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ABSTRACT

The Beishan orogen is part of the Neo-
proterozoic to early Mesozoic Central Asian
Orogenic System in central Asia that exposes
ophiolitic complexes, passive-margin strata,
arc assemblages, and Precambrian base-
ment rocks. To better constrain the tectonic
evolution of the Beishan orogen, we con-
ducted field mapping, U-Pb zircon dating,
whole-rock geochemical analysis, and Sr-Nd
isotopic analysis. The new results, when
interpreted in the context of the known geo-
logical setting, show that the Beishan region
had experienced five phases of arc magma-
tism at ca. 1450-1395 Ma, ca. 1071-867 Ma,
ca. 542-395 Ma, ca. 468-212 Ma, and ca.
307-212 Ma. In order to explain the geologi-
cal, geochemical, and geochronological data
from the Beishan region, we present a tec-
tonic model that involves the following five
phases of deformation: (1) Proterozoic rifting
that separated the North Beishan block from
the Greater North China craton that led to
the opening of the Beishan Ocean, (2) early
Paleozoic north-dipping subduction (ca. 530—
430 Ma) of the Beishan oceanic plate associ-
ated with back-arc extension followed by col-
lision between the North and South Beishan
microcontinental blocks, (3) northward slab
rollback of the south-dipping subducting
Paleo-Asian oceanic plate at ca. 450-440 Ma
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along the northern margin of the North
Beishan block that led to the formation of a
northward-younging extensional continental
arc (ca. 470-280 Ma) associated with bimodal
igneous activity, which indicates that the
westward extension of the Solonker suture
is located north of the Hongshishan-Peng-
boshan tectonic zone, (4) Late Carboniferous
opening and Permian north-dipping subduc-
tion of the Liuyuan Ocean in the southern
Beishan orogen, and (5) Mesozoic-Cenozoic
intracontinental deformation induced by the
final closure of the Paleo-Asian Ocean system
in the north and the Tethyan Ocean system
in the south.

1. INTRODUCTION

The Central Asian Orogenic System (Briggs
et al., 2007, 2009; Zuza and Yin, 2017), also
known as the Altai orogenic system (Sengor,
1984), the Central Asia Fold Belt (Zonenshain
et al., 1990), or the Central Asian Orogenic Belt
(Sengor, 1984; Jahn et al., 2000), is the largest
Phanerozoic accretionary orogen in the world.
Determining its tectonic history is key to better
understanding the processes that govern conti-
nental deformation and crustal growth (Fig. 1)
(e.g., Sengor et al., 1993; Sengor and Natal’in,
1996; Yin and Nie, 1996; Heubeck, 2001; Wind-
ley et al., 2007; Xiao et al., 2009b; Kroner et al.,
2014; Wu et al., 2016a, 2016b; Chen et al.,
2022). The tectonic assembly of central Asia
occurred over ~800 m.y. from the Neoprotero-
zoic to the Mesozoic through long-term ocean-
closure event(s) and terrane/block collisions
(e.g., Zonenshain et al., 1990; Sengor et al.,
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1993; Khain et al., 2002; Kroner et al., 2007;
Windley et al., 2007; Xiao et al., 2009a, 2009b;
Zuza and Yin, 2017; Chen et al., 2022). The con-
struction of the Central Asian Orogenic System
was associated with multiple phases and modes
of deformation, metamorphism, magmatism,
and basin formation associated with oceanic
subduction, accretion of oceanic materials onto
continental margins, continental-arc collision,
and terminal continent-continent collision (Xiao
et al., 1992; Sengor et al., 1993, 2018; Sengor
and Natal’in, 1996; Hsii and Chen, 1999; Khain
etal., 2002; Li, 2004; Charvet et al., 2007; Wind-
ley et al., 2007; Xiao et al., 2010a, 2013, 2014,
2018; Kroner et al., 2014; Yakubchuk, 2017,
Zuza and Yin, 2017; Windley and Xiao, 2018;
Huang et al., 2020; Xiao et al., 2020).

Despite its importance in understanding
the geologic history of Asia, exactly where
and when the Paleo-Asian Ocean domain was
sutured against the Tarim-North China cratonal
system in the south remains highly uncertain,
especially in the south-central Central Asian
Orogenic System (Sengor et al., 1993; Hsii and
Chen, 1999; Windley et al., 2007; Xiao et al.,
2009a, 2009b, 2010b, 2014; Wilhem et al., 2012;
Eizenhofer et al., 2014). The southern extent of
the Central Asian Orogenic System and Paleo-
Asian Ocean is relatively well constrained in the
east, along the Solonker suture zone at the north-
ern margin of the North China craton (e.g., Xiao
etal., 2003; Eizenhofer et al., 2014; Zhang et al.,
2020a; Zhao et al., 2021), but how this suture
zone projects to the west toward Tarim is conten-
tious. One model postulates that this suture con-
tinues to the southern Beishan along the Liuyuan
suture (Xiao et al., 2010b; Mao et al., 2012b;

https://doi.org/10.1130/B36451.1; 17 figures; 2 tables; 1 supplemental file.
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Figure 1. Tectonic division map of the Tethyan and Central Asian Orogenic System modified after Yin and Harrison (2000), Yin (2010),
and Sengor et al. (1993). The top left inset shows the location of Figure 1 in the context of the Asian continent. The locations of Figures 2
and 3 are shown. IT—Indus-Tsangpo suture; BN—Bangong-Nujiang suture; JS—Jinsha suture; KQD—Kunlun-Qinling-Dabie suture;
SQS—South Qilian suture; NQS—North Qilian suture; NT—North Tianshan suture; HH—Heihe-Hegenshan suture; XX—Xinlin-Xiguitu
suture; MO—Mongol-Okhotsk suture; SGT—Songpan-Ganzi terrane; CQT—Central Qilian terrane; STB—South Tianshan belt; CTB—
Middle Tianshan block; NTB—North Tianshan belt; F.—fault.

Guo et al., 2017; Zheng et al., 2020), whereas
another model suggests this tectonic boundary
projects to the northern margin of the Beishan
region along the Hongshishan suture (Fig. 2)
(Liu and Wang, 1995; Saktura et al., 2017; He
et al., 2018). The two competing models make
specific predictions on the spatial and temporal
distribution and evolution of arc magmatic belts
and the location of the major suture zone(s)
across the Beishan region.

To test the above models for the Central Asian
Orogenic System evolution, we conducted an
integrated field, geochemical, and geochrono-
logic investigation and a synthesis of existing

work across the Beishan orogen. The main pur-
pose of this study is to determine the distribu-
tion of arc magmatism in space and time and the
nature of suture zones and their relationships to
the tectonic evolution of the Central Asian Oro-
genic System.

2. REGIONAL GEOLOGY

Interpreting the newly collected geochro-
nological and geochemical data from this
study depends on the current understanding
of the geologic framework and geologic his-
tory of the Beishan region, which is briefly

outlined below. The Beishan region exposes
east-trending mountain ranges that reach eleva-
tions of 2-2.5 km (Figs. 2 and 3). The region is
bounded by the Mesozoic left-slip Xingxingxia
fault to the west, the southern Mongolian col-
lage system to the north, the Dunhuang block to
the south, and the Cenozoic Ruoshui fault and
Alxablock to the east (Figs. 2 and 3) (Zuo et al.,
1991; Yue and Liou, 1999; Wang et al., 2010;
Xiao et al., 2010b; Zuo and Li, 2011). Meso-
zoic intracontinental shortening, expressed as a
mixed-mode of thrusting and strike-slip faulting
(Zheng et al., 1996; Zuo et al., 2011; Zhang and
Cunningham, 2012), may have deformed the

>

>

169—Guo et al., 2020; 170—Gao et al., 2020; 171—Fu et al., 2020b; 172—Duan et al., 2020; 173—Cheng et al., 2020; 174—Chen et al.,
2020c; 175—Tian et al., 2020c; 176—Zhu et al., 2019; 177—Zhao et al., 2019a; 178—Zhao et al., 2019b; 179—Yang et al., 2019b; 180—Li
et al., 2019b; 181—Guan et al., 2019; 182—Chen et al., 2019; 183—Yu et al., 2018; 184—Xu et al., 2018a; 185—Xu et al., 2018b; 186—Xie
et al., 2018a; 187—Xie et al., 2018b; 188—Liu and Zhu, 2018; 189—Gao et al., 2018a; 190—Gao et al., 2018b; 191—Cheng et al., 2018;
192—Yi et al., 2017; 193—Yang et al., 2017; 194—Wang et al., 2017b; 195—Qi et al., 2017; 196—Liang et al., 2017; 197—Chen et al., 2017c;
198—Ding et al., 2017; 199—Yang et al., 2016b; 200—Zhu et al., 2015; 201—Xie et al., 2015; 202—Niu et al., 2014; 203—Qu et al., 2013;
204—Niu et al., 2013; 205—Hui et al., 2013; 206—Chen et al., 2013; 207—Hou et al., 2013; 208—Zhang et al., 2012d; 209—Yan et al.,
20125 210—Wau et al., 2012; 211—Li, et al., 2012¢; 212—Yang et al., 2010b; 213—Xiao et al., 2010c; 214—Wang et al., 2009a; 215—Wang
et al., 2009b; 216—Liu et al., 2006; 217—Zhang, 2014; 218—This study. DQ F.—Daquan fault; XXX F.—Xingxingxia fault; GBQ-HLY
F.—Gubaoquan-Hongliuyuan fault; LBQ-YMJ DSZ—Lebaquan-Yemajing ductile shear zone; SBJ DSZ—Shibanjing ductile shear zone;
GLJ-SGJ DSZ—Gonglujing-Sangejing ductile shear zone.
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Figure 2. Overview geologic map of the Beishan orogen of central Asia showing age constraints of magmatism and sedimentary deposi-
tion. The geology was compiled from Gansu BGMR (1989), Hsii and Chen (1999), and our geologic interpretation. The white box indicates
the location of the composite map in Figure 5, and the location of Figure 7B is marked with white arrow. Data are from: 1—Zheng et al.,
2020; 2—Zhao et al., 2020c; 3—Chen et al., 2017a; 4—Xiu et al., 2018; 5—Hu et al., 2015; 6—Li et al., 2020a; 7—Zhao et al., 2007; 8—Mao
et al., 2012a; 9—Mao et al., 2012b; 10—Zheng et al., 2014; 11—Zhang and Guo, 2008; 12—Li et al., 2009; 13—Li et al., 2011; 14—Zhang
et al., 2010; 15—Zhang et al., 2011a; 16—Feng et al., 2012; 17—Qu et al., 2011; 18—Liu et al., 2011; 19—Zheng et al., 2016a; 20—Guo
et al., 2014; 21—Song et al., 2016; 22—He et al., 2015; 23—Liu et al., 2015; 24—Yuan et al., 2015; 25—Xu et al., 2018c; 26—Xu et al.,
2019a; 27—1Li et al., 2020b; 28—Li et al., 2015; 29—Xu et al., 2019b; 30—Ren et al., 2019a; 31—Ren et al., 2019b; 32—Niu et al., 2019;
33—Li et al., 2019a; 34—Bu et al., 2019; 35—Zheng et al., 2019; 36—Song et al., 2013a; 37—Zheng et al., 2018b; 38—Zheng et al., 2012;
39—Li, 2013; 40—Song et al., 2015; 41—Wang et al., 2018b; 42—Tian et al., 2014; 43—Zhang, 2013; 44—Ding et al., 2015; 45—Song et al.,
2013b; 46—Zheng et al., 2013; 47—Ao et al., 2016; 48—Zhang et al., 2012a; 49—Zhang et al., 2012b; 50—Yang et al., 2013; 51—Ao et al.,
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2014a; 64—Wang et al., 2021b; 65—Wang et al., 2021e; 66—Tian et al., 2021; 67—Niu et al., 2021b; 68—Yang et al., 2020; 69—Sun et al.,
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configurations of a Paleozoic orogen as part of
the south-central Central Asian Orogenic Sys-
tem that includes the Beishan area (Figs. 2 and
3) (Sengor et al., 1993; Yin and Harrison, 2000;
Windley et al., 2007; Xiao et al., 2010b; Zuza
and Yin, 2017).

