence accuracies are

generally close to 100% for all transformations ex-

cept German passivization; this is far better than

the non-pre-trained models’ 0% sequence accu-

racies. (m)BART struggles more with syntactic

transformations as indicated by its lower average

accuracies, though it is still capable of detecting the

correct auxiliaries and objects to move as indicated

by the high maximum main auxiliary and object

noun accuracies in Figure 2. This indicates that

pre-trained seq2seq models demonstrate a hier-

archical inductive bias, and that they can quickly

learn syntactic transformations.

There are two main differences between the two

classes of models we test: (m)T5 and (m)BART are

not only pre-trained, but are also much deeper and

much more parameterized than our non-pre-trained

models. Are hierarchical inductive biases a feature

of deep architectures, then, or are they acquired dur-

ing pre-training? To control for pre-training while

keeping the model size consistent, we randomize

the weights of mT5 (the better-performing model)

Question Formation Passivization

Model English German English German

T5 0.48 ± 0.25 ±

mT5 0.50 0.44 0.25 0.50

BART 0.40 ± 0.30 ±

mBART 0.48 0.38 0.29 0.44

Table 5: Maximum main auxiliary and object noun accu-

racies through 500 epochs of fine-tuning after random-

izing the weights of each pre-trained model. Sequence

accuracies remain near 0 throughout fine-tuning.

and fine-tune for up to 500 epochs using an initial

LR8 of 5 × 10−4. For all of the transformations,

the maximum accuracies of the randomized mod-

els are much lower than the average accuracies of

the pre-trained models (Table 5), which suggests

that the deeper architecture on its own does not

lead to structure-sensitive generalizations. This in

return indicates that pre-trained models do not

start with a hierarchical inductive bias; they ac-

quire it through pre-training, extending the find-

ings of Warstadt and Bowman (2020) to generative

sequence-to-sequence models. However, as indi-

cated by the non-zero main auxiliary/object noun

accuracies, the randomly initialized mT5 models

do not exhibit a consistent linear generalization

eitherÐunlike the 1-layer non-pre-trained models.

This may be due to the large number of parameters

compared to the size of the transformations train-

ing corpus. A randomly initialized model of this

size would likely need orders of magnitude more

training data to learn stable generalizations.

Each pre-trained model almost always chooses

the correct auxiliary/object to move; what errors

8We tune over learning rates ∈ 5× 10
{−2,−3,−4,−5} for

the randomized models, finding that 5× 10
−4 yields the best

main auxiliary and object noun accuracies on in-domain eval-
uations.
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account for their sub-perfect sequence accuracies,

then? We perform a detailed error analysis, finding

that pre-trained models drop PPs from the second

noun phrase but otherwise perform many complex

hierarchy-sensitive transformations properly. See

Appendix C for details.

5 Transformation Strategies

Our results indicate that pre-trained seq2seq mod-

els can consistently perform hierarchy-sensitive

transformations. What strategy do they follow to

do this? Because pre-training corpora include ac-

tives, passives, declaratives, and questions, model

representations could encode these high-level sen-

tence features.9 Thus, one strategy could be to

learn a mapping between abstract representations

of different sentence structures (REPRESENTATION

strategy). Alternatively, models could learn to cor-

rectly identify the relevant syntactic units in the

input, and then learn a ªrecipeº of steps leading to

the correct transformations (RECIPE strategy).

To distinguish which strategy models use to per-

form syntactic transformations, we observe cross-

lingual zero-shot transfer on syntactic transforma-

tions. We exploit that English and German use the

same operations for question formation, whereas

passivization in German involves the additional

steps of case reinflection and moving the main verb.

If structural representations are shared across En-

glish and German,10 we do not expect divergent

behaviors for question formation and passivization:

if a model employs the REPRESENTATION strategy,

then after fine-tuning on only English passivization,

it should also correctly perform German passiviza-

tion, including the additional steps of case reinflec-

tion and moving the main verb. Conversely, if it

employs the RECIPE strategy, we expect a model

trained on English passivization to only perform

the steps that are required for English passivization,

resulting in incorrect case marking and no main

verb movement in German.

We first verify that mT5 and mBART are capable

of cross-lingual transfer by training a model on the

English question formation task and evaluating on

German. In early experiments, we noticed the issue

of ªspontaneous translationº (Xue et al., 2021); we

9For example, (sets of) neuron activations have been found
to encode syntactic features in MLMs (Ravfogel et al., 2021;
Finlayson et al., 2021; Hernandez and Andreas, 2021).

