
A fourth-order conservative semi-Lagrangian finite

volume WENO scheme without operator splitting for

kinetic and fluid simulations

Nanyi Zhenga, Xiaofeng Caib,c, Jing-Mei Qiud, Jianxian Qiue,∗

aSchool of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005, China
bResearch Center for Mathematics, Beijing Normal University at Zhuhai, Zhuhai

519087, China
cDivision of Science and Technology, BNU-HKBU United international College, Zhuhai

519087, China
dDepartment of Mathematical Sciences, University of Delaware, Newark, DE, 19716,

USA
eSchool of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical

Modeling and High-Performance Scientific Computing, Xiamen University, Xiamen,
Fujian 361005, China

Abstract

In this paper, we present a fourth-order conservative semi-Lagrangian (SL) fi-
nite volume (FV) weighted essentially non-oscillatory (WENO) scheme with-
out operator splitting for two-dimensional linear transport equations with
applications of kinetic models including the nonlinear Vlasov-Poisson sys-
tem, the guiding center Vlasov model and the incompressible Euler equation
in the vorticity-stream function formulation. To achieve fourth-order accu-
racy in space, two main ingredients are proposed in the SL FV formulation.
Firstly, we introduce a so-called cubic-curved quadrilateral upstream cell and
applying an efficient clipping method to evaluate integrals on upstream cells.
Secondly, we construct a new WENO reconstruction operator, which recovers
a P 3 polynomial from neighboring cell averages. Mass conservation is accom-
plished with the mass conservative nature of the reconstruction operator and
the SL formulation. A positivity-preserving limiter is applied to maintain
the positivity of the numerical solution wherever appropriate. For nonlinear
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kinetic models, the SL scheme is coupled with a fourth-order Runge-Kutta
exponential integrator for high-order temporal accuracy. Extensive bench
marks are tested to verify the designed properties.

Keywords: Vlasov systems, non-splitting scheme, semi-Lagrangian,
WENO reconstruction, mass conservation, positivity preservation,
high-order accuracy, cubic-curved cell.

1. Introduction

Semi-Lagrangian (SL) schemes are popular for solving transport equation
which can be found in many areas of applications, such as climate modeling
[1, 2] and kinetic description of plasma [3, 4, 5]. We are concerned with
solving a transport equation in the form of

ut +∇x · (a(u,x, t)u) = 0, (1)

where u(x, t) represents a density function and a(u,x, t) is the velocity field.
The SL approach can be both efficient and of high accuracy with its designed
nature for solving (1). On one hand, as the Lagrangian approach, the in-
formation propagates along characteristics for the SL approach. Hence, it
can escape the CFL time restriction and use large time steps. On the other
hand, the solution space of the SL approach is built on a fixed mesh as the
Eulerian approach. This feature ensures its capability to design high-order
schemes.

The SL approach can be coupled with different spatial discretizations,
such as finite element methods [6, 7, 8], spectral element methods [9, 10, 11],
discontinous Galerkin (DG) methods [12, 13, 14], finite difference (FD) meth-
ods [15, 16, 17] and finite volume (FV) methods [18, 3, 1]. Many existing
SL schemes are 1-D schemes coupled with operator-splitting method, such as
the second-order Strang splitting [13] and the fourth-order Forest-Ruch split-
ting [5]. A main advantage of splitting-based SL schemes is its simplicity in
terms of extending to multi-dimensional problems. However, splitting-based
SL schemes have two unavoidable disadvantages. Firstly, the number of
subproblems of splitting-based SL schemes for multi-dimensional problems
proliferates, especially for the fourth-order splitting method. Secondly, with-
out extra limitation on numerical time step and careful modifications to the
splitting procedure [19], the accuracy of the splitting-based schemes decays to
first order for some strongly nonlinear problems such as the guiding center
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Vlasov model. For non-splitting SL schemes, a convenient idea is to con-
struct an FD scheme, which traces the characteristics back and updates the
point value information by an interpolation procedure. However, such SL FD
scheme may lead to significant loss of total mass for some simulations [20]. In
[21], a true non-splitting multi-dimensional mass conservative SL FD scheme
is successfully built with flux-difference form for passive transport problems.
However, extra time step restriction is required for numerical stability as
analysed in [21]. In [13], the L2 stability is proved for the proposed 1-D SL
DG scheme. With an additional reconstruction procedure, the non-splitting
SL FV scheme proposed in this paper is proved to be unconditionally sta-
ble under linearized settings by Fourier analysis. This result supports our
confidence in using larger time steps.

We aim to design a high-order SL FV scheme for nonlinear dynamics.
The high order accuracy comes from several careful designs. Firstly, the pro-
posed SL FV scheme requires high-order solution remapping between a fixed
Eulerian cell and a twisted upstream mesh. Such remapping procedure relies
on a clipping procedure between two meshes. In [22], the authors introduced
a clipping method on staggered meshes and perform numerical integration
for triangles. Unfortunately, such integral strategy is difficult to extend for
general curved polygons appeared in a high-order SL FV scheme. In [23], a
similar clipping method is introduced on straight-sided quadrilateral meshes.
The numerical integral in [23] is based on Green090005s theorem and the
2-D area integrals are convert to line integrals, which has the potential for
high-order approximation for evaluating integrals on curved polygons. In
our previous work in [14, 24], we followed such strategy. Quadratic-curved
quadrilateral upstream cells and a clipping method are introduced in [14, 24]
to achieve third-order accuracy in space. Following the same idea, we con-
struct cubic-curved quadrilateral upstream cells, introduce a clipping method
and evaluate integrals on curved polygons by the approach in [23].