The Beishan region exposes Neoproterozoic—
Phanerozoic magmatic arc rocks, (ultra-)mafic
intrusions, and ophiolitic mélange belts (Fig. 2)
(Zuo et al., 1991; Liu and Wang, 1995; Xiao
et al., 2010b; Ao et al., 2012; Li et al., 2012a;
Tianetal., 2014; Cleven et al., 2015a, 2015b; He
et al., 2018). The main Paleozoic orogenic event
was followed by Mesozoic-Cenozoic intracon-
tinental deformation due to the far-field effects
of collisional tectonic processes responsible for
the closure of the Meso- and Neo-Tethys oceans
to the south (Zheng et al., 1996; Yin and Har-
rison, 2000; Guo et al., 2008; Yin, 2010; Zhang
and Cunningham, 2012; Cunningham, 2013,
2017; Gillespie et al., 2017; Yang et al., 2021a;
Yun et al., 2021). Understanding the Paleozoic
tectonic evolution of the Beishan orogen not
only provides a new constraint for the evolution
of the Central Asian Orogenic System but also
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the magnitude of Mesozoic-Cenozoic tectonic
deformation (e.g., Yin and Nie, 1996).

2.1. Paleozoic Tectonics

The Paleozoic Beishan orogen records the
opening and subsequent closure of several
oceans of the Paleo-Asian domain as multiple
terranes collided with the northern margin of the
Tarim-North China cratons, resembling that of
the Mesozoic—Cenozoic subduction-accretion
system in the western Pacific Ocean tectonic
domain (Hsti and Chen, 1999; Xiao et al.,
2010b; Song et al., 2015). Paleozoic Beishan
orogenesis involved the development of four
tectonic zones (Figs. 2 and 3) that feature ophio-
lite blocks and (ultra-)mafic rocks, including
the: (1) Hongshishan-Baiheshan-Pengboshan;
(2) Shibanjing-Xiaohuangshan; (3) Hongliuhe-
Niujuanzi-Baiyunshan- Yueyashan-Xichangjing;
and (4) Cihai-Liuyuan-Zhangfangshan tectonic
zones from north to south (Zuo et al., 1991;
Liu and Wang, 1995; Wei et al., 2004; Ao et al.,
2010, 2012, 2016; Xiao et al., 2010b; Yang et al.,
2010a; Zuo and Li, 2011; Wang et al., 2017a;

tectonic zones separate the following tectonic
units of the Beishan orogen from north to south:
the Queershan arc, Heiyingshan-Hanshan arc,
Mazongshan arc, Shuangyingshan-Huaniushan
arc, and Shibanshan arc from north to south,
respectively (Fig. 2) (Xiao et al., 2010b). These
tectonic units variably contain flysch, arc-type
assemblages, ophiolites, and low- to high-grade
metamorphic rocks (Gansu BGMR, 1989,
1996). Each of the four tectonic zones exposed
in the Beishan contains at least one block or
tectonic slice of (ultra-)mafic or ophiolitic mate-
rial (Fig. 2) generated and emplaced during
Cambrian, Silurian-Devonian, and Carbonifer-
ous—Permian oceanic subduction or rifting (e.g.,
Gansu BGMR, 1989, 1996; Cleven et al., 2015a,
2015b; Shi et al., 2018; Zhang et al., 2020b).
Several important first-order questions regard-
ing the formation of the Beishan orogen remain
controversial. These questions include: (1)
How many and which type of magmatic arcs
(i.e., oceanic, continental, or transitional) were
involved in orogeny (e.g., Zuo et al., 1991; Liu
and Wang, 1995; Xiao et al., 2010b; Liu et al.,
2011; Zheng et al., 2012, 2014, 2016a, 2019,
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Figure 3. Regional tectonic map of the Beishan orogen of central Asia from Gansu BGMR (1989), Guo et al. (2008), Xiao et al. (2010b), Yang
et al. (2021a), Yun et al. (2021), and our structural interpretation. BHW F.—Beihewan fault; GBQ-HLY F.—Gubaoquan-Hongliuyuan
fault; LBQ-YMJ DSZ—Lebaquan-Yemajing ductile shear zone; SBJ DSZ—Shibanjing ductile shear zone; GLJ-SGJ DSZ—Gonglujing-
Sangejing ductile shear zone.
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(2) Was the subduction polarity north- and/or
south-dipping (e.g., Xiao et al., 2010b; Song
et al., 2015; Ao et al., 2016; Cleven et al., 2018;
Zhang et al., 2018a; Li et al., 2020a; Wang et al.,
2020a; Zheng et al., 2021)? (3) How many sepa-
rate sutures are present and in which type of tec-
tonic setting did they originate from (i.e., mature
ocean or back-arc basin/rift) (e.g., Wei et al.,
2004; Jiang et al., 2006, 2007; Zhang and Guo,
2008; Xiao et al., 2010b; Yang et al., 2010a; Ao
etal., 2012; Hou et al., 2012; Mao et al., 2012b;
Hu et al., 2015; Wang et al., 2018a; Niu et al.,
2020a; Tian et al., 2020a; Niu et al., 2021a)?
and (4) When and where did the final assembly
of the Beishan orogen occur (i.e., Devonian or
Permian; i.e., Liuyuan region, Niujuanzi tectonic
zone, or further north) (e.g., Zuo et al.., 1991;
Liu and Wang, 1995; Xiao et al., 2010b; Mao
et al., 2012b; Wang et al., 2017; Zheng et al.,
2020, 2021)?

2.1.1. Tectonic Models for the Development of
the Beishan Orogen

Despite many uncertainties, previous studies
have proposed the following general models for
the tectonic evolution of the Beishan orogen. (1)
At least four open oceans/rifts/back-arc basins
existed from the Cambrian—Permian, evidenced
by the presence of ophiolite or (ultra-)mafic
rock fragments (Zuo et al., 1991; Xiao et al.,
2010b; Yang et al., 2010a; Zheng et al., 2013;
Cleven et al., 2015a; Shi et al., 2018). (2) Arc
magmatism, subduction, and collision occurred
from the Ordovician to Permian, evidenced by
the presence of arc-related and syn-collisional
plutons (Zhao et al., 2007; Li et al., 2009, 2011a,
2012a, 2013; Wang et al., 2009a; Mao et al.,
2010, 2012a; Zhang et al., 2010, 2011a, 2012a,
2012b, 2017a, 2018a; Li et al., 2011a; Ao et al.,
2012; Feng et al., 2012; Lu et al., 2013; Yang
etal., 2013; Guo et al., 2014; Zheng et al., 2014,
2018b, 2019, 2020; Wang et al., 2014a; Song
et al., 2015; Zhu et al., 2016; Li et al., 2020a).
(3) High-pressure eclogite-facies metamorphism
occurred in the Ordovician, evidenced by eclog-
ite exposed in the southern Beishan with peak
metamorphic ages ranging from ca. 467 Ma to
ca. 452 Ma (Liu et al., 2011; Qu et al., 2011;
Saktura et al., 2017; Soldner et al., 2020b). The
Paleozoic Beishan orogen exposes high-pressure
metamorphic rocks (e.g., Mei et al., 1999; Liu
etal.,2011; Soldner et al., 2020b), Paleozoic arc-
related granitoids and volcanic rocks, Paleozoic
ophiolitic mélange materials, and late Paleozoic
sedimentary rocks (Fig. 2) (e.g., Xiao et al.,
2010b; Zheng et al., 2012, 2016a, 2019, 2020,
2021; Cleven et al., 2015a, 2015b; Niu et al.,
2018a, 2018b, 2021b; Shi et al., 2018).

These models for the tectonic evolution of the
Beishan orogen differ in the number of terranes/
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blocks involved, the basement upon which the
arc(s) was formed, subduction polarity, and the
timing of subduction and ocean closure (Fig. 4).
These general models include (Fig. 4): (1) the
accretionary terranes/blocks model of Xiao et al.
(2010b), which requires several continental and
island arcs to have developed above south- and
north-dipping subduction zones since the Ordo-
vician and a long-lived continental arc to have
developed above the bidirectional Liuyuan sub-
duction zone from the Ordovician to Permian
(Fig. 4A); (2) closure of multiple oceans and
accretion of island arcs at the end of the Silu-
rian (Liu et al., 2011), which emphasizes the
high-pressure metamorphism and emplacement
along the Liuyuan Ocean suture (Fig. 4B); (3)
the early Paleozoic closure of multiple oceans/
back-arc basins and accretion of island arcs (Zuo
et al., 1991), which emphasizes that the Shiban-
jing-Xiaohuangshan tectonic zone is the main
suture between the Tarim plate and Mingshui-
Hanshan microplate and more southerly tectonic
zones represent back-arc extensional products
(Fig. 4C); (4) the continent-continent collision
model of He et al. (2018), which requires that
the Beishan orogen contains comparable base-
ment and the Hongshishan-Pengboshan tectonic
zone developed as a south-dipping subduction
zone since the Cambrian and generated the other
tectonic zones (Fig. 4D); (5) the one terrane and
two oceans model of Saktura et al. (2017), which
emphasizes that high-pressure metamorphism
is the result of the Liuyuan oceanic subduc-
tion and requires continuous subduction of the
Paleo-Asian oceanic lithosphere between the
Queershan and Mazongshan-Hanshan regions
in the Ordovician—Permian (Fig. 4E); and (6)
southward subduction of the Paleo-Asian oce-
anic lithosphere and subsequent completion of
Wilson cycles (Fig. 4F) (Liu and Wang, 1995),
which contrasts the continent-continent collision
models shown in Figures 4D and 4E.