10Shared cross-lingual structural representations have been
found for multilingual MLMs (Chi et al., 2020), and we pro-
vide further evidence for shared representations in this section.

Figure 3: Learning curves for mT5 on German trans-

formations after fine-tuning on English/German identity

examples and English transformations. We show ac-

curacies for German question formation with RCs on

objects (top left) and RCs on subjects (top right), as

well as accuracies for German passivization with PPs

on objects (bottom left) and PPs on subjects (bottom

right).

therefore also include German identity transforma-

tions in the training data to train the decoder to also

output German sentences.

As the top two panels of Figure 3 show, mT5

can correctly perform German question formation

on in-domain structures (RCs on objects) after be-

ing exposed only to English transformations. For

out-of-domain structures (RCs on subjects), mT5

almost always moves the main auxiliary but almost

never deletes it from its original position, result-

ing in lower sequence accuracies. Apart from this

error, the model is capable of cross-lingual trans-

fer on the question formation task. By contrast,

mBART achieves poor results on zero-shot German

question formation, so we cannot make conclusive

arguments using this approach; see Appendix D.

Given that cross-lingual transfer is possible for

mT5, how does the model behave in the passiviza-

tion task, which differs between English and Ger-

man? We fine-tune mT5 on English passivization

(as well as German identity transformations on ac-

tive sentences). The results of this experiment (the

lower two panels in Figure 3) show that the model

is still able to move the main object to the subject

position, but also that it never correctly performs

German passivization in its entirety. This is be-

cause the model performs exactly the same steps

for German sentences as for English sentences, re-

sulting in outputs with English syntax:
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(4) Meinen
My.ACC

Kater
cat

bei
by

ihrem
your.DAT

Molch
newt

was
was

verwirrten
confused.PAST

by
by

die
the.NOM

Esel.
donkeys.

These behavioral patterns suggest that mT5 em-

ploys the RECIPE strategy: it succeeds if a transfor-

mation’s required operations are the same across

languages (as for question formation) but fails if the

steps differ (as for passivization). Even in passiviza-

tion, however, the model still learns to move the

correct NPs, which provides additional evidence

that mT5 makes use of structural features when

performing transformations. Given the similarities

between mT5’s and mBART’s architectures and

training setups, one could reasonably presume that

mBART may follow a similar strategy to perform

syntactic transformations; nonetheless, mBART

is less consistent in performing syntactic transfor-

mations, so this method cannot present strong evi-

dence for use of the RECIPE strategy for that model.

6 Corpus Analysis

Pre-trained models learn to use hierarchical fea-

tures for performing syntactic transformations. Is

this because there is explicit supervision for the

hierarchical rules in the pre-training corpora? In

other words, are there disambiguating examples

in these models’ training corpora that helps them

memorize hierarchical transformation patterns?

Here, we focus on English question formation ex-

amples in mT5’s training corpus.11 Disambiguat-

ing examples would be rare, as a single pre-training

context window must contain a declarative sen-

tence as well as the same sentence transformed into

a question; humans would tend to replace at least

some of the constituents with pronouns or delete

them (e.g., Ariel, 2001). It would also require the

MOVE-FIRST rule to not correctly transform the

sentenceÐand for at least one of the auxiliaries to

be noised in one sentence but not the other, such

that the auxiliary has to be recovered from the other

sentence. For example:

(5) . . . Has this company which hasn’t had any le-

gal violations been reported to the Better Busi-

ness Bureau? This company which hasn’t had

any legal violations <X> been reported to the

Better Business Bureau. . .

11mT5 outperforms mBART. If disambiguating contexts in
the pre-training data lead to syntactic generalizations, then
we expect these examples to be more likely in mT5’s training
corpus.

We search for English disambiguating question for-

mation examples. To this end, we sample 5M En-

glish documents from mT5’s training corpus mC4,

segmenting each document into sentences using

spaCy.12 This yields 118.3M sentences. We exam-

ine each pair of adjacent sentences in each docu-

ment, manually inspecting any sentence pair meet-

ing the following criteria: (1) the token Jaccard sim-

ilarity of the sentences is > 0.7; (2) one sentence

begins with an auxiliary verb and the other does

not; (3) there are at least two distinct auxiliaries

in both sentences. There are 277 sentence pairs in

our sample that met all criteria, of which 13 are

adjacent declarative/question pairs that are equiv-

alent except for the fronted auxiliary. Thus, the

probability of an equivalent declarative/question

pair with two auxiliaries in mC4 is ≈ 1.1× 10−7.