Secondly, we construct a new truly 2-D cell-average-based weighted es-
sentially non-oscillatory (WENO) reconstruction method, which follows the
same idea as in [25]. The key purpose of applying WENO-type reconstruc-
tion is to provide high-order spatial approximation where the exact solution is
smooth and to ensure that the numerical solution is essentially non-oscillatory
where the solution is discontinuous. For hyperbolic conservation laws, the
WENO schemes requires reconstructed point values at specific spatial posi-
tion of each Eulerian cell. However, SL schemes may require reconstructed
point values at any spatial position for general convection problem (1). This
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feature precludes the use of traditional WENO reconstruction method, de-
noted by WENO-JS, in [26, 27, 28]. The WENO reconstruction method
introduced in this paper, denoted by WENO-ZQ as in [25], uses artificial
positive linear weights with their sum being one. It has the capacity to
provide a P 3 reconstruction polynomial for each Eulerian cell. In the re-
gion where the solution is smooth, the WENO-ZQ reconstruction offers a
fourth-order approximation to the exact solution. In the region where the
solution is discontinuous, the WENO-ZQ reconstruction automatically de-
cays to a lower order polynomial reconstruction. Hence, such reconstruction
procedure shares a similar spirit with p-adaptive DG methods [29, 30, 31].
Positivity preserving (PP) is also an important consideration for numerical
simulations with positive solutions. We apply a PP limiter introduced in
[32] to ensure positivity for such systems. This PP limiter requires the local
minimum value of each P 3 reconstruction polynomial.

Finally, for nonlinear problems with their velocity fields depends on the
solutions, we couple the SL FV scheme with a fourth-order Runge-Kutta
exponential integrator (RKEI) [33], denoted by CF4, for high-order temporal
accuracy.

We analyze the proposed SL FV WENO scheme in terms of mass con-
servation, positivity preservation, error analysis, and L2 stability. Major
complexity comes from the error analysis. With regularity hypothesis on the
velocity field, we quantitatively show the properties of the edges of the ex-
act upstream cells. Such investigation helps us prove that the cubic-curved
upstream cells offer fourth-order approximations to the exact upstream cells.

The rest of the paper is organized as follows. In Section 2, we introduce
the implementation of the 2-D SL FV scheme. Theoretical properties and
their proofs are organized in Section 3. Then, we present the numerical
tests of the linear transport equation, the nonlinear Vlasov-Poisson system,
the guiding center Vlasov model and the incompressible Euler equation in
the vorticity-stream function formulation in Section 4. Finally, we give a
conclusion in Section 5.

2. 2-D SL FV WENO scheme

Consider a 2-D linear transport equation

∂u

∂t
+

∂

∂x
(a(x, y, t)u) +

∂

∂y
(b(x, y, t)u) = 0, (2)
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where u(x, y, t) is a density function of a conserved quantity transported in
a flow with velocity field (a(x, y, t), b(x, y, t)). We define the computational
domain as Ω = [xL, xR] × [yB, yT ] and assume a discretization such that
xL = x 1

2
< x 3

2
< · · · < xi− 1

2
< xi+ 1

2
< · · · < xNx− 1

2
< xNx+ 1

2
= xR,

yB = y 1
2
< y 3

2
< · · · < yj− 1

2
< yj+ 1

2
< · · · < yNy− 1

2
< yNy+ 1

2
= yT ,

with Ii,j :=
[
xi− 1

2
, xi+ 1

2

]
×
[
yj− 1

2
, yj+ 1

2

]
, xi :=

(
xi− 1

2
+ xi+ 1

2

)
/2, yj :=(

yj− 1
2

+ yj+ 1
2

)
/2, ∆xi := xi+ 1

2
− xi− 1

2
and ∆yj := yj+ 1

2
− yj− 1

2
. Now, we

consider an Eulerian cell Ii,j at t = tn+1 and define a dynamic character-
istic region Ii,j(t) := {(x?, y?) | (x?, y?) = (X(x, y; t), Y (x, y; t)) , (x, y) ∈
Ii,j}, where (X(x, y; t), Y (x, y; t)) represents the characteristic curve emanat-
ing from (x, y, tn+1), i.e., the solution of the ordinary differential equations
(ODEs) 

dX(t)/dt = a(X(t), Y (t), t),

dY (t)/dt = b(X(t), Y (t), t),

X(tn+1) = x,

Y (tn+1) = y.

(3)

By Reynolds transport Theorem

d

dt

∫∫
Ii,j(t)

u(x, y, t)dxdy =

∫∫
Ii,j(t)

∂u

∂t
dxdy +

∫
∂Ii,j(t)

((a, b) · ~n) uds,

=

∫∫
Ii,j(t)

∂u

∂t
dxdy +

∫∫
Ii,j(t)

∇ · ((a, b)u) dxdy = 0.

(4)

Hence, an SL scheme can be naturally formulated from (4):

1

∆xi∆yj

∫∫
Ii,j

u(x, y, tn+1)dxdy =
1

∆xi∆yj

∫∫
I?i,j

u(x, y, tn)dxdy, (5)

where I?i,j = Ii,j(t
n) (see Figure 1).

The design of a fourth-order SL FV WENO scheme relies on an accurate
evaluation of the right-hand side of (5). Firstly, we approximate upstream

cells, {I?i,j}, by cubic-curved quadrilaterals, denoted by {Ĩ?i,j}. We discuss the

construction of {Ĩ?i,j} in Section 2.1. Secondly, we introduce the WENO-ZQ
reconstruction method to map the FV information, {uni,j}, to a piecewise P 3

polynomial, ũ(x, y), in Section 2.2. Finally, in Section 2.3, we describe the

clipping procedures to integrate ũ(x, y) over {Ĩ?i,j}.
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Ii,j

I?i,j
tn

tn+1

Figure 1: Schematic illustration for the characteristic upstream cell I?i,j.