2.2. Mesozoic Tectonics of the Beishan Region

Due to limited investigations of the Mesozoic
rocks exposed in the Beishan, the tectonic evolu-
tion of this period is not well constrained. The
northeast-striking Xingxingxia fault, located
north of the Altyn Tagh fault, separates the east-
ern Tianshan orogen in the west from the Beis-
han orogen in the east (Figs. 2 and 3) (Yue and
Liou, 1999; Wang et al., 2010). Variable left-slip
faulting along the Xingxingxia fault initiated at
240-235 Ma, which was coeval with the initia-
tion of the Altyn Tagh fault determined from
4OAr/* Ar thermochronology (Wang et al., 2010).
The estimated left-slip displacement along the
Xingxingxia fault is ~30-35 km, which has
been constrained by offset of the eastern Tian-
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shan orogen (Wang et al., 2010). Stratigraphic
and sedimentologic studies have led to inter-
pretations that the Beishan experienced Jurassic
north-south-oriented contraction (Zheng et al.,
1996), possibly related to collision between
Asia and a terrane separated from Gondwana
(Yin and Harrison, 2000). Jurassic regional con-
traction affected much of the Beishan and sur-
rounding area, including the Alxa Block, Gobi
Altai area, Eastern Tianshan Range, Hexi Cor-
ridor, and Longshoushan (Zheng et al., 1996;
Zuo et al., 2011; Zhang and Cunningham, 2012;
Gillespie et al., 2017; Zhang et al., 2018b).
This contraction was expressed by the develop-
ment of extensive north-directed thrusts placing
Proterozoic and Paleozoic rocks atop strongly
folded and faulted Jurassic strata (Zheng et al.,
1996; Zuo et al., 2011; Zhang and Cunningham,
2012; Tian et al., 2013, 2015, 2016). Although
the minimum displacement of late Middle Juras-
sic intracontinental thrusting is estimated to be
~120-180 km by Zheng et al. (1996), we con-
sider that the magnitude of shortening is still
unconstrained because of the limited exposure
of Jurassic strata and unclear contact relation-
ships in the Beishan. Furthermore, our field
observations of pre-Cretaceous and Cretaceous
strata record subsequent Late Jurassic—Early
Cretaceous extension event. Robust estimates of
Mesozoic exhumation determined by Late Trias-
sic—Early Jurassic apatite fission-track cooling
ages from pre-Mesozoic strata and granitoids is
relatively small at <4-5 km (Tian et al., 2016;
Gillespie et al., 2017). The cause of the con-
tractional deformation may be closures of the
Tethyan oceans along the southern edge of Asia
or Mongol-Okhotsk oceans to the north of the
North China craton (Zheng et al., 1996; Gillespie
etal., 2017).

2.3. Cenozoic Tectonics of the Beishan Region

The Beishan region has previously been iden-
tified as a stable Cenozoic crustal fragment due
to its relative lack of seismicity, low mountain
relief, and minimal tilt of subhorizontal Ceno-
zoic strata, which contrasts strongly to adjacent
regions such as the Qilian and Tianshan moun-
tains that are within the field of the Cenozoic
India-Asian collision-related deformation (Guo
et al., 2008; Cunningham, D., 2013; Tian et al.,
2016; Zuza et al., 2016, 2018; Jia et al., 2020;
Wu et al., 2021; Yang et al., 2021a). Neverthe-
less, recent studies have documented Cenozoic
reactivation or active deformation in the Beishan
region along their southern margin (Fig. 3) (Gil-
lespie etal., 2017; Yang et al., 2019a, 2021a; Yun
et al., 2021). Late Cretaceous—early Paleocene
(70-60 Ma) accelerated exhumation of south-
ern Beishan is recorded by apatite fission-track
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tively, based on depositional ages of sediments
in fault-formed valleys and electron spin reso-
nance dating of fault gouge (Fig. 3) (Guo et al.,
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Figure 4. Major tectonic mod-
els proposed for the evolution
of the Paleozoic Beishan orogen
in the southern Central Asian
Orogenic System. Note that the
north arrow points to the north
in the present-day coordinate
system.

(Fig. 3) (Yang et al., 2019a, 2021a; Yun et al.,
2021). Far-field stress induced by the India-
Asian collision to the south is thought to have
caused these pulses of faulting and rock exhuma-
tion in the southern Beishan (Guo et al., 2008;
Yin, 2010; Gillespie et al., 2017). The southern
Beishan have experienced <2 km uplift and



related erosional denudation since the Neogene
as indicated by published thermochronological
data (Tian et al., 2016; Gillespie et al., 2017).

3. STRUCTURAL GEOLOGY AND
LITHOLOGY OF THE STUDY AREA

The Beishan orogen, located in the central-
southern Central Asian Orogenic System, makes
it an ideal place to determine when and how the
closure of this ocean was been accomplished
and whether this closure process can be corre-
lated with the formation of the Solonker suture
to the east (Fig. 1) (Xiao et al., 2010b). Early
geological investigation in the Beishan orogen
emphasized lithologic distributions, whereas our
field investigation focused on the tectonic ori-
gin of lithologic assemblages, fault geometry,
deformation kinematics, and temporal relation-
ships among major structures. Our study area
in the southern Beishan orogen is dominated
by east-trending structures including foliations,
distribution of mappable units, and a series of
east-striking thrusts, folds, and ductile shear
zones (Fig. 5).

3.1. Ductile Shear Deformation

Mei et al. (1999) and Yu et al. (1999) first doc-
umented the ductilely deformed Neoproterozoic
granitoid in the Liuyuan area in the hanging wall
of the Gubaoquan-Hongliuyuan fault (Figs. 5B).
Later, Qu et al. (2011) documented the right-slip
and top-to-south shear zone (labeled here as F1 in
Fig. 5B). This 5-8-km-wide shear zone is devel-
oped in Precambrian rocks with N25°E striking,
subvertical foliations, and a mineral lineation that
plunges steeply (75°) to N25°W. The shear zone
is composed of strongly deformed granitoid and
high-pressure eclogite facies-amphibolite facies
metamorphic rocks. Kinematic indicators such as
asymmetric folds and rotated clasts show top-to-
south and right-lateral sense of shear. The shear
zone moved prior to the Silurian (ca. 438 Ma)
based on the undeformed granitoid crystalliza-
tion age (Fig. 5B) (Liu et al., 2011).

3.2. Thrust Faults

The Gubaoquan-Hongliuyuan fault is north-
west-striking in the western part of the study
area and northeast-striking in the eastern part of
the study area, which exhibits arc-shaped con-
vex southward in ground surface that indicate
dipping to the north (labeled as F2 in Figs. 5B
and 6). It juxtaposes Carboniferous-Permian
sedimentary strata in the eastmost part of the
study area and Precambrian gneiss complex
over Carboniferous-Permian rift-related rocks.
The fault zone is defined by a cataclastic zone
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~50-200 m wide with dominantly downdip
striations (Figs. 7C and 7D).

The gneiss complex consists of augen
mylonitic granitoid, schist, mylonitic quartz-
ofeldspathic gneiss, amphibolite, eclogite,
and Silurian-Devonian (ca. 446-402 Ma) arc-
related granitoids and (ultra-)mafic intrusions
that intruded into the above units (Figs. 7A, 7E,
and 7F) (Liu et al., 2011; Mao et al., 2012a; Li
et al., 2015; Wang et al., 2017a). Meanwhile,
the units in the hanging wall were intruded by
Early Permian (ca. 285-280 Ma) arc-related
granitoid and mafic dikes (Fig. 7A) (Gao et al.,
2020). The deformed and metamorphized rocks
in the hanging wall were previously assigned a
Pre-Paleoproterozoic age (Gansu BGMR, 1996;
Shaanxi IGS, 2014). However, updated dating
of the mylonitic granitoid and high-pressure
metamorphic rock components in the complex
yielded demonstrably igneous/protolith ages of
ca. 933-868 Ma, which may be the response of
peri-Rodinian subduction system in the Beishan
region (Liu et al., 2015; Yuan et al., 2015; Zong
etal., 2017; Soldner et al., 2020a). The Carbonif-
erous-Permian sedimentary strata in the hanging
wall of the Gubaoquan-Hongliuyuan fault con-
sists of basaltic layer, tuffaceous siltstone, sand-
stone, and conglomerate intercalations and mud-
stone, which suggest that sedimentary setting
transition from alluvial fan to delta-front facies
in rift setting (Figs. 7G and 8) (Niu et al., 2021b).
The hanging wall sedimentary units tightly
folded into pairs of NE-trending anticlines and
synclines (Fig. 6). Axial planes dip NW and sub-
horizontal hinge lines suggest southeast-directed
thrusting (Figs. 71 and 7J).

The Carboniferous-Permian rift-related rocks
in the footwall of the Gubaoquan-Hongliuyuan
fault consist of gabbro, basalt, chert, andesite,
conglomerate, sandstone, and slate, which sug-
gest a rifted basin setting (Figs. 5B, 7B, and 8)
(Chen et al., 2016; Wang et al., 2017a). The unit
in the footwall are slightly folded into a pair of
NE-trending antiform and synform adjacent to
Gubaoquan (Fig. 5B) and are penetratively foli-
ated in the clastic rocks (Fig. 7H). The fault may
have moved in the Permian based on the unde-
formed Late Permian volcanic deposits, which is
the response of the north-dipping subduction of
the Liuyuan Ocean.

The left-lateral oblique F6 thrust is NNE-
striking and NW-dipping in the eastern portion
of the study area, and structurally merged with
F2 in the south and F3 in the north (Fig. 6). It
places Devonian-Permian (volcanic)sedimen-
tary rocks over Carboniferous-Permian rocks.
Both hanging wall and footwall units are folded.
The hanging wall is also imbricated by north-
dipping thrusts that merges with F3 in the north.
The F7 fault is a décollement fault between
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crystallized rocks and supracrustal sedimentary
covers, which accommodate the differences of
deformation styles and shortening amount in
hanging wall and footwall rocks (Fig. 6).

The left-lateral oblique F3 thrust is E-striking
and N-dipping in the northern portion of the
study area, and structurally merged with F2 fur-
ther to the east (Figs. 5B and 6). It juxtaposes a
crystallized complex over the Devonian-Permian
sedimentary sequence described above in the
eastern portion of the study area, and extends into
the crystallized complex in the west. The crystal-
lized complex consists of gneiss, amphibolite,
and schist assigned a Precambrian age based on
regional lithologic correlations by Shaanxi IGS
(2014), although recently some Ordovician ages
(ca. 466 Ma and 450 Ma) were reported in this
unit (Wang et al., 2017a; Cleven et al., 2018).
The above complex unit was intruded by a lot of
Ordovician-Devonian magmatic intrusions and
Early Permian mafic intrusions (Li et al., 2011a;
Zhang, 2014; Zhu et al., 2016; this study). These
faults’ (F2, F3, F6, and F7) characteristics sug-
gest the thick-skinned structure in the Huitong-
shan-Hongliuyuan area (Fig. 6).

3.3. Cenozoic Structures

Cenozoic northeast-striking left-slip faulting
currently dominates the Beishan orogen, which
crosscut the Paleozoic arc magmatic belts and
sutures (Figs. 2 and 3). The most prominent
Cenozoic structure in the study area is the left-
slip Daquan fault (labeled as F4 in the west por-
tion of Fig. 5B) that cut across all the Pre-Ceno-
zoic structures and parallel to the Xingxingxia
fault and Sanweishan-Shuangta fault (Fig. 3).
However, the offset along the fault is still
unclear due to limited studies. To the north, the
fault terminates into an east-trending fault zone
in the Hongyanjing-Huoshishan area, where to
the south it connects with the northeast-striking
Shulehe left-slip fault in the northern Kum-
tagh sand sea (Figs. 1 and 3). Guo et al. (2008)
interpreted the Daquan fault to have moved in
the Pleistocene (ca. 1.5-1.2 Ma) based on the
electron spin resonance ages of fault gouge.
The F5 left-slip fault, which strikes northeast
and has lenticular fault pattern, is a branch of
the Daquan fault (Fig. 5B). The fault zone is
defined by a cataclastic zone ~100 m wide with
dominantly near-horizontal striations. Estimated
fault horizontal offset on the fault is 5-6 km as
indicated by the misplaced Triassic granitoid in
our study area.