As T5’s and mBART’s training corpora consist of

data from similar webtext distributions, it is likely

that these structures exist in those corpora as well.

Crucially, however, none of the declara-

tive/question pairs were disambiguating examples:

each pair was consistent with the linear MOVE-

FIRST rule. What is the probability of a disam-

biguating example, then? If we assume that the

probability of a sentence containing an RC on

the subject is independent from the probability

of a declarative/question sentence pair, we can

take the product of both probabilities to obtain

an estimate. From the same sample of 118.3M

sentences, we use spaCy’s dependency parser to

extract sentences containing an RC on the sub-

ject and where at least one auxiliary verb appears

in the sentence. We obtain 526, 944 such sen-

tences, meaning that the probability of an RC on

a subject in an auxiliary-containing sentence in

mC4’s English corpus is ≈ 4.5 × 10−3. Thus,

the probability of declarative/question pair with

an RC on the subject and auxiliary in the RC is

≈ (4.5×10−3)·(1.1×10−7) = 4.95×10−10. mT5

is trained on up to 1T tokens of data, and 5.67%

of its documents are English; it therefore observes

≈ 56.7B English tokens. If we optimistically as-

sume that English sentences contain an average

of 15 tokens, it observes 3.78B English sentences.

Then we would expect 3.78B×(4.95×10−10) ≈ 2
disambiguating examples. This is not including

the auxiliary masking criterion, which would make

such examples even less likely.

Thus, while we cannot definitively rule out the

12
https://spacy.io
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possibility of disambiguating examples in mC4,

they are rare if they exist in the corpus at all.

Nonetheless, we have found evidence for supervi-

sion on question formation in the form of adjacent

declarative/question sentence pairs, even if they do

not explicitly support the hierarchical rule.

7 Discussion

Our experiments provide evidence that pre-trained

seq2seq models acquire a hierarchical inductive

bias through exposure to non-annotated natural lan-

guage text. This extends the findings of Warstadt

and Bowman (2020) and Warstadt et al. (2020) to

a more challenging generative task, where mod-

els cannot rely on n-gram distributional heuris-

tics (Kam et al., 2008). This also provides addi-

tional evidence that masking and reconstructing

subsets of input sequences is a powerful training

objective for inducing linguistic generalizations,

whether in masked language models like RoBERTa

(Warstadt and Bowman, 2020) or sequence-to-

sequence models. Span denoising ((m)T5’s ob-

jective) appears more effective for learning syntac-

tic transformations than full sequence reconstruc-

tion ((m)BART’s objective) given that (m)T5 is

more consistently able to perform transformations,

though there are too many other differences in train-

ing data and hyperparameters between (m)T5 and

(m)BART for us to be able to directly implicate the

training objective. This hypothesis can be tested ex-

plicitly in future work by training identical models

that differ only in their pre-training objective.

Counter to McCoy et al. (2020), our findings

suggest that hierarchical architectural constraints

(e.g., tree-structured networks) are not necessary

for robust hierarchical generalization as long as

the model has been exposed to large amounts of

natural language textÐpossibly far more language

than humans would be exposed to. However, one

difference between the randomly initialized models

employed by McCoy et al. (2020) and pre-trained

models is that pre-trained models have likely seen

the structures (but not sentences) present in the gen-

eralization set; thus, rather than relying on syntactic

features, the model could choose the correct trans-

formation because it is more similar to the gram-

matical examples it has already seen. We found

declarative/question pairs in mT5’s training corpus,

but we did not find any examples that explicitly

demonstrated the hierarchical rule for question for-

mation. While we cannot fully rule out the possibil-

ity of disambiguating examples, this strategy is still

unlikely given that pre-trained models produce un-

grammatical transformations, both in monolingual

transformations (e.g., not deleting the main aux-

iliary after copying it to the start of the sentence)

and in cross-lingual German passivization. Addi-

tionally, because we use greedy decoding, models

are not able to take future words into account when

predicting the fronted auxiliary: they must select

the appropriate auxiliary to move solely based on

the encoder’s representations.

More broadly, our findings counter the assump-

tion that a hierarchical constraint is necessary in

language learners to acquire hierarchical general-

ization (Chomsky, 1965). While the pre-trained

models that we considered observe far more input

than a child would receive (Linzen, 2020), Hueb-

ner et al. (2021) recently demonstrated high per-

formance on grammaticality judgments for models

trained on much smaller child-directed speech cor-

pora, suggesting that our findings may also hold

when training models on more human-like input.