2.1. Constructing cubic-curved quadrilateral upstream cells

A cubic-curved quadrilateral upstream cell Ĩ?i,j is a closed region enclosed

by four cubic interpolated curves. We construct {Ĩ?i,j} as follows.

1. Tracing characteristics back.
We locate four Gauss-Legendre-Lobatto (GLL) points in each edge of
the Eulerian cells, {Ii,j}, and determine their characteristic feet by
solving (3) at t = tn (see Figure 2). In practice, the ODEs (3) is solved
by high-order ODE solvers such as a fourth-order Runge-Kutta (RK)
method.

2. Reconstructing edges of upstream cells.
For given curved edge of a characteristic upstream cell, say I?i,j, there
are four characteristic feet, denoted as {v?k} (see Figure 2). By {v?k},
we interpolate a cubic curve as the edge of Ĩ?i,j in parametric form:{

x(ξ) = xaξ
3 + xbξ

2 + xcξ + xd,

y(ξ) = yaξ
3 + ybξ

2 + ycξ + yd, ξ ∈ [−1, 1].
(6)

The constructing procedure of (6) is arranged in Appendix A for brevity.
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v1 v2 v3 v4

(a)

v?1 v?2 v?3

v?4

(b)

Figure 2: Left: the black solid lines represent the Eulerian mesh; the black
dots are the GLL points located on each edge of the Eulerian cells. Right:
the black solid lines represent the Eulerian mesh; the dashed lines represent
the boundaries of {I?i,j}; the black dots are the characteristic feet obtained
by solving (3).

2.2. 2-D WENO reconstruction

For convenience, we require that ∆xi ≡ ∆x ∀i, and ∆yj ≡ ∆y ∀j.
The WENO-ZQ reconstruction method maps the FV solution, {uni,j}, to a
piecewise P 3 polynomial,

ũ(x, y) = ũ(i,j)(x, y), (x, y) ∈ Ii,j, ∀(i, j), (7)
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where ũ(i,j)(x, y) ∈ P 3(Ii,j). We first define a set of local orthogonal basis of
P 3(Ii,j) denoted as {vl(x, y)} with:

v1(x, y) = 1, v2(x, y) = µi(x) :=
x− xi

∆x
, v3(x, y) = νj(y) :=

y − yj
∆y

,

v4(x, y) = µ2
i −

1

12
, v5(x, y) = µiνj, v6(x, y) = ν2

j −
1

12
,

v7(x, y) = µ3
i −

3

20
µi, v8(x, y) =

(
µ2
i −

1

12

)
νj, v9(x, y) = µi

(
ν2
j −

1

12

)
,

v10(x, y) = ν3
j −

3

20
νj, v11(x, y) = µ4

i −
3

14
µ2
i +

3

560
,

v12(x, y) =

(
µ2
i −

1

12

)(
ν2
j −

1

12

)
, v13(x, y) = ν4

j −
3

14
ν2
j +

3

560
.

(8)

We also define that un5 := uni,j, I5 := Ii,j and other {uns}, {Is} represent
corresponding cell averages and Eulerian cells based on the serial numbers
in Figure 3. Then, the WENO-ZQ reconstruction over Ii,j is performed as
follows.

1 2 3

11 4 5 6 12

7 8 9

10

13

i− 1 i i+ 1i− 2 i+ 2

j − 2

j − 1

j

j + 1

j + 2

Figure 3: Stencil for the WENO-ZQ reconstruction on 2-D Cartesian mesh.
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1. Construct a polynomial q̃0(x, y) :=
∑13

l=1 a
q0
l v

l(x, y) and four P 1 poly-
nomials {qk(x, y)}4

k=1 := {
∑3

l=1 a
qk
l v

l(x, y)}4
k=1 satisfying:

1

∆x∆y

∫∫
Is

q̃0(x, y)dxdy = uns , (9)

where s = 1, 2, . . . , 13;

1

∆x∆y

∫∫
Is

qk(x, y)dxdy = uns , (10)

where

s = 2, 4, 5, for k = 1; s = 2, 5, 6, for k = 2;

s = 4, 5, 8, for k = 3; s = 5, 6, 8, for k = 4.
(11)

Let q0(x, y) :=
∑10

l=1 a
q0
l v

l(x, y), which is the orthogonal projection of
q̃0 to P 3(Ii,j).

2. Compute the smoothness indicators {βk} of {qk(x, y)}:

β0 =
1

∆x∆y

∑
l1+l2<=3

∫∫
Ii,j

(
∆xl1∆yl2

∂|l1+l2|

∂xl1∂yl2
q0(x, y)

)2

dxdy;

βk =
1

∆x∆y

∑
l1+l2<=1

∫∫
Ii,j

(
∆xl1∆yl2

∂|l1+l2|

∂xl1∂yl2
qk(x, y)

)2

dxdy, k = 1, 2, 3, 4.

(12)

3. Calculate a new parameter:

τ :=

(
|β0 − β1|+ |β0 − β2|+ |β0 − β3|+ |β0 − β4|

4

)2

. (13)

4. Compute the nonlinear weights {ωk} (see [25]):

ωk =
ωk∑4
l=0 ωl

, with ωk = γk

(
1 +

τ

βk + ε

)
, k = 0, 1, . . . , 4. (14)

where ε, which is 10−14 in our program, is used to avoid the denominator
being zero and {γk} is a set of positive linear weights satisfying that
the sum of which is 1. In numerical tests, we take γ0 = 0.8, γ1 = . . . =
γ4 = 0.05.
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5. The WENO-ZQ reconstruction polynomial ũ(i,j)(x, y) :=
∑10

l=1 a
(i,j)
l vl(x, y)

is given by

ũ(i,j)(x, y) =
ω0

γ0

(
q0(x)−

4∑
k=1

γkqk(x, y)

)
+

4∑
k=1

ωkqk(x, y), (15)

where {a(i,j)
l } can be explicitly provided by

a
(i,j)
1 = uni,j; a

(i,j)
l =

ω0

γ0

aq0l +
4∑

k=1

(
ωk −

ω0

γ0

γk

)
aqkl for l = 2, 3;

a
(i,j)
l =

ω0

γ0

aq0l for l = 4, 5, . . . , 10.