4. DATA AND METHODS

The findings of this paper are based on mul-
tiple types of data, including field, stratigraphic,
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Figure 5. (A) Uninterpreted Google Earth-based satellite image of the western Liuyuan region, southern Beishan orogen of central
Asia. (B) Geologic map of the western Liuyuan region. The map is based on a compilation of Shaanxi IGS (2014) and our own geo-
logic mapping and structural interpretations. The locations and zircon U-Pb ages of samples from this study are shown. Location
of Figure 6 and photos (Figs. 7A, 7C, 7F, and 7H) also shown. (C) Simplified geologic cross section of the western Liuyuan region.
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Zircon grains selected for U-Pb dating to
determine their crystallization ages were sepa-
rated by traditional methods at the Institute of
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Figure 7. Field photographs
from the southern Beishan oro-
gen of central Asia displaying
important geologic relation-
ships discussed in text. Photo-
graph locations are shown in
Figures 2, 5, and 6. (A) unde-
formed Silurian granitoid are
intruded by Early Permian
mafic dikes in Gubaoquan. (B)
Early Permian pillow basalt
east of Liuyuan town. (C and
D) Gubaoquan-Hongliuyuan
cataclastic fault zone is ~50-
200m wide. Neoproterozoic
metamorphic rocks thrust over
Early Permian basalt from
the north to the south in the
Gubaoquan. (E and F) Early
Silurian Huitongshan (ultra-)
mafic intrusions intruded by
Devonian granitoid. (G) Perm-
ian delta-front deposits con-
sist of thin-bedded sandstone,
siltstone, and mudstone. (H)
Permian foliated siltstone in
the footwall of the Gubaoquan-
Hongliuyuan fault. (I and J)
Folded Permian sedimentary
strata with NE-trending and
dipping to the north, which
indicate a south tectonic ver-
gence, in the hanging wall of
the Gubaoquan-Hongliuyuan
fault. Note that the format of
the attitudes of bedding or fo-
liations is strike, dip, and dip
quadrant.

the Hebei Regional Geology and Mineral Sur-
vey in Langfang, China, and mounted in epoxy
with standard zircons GJ1 (*33U/?Pb age of
604.4 + 4.7 Ma) (Jackson et al., 2004) and
91500 (*8U/2%Pb age of 1064 Ma). Cathodo-
luminescence imaging was performed using
a scanning electron microscope at the Beijing
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Geoanalysis Co., Ltd. to select analytical targets
and assess grain zonation. U-Pb dating was con-
ducted using an Agilent 7500a ICP-MS coupled
with a 193 nm excimer ArF laser-ablation sys-
tem at the Key Laboratory of Continental Colli-
sion and Plateau Uplift, Institute of Tibetan Pla-
teau Research, Chinese Academy of Sciences,
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Beijing. Considering the size distribution of the
zircon grains and signal stability, we used 30 pm
ablation pits for all grains. The analytical proce-
dure is similar to that of Xie et al. (2008).

U-Pb ages presented here are 20°Pb/?38U
ages given that all grains are younger than ca.
1000 Ma (Ludwig, 2003). The fractionation
correction and results were calculated using
GLITTER 4.0. Common Pb was corrected
following the method described by Andersen
(2002). We analyzed ~20-35 grains per sam-
ple and included analyses with discordance of
<10%. We focused on the dominant population
of younger ages and interpreted the crystalliza-
tion ages to be the weighted mean age of the
youngest age cluster (n > 3) (Table 1). Distinctly
older age populations were generally interpreted
as inherited. Uncertainties of individual ages are
1o and plotted at 2¢. All analytical and system-
atic uncertainties of the weighted mean ages are
reported at the 95% confidence level. Age calcu-
lations and concordia plots were made using Iso-
plot 3.0 of Ludwig (2003). The geochronologic
data are presented in Table S1'.

4.2. Whole-Rock Geochemistry and Sr-Nd
Isotopic Analysis

Igneous samples were analyzed for major
and trace elements and Sr-Nd isotopes at the

ISupplemental Material. Table S1: LA-ICP-MS
results for zircon U-Pb ages of igneous samples from
this study. Table S2: Major and trace elements for
magmatic intrusion samples from this study. Table
S3: Summary of geochronology results of intrusive
rocks of the Beishan region. Table S4: Summary of
geochemistry data of intrusive rocks of the Beishan
region. Table S5: Summary of whole-rock Sr-Nd
isotopic geochemistry data of intrusive rocks of
the Beishan region. Table S6: Summary of zircon
Hf isotopic data of intrusive rocks of the Beishan
region. Please visit https://doi.org/10.1130/GSAB
.S.19694485 to access the supplemental material, and

ol S contact editing @geosociety.org with any questions.

TABLE 1. SUMMARY OF SAMPLE LOCATIONS AND ZIRCON GEOCHRONOLOGY RESULTS IN THE BEISHAN REGION, CENTRAL ASIA

Sample Rock type Latitude Longitude Elevation Interpreted age = MSWD n Method

number (°N) (°E) (m) (Ma)

LJ2020-20 Olivine pyroxenite 41°08'18.10"  95°01'58.92" 1970 - - - Geochemistry

LJ2020-47 Monzogranite 41°08/18.03" 95°02/02.29" 1953 406.6 + 3.6 2.9 24 outof 25  Geochemistry/U-Pb zircon/Sr-Nd isotope

LJ2020-23 Monzogranite 41°08/16.87" 95°01/56.45" 1982 402.3 + 3.0 1.6 25 outof 25  Geochemistry/U-Pb zircon/Sr-Nd isotope

LJ2020-14  Hornblende gabbro  41°07/03.58" 94°49/13.10" 1915 420.7 + 3.3 3.2 35 out of 35 Geochemistry/U-Pb zircon

LJ2020-25 Bt-monzogranite 41°07'00.85" 95°24/39.23" 1799 4514 + 2.4 0.86 25o0utof 25  Geochemistry/U-Pb zircon/Sr-Nd isotope

LJ2020-15 K-feldspar granite  41°05/55.13”  95°13/09.51" 1839 - - - Geochemistry

LJ2020-46 Diorite 41°03/02.75" 95°14'34.58" 1766 436.1 + 8.1 6.3 16 outof 20  Geochemistry/U-Pb zircon/Sr-Nd isotope

LJ2020-38 Granite 41°0110.79"  95°02'02.11" 1794 421.0 + 4.0 2.3 20 outof 25  Geochemistry/U-Pb zircon/Sr-Nd isotope

LY1908-80 Granite 41°00'41.67" 95°04/25.75" 1812 2842+ 55 4.2 19 out of 25 Geochemistry/U-Pb zircon

LY1908-79 Granite 41°00'41.67"  95°04/25.75" 1812 - - - Geochemistry/Sr-Nd isotope

LY1908-83 Granite 41°00'18.43"  95°04’31.64" 1790 - - - Geochemistry

LY1908-1 Granite 40°59'25.29"  95°02’00.17" 1769 - - - Geochemistry/Sr-Nd isotope

LY1908-2 Granite 40°59'25.29"  95°02°00.17" 1769 - - - Geochemistry

Note: MSWD—mean square of weighted deviates; n—number of selective zircon grains for weighted mean age; Bt—biotite.
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Hornblende gabbro
Sample LJ2020-14

Monzogranite

.{1 Sample LJ2020-47

Figure 9. Photomicrographs of magmatic
rocks collected as part of this study in south-
ern Beishan orogen. (A) Silurian olivine py-
roxenite (sample L.J2020-20). (B) Silurian
altered hornblende gabbro (sample LJ2020-
14). (C and D) Devonian monzogranites
(samples LJ2020-47 and L1J2020-23). (E)
Late Ordovician biotite monzogranite (sam-
ple LJ2020-25). (F) Devonian K-feldspar
granite (sample L.J2020-15). (G-I) Silurian
granitoids (samples L.J2020-38, L.J2020-46,
and LY1908-1). (J-L) Early Permian gran-
ite (sample LY1908-79, LY1908-80, and
LY1908-83). Left-side photomicrographs
are in cross polarized light. Right-side pho-
tomicrographs are in plane polarized light.
Q—quartz; Pl—plagioclase; Kfs—K-feld-
spar; Bt—biotite; Ol—olivine; Pyr—pyrox-
ene; Am—amphibole; Chl—chlorite.
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twinning. Quartz grains show deformation tex-
tures in the form of undulose extinction (Fig. 9E).
One sample was collected from K-feldspar gran-
ite (LJ2020-15) that intrudes the Huitonghshan
gabbro (Fig. 5B). The main minerals include
quartz (~40%-50%), K-feldspar (~35%—
40%), and plagioclase (~10%-15%) (Fig. 9F).
One sample was collected from medium- to
coarse-grained diorite (LJ2020-46) that is gray
to white in color. Main mineral assemblages
include quartz (~40%), plagioclase (~30%),
amphibole (~10%), biotite (~15%), and minor
olivine (<3%) (Fig. 9G). Six samples were
collected from a granitic pluton (LJ2020-38,
LY1908-80, LY1908-79, LY1908-83, LY 1908-
1, and LY 1908-2) that intrudes Neoproterozoic
metamorphic basement and is intruded by Early
Permian doleritic dikes (Fig. 5B). These samples
are characterized by main mineral assemblages
of quartz (~40%-50%), plagioclase (~20%—
35%), and biotite (~10%—15%). Plagioclase is
characterized by light clayization and chloritiza-
tion (Figs. 9H-9L).

5.2. Geochronological Results

Analytical results of igneous samples are
shown in Figure 5B and Table 1. Twenty-five
zircon grains of monzogranite sample LJ2020-
47 were analyzed, yielding concordant ages
between ca. 392 Ma and ca. 456 Ma. The zir-
con grains have clear oscillatory zoning and
Th/U values of 0.416-0.887 (Fig. 10H). The
weighted mean U-Pb age of twenty-four con-
cordant zircon grains is 406.6 &= 3.6 Ma (mean
square of weighted deviation [MSWD] 2.9)
(Fig. 10A), which we interpret as the crystal-
lization age of this granitoid sample. One spot
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Figure 10. U-Pb concordia diagrams showing results of single shot zircon analyses and rep-
resentative zircon cathodoluminescence images for each sample. (A) Monzogranite sample
LJ2020-47; (B) Monzogranite sample 1.J2020-23; (C) Hornblende gabbro sample LJ2020-
14; (D) Bt-monzogranite sample L.J2020-25; (E) Diorite sample L.J2020-46; (F) Granite
sample 1.J2020-38; (G) Granite sample LY1908-80; (H) Th vs. U diagram. Error ellipses are
20. Discordant zircon ages shown by circle without filling are uninterpreted. White circles
represent ~30 um analyzed spots. MSWD—mean square of weighted deviates.
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from this sample yields a concordant age of
456 £+ 6 Ma (Fig. 10A), which may indicate an
inherited grain.