8 Conclusions

We have performed an analysis of the syntac-

tic transformational ability of large pre-trained

sequence-to-sequence models. We find that pre-

trained models acquire a hierarchical inductive bias

during pre-training, and that the architecture does

not yield this hierarchical bias by itself.

It remains an open question whether such deep

and highly parameterized models or such large pre-

training datasets are necessary for hierarchical gen-

eralization. Future work could ablate over model

depth and pre-training corpus size to observe the

relative contribution of architecture and the train-

ing set to inducing hierarchical inductive biases in

seq2seq models.
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A German Structures

Here, we present examples of the sentences in the

training, development, test, and generalization sets

for the German question formation and passiviza-

tion tasks (Table 6). As in English, we train the

model on declarative or active sentences, as well

as question-formation or passivization examples

with no RCs/PPs or with RCs/PPs on subjects (i.e.,

sentences that are consistent with the hierarchical

and linear rules described in §3.1). Then we evalu-

ate its generalization on sentences where the linear

rule does not properly transform the sentence.

For further clarity, we present glossed examples

of each German structure below for both tasks.

(6) German Question Formation (no RC):

a. Unsere
Our.NOM

Salamander
salamanders

haben
have

die
the.ACC

Pfaue
peacocks

bewundert.
admired.

"Our salamanders have admired the pea-

cocks."

b. Haben
Have

unsere
our.NOM

Salamander
salamanders

die
the.ACC

Pfaue
peacocks

bewundert?
admired?

"Have our salamanders admired the pea-

cocks?"

(7) German Question Formation (RC on object):

a. Einige
Some.NOM

Molche
newts

können
can

meinen
my.ACC

Papagei,
parrot,

der
that.NOM

deinen
your.ACC

Raben
ravens

trösten
comfort

kann,
can,

nerven.
annoy.

"Some newts can annoy my parrot that can

comfort your ravens."

b. Können
Can

einige
some.NOM

Molche
newts

meinen
my.ACC

Papagei,
parrot,

der
that.NOM

deinen
your.ACC

Raben
ravens

trösten
comfort

kann,
can,

nerven?
annoy?

"Can some newts annoy my parrot that can

comfort your ravens?"

(8) German Question Formation (RC on subject):

a. Ihr
Your.NOM

Hund,
dog,

den
that.ACC

ihr
your.NOM

Geier
vulture

nerven
annoy

kann,
can,

hat
has

einige
some.ACC

Pfauen
peacocks

amüsiert.
amused.

"Your dog that can annoy your vulture has

amused some peacocks."

b. Hat
Has

ihr
your.NOM

Hund,
dog,

den
that.ACC

ihr
your.NOM

Geier
vulture

nerven
annoy

kann,
can,

hat
some.ACC

einige
peacocks

Pfauen
amused?

amüsiert.

"Has your dog that can annoy your vulture

amused some peacocks?"

(9) German Passivization (no PP):

a. Ihr
Your.NOM

Kater
cat

bedauerte
pities

den
the.ACC

Dinosaurier.
dinosaur.

"Your cat pities the dinosaur."

b. Der
The.NOM

Dinosaurier
dinosaur

wurde
was

von
from

ihrem
your.DAT

Kater
cat

bedauert.
pitied.

"The dinosaur was pitied by your cat."

(10) German Passivization (PP on object):

a. Unsere
Our.NOM

Ziesel
ground-squirrels

amüsierten
amuse

einen
a.ACC

Kater
cat

hinter
behind

dem
the.DAT

Dinosaurier.
dinosaur.

"Our ground squirrels amuse a cat behind

the dinosaur."

b. Ein
A.NOM

Kater
cat

hinter
behind

dem
the.DAT

Dinosaurier
dinosaur

wurde
was

von
from

unseren
our.DAT

Zieseln
ground-squirrels

amüsiert.
amused.

"A cat behind the dinosaur was amused by

our ground squirrels."

(11) German Passivization (PP on subject):

a. Die
The.NOM

Geier
vultures

hinter
behind

meinem
my.DAT

Ziesel
ground-squirrel

akzeptieren
accept

die
the.ACC

Molche.
newts.

"The vultures behind my ground squirrel

accept the newts."

b. Die
The.NOM

Molche
newts

wurden
were

von
from

den
the.DAT

Geiern
vultures

hinter
behind

meinem
my.DAT

Ziesel
ground-squirrel

akzeptiert.
accepted.

"The newts were accepted by the vultures

behind my ground squirrel."