(16)

In particular, if ũ(i,j)(x, y) =
∑10

l=1 a
q0
l v

l(x, y) ∀i, j, we call such a recon-
struction linear reconstruction.

2.3. Calculating integrals over cubic curved quadrilateral upstream cells

2.3.1. Clipping

Ĩ?i,j

{Lki,j;p,q}

(a)

Ĩ?i,j

{Ski,j;p,q}

(b)

Figure 4: Schematic illustration for the definitions of outer integral segments
(a) and inner integral segments (b). The red circles and triangles represent

the intersection points of Ĩ?i,j and the Eulerian mesh.

As introduced in Section 2.2, we will evaluate the integration of a re-
constructed piecewise polynomial over each Ĩ?i,j, which may cross different
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Eulerian cells. Hence, we clip {Ĩ?i,j} into curved polygons such that Ĩ?i,j =

∪(p,q)(Ĩ
?
i,j ∩ Ip,q) and integrate piecewisely. We denote the curved polygons{

Ĩ?i,j ∩ Ip,q
}

by
{
Ĩ?i,j;p,q

}
. The clipping algorithm introduced here focuses

on determining edges of the curved polygons. In particular, we define the
outer integral segments of a upstream cell Ĩ?i,j as the edges, overlapping ∂Ĩ?i,j,

of
{
Ĩ?i,j;p,q

}
with counterclockwise direction with respect to Ĩ?i,j, denoted by

{Lki,j;p,q} (see Figure 4 (a)). The inner integral segments are defined as the

edges, overlapping mesh lines, of
{
Ĩ?i,j;p,q

}
with counterclockwise direction

with respect to the curved polygons, denoted by {Ski,j;p,q} (see Figure 4 (b)).
For the implementation of clipping, we introduce the basic procedure in

Appendix B for conciseness.

2.3.2. Numerical integral

For numerical integral, we define a reference integral region [−1
2
, 1

2
] ×

[−1
2
, 1

2
] and corresponding projections J(i,j) : R2 → R2, (x, y) 7→ (µi, νj) :=

((x− xi)/∆x, (y − yj)/∆y) for all i, j. With the clipped outer integral seg-
ments, {Lki,j;p,q}, as well as the inner integral segments, {Ski,j;p,q}, and the
reconstruction piecewise P 3 polynomial, ũ(x, y), we can numerically approx-
imate (5) by

un+1
i,j =

1

∆x∆y

∫∫
Ĩ?i,j

ũ(x, y)dxdy

=
1

∆x∆y

∑
(p,q)

∫∫
Ĩ?i,j;p,q

ũ(p,q)(x, y)dxdy

=
∑
(p,q)

∫∫
J(p,q)(Ĩ?i,j;p,q)

ũ(p,q)(µp, νq)dµpdνq

=
∑
(p,q)

∫
J(p,q)(∂(Ĩ?i,j;p,q))

[
P̃ (p,q)dµp + Q̃(p,q)dνq

]
=
∑
(p,q)

{∑
k

∫
J(p,q)(Lki,j;p,q)

[
P̃ (p,q)dµp + Q̃(p,q)dνq

]
+
∑
k

∫
J(p,q)(Ski,j;p,q)

[
P̃ (p,q)dµp + Q̃(p,q)dνq

]}
,

(17)
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where P̃ (p,q)(µp, νq) and Q̃(p,q)(µp, νq) are piecewise smooth auxiliary functions
such that

−∂P̃
(p,q)

∂νq
+
∂Q̃(p,q)

∂µp
= ũ(p,q)(µp, νq). (18)

In our program, we choose:

P̃ (p,q)(µp, νq) = −
[
a

(p,q)
2 µp + a

(p,q)
4

(
µ2
p −

1

12

)
+ a

(p,q)
7

(
µ3
p −

3

20
µp

)]
νq,

(19)
and

Q̃(p,q)(µp, νq) =

[
a

(p,q)
1 +

(
a

(p,q)
3 − a

(p,q)
8

18

)
νq +

1

2
a

(p,q)
5 µpνq + a

(p,q)
6

(
ν2
q −

1

12

)

+
1

3
a

(p,q)
8

(
µ2
p −

1

12

)
νq +

1

2
a

(p,q)
9 µp

(
ν2
q −

1

12

)
+ a

(p,q)
10

(
ν3
q −

3

20
νq

)]
µp.

(20)

For the line integral over a given outer integral segment, say Lki,j;p,q,∫
J(p,q)(Lki,j;p,q)

[P̃ (p,q)dµp + Q̃(p,q)dνq]

=

∫ ξk+1

ξk

[
P̃ (p,q) (µp(ξ), νq(ξ))µ

′
p(ξ) + Q̃(p,q) (µp(ξ), νq(ξ)) ν

′
q(ξ)

]
dξ,

(21)

where ξk and ξk+1 represent the ξ value of the start point and end point of
Lki,j;p,q with respect to corresponding cubic curve (6), and (µp(ξ), νq(ξ)) :=(
x(ξ)−xp

∆x
, y(ξ)−yq

∆y

)
.

In practical programming, we use 3-point Gauss-Legendre quadrature for
line integrals. It can be checked that the 3-point Gauss-Legendre quadra-
ture is exact for integration on inner integral segments and is of sixth-order
accuracy for outer integral segments.