Twenty-five zircon grains of monzogran-
ite sample 1.J2020-23 were analyzed, yielding
concordant ages between ca. 389 Ma and ca.
417 Ma. The zircon grains have clear oscilla-
tory zoning and Th/U values of 1.529-216.056
(Fig. 10H). The weighted mean U-Pb age
of twenty-five concordant zircon grains is
402.3 £ 3.0 Ma (MSWD = 1.6) (Fig. 10B),
which we interpret as the crystallization age of
this granitoid sample.

Thirty-five zircon grains of hornblende gab-
bro sample LJ2020-14 were analyzed, yield-
ing concordant ages between ca. 397 Ma
and ca. 452 Ma. The zircon grains have clear
oscillatory zoning and Th/U values of 0.317—
2.923 (Fig. 10H). The weighted mean U-Pb
age of thirty-five concordant zircon grains is
420.7 £ 3.3 Ma (MSWD = 3.2) (Fig. 10C),
which we interpret as the crystallization age of
this gabbro sample.

Twenty-five zircon grains of biotite monzo-
granite sample LJ2020-25 were analyzed, yield-
ing concordant ages between ca. 443 Ma and ca.
460 Ma. The zircon grains have clear oscillatory
zoning structure and Th/U values of 0.241—
0.480 (Fig. 10H). The weighted mean U-Pb
age of twenty-five concordant zircon grains is
451.4 +£ 2.4 Ma (MSWD = 0.86) (Fig. 10D),
which we interpret as the crystallization age of
this granitoid sample.

Twenty zircon grains of diorite sample
LJ2020-46 were analyzed, yielding concordant
ages between ca. 417 Ma and ca. 492 Ma. The
zircon grains have clear oscillatory zoning and
Th/U values of 0.401-0.952 (Fig. 10H). The
weighted mean U-Pb age of 16 concordant zir-
con grains is 436.1 £ 8.1 Ma (MSWD = 6.3)
(Fig. 10E), which we interpret as the crystalliza-
tion age of this granitoid sample. One spot from
this sample yield concordant age of 492 + 8 Ma
(Fig. 10E), which may indicate an inherited zir-
con grain.

Twenty-five zircon grains of granite sample
LJ2020-38 were analyzed, yielding concordant
ages ranging from 406 Ma to 434 Ma. The zir-
con grains have a clear oscillatory zoning struc-
ture and Th/U values of 0.175-0.447 (Fig. 10H).
The weighted mean U-Pb age of 20 concordant
zircon grains is 421.0 + 4.0 Ma (MSWD = 2.3)
(Fig. 10F), which we interpret as the crystalliza-
tion age of this granitoid sample.

Twenty-five zircon grains of granite sample
LY1908-80 were analyzed, yielding diverse
ages ranging from a U-Pb age of 268 Ma to
462 Ma. The zircon grains have a clear oscil-
latory zoning structure and Th/U values of
0.240-1.381 (Fig. 10H). The older population of



concordant analyses are clustered at ca. 440 Ma
with a weighted mean age of 447 & 36 Ma
(MSWD = 5.8, n = 3), and the younger popula-
tion of concordant zircon grains yields a weighted
mean age of 284.2 £5.5Ma (MSWD =4.2,
n = 19) (Fig. 10G). We interpret the younger pop-
ulation as the crystallization age of this granitoid
sample, and the older population as the inherited.

5.3. Whole-Rock Geochemistry and Sr-Nd
Isotope Results

Major and trace element data for 13 repre-
sentative samples of igneous intrusions are pre-
sented in Table S2. Here, we show the results
of geochemical analyses in three groups: the (1)
Late Ordovician—Early Devonian granitic plu-
tons that are inferred to represent early Paleozoic
magmatism (i.e., samples LJ2020-47, LJ2020-
23,1LJ2020-25, LJ2020-15, LJ2020-46, L12020-
38, LY1908-1, and LY1908-2); (2) Silurian
(ultra-)mafic intrusions that are inferred to rep-
resent early Paleozoic extension-related magma-
tism (i.e., samples L.J2020-20 and LJ2020-14);
and (3) Early Permian granitoid samples inferred
to be related to rift-related magmatism during
the opening of the Liuyuan Ocean (i.e., samples
LY 1908-80, LY1908-79, and LY 1908-83).

All granitoid samples are felsic (SiO, ~64—
77 wt%; Table S2) with geochemical classifica-
tions spanning the granodiorite to granite fields
based on their weight percentage of silica and
alkaline elements (Na,O + K,O versus SiO,;
Fig. 11A). These samples are mostly (high-K)
calc-alkaline with the exception of three Early
Permian samples (LY 1908-80, LY 1908-79, and
LY1908-83) that are tholeiitic (Fig. 11B). In
the A/NK versus A/CNK diagram (Maniar and
Piccoli, 1989), these samples are metaluminous
(Fig. 11C). Granitoid samples display relatively
flat (La/Yb is ~2-30) rare earth element patterns
(Fig. 11E) and are characterized by negative Ba,
Nb, P, and Ti anomalies (Fig. 11D), which is
indicative of an arc/subduction setting for the
original melt. The Devonian (LLJ2020-23) and
three Early Permian (LY 1908-80, LY 1908-79,
and LY1908-83) granitoid samples display no
Eu anomalies, whereas the remaining seven
granitic samples show negative Eu anomalies,
indicating minor involvement of plagioclase in
fractional melting (Fig. 11E). The Early Devo-
nian sample L.J2020-15 is characterized by high
Cs, Th, and Pb contents and negative Ba, Nb,
Sr, Eu, and Ti anomalies, suggesting a thickened
crust melt source related to the upwelling of
mantle materials. In the Nb versus 10,000*Ga/
Al diagram (Whalen et al., 1987), these samples
plot mostly in the I- and S-type granite fields that
are commonly associated with arc magmatism
and/or crustal anataxis and partially overlap with
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the A-type granite field. The Early Devonian
K-feldspar granite sample (LJ2020-15) plots in
the A-type granite field, which is generally asso-
ciated with extension regardless of the magma
origin source (Fig. 11F) (e.g., Whalen et al.,
1987; Eby, 1990, 1992; Turner et al., 1992). On
the granite classification diagram (Pearce et al.,
1984), these samples plot mostly in the volcanic
arc field, whereas the sample 1.J2020-15 plots in
the within-plate granite field (Fig. 11G).

The two (ultra-)mafic samples have low silica
concentrations (SiO, ~46 wt%; Table S2) and
plot within the alkaline monzo-gabbro field for
sample LJ2020-14 and subalkaline gabbro field
for sample LJ2020-20 (Fig. 11A) (Middlemost,
1994). Sample LJ2020-20 has relatively lower
concentrations of trace elements compared to
sample LJ2020-14 (Figs. 11H and 11I; Table
S2). Primitive-mantle-normalized trace element
patterns of the (ultra-)mafic rocks show enrich-
ment in large-ion lithophile elements (i.e., Ba,
K, and Rb), but depletion in high-field-strength
elements (i.e., Nb, Ta, P, Ti, and Zr; Fig. 11H).
These two samples have similar primitive-man-
tle-normalized trace element patterns (Fig. 11H).
However, sample LJ2020-20 shows enriched
Pb and Sr and depleted Zr and Hf, whereas
sample LJ2020-14 is enriched in Zr and Hf and
depleted Pb. Chondrite-normalized rare earth
element (REE) abundances are variable. Sample
LJ2020-14 is light (L)REE enriched and has a
flat heavy (H)REE pattern without distinct Ce
anomaly, similar to the ocean island basalt-type
pattern (Fig. 11I). Sample L.J2020-20 is LREE
depleted and has a flat HREE pattern, similar
to the normal-type mid-ocean ridge basalt pat-
tern (Fig. 111). In the Ti,0-K,0-P,0O; ternary
diagram (Pearce et al., 1975), the two samples
plot in the non-oceanic field (Fig. 11J). In the
H{/3-Th-Ta ternary diagram (Wood, 1980), the
two samples plot in the calc-alkaline destructive
plate-margin basalt field (Fig. 11K).

Sr-Nd isotopic data of the seven granitoids
samples are shown in Table 2 and Figure 11L.
All data and parameters are within normal
ranges and do not contain abnormal values.
For example, $7Rb/*Sr is not high (<3.5), so
there is no abnormally low Iy, value (<0.7000),
which indicates that the data have geological
significance. In addition, the average fq,ng 1S
between —0.6 and —0.3 (Table 2), indicating
that differentiation of the granitoids is not obvi-
ous. It can be concluded that Sr-Nd isotopes of
the rocks record the characteristics of their pro-
toliths and thus, the model age Ty, is effective
(Jahn et al., 2000). The five Late Ordovician to
Early Devonian granitoid samples have negative
eng(t) values of —4.13 to —0.49, model ages of
1.15-1.61 Ga, and plot in the fourth quadrant in
the exg(t) versus (¥7Sr/%6Sr); diagram (Table 2;
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Fig. 11L). A second Early Permian granitoid
sample (LY 1908-79) has a positive eyy(t) value
of 5.23 and a 0.68 Ga model age (Table 2;
Fig. 11L). Both Early Devonian granitoid sam-
ples plot in the first quadrant (Table 2; Fig. 11L).

The geochemical data are consistent between
the Late Ordovician—Early Devonian felsic plu-
tonic samples except for the ca. 397 Ma K-feld-
spar granite, which is associated with syn/post-
collisional extension. The Silurian Huitongshan
(ultra-)mafic intrusions are related to magma-
tism during subduction slab rollback/breakoff.
The Early Permian granitoids are related to
magmatism during lithospheric extension/sub-
duction slab breakoff. However, we note that
more thorough geochemical analysis is required
to draw more definitive conclusions.

Felsic rocks are an important and character-
istic component of the continental crust, which
involves crust anatexis of either a recycled source
or a juvenile source (e.g., Huppert and Sparks,
1988; Clemens and Stevens, 2016). This study
compiled all published geochemistry data, Sr-Nd
isotopes and zircon Hf isotopic data of arc-related
felsic rocks in the Beishan orogen (Tables S4—
S6). The empirical fit defined by the La/Yb
ratios of global intermediate rocks with crustal
thickness (Profeta et al., 2016) is used to track
the crustal thickness of the Beishan orogen. (La/
Yb)y and calculated crustal thickness, following
the method of Sundell et al. (2021), for the felsic
rocks (55-72 wt% Si0O,) from the Beishan oro-
gen are plotted against age in Figure 12A. A first-
order observation is that calculated crustal thick-
ness increases from ca. 540 to 450 Ma, decreases
from ca. 450 to 310 Ma, and then increases again
after ca. 310 Ma (Fig. 12A). For gy4(t) versus age
and ey(t) versus age diagrams, the same first-
order observations are that ey,(t)/ey(t) decreases
from ca. 540 to 450 Ma (becomes more juvenile),
increases from ca. 450 to 310 Ma (becomes more
evolved), and then decreases after ca. 310 Ma
(becomes more juvenile) (Figs. 12B and 12C).

5.4. Geochronological and Geochemical
Information of Tectonic Zones

In the following sections, the chronological
and geochemical information of the four tectonic
zones that controlled the Paleozoic evolution of
the Beishan orogen are summarized based on the
synthesis of our data and existing works (Fig. 2).