B Learning Curves

Here, we present learning curves for 10 epochs

of fine-tuning for each transformation in each lan-

guage (Figures 4,5,6,7). The accuracies shown
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Train, dev, test Generalization

Question Formation Declarative Question

No RC decl: unsere Salamander haben die

Pfaue bewundert.

→ unsere Salamander haben die Pfaue

bewundert.

quest: ihre Hunde haben unseren Orang-Utan gen-

ervt.

→ haben ihre Hunde unseren Orang-Utan genervt?

RC on object decl: unser Ziesel kann den Salaman-

der, der meinen Pfau verwirrt hat, akzep-

tieren.

→ unser Ziesel kann den Salamander,

der meinen Pfau verwirrt hat, akzep-

tieren.

quest: einige Molche können meinen Papagei, der

deinen Raben trösten kann, nerven.

→ können einige Molche meinen Papagei, der deinen

Raben trösten kann, nerven?

RC on subject decl: dein Molch, den mein Wellen-

sittich bewundert hat, kann meine Di-

nosaurier trösten.

→ dein Molch, den mein Wellensittich

bewundert hat, kann meine Dinosaurier

trösten.

quest: ihr Hund, den ihr Geier nerven kann, hat einige

Pfaue amüsiert.

→ hat ihr Hund, den ihr Geier nerven kann, einige

Pfaue amüsiert?

Passivization Active Passive

No PP decl: die Löwen unterhielten einen

Wellensittich.

→ die Löwen unterhielten einen Wellen-

sittich.

passiv: ihr Kater bedauerte den Dinosaurier.

→ der Dinosaurier wurde von ihrem Kater bedauert.

PP on object decl: ihre Geier verwirrten ihren Raben

über unserem Ziesel.

→ ihre Geier verwirrten ihren Raben

über unserem Ziesel.

passiv: unsere Ziesel amüsierten einen Kater hinter

dem Dinosaurier.

→ ein Kater hinter dem Dinosaurier wurde von un-

seren Zieseln amüsiert.

PP on subject decl: ein Löwe unter unserem Hund

nervte einigie Ziesel.

→ ein Löwe unter unserem Hund nervte

einigie Ziesel.

passiv: die Geier hinter meinem Ziesel akzeptieren

die Molche.

→ die Molche wurden von den Geiern hinter meinem

Ziesel akzeptiert.

Table 6: The distribution of syntactic structures in the German train, test, and generalization sets. We use the test set

to evaluate whether models have learned the task on in-distribution examples, and the generalization set to evaluate

hierarchical generalization.

Figure 4: Learning curves over 10 epochs of fine-tuning for mT5 on both syntactic transformation tasks.

.

Figure 5: Learning curves over 10 epochs of fine-tuning for mBART on both syntactic transformation tasks.

.

1365



Figure 6: Learning curves over 10 epochs of fine-tuning

for T5 on both syntactic transformation tasks.

Figure 7: Learning curves over 10 epochs of fine-tuning

for BART on both syntactic transformation tasks.

in these curves are the same as those shown in

Figure 2, but now associated with their respective

fine-tuning iteration.

All models except mBART immediately achieve

near-perfect main auxiliary and object noun accu-

racies. Their loss on the validation sets converges

almost immediately, so it’s possible that reductions

in generalization accuracies throughout fine-tuning

are due to overfitting to the training distribution.

For mBART, however, main auxiliary and object

noun accuracies start high and then begin to vary

dramatically throughout fine-tuning. This is per-

haps due to quick overfitting on the training distri-

bution. We analyze what errors cause mBART’s

deficiencies in §C.2.

C Error Analysis

Each pre-trained model almost always chooses the

correct auxiliary/object to move; what other errors

account for their sub-perfect sequence accuracies?

We implement more specific metrics to observe

more closely what mistakes (m)T5 and (m)BART

are making. We show results for mT5 in §C.1

and mBART in §C.2, but the errors we discuss

are generally consistent across models. We also

present more detailed metrics for the most complex

transformation, German passivization, in §C.3.