2.3.3. PP limiter

When the analytical solution of (2) enjoys the PP property, we introduce
the PP limiter in [32] to ensure the PP property of the numerical solution.
The PP limiter applied here replaces ũ(i,j)(x, y) by

˜̃u(i,j)
(x, y) := θi,j

(
ũ(i,j)(x, y)− unij

)
+ unij, (x, y) ∈ Ii,j (22)
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where

θi,j := min

{∣∣∣∣ unij
unij −mij

∣∣∣∣} , mij := min
(x,y)∈Ii,j

{
ũ(i,j)(x, y)

}
. (23)

To determine mij, one has to find the extreme points of R(i,j)(x, y) by solving
a system of quadratic equations with two variables:

∂ũ(i,j)(x, y)

∂x
= 0,

∂ũ(i,j)(x, y)

∂y
= 0.

(24)

Through careful classification, solving (24) is equivalent to finding the inter-
section points of conic sections.

It can be proved as in [32] that ˜̃u(i,j)
(x, y) stays non-negative and main-

tains the original accuracy of ũ(i,j)(x, y) approximating u(x, y, tn).

Remark 2.1. By our numerical test, we find that we can not only compute
the minimum value of ũ(x, y) at the corresponding Gauss-Legendre points as
in [34]. This is probably because that the Green’s formulation is involved in
(17).

3. Theoretical properties

In this section, we demonstrate four basic properties of the SL FV WENO
scheme.

Proposition 3.1. (Mass conservation). The SL FV WENO scheme is mass
conservative if periodic boundary condition is imposed.

Proof.

∆x∆y
Nx∑
i=1

Ny∑
j=1

un+1
i,j = ∆x∆y

Nx∑
i=1

Ny∑
j=1

∫
J(p,q)(∂Ii,j)

[
P̃ (i,j)dµi + Q̃(i,j)dνj

]

=
Nx∑
i=1

Ny∑
j=1

∫∫
Ii,j

ũ(i,j)(x, y)dxdy = ∆x∆y
Nx∑
i=1

Ny∑
j=1

uni,j,

(25)
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where the first equality comes from the periodic boundary condition, the
second equality is based on the fact that integrals over inner integral segments
are exact and the third equality comes from the mass conservation property
of the WENO reconstruction.

Proposition 3.2. (Positivity preservation). The SL FV WENO scheme
coupled with the PP limiter in Section 2.3.3 is PP if the line integrals in (17)
are exactly evaluated.

Proof. As stated in Section 2.3.3, ˜̃u(i,j)
(x, y) is non-negative for all i, j. The

conclusion is clearly valid given the line integrals in (17) are exactly evaluated.

xi− 1
2

xi+ 1
2

yj− 1
2

yj+ 1
2

xi− 1
2

xi+ 1
2

yj− 1
2

yj+ 1
2

tn+1 tn

x′

y′

O′

Ii,j I?i,j

v1 v4

v?1

v?4

Figure 5: Left: the black solid lines represent the Eulerian mesh; the black
dots are the vertexes of Ii,j; the red solid lines are the edges of Ii,j. Right: the
black solid lines represent the Eulerian mesh; the black dots are the vertexes
of I?i,j; the red curves represent the boundaries of {I?i,j}.

Some preparations are required before providing the error analysis. Firstly,
we emphasize that the characteristics will not intersect at the PDE level for
the problems we consider. Secondly, we assume that ∆t ∼ ∆x ∼ ∆y, which
guarantees that the exact upstream cells are only mildly distorted, as will
be proved below. Now, Consider an edge of Ii,j, v1v4, at t = tn+1 and its

characteristic upstream curve v̂?1v
?
4 (see Figure 5). Here, we use the same

notation of {v?k}4
k=1 as in Section 2.1 and assume that {v?k} are obtained

14



by exactly solving (3). For simplicity, we define X (α) := X(α, yj− 1
2
; tn),

and Y(α) := Y (α, yj− 1
2
; tn) with (α, yj− 1

2
) α ∈ [xi− 1

2
, xi+ 1

2
] representing v1v4.

Then, a parametric equation of v̂?1v
?
4 is represented by[

X (α)

Y(α)

]
=

 α +
∫ tn
tn+1 a(X(α, yj− 1

2
; t), Y (α, yj− 1

2
; t), t)dt

yj− 1
2

+
∫ tn
tn+1 b(X(α, yj− 1

2
; t), Y (α, yj− 1

2
; t), t)dt

 α ∈ [xi− 1
2
, xi+ 1

2
].

(26)

Lemma 3.3. The derivatives of X (α), Y(α) satisfies[
dX (α)
dα

dY(α)
dα

]
=

[
1 +O(∆t)

O(∆t)

]
α ∈ [xi− 1

2
, xi+ 1

2
], (27)

and [
dkX (α)
dαk

dkY(α)
dαk

]
=

[
O(∆t)

O(∆t)

]
α ∈ [xi− 1

2
, xi+ 1

2
] k = 2, 3, 4. (28)

if a(x, y, t), b(x, y, t) ∈ C4.

Proof. Taking the derivative of both sides of (26) with respect to α and
expand the right-hand side integrands at (α, yj− 1

2
; tn), we have[

dX (α)
dα

dY(α)
dα

]
=

[
1

0

]
−∆t

[
a′1 a′2

b′1 b′2

] ∣∣∣∣∣
(α,y

j− 1
2

;tn)

[
dX (α)
dα

dY(α)
dα

]
+ δA, (29)

where δA ∈ R2 and ‖δA‖ = O(∆t2). Dropping the high-order term δA, we
have [

1 + ∆ta′1 ∆ta′2

∆tb′1 1 + ∆tb′2

][
dX (α)
dα

dY(α)
dα

]
=

[
1

0

]
. (30)

Denote the matrix in (30) by B. We find that det(B) = 1 + O(∆t). It is
obvious that det(B) 6= 0 for sufficiently small ∆t. Hence, we obtain[

dX (α)
dα

dY(α)
dα

]
=

[
(1 + ∆tb′2)/det(B)

−∆tb′1/det(B)

]
=

[
1 +O(∆t)

O(∆t)

]
α ∈ [xi− 1

2
, xi+ 1

2
].