5.4.1. Hongshishan-Baiheshan-Pengboshan
Tectonic Zone

Zircons from gabbro yield U-Pb crystalliza-
tion ages of 347-345 Ma (Wang et al., 2014b;
Niu et al., 2020b). Thus, the closure of an ocean
and emplacement of the tectonic mélange must
have postdated this time. Results of whole-rock
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and isotopic geochemical analyses have been
interpreted to reflect petrogenesis in embryonic
ocean or mid-ocean ridge settings (Huang and
Jin, 2006; Yang et al., 2010a; Wang et al., 2014bj;
Niu et al., 2020b). Zhang et al. (2020b) docu-

mented a northwest-trending tectonic mélange
of the Hongshishan-Pengboshan tectonic zone in
the Elegen region, adjacent to the Pengboshan
region, which is composed of basalt, plagio-
clase granite, siliceous rock, and sandy slate.
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Zircons from plagioclase granite yield a U-Pb
crystallization age of 342 4 4.7 Ma, and results
of whole-rock geochemical analyses are inter-
preted to reflect petrogenesis in a back-arc exten-
sional setting (Zhang et al., 2020b).



Figure 11. Geochemical results of samples
from the southern Beishan orogen in central
Asia. (A) Na,O + K,O versus SiO, diagram.
Normalization values are from Middlemost
(1994). (B) K,O versus SiO, diagram for
granitoids. Normalization values are from
Le Maitre (1989). (C) A/NK versus A/CNK
(A—ALO; content, NK—Na,0 + K,0
content, CNK—CaO + Na,O + K,0 con-
tent) diagram for granitoids. Normaliza-
tion values are from Maniar and Piccoli
(1989). (D and E) Trace-element diagrams
for granitoids. (D) Primitive mantle-nor-
malized, multi-element spider diagrams. (E)
Chondrite-normalized rare earth element
patterns. Normalization values are from
Sun and McDonough (1989). (F) Nb versus
10,000 x Ga/Al diagram for granitoid sam-
ples. Normalization values are from Whalen
et al. (1987). (G) Rb versus Y + Nb diagram
for the analyzed granitoid samples. Normal-
ization values are from Pearce et al. (1984).
(H and I) Trace-element diagrams for the
Huitongshan (ultra-)mafic samples. Chon-
drite and primitive-mantle-normalizing val-
ues are from Sun and McDonough (1989).
OIB,N-MORB, and E-MORB data are from
Sun and McDonough (1989). (J) Ternary
TiO,-K,0-P,0; diagram for the Huitong-
shan (ultra-)mafic samples. Normalization
values are from Pearce et al. (1975). (K) Ter-
nary Hf/3-Th-Ta diagram for the (ultra-)
mafic samples. Normalization values are
from Wood (1980). N-MORB—normal mid-
ocean ridge basalt; E-MORB—enriched
mid-ocean ridge basalt; TWPB—tholei-
itic within-plate basalt; AWPB—alkaline
within-plate basalt; CAB—calc-alkaline
plate-margin basalt; TB—tholeiitic plate-
margin basalt. (L) eyy(t) versus (3’Sr/3Sr),
diagram for granitoid samples.

<
<

5.4.2. Shibanjing-Xiaohuangshan Tectonic
Zone

Zircons from (meta-)gabbro in the Shiban-
jing and Xiaohuangshan regions yield U-Pb
crystallization ages of 499453 Ma (Chen et al.,
2017a; Meng et al., 2021) and 516 + 8 Ma (Shi
etal., 2018), respectively. Results of whole-rock
geochemical analyses have been interpreted
to reflect ophiolite petrogenesis in a back-arc
or intra-plate extensional setting or supra-sub-
duction zone (Yang et al., 2010a; Chen et al.,
2017a; Shi et al., 2018; Meng et al., 2021). Oth-
erwise, ca. 345-336 Ma for basalt and gabbro in
the Xiaohuangshan region have been reported,
which are much younger than previous crystal-
lization age records, and results of whole-rock
geochemical analyses show a supra-subduction
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zone signature (Zheng et al., 2013). In the Jiji-
taizi region located west of the Shibanjing
region, large exposures of (ultra-)mafic rocks
including meta-peridotite, cumulate gabbro,
and volcanic rocks have been reported (Xiao
et al., 2010b; Li et al., 2012c; Wang, 2015).
Gabbro yields a U-Pb crystallization age of
321.2 4+ 5.7 Ma, which roughly overlaps in age
with the younger mafic rocks of the Xiaohuang-
shan region, potentially indicating petrogenesis
in an extensional setting (Li et al., 2012c; Wang,
2015). The (ultra-)mafic rocks exposed in the
Jijitaizi region are generally considered to be
part of the Shibanjing-Xiaohuangshan tectonic
zone based on the spatial continuity of similar
lithologies (Xiao et al., 2010b; Li et al., 2012c;
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Wang, 2015), but the >100 m.y. difference of
crystallization ages signals that more data is
needed to test this interpretation.

5.4.3. Hongliuhe-Niujuanzi-Baiyunshan-
Yueyashan-Xichangjing Tectonic Zone

Ca. 528-516 Ma granitoids and ca. 414—
405 Ma gabbro intruded the ophiolitic mélange
in the Hongliuhe and Yushishan regions (Zhang
and Guo, 2008; Cleven et al., 2015a; Shi et al.,
2018), which suggests that an ocean closed
sometime between 516 and 414 Ma. Results of
whole-rock and isotopic geochemical analyses
have been interpreted to reflect petrogenesis in
a supra-subduction zone setting (Cleven et al.,
2015a; Shi et al., 2018). From the Huoshishan,



Niujuanzi, and Tongchangkou regions, zircon
from gabbro, andesite, plagiogranite, and dia-
base yield U-Pb crystallization ages of 455—
411 Ma and ca. 354 Ma (Wu et al., 2012; Tian
et al., 2014; Wang et al., 2018a; Wang et al.,
2020a). Results of whole-rock geochemical
analyses have been interpreted to reflect pet-
rogenesis in an island arc, mid-ocean ridge, or
supra-subduction zone setting (Tian et al., 2014;
Wang et al., 2018a). From the Baiyunshan
region, zircons from mid-ocean-ride gabbro and
plagiogranite yield U-Pb crystallization ages of
496.4 £ 2.2 Ma and 519.8 £ 2.1 Ma, respec-
tively (Sun et al., 2017; Tian et al., 2020a). From
the Yueyashan and Xichangjing regions, zircons
from gabbro, altered pyroxenite, gabbroic dio-
rite, and plagiogranite yield U-Pb crystallization
ages of 542-527 Ma (Ao et al., 2012; Hou et al.,
2012; Hu et al., 2015; Shi et al., 2018). Results
from whole-rock geochemical and sedimento-
logical analyses have been interpreted to reflect
petrogenesis in a mature ocean to supra-subduc-
tion zone setting (Ao et al., 2012; Hu et al., 2015;
Shi et al., 2018).

5.4.4. Cihai-Liuyuan-Zhangfangshan
Tectonic Zone

For the Cihai region, zircons from a mafic
dike yield U-Pb crystallization ages of 307-
292 Ma (Chen et al., 2013; Wang et al., 2020b).
Results from whole-rock geochemical analyses
have been interpreted to reflect petrogenesis in
intraplate extension tectonic (Chen et al., 2013;
Wang et al., 2020b). In the Huitongshan region,
several (ultra-)mafic intrusions (e.g., serpentine
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pyroxene peridotite, olivine gabbro, and gabbro)
have been documented. Zircons from gabbro and
mafic volcanic rocks yield U-Pb crystallization
ages of ca. 451-420.7 Ma (Mao et al., 2012a; Yu
et al., 2012; Li et al., 2015; this study). For the
Ganquan, Liuyuan, and Yinaoxia regions, zir-
cons from felsic intrusions and volcanic rocks,
gabbro, mafic dikes, and ultramafic rocks yield
U-Pb crystallization ages of 291-268 Ma and
ca. 250.4 Ma, which are distinctly different
ages compared to the (ultra-)mafic rocks of the
Huitongshan region (Zhang et al., 2011b; Mao
et al., 2012b; Zhang et al., 2015a; Wang et al.,
2017a; Xu et al., 2019a; Gao et al., 2020; Sun
et al., 2020b; Ma et al., 2022). Results of whole-
rock geochemical and sedimentological analyses
have been interpreted to reflect petrogenesis dur-
ing lithospheric mantle delamination and mantle
plume activity or in an intraplate-rift extension or
supra-subduction zone setting (Zhao et al., 2004,
2006; Jiang et al., 2007; Zhang et al., 201 1b; Mao
et al., 2012b; Zhang et al., 2015a; Chen et al.,
2016; Wang et al., 2017a; Xu et al., 2019a; Gao
etal., 2020; Sun et al., 2020b; Ma et al., 2022). A
mafic dike intruding Carboniferous—Early Perm-
ian (ultra-)mafic rocks has a crystallization age of
ca. 227 Ma, and is interpreted to have been gener-
ated in a post-collisional extension setting (Wang
et al., 2017a; Sun et al., 2020a). From these con-
straints, closure of the rift/ocean occurred prior
to ca. 227 Ma. For the Zhangfangshan region,
zircons from gabbro yield a U-Pb crystallization
age of 362.6 &= 4 Ma, which is older than other
ages from the Cihai-Zhangfangshan tectonic
zone (Yu et al., 2012). For Jiujing and Jijiquan

regions, zircons from gabbro yield U-Pb crystal-
lization ages of 284-274 Ma, and is interpreted to
have been generated in a supra-subduction zone
or intraplate extension setting (Gao et al., 2018a,
2018b; Zheng et al., 2021).

6. DISCUSSION

Our U-Pb geochronology results combined
with existing ages from the Beishan show that
Cambrian to Triassic plutons intruded Paleozoic
strata. We integrated our data with published
results to better constrain the tectono-magmatic
evolution of the Beishan orogen.

6.1. Magmatic Record of the Beishan
Orogen

The primary results plotted in an age versus
distance diagram clearly show three phases of
magmatism (Fig. 13). One age cluster is dis-
tributed in the north flank of the Hongliuhe-
Xichangjing tectonic zone, another cluster is
focused in the southern Beishan in the Cihai-
Zhangfangshan tectonic zone region, and the
remaining ages are distributed across the whole
Beishan region that young toward the north. To
consider the effects of the strike-slip faulting, we
divided the age data into east and west domains.
We used the Hongliuhe-Xichangjing and Hong-
shishan-Pengboshan tectonic zones as reference
lines to replot the age versus distance diagrams
based on the primary results (Fig. 13).