C.1 mT5

Figure 8 depicts results for mT5 for German pas-

sivization, the transformation on which all models

Figure 8: Learning curves displaying alternative accu-

racy metrics for mT5 on German passivization. We

present the accuracy of the model in properly moving

the object NP to the start of the sentence (top left), mov-

ing the subject NP after the auxiliary verb (top right),

moving the subject NP after the auxiliary verb with or

without its attached PP (bottom left), and the full se-

quence accuracy (bottom right).

achieve the lowest sequence accuracy. mT5 is al-

most always successful at the hierarchical transfor-

mation of moving the object NP to subject position

(including its attached PP when present), and it

correctly moves the original subject noun to a ªbyº

phrase following the auxiliary. However, for both

English and German passivization, the main error

accounting for sub-perfect sequence accuracies is

that the model fails to preserve the PP on the second

NP (in the by-phrase):

(12) My yaks below the unicorns comforted the

orangutans.

→ The orangutans were comforted by my yaks.

As mT5 has not been fine-tuned on output se-

quences where PPs appear at the end of the sen-

tence, the decoder could be assigning low prob-

abilities to end-of-sentence PPs while otherwise

encoding a hierarchical analysis of sentence struc-

ture.

Errors for question formation are more varied.

Pre-trained models’ sub-perfect main auxiliary ac-

curacies on question formation are mainly due to

improper negations on the main auxiliary: when

the noun in the relative clause and the main noun

agree in number, models will sometimes delete the

main auxiliary (as expected) while copying the in-

correct auxiliary to the beginning of the sentence.

Additionally, the discrepancy between sequence
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and main auxiliary accuracies is almost always at-

tributable to models not deleting the main auxiliary

after moving it to the start of the sentence. These

results (as with the passivization results) suggest

that pre-trained seq2seq models are better at

performing hierarchy-sensitive transformations

than the sequence accuracies initially suggest—

but also that they can fail to perform theoret-

ically simpler operations, such as deletions and

moving all parts of a constituent.

We present more detailed error analyses in Ap-

pendix C.3. We find that pre-trained models also

consistently succeed in case reinflection, tense re-

inflection, and passive auxiliary insertion.

C.2 mBART

We have shown in §C.1 that mT5 achieves sub-

perfect sequence accuracies on passivization due to

its dropping the prepositional phrase on the second

NP. Here, we present results for mBART (Figure 9).

The takeaways for mBART are similar to mT5’s:

the model succeeds in moving the proper nouns,

but it often drops the prepositional phrase from the

second NP during movement.

As the model also fails to perform English ques-

tion formation consistently, we also observe what

errors it makes in that task. We find that deficien-

cies in main auxiliary accuracy are due to the model

copying the incorrect auxiliary to the beginning of

the sentence, while gaps between main auxiliary

and sequence accuracy are due to the model drop-

ping the relative clause on the second NP.

C.3 More Detailed Metrics

We also present more detailed analyses of other

required operations in passivization: namely, are

mT5 and mBART capable of tense reinflection,

case reinflection, and auxiliary insertions? And

are they capable of this in zero-shot settings? Re-

sults for mT5 (Figure 10) and mBART (Figure 11)

suggest that both models are generally capable of

tense reinflection, case reinflection, and auxiliary

insertion in supervised contexts.

D Zero-shot mBART Accuracies

Here, we present learning curves for mBART on

zero-shot cross-lingual syntactic transformations

(Figure 12). While mBART is typically able to

select the correct auxiliary verb or object noun

to move, it never transforms the sequence fully

correctly.

Figure 9: Learning curves displaying alternative accu-

racy metrics for mBART on German passivization. We

present the accuracy of the model in properly moving

the object NP to the start of the sentence (top left), mov-

ing the subject NP after the auxiliary verb (top right),

moving the subject NP after the auxiliary verb with or

without its attached PP (bottom left), and the full se-

quence accuracy (bottom right).

Figure 10: Learning curves displaying alternative ac-

curacy metrics for mT5 on German passivization. We

present the proportion of examples for which the model

moves the first NP without reinflecting its case (top left),

moves the second NP without reinflecting its case (top

right), reinflects the tense of the main verb (bottom left),

and inserts the passive auxiliary werden with the proper

inflection.
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Figure 11: Learning curves displaying alternative accu-

racy metrics for mBART on German passivization. We

present the proportion of examples for which the model

moves the first NP without reinflecting its case (top left),

moves the second NP without reinflecting its case (top

right), reinflects the tense of the main verb (bottom left),

and inserts the passive auxiliary werden with the proper

inflection.

Figure 12: Learning curves for mBART on Ger-

man transformations after fine-tuning only on En-

glish/German identity examples and English transforma-

tions. We show accuracies for German question forma-

tion with RCs on objects (top left) and RCs on subjects

(top right), as well as accuracies for German passiviza-

tion with PPs on objects (bottom left) and PPs on sub-

jects (bottom right).
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