(31)
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Similarly, by taking the second, third, and fourth derivative of both sides of
(26) with respect to α, we can prove that[

d(k)X (α)
dαk

d(k)Y(α)
dαk

]
=

[
O(∆t)

O(∆t)

]
α ∈ [xi− 1

2
, xi+ 1

2
] k=2, 3, 4. (32)

Lemma 3.3 naturally leads to the following lemma.

Lemma 3.4. Assuming that {v?k}4
k=1 := {(xk, yk)}4

k=1 in x−y space, we have

x4 − x1 = ∆x+O(h2), y4 − y1 = O(h2), d(v?1, v
?
4) = ∆x+O(h2) (33)

if a(x, y, t), b(x, y, t) ∈ C4, where h ∼ ∆x ∼ ∆y ∼ ∆t.

Proof. By Lemma 3.3, the result follows by a simple calculation.

We construct a new coordinate space x′−y′ such that x′−y′ is transformed
by x − y through a rotation and translation transformation (see Figure 5).

x′ − y′ is set up so that the direction of x′-axis is the same with
−−→
v?1v

?
4. Let

O′ be the midpoint of v?1 and v?4. Assume that the coordinates of {v?k} in
x′− y′ space are {(x′k, y′k)}, where y′1 = y′4 = 0. Then, we define a parametric

equation of v̂?1v
?
4 as (x′, f(x′)) with x′ ∈ [x′1, x

′
4].

Lemma 3.5. The derivatives of f(x′) satisfies

f (k)(x′) = O(h) x′ ∈ [x′1, x
′
4] k = 1, 2, 3, 4 (34)

if a(x, y, t), b(x, y, t) ∈ C4, where h ∼ ∆x ∼ ∆y ∼ ∆t.

Proof. With the definition of x′ − y′, we have[
x′

y′

]
=

[
x4−x1

d
y4−y1

d

−y4−y1

d
x4−x1

d

][
x

y

]
+

[
c1

c2

]
:= T

[
x

y

]
+ ~c, (35)

where d = d(v?1, v
?
4). Let T = (tij)2×2. By Lemma 3.4, we immediately obtain

t11 = 1 +O(h), t12 = O(h), t21 = O(h), t22 = 1 +O(h). (36)
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Then, for v̂?1v
?
4, we have[

x′

f(x′)

]
= T

[
X (α)

Y(α)

]
+ ~c x′ ∈ [x′1, x

′
4]. (37)

Taking the derivative of both sides of (37) with respect to x′, we obtain[
1

f ′(x′)

]
= T

[
dX (α)
dα
· dα
dx′

dY(α)
dα
· dα
dx′

]
x′ ∈ [x′1, x

′
4]. (38)

By Lemma 3.3, we obtain[
dα
dx′

f ′(x′)

]
=

[
1/
(
t11

dX
dα

+ t12
dY
dα

)(
t21

dX
dα

+ t22
dY
dα

)
dα
dx′

]
=

[
1 +O(h)

O(h)

]
x′ ∈ [x′1, x

′
4]. (39)

Similarly, taking the second, third, and fourth derivative of both sides of (37)
with respect to x′, we can prove that

f (k)(x′) = O(h) x′ ∈ [x′1, x
′
4] k = 2, 3, 4. (40)

Proposition 3.6. (Error analysis). The numerical update given by (17)
satisfies: ∣∣∣∣∣ 1

∆x∆y

∫∫
Ii,j

u
(
x, y, tn+1

)
dxdy − un+1

i,j

∣∣∣∣∣ = O
(
h4
)

(41)

with h ∼ ∆x ∼ ∆y ∼ ∆t (h → 0) if corresponding {unp,q} are exact and
u(x, y, t), a(x, y, t), b(x, y, t) ∈ C4.
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Proof.∣∣∣∣∣ 1

∆x∆y

∫∫
Ii,j

u
(
x, y, tn+1

)
dxdy − un+1

i,j

∣∣∣∣∣
=

1

∆x∆y

∣∣∣∣∣
∫∫

I?i,j

u (x, y, tn) dxdy −

(∫∫
Ĩ?i,j

ũ (x, y) dxdy + eI

)∣∣∣∣∣
≤ 1

∆x∆y

[∫∫
I?i,j

|u (x, y, tn)− ũ(x, y)| dxdy

+

∣∣∣∣∣
∫∫

I?i,j

ũ(x, y)dxdy −
∫∫

Ĩ?i,j

ũ(x, y)dxdy

∣∣∣∣∣+ |eI |

]

≤ 1

∆x∆y

[
max

(x,y)∈I?i,j
{|u (x, y, tn)− ũ(x, y)|}

∣∣I?i,j∣∣+M
(
|I?i,j\Ĩ?i,j|+ |Ĩ?i,j\I?i,j|

)
+ |eI |

]
,

(42)

where M = max {|ũ (x, y)|} and eI is the error introduced by numerical
integration. For |u (x, y, tn)− ũ(x, y)|, we refer to [25] for similar analysis
and conclude that

max
(x,y)∈I?i,j

{|u (x, y, tn)− ũ(x, y)|} = O
(
h4
)
. (43)

For |eI |, notice that we use the 3-point Gauss-Legendre quadrature for nu-
merical integral, which offers a six-order approximation to exact integral.
Hence, we have |eI | = O(h6).