U-Pb zircon ages of plutonic rocks in the
Beishan orogen define five age clusters of
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Figure 13. Preliminary result of crystallization ages versus distance from the Hongliuhe-Xichangjing tectonic zone across the Beishan re-

gion in central Asia.
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1450-1395 Ma, 1024-867 Ma, 525-395 Ma,
468-212 Ma, and 300-212 Ma, with two
prominent magmatic lulls at 1395-1024 Ma
and 867-525 Ma (Fig. 14; Table S3). Mesopro-
terozoic granitic gneisses (1450-1395 Ma) only
occur in the southern portion of the Hongliuhe-
Xichangjing tectonic zone and are interpreted

Tectonic evolution of the Beishan orogen

to be related to Mesoproterozoic magmatism
across the southern Central Asian Orogenic
System (e.g., Yili block, Central Tianshan arc,
northern Alxa block, and Xilinhot block) (He
et al., 2015; Yuan et al., 2019). Neoproterozoic
granitic gneisses (1024-867 Ma) mostly occur
in the southern portion of the Beishan orogen

(e.g., Liu, et al., 2015; Yuan et al., 2015; Wang
et al., 2017a; Soldner et al., 2020a; Wang et al.,
2021b), whereas a ca. 885 Ma granitic gneiss
is documented in the Hazhu area in the north-
ern portion of the Beishan orogen (Figs. 2 and
14B; Table S3) (Niu et al., 2019). Here, accord-
ing to the distribution of Proterozoic granitoids
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Figure 14. (A) Zircon crystallization age spectra of magmatic rocks exposed in the Beishan orogen of central Asia. (B) Crystallization ages
of Proterozoic, Paleozoic, and Mesozoic plutons and volcanic rocks. (C and D) Crystallization ages versus the distance across the Hongliuhe-
Xichangjing tectonic zone. (C) West domain, west of the Sanweishan-Shuangta fault. (D) East domain, east of the Sanweishan-Shuangta fault.
(E and F) Crystallization ages versus the distance across the Hongshishan-Pengboshan tectonic zone. Note that the arc migrate rates in the
diagrams are apparent under the consideration of Mesozoic crustal shortening deformation. (E) West domain. (F) East domain. Data are listed

in Table S3 (see text footnote 1).
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in the Beishan orogen (Fig. 14B), we divide
the Beishan orogen into southern and north-
ern parts along the Hongliuhe-Xichangjing
tectonic zone. The geochemical composition
of Neoproterozoic granitoids in the Beishan
orogen suggest petrogenesis from reworked
ancient crust during the assembly of Rodinia
(Niu et al., 2019; Soldner et al., 2020a; Wang
etal., 2021b). Cambrian—Silurian arc magmatic
rocks (525430 Ma) (e.g., Song et al., 2013b;
Hu et al., 2015; Xiu et al., 2018; Yuan et al.,
2018; Zhuan et al., 2018; Li et al., 2020a; Lv
et al., 2021) and Silurian—Devonian syn/post-
orogenic granitoids (430-395 Ma) (e.g., Zheng
et al.,, 2012; Ding et al., 2015; Wang et al.,
2018b; Zhang et al., 2018a; Bai et al., 2020; Li
et al., 2020a) only occur north of the Hongliuhe-
Xichangjing tectonic zone, suggesting the exis-
tence of a north-dipping early Paleozoic sub-
duction zone along the Hongliuhe-Xichangjing
tectonic zone (Figs. 14C and 14D; Table S3).
Ordovician—Early Permian arc magmatic rocks
(468-284 Ma) (e.g., Zhang et al., 2012a; Song
et al., 2013b; Zheng et al., 2016b; Wang et al.,
2017a; Cleven et al., 2018; Li et al., 2018a;
Zhu et al., 2019; Yan et al., 2020; Yang et al.,
2020; Zheng et al., 2021; this study) and Silu-
rian—-Triassic syn/post-orogenic granitoids
(436-212 Ma) (e.g., Liu et al., 2006; Zhao et al.,
2007; Feng et al., 2012; Zhang et al., 2012b; Li
et al., 2013; Guo et al., 2018; Bu et al., 2019;
Li et al., 2020c; Zhao et al., 2020a; this study)
occurring throughout the Beishan orogen have a
northward-younging trend, which is interpreted
to reflect northward steepening of the subduct-
ing Paleo-Asian oceanic slab (Figs. 14E and
14F; Table S3). The minimum northward migra-
tion rate of this arc is ~1 mm/yr, similar to other
documented continental arc migration rates
commonly between ~1 and 5 mm/yr (Figs. 14E
and 14F) (Gehrels et al., 2009; Cecil et al., 2012;
Ducea et al., 2015). Late Carboniferous—Early
Permian rifting/subduction-related granitoids
(313-260 Ma) (e.g., Zhang et al., 2010, 2015b;
Qin et al., 2011; Zhang et al., 2011b; Li et al.,
2013; Zhang, 2013; Yi et al., 2017) and Early
Permian-Triassic syn/post-collisional granit-
oids (260-217 Ma) (e.g., Li et al., 2012a; Zhang
etal., 2015b; Zhu et al., 2015; Yuan et al., 2019;
Yang et al., 2021c) occur in the southern Beis-
han orogen, which is attributed to closing in the
Liuyuan region (Figs. 14E and 14F; Table S3).

U-Pb zircon ages of (ultra-)mafic rocks and
their spatial relationships in the Beishan orogen
mostly define four age groups of 1071-860 Ma,
542-433 Ma, 446-321 Ma, and 307-260 Ma
(Fig. 14; Table S3). Neoproterozoic mafic
rocks (1071-860 Ma) with an eclogite protolith
and basalt in the southern Beishan orogen are
interpreted to have been generated during the

Jie Li et al.

assembly of Rodinia (e.g., Yang et al., 2010a;
Quetal., 2011; Jiang et al., 2013; Soldner et al.,
2020a; Wang et al., 2021b). The Cambrian—
Early Silurian Hongliuhe-Xichangjing tectonic
zone (542-433 Ma), which is characterized by a
supra-subduction zone setting, may represent an
ocean in the central Beishan orogen, which we
refer to as the Beishan Ocean (e.g., Zhang and
Guo, 2008; Wu et al., 2012; Tian et al., 2014;
Cleven et al., 2015a; Hu et al., 2015; Shi et al.,
2018; Wang et al., 2018a). In contrast, the Cam-
brian—Ordovician Shibanjing-Xiaohuangshan
tectonic zone (516453 Ma) (e.g., Zheng et al.,
2013; Shi et al., 2018; Li et al., 2020a), which
is characterized by a back-arc extension setting
(Meng et al., 2021), may have been generated
during north-dipping subduction of the Beishan
oceanic slab. Silurian—Carboniferous (ultra-)
mafic rocks (446-321 Ma), which include wide-
spread exposures of incomplete ophiolite suites
throughout the Beishan orogen (e.g., Li et al.,
2012c; Wang, 2015; Wang et al., 2018a; Xie
et al., 2018a; Niu et al., 2020b) may have been
generated in an intracontinental extensional/
island arc setting based on their geochemical
signatures (e.g., Li et al., 2012c; Yu et al., 2012;
Ma et al., 2018; Xie et al., 2018a; Yu et al.,
2021). These Silurian—Carboniferous (ultra-)
mafic rocks have a northward-younging trend
(cf., Huitongshan ca. 446420 Ma, Yu et al.,
2012; this study; Heijianshan ca. 406-360 Ma,
Yan et al., 2012; Xie et al., 2015; Ma et al.,
2018; Yu et al., 2021; Cihai-Zhangfangshan ca.
375-363 Ma, Zheng et al., 2009; Yu et al., 2012;
Niujuanzi-Xiaohuangshan ca. 410-345 Ma,
Zheng et al., 2013; Tian et al., 2014; Wang et al.,
2018a; Jijitaizi-Shibanjing ca. 371-321 Ma, Li
et al., 2012c; Zhang et al., 2012c; and Hongsh-
ishan-Baiheshan ca. 346-340 Ma, Wang et al.,
2014b; Xie et al., 2018a; Niu et al., 2020b; from
south to north; Figs. 2, 14E, and 14F). Late
Carboniferous—Permian (ultra-)mafic rocks
(307-260 Ma) in the southern Beishan orogen
are interpreted to have been generated in an
intracontinental rift setting based on their geo-
chemical characteristics and nearby evidence
of sedimentation in a rift basin (e.g., Qin et al.,
2011; Chen et al., 2013; Zheng et al., 2014;
Wang et al., 2017a; Niu et al., 2021a).
Reconstructions of the Beishan orogen have
used its suture zones, discontinuous ophiolite
and mélange complexes, arc plutons, and high-
pressure metamorphic rocks as evidence for the
Paleozoic collision of multiple arcs along sev-
eral sutures (Fig. 4) (Xiao et al., 2010b; Mao
et al., 2012b; Saktura et al., 2017; Tian et al.,
2014; Wang et al., 2017a; He et al., 2018; Shi
et al., 2018; Wang et al., 2018a; Tian et al.,
2020c). However, our findings show that mul-
tiple sutures and magmatic arcs overlap in time
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and space, which provides a more complex pic-
ture of the tectono-magmatic evolution of the
Beishan orogen. Any viable model for the devel-
opment of the Beishan orogen must include
the following key findings: (1) progressive
northward-younging Ordovician—Early Perm-
ian magmatism across the Beishan orogen and
Cambrian—Silurian arc magmatism north of the
Hongliuhe-Xichangjing tectonic zone (Fig. 14);
(2) Cambrian—Early Silurian supra-subduction
zone ophiolite and mélange material dispersed
along the Hongliuhe-Xichangjing tectonic
zone; (3) Silurian—Carboniferous intraconti-
nental extensional (ultra-)mafic rocks scattered
throughout the Beishan orogen (Fig. 2); and (4)
the spatial and temporal overlap between arc
magmatism and high-pressure metamorphism
(Figs. 2 and 5).

In light of these considerations, we interpret
that both a north-dipping subduction system
along the Hongliuhe-Xichangjing tectonic zone
and a south-dipping subduction system oper-
ated along the northern margin of Queershan
arc/terrane or farther north. The Cambrian—
Silurian strata and ophiolites along the north-
ern margin of the South Beishan continent may
have been emplaced via complex mélange/
ophiolite obduction or ophiolite underthrust-
ing (Fig. 2) (Cleven et al., 2015a; Song et al.,
2014, 2015). In the North Beishan continent,
the ~70-km-wide belt of arc plutons located
north of the Hongliuhe-Xichangjing tectonic
zone (Figs. 14C and 14D) (e.g., Song et al.,
2013b; Hu et al., 2015; Xiu et al., 2018; Yuan
et al., 2018; Zhuan et al., 2018; Li et al., 2020a)
can be explained by north-dipping subduction
of the early Paleozoic Beishan oceanic slab.
The Silurian—Carboniferous extensional (ultra-)
mafic rocks throughout the Beishan orogen may
have been generated during lithospheric thin-
ning and mantle upwelling. Across the Beishan
orogen, the ~200-km-wide belts of arc plutons
mixed with (ultra-)mafic magmatic rocks that
generally young to the north (Figs. 14E and
14F) (e.g., Li et al., 2012c; Zhang et al., 2012c;
Song et al., 2013b; Wang et al., 2017a; Cleven
et al., 2018; Li et al., 2018a; Xie et al., 2018a;
Zhu et al., 2019; Niu et al., 2020b; Zheng et al.,
2021) can be explained by northward rollback
of the south-dipping Paleo-Asian oceanic slab.
The high-pressure metamorphic rocks in the
southern margin of the Beishan orogen devel-
oped within this subduction system. The ca.
467-453 Ma zircon U-Pb and Lu-Hf and Sm-Nd
garnet ages from eclogite record an Ordovician
high-pressure metamorphism event, and the
younger Early and Late Silurian cooling ages
record retrograde metamorphism or exhumation
(Qu et al., 2011; Saktura et al., 2017; Soldner
et al., 2020b).