To prove (41), it is sufficient to prove that∣∣I?i,j∣∣ = O
(
h2
)

(44)

and (
|I?i,j\Ĩ?i,j|+ |Ĩ?i,j\I?i,j|

)
= O

(
h6
)
. (45)

Define that I??i,j represents the straight-sided quadrilateral determined by
the four vertexes of I?i,j. Then, it is obvious that |I??i,j | = O(h2) by Lemma 3.4.
Notice that |I?i,j| = |I??i,j | + |I?i,j\I??i,j | − |I??i,j\I?i,j|. We denote the blue shaded
area in Figure 5 by Ωb. To prove |I?i,j| = O(h2), it is sufficient to investigate
|Ωb|. By Lemma 3.4 and Lemma 3.5, we have
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|Ωb| =

∣∣∣∣∣
∫ x′4

x′1

f(x′)dx′

∣∣∣∣∣
=

∣∣∣∣∣
∫ x′4

x′1

[f(x′)− 0] dx′

∣∣∣∣∣
=

∣∣∣∣∣
∫ x′4

x′1

f ′′(β(x′))

2!
(x′ − x′1)(x′ − x′4)dx′

∣∣∣∣∣
= O(h4),

(46)

where f ′′(β(x′))
2!

(x′ − x′1)(x′ − x′4) is the Lagrangian interpolation remainder
of the linear interpolation polynomial with information {(x′1, 0), (x′4, 0)} and
β(x′) ∈ [x′1, x

′
4] for all x′. Hence, |I?i,j| = O(h2).

For
(
|I?i,j\Ĩ?i,j|+ |Ĩ?i,j\I?i,j|

)
= O(h6), similar to (46), one can find that it

is sufficient to prove∣∣∣∣∣
∫ x′4

x′1

f (4)(β̃(x′))

4!
(x′ − x′1)(x′ − x′2)(x′ − x′3)(x′ − x′4)dx′

∣∣∣∣∣ = O(h6), (47)

where f (4)(β̃(x′))
4!

(x′ − x′1)(x′ − x′2)(x′ − x′3)(x′ − x′4) is the Lagrangian inter-
polation remainder of the cubic interpolation polynomial with information
{(x′k, f(x′k)}4

k=1. The approximation (47) holds naturally by Lemma 3.4 and
Lemma 3.5.

Remark 3.7. According to Lemma 3.3 and Lemma 3.5, we prove quanti-
tatively that the upstream curved edges are actually smooth curves close to
vertical or horizontal straight edges.

Remark 3.8. Notice that the conclusion is proved based on the assumption
that {v?k}4

k=1 is obtained by exactly solving (3). The numerical error occurred
by the fourth-order RK integrator can be found to be not dominant in this
error analysis. For conciseness, we skip this discussion.

Proposition 3.9. (L2 stability) The numerical update given by (17) is un-
conditionally stable for transport equations with constant coefficients and pe-
riodic boundary condition, if ũ(x, y) is constructed by the fourth-order linear
reconstruction.
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Proof. The proposition is proved by standard von Neumann analysis. The
proof is arranged in Appendix C for conciseness.

4. Numerical tests

4.1. Linear transport equations

In this subsection, two linear transport equations are chosen to test the
non-splitting SL FV WENO scheme. We compare the non-splitting SL FV
scheme with a fourth-order splitting-based SL FV WENO scheme [35] in
terms of accuracy and efficiency. We adopt the 1-D WENO-ZQ [25] for the
splitting scheme.

Unless specified, we set ∆t = CFL
max{|a(x,y,t)|}

∆x
+

max{|b(x,y,t)|}
∆y

and CFL = 10.2.

The PP limiter is applied for the problems with non-negative initial condi-
tions for both schemes.

Example 4.1. (Transport equation with constant coefficients). Consider

ut + ux + uy = 0, x ∈ [−π, π], y ∈ [−π, π]. (48)

with a smooth initial condition u(x, y, 0) = sin(x+ y) and periodic boundary
condition. The exact solution for this problem is u(x, y, t) = sin(x+ y−2t).

Table 1: (Transport equation with constant coefficients). L2 errors and corre-
sponding orders of accuracy of the non-splitting and splitting-based schemes
for (48) with u(x, y, 0) = sin(x+ y) at T = 2.

Non-splitting Splitting
mesh L2 error order L2 error order

40× 40 1.58E-04 — 2.23E-05 —
80× 80 8.40E-07 7.55 1.76E-07 6.99

160× 160 5.16E-08 4.03 1.96E-09 6.49
320× 320 3.22E-09 4.00 5.43E-11 5.17

In Table 1, we show the L2 errors, corresponding orders of accuracy of
the non-splitting and splitting-based SL FV WENO schemes at T = 2. For
this problem, there is no temporal error for both schemes. Hence, the orders
in Table 1 are spatial orders. The spatial order of the non-splitting SL FV
WENO scheme is fourth as expected. The spatial order of the splitting-based
SL FV WENO scheme is fifth. In Figure 6, we present the log-log plot of the
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CPU times vs. the L2 errors of both schemes. For this problem, the splitting-
based SL FV WENO scheme is observed to be much more efficient than the
non-splitting SL FV WENO scheme.

Figure 6: (Transport equation with constant coefficients). Log-log plot of the
CPU times vs. the L2 errors of the non-splitting and splitting-based schemes
for (48) with u(x, y, 0) = sin(x+ y) at T = 2.

Example 4.2. (Swirling deformation flow). Consider

ut − (2πcos2(
x

2
)sin(y)g(t)u)x + (2πsin(x)cos2(

y

2
)g(t)u)y = 0,

x ∈ [−π, π], y ∈ [−π, π],
(49)

where g(t) = cos(πt/T ) and T = 1.5. We consider (49) with zero boundary
condition and a smooth initial condition

u(x, y, 0) =

{
rb0cos( r

b(x)π

2rb0
)6 if rb(x) < rb0,

0, otherwise,
(50)

where rb0 = 0.3π, rb(x) =
√

(x− xb0)2 + (y − yb0)2 and the center of the cosine
bell (xb0, y

b
0) = (0.3π, 0).