6.2. Neoproterozoic-Triassic Tectonic
Evolution of the Beishan Orogen

As both the timing and magnitude of the
Mesozoic and Cenozoic intracontinental defor-

A Lithostratigraphy of the southern Beishan

Tectonic evolution of the Beishan orogen

mation have yet to be systematically quantified,
our reconstruction should be viewed as pre-
liminary. The Neoproterozoic, passive-margin,
continental-shelf, and/or continental slope sedi-
ments were deposited along the northern edge

of the South Beishan continent that faced the
Beishan Ocean (Figs. 2 and 15). The sediments
contain ca. 2.5 Ga, 1.7-1.8 Ga, 1.4-1.5 Ga, and
0.8-1.0 Ga detrital zircon grains derived from
the linked North Tarim-North China craton

B Lithostratigraphy of the northern Beishan
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Figure 15. Lithostratigraphy
of the southern and northern
Beishan orogen in central Asia
(Gansu BGMR, 1996). Quat—
Quaternary; Neog—Neogene;
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stone; si—siltstone; ss—sand-
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(Fig. 16A) (Song et al., 2013c; Zheng et al.,
2018a, 2021; Yu et al., 2018). In the North
Beishan continent, the sediments contain zir-
con grains of similar age clusters (Fig. 16B)
(Song et al., 2013c; Yang et al., 2016a; Xu et al.,
2018b). Based on similar ages of Proterozoic
sedimentary rocks located north and south of the
Hongliuhe-Xichangjing tectonic zone, we inter-
pret that opening of the Beishan Ocean between
the South and North Beishan continents likely
occurred within the Greater North China craton
(Fig. 17A) (Zuza and Yin, 2017). Proterozoic
structures were overprinted during Phanerozoic
magmatism and tectonism. In the Cambrian, the

4000

Beishan Ocean reached its maximum extent and
subduction initiated along its northern boundary.
Following subduction initiation, arc magmatic
rocks were generated (530-430 Ma) north of
the Beishan orogen and the Shibanjing-Xiao-
huangshan ocean basin (516-453 Ma) opened
in a back-arc extension setting (Figs. 15B and
17B). During Cambrian—Early Silurian oceanic
subduction, passive continental margin sedi-
ments were deposited on the northern edge of
South Beishan continent (Figs. 2 and 15). In the
Ordovician—Early Silurian, volcanic arc magma-
tism initiated as the Beishan Ocean subducted
beneath the North Beishan continent. Ordovi-
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cian—Early Silurian strata were deposited in
back-arc and forearc settings to the south and
north of the magmatic arc, respectively, along
the southern edge of North Beishan continent
(Fig. 17C). By ca. 430 Ma, the South Beishan
continent collided with the North Beishan con-
tinent. The timing of collision is not well con-
strained, but 430-395 Ma granitoids and volca-
nic rocks with syn/post-collisional geochemical
characteristics were generated shortly afterwards
(Fig. 17D) (e.g., Zheng et al., 2012; Ding et al.,
2015; Wang et al., 2018b; Li et al., 2020a; Pan
et al., 2022). Early Devonian orogenic foreland
strata were deposited in lacustrine and alluvial
fan environments at this time (e.g., Zuo et al.,
1995; Liang et al., 2014, 2020; Niu et al., 2020a).
During this collision, passive continental mar-
gin strata of the South Beishan continent were
juxtaposed against the accretionary wedge, tec-
tonic mélange rocks, and ophiolite complex of
the magmatic arc (Fig. 17D).

During Paleo-Asian oceanic subduction,
abundant Ordovician—Permian arc magmatic
rocks (470-280 Ma) and Silurian—Carbonifer-
ous (ultra-)mafic rocks (446-320 Ma) were
generated throughout the Beishan orogen. In the
eng(t) and zircon ey(t) versus crystallization age
diagram, Beishan felsic magmatic rocks show
a descending trend from 540 to 450 Ma and an
ascending trend from 450 to 310 Ma and a further
descending trend after ca. 310 Ma (Figs. 12B
and 12C). Similarly, in the paleo-crustal thick-
ness versus crystallization age diagram (Sundell
etal., 2021), felsic magmatic rocks show a thick-
ening trend from ~40 to ~60" km in the from
540 Ma to 450 Ma, which supports early Paleo-
zoic Beishan oceanic subduction and crustal
thickening via magmatic and deformational pro-
cesses that may reflect more crustal melting and
assimilation (Fig. 12), and a thinning trend from
~80 to ~30 km from 450 to 310 Ma, which
supports northward rollback of the Paleo-Asian
oceanic slab and extensional thinning that may
reflect thinner crust and/or more mantle input in
the melts (Fig. 12), and a slight thickening trend
after ca. 310 Ma, which may be the response of
the activity of the Liuyuan Ocean that perhaps
was driven by more assimilation and crustal
melting (Fig. 12). Northward slab rollback at
the south-dipping Paleo-Asian Ocean subduc-
tion zone can explain three key observations:
(1) the northward-younging trend of arc mag-
matism throughout the Beishan orogen (Figs. 2,
14E, and 14F); (2) the northward-younging trend
of (ultra-)mafic intrusions throughout the Beis-
han orogen (Figs. 2, 14E, and 14F); and (3) the
position of high-pressure rocks within the arc
(Fig. 2). Under extension, the upper plate devel-
ops basins/rifts that can occur from the backarc
to the forearc regions, with crustal thickness
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remaining relatively thin (~30km) (Ducea
et al., 2015). This interpretation is supported
by the presence of Late Devonian strata in the
south and Permian strata in the north across the
Beishan orogen that were deposited in rift basins
(Figs. 2 and 15). Protracted extension may have
led to the exhumation of the Ordovician high-
pressure metamorphic rocks in the Silurian (e.g.,
Kapp et al., 2000; Yin et al., 2007).

In the Late Carboniferous (ca. 310 Ma), rift-
ing of the South Beishan continent initiated,
resulting in the opening of the Liuyuan Ocean
along the Cihai-Zhangfangshan tectonic zone

(Figs. 2 and 17E). Regionally, coeval volcanic
eruptions are exposed extensively along the
southern margin of Central Asian Orogenic
System from the northern margin of the Tarim
block to the northern flanks of the Alxa block
and the northern North China craton. Bimodal
volcanism and rift-basin development occurred
at 310-260 Ma and was followed by subduction
and closure (e.g., Chen et al., 2013; Zheng et al.,
2014; Wang et al., 2017a). During rift extension,
doleritic dike swarms (285-282 Ma) were gen-
erated in the South Beishan continent (Fig. 5).
The Early Carboniferous—Early Permian strata
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Backarc Ocean Basin

Figure 17. Block models show-
ing the tectonic evolution of
the Beishan orogen in central
Asia from the late Neoprotero-
zoic through the Early Trias-
sic. Note that the north arrow
points to the north in the pres-
ent-day coordinate system. See
text for the details. HP—high
pressure.

North
>

record a transition in sedimentary environment
from a marine tidal flat to continental braided
stream, which indicate the presence of a marine
rift basin setting (Figs. 8 and 15A) (e.g., Xu
et al., 2019a; Niu et al., 2021b). Permian strata
show two major detrital zircon age peaks at
250-300 Ma and 400-500 Ma, and two minor
age peaks at 800-1000 Ma and ca. 2500 Ma
(Fig. 16), reflecting provenance from the local
Beishan orogen, although we acknowledge that
recycling of older strata may have resulted in
this age distribution. The limited unconformity
outcrops between Triassic strata and Permian,
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and Triassic lacustrine and alluvial sedimentary
environments in southern Beishan indicate the
rift was closed (Fig. 17F) (Gansu BGMR, 1989).
Meanwhile, folds and faults in Devonian-Perm-
ian strata suggest a north-dipping subduction of
the Liuyuan Ocean along the Gubaoquan-Hon-
gliuyuan fault (Fig. 6).

After the Permian—Triassic, the Beishan oro-
gen experienced intracontinental deformation
associated with the final closure of the Paleo-

ca. 370-280 Ma

(ultra-)mafic magmatism

ca. 440-420 Ma

. ca. 410-320 Ma

Asian Ocean in the north and closure of the
Tethyan tectonic domain in the south (Fig. 17F)
(Zuo et al., 1991; Zheng et al., 1996; Yin and
Harrison, 2000; Zhang and Cunningham, 2012;
Zuza and Yin, 2017). Middle Jurassic continu-
ous north-south-directed contraction mixed with
strike-slip faulting resulted in the exposures of
Paleozoic and Precambrian plutons and (meta-)
sedimentary rocks and the strong deformation
of Mesozoic strata across the Beishan (Zheng
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’ ca. 370-340 Ma

et al., 1996; Zhang and Cunningham, 2012;
Tian et al., 2013), which is similar to south-
ern Mongolia. Late Jurassic—Early Cretaceous
extension affected and controlled the distribution
and deformation of Cretaceous deposits across
the Beishan and Alxa block. Due to the lack of
Cenozoic tectonic activities, the exhumation of
the Beishan region is extremely slow, with low
relief topography modulated by climate (e.g.,
Jepson et al., 2021).



In summary, the early Paleozoic history
of the Beishan involved a north-dipping
subduction system along the Hongliuhe-
Xichangjing tectonic zone, which resulted in
the formation of early Paleozoic arc magmatic
records and back-arc extension in the North
Beishan. Later southward subduction of the
Paleo-Asian Ocean and northward rollback led
to an extensional arc setting with thinning crust
and mixed crust-mantle magma petrogenesis.
Our model suggests that the final closure site
of the southern Paleo-Asian Ocean was the
northern extent of the Beishan, also supported
by geophysical data evidence (Guy et al., 2015;
Comeau et al., 2020).

7. CONCLUSIONS

In this study, we collected new field, geo-
chemical, and geochronological data from the
Beishan area. Our new data, when combined
with the existing work, led us to propose a tec-
tonics model that involves the following five
phases of deformation: (1) Proterozoic rifting
that separated the North Beishan block from the
Greater North China craton that led to the open-
ing of the Beishan Ocean; (2) Early Paleozoic
north-dipping subduction (ca. 530-430 Ma) of
the Beishan oceanic plate associated with back-
arc extension followed by collision between
the North and South Beishan microcontinental
blocks; (3) Northward slab rollback of the south-
dipping subducting Paleo-Asian oceanic plate at
ca. 450-440 Ma along the northern margin of
the North Beishan block that led to the forma-
tion of a northward-younging extensional con-
tinental arc (ca. 470-280 Ma) associated with
bimodal igneous activity, which indicates that
the westward extension of the Solonker suture
is located north of the Hongshishan-Pengboshan
tectonic zone; (4) Late Carboniferous opening
and Permian north-dipping subduction of the
Liuyuan Ocean in the southern Beishan orogen;
and (5) Mesozoic-Cenozoic intracontinental
deformation induced by the final closure of the
Paleo-Asian Ocean system in the north and the
Tethyan Ocean system in the south.
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