We give the L2 errors and corresponding orders of accuracy of the non-
splitting and spitting-based SL FV WENO schemes at t = 1.5 in Table 2.
Fourth order accuracy is observed for the non-splitting SL FV scheme. Under
the same mesh, we observe that the non-splitting SL FV scheme is more
accurate than the splitting-based SL FV scheme. In Figure 7a, we show the
log-log plot of the CPU times vs. the L2 errors of both schemes with the same
settings in Table 2. We observe that the CPU efficiency of the two schemes
are very close. In Figure 7b, with a fixed mesh of 160× 160, we present the
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Table 2: (Swirling deformation flow). L2 errors and corresponding orders of
accuracy of the non-splitting and splitting-based schemes for (49) with initial
condition (50) at t = 1.5.

Non-splitting Splitting
mesh L2 error order L2 error order

40× 40 6.47E-03 — 1.63E-02 —
80× 80 5.82E-04 3.47 2.01E-03 3.02

160× 160 4.47E-05 3.70 9.42E-05 4.41
320× 320 3.90E-06 3.52 5.39E-06 4.13
640× 640 3.28E-07 3.57 3.11E-07 4.12

1280× 1280 2.51E-08 3.71 1.50E-08 4.37
2560× 2560 3.11E-11 9.66 1.15E-10 7.03
5120× 5120 1.37E-12 4.50 2.39E-12 5.59

log-log plot of the CFL numbers vs. the L2 errors. When ∆t is small enough,
the spatial error dominates. Accumulated error increases with reducing CFL,
or ∆t, because more time steps are taken. Hence, the L2 error slightly goes
up as CFL is reduced. We can observe that the temporal orders of the both
schemes are fourth when the temporal error starts to dominate for larger
CFL.

(a) (b)

Figure 7: (Swirling deformation flow). Left: log-log plot of the CPU times
vs. the L2 errors with the same settings in Table 2. Right: log-log plot of
the CFL numbers vs. the L2 errors with a fixed mesh of 160 × 160 for (49)
with initial condition (50) at t = 1.5.

Then, we test (49) with zero boundary condition and a discontinuous
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initial condition shown in Figure 8. In Figure 9, we present the mesh plot and
the contour plot of the numerical solution of the non-splitting SL FV scheme
at t = 0.75. In Figure 10, we show the mesh plot, the contour plot, and two
cross-sections of the numerical solution of the non-splitting SL FV scheme
at t = 1.5. We observe that the non-splitting SL FV WENO scheme captures
the complex structure of the solution. The PP property is also observed.

Figure 8: (Rigid body rotation). The mesh plot (left) and the contour plot
(right) of the discontinuous initial data for (49).

Figure 9: (Swirling deformation flow). The mesh plot (left) and the contour
plot (right) of the numerical solution of the non-splitting SL FV WENO
scheme for (49) with initial condition Figure 8 at t = 0.75.

4.2. Nonlinear Vlasov-Poisson system

The nonlinear VP system describes collisionless plasma with a negligible
magnetic field. In this subsection, we consider the 1-D physical space and
1-D velocity space (1D1V) nonlinear VP system on (x, v, t) ∈ Ωx × R× R+:

ft + vfx + E(x, t)fv = 0, (51)
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Figure 10: (Swirling deformation flow). Top left and top right panels are
the mesh plot and contour plot of the numerical solution of the non-splitting
SL FV WENO scheme for (49) with initial condition Figure 8 at t = 1.5.
Bottom left and bottom right panels present the cross-sections at x = 0 and
y = 1.2.
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E(x, t) = −φx, − φxx(x, t) = ρ(x, t), (52)

where x and v are spatial position and velocity respectively, f(x,v,t) describes
the probability of a particle arises at position x with velocity v at time t, E
is the electric field, φ is the self-consistent electrostatic potential, and ρ =∫
R f(x, v, t)dv − ρ0 is the charge density with ρ0 = 1

|Ωx|

∫
Ωx

∫
R f(x, v, 0)dvdx.

We assume periodic boundary condition on the x-dimension and zero bound-
ary condition on the v-dimension.

For the nonlinear 1D1V VP system, we couple the non-splitting SL FV
WENO scheme with a fourth-order RKEI in the same framework as in [36].
The fourth-order RKEI is a commutator-free Lie group method introduced
in [33] with its Butcher tableau shown in Table 3.

Table 3: CF4.

0
1
2

1
2

1
2

0 1
2

1 1
2

0 0

−1
2

0 1
1
4

1
6

1
6
− 1

12

− 1
12

1
6

1
6

1
4

We briefly summarize the SL FV WENO scheme coupled with CF4 for
the 1D1V VP system as follows:

f
(1)

= f
n

f
(2)

= SLWENO

(
V
(
f

(1)
)
,
1

2
∆t

)
f
n

f
(3)

= SLWENO

(
V
(
f

(2)
)
,
1

2
∆t

)
f
n

f
(4)

= SLWENO

(
−1

2
V
(
f

(1)
)

+ V
(
f

(3)
)
,
1

2
∆t

)
f

(2)

f
n+1

= SLWENO

(
− 1

12
V
(
f

(1)
)

+
1

6
V
(
f

(2)
)

+
1

6
V
(
f

(3)
)

+
1

4
V
(
f

(4)
)
,
1

2
∆t

)
SLWENO

(
1

4
V
(
f

(1)
)

+
1

6
V
(
f

(2)
)

+
1

6
V
(
f

(3)
)
− 1

12
V
(
f

(4)
)
,
1

2
∆t

)
f
n
,

(53)
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where V
(
f

(k)
)

represents the numerical velocity field obtained by a given

FV solution f
(k)

, SLWENO
(
V
(
f

(k)
)
, 1

2
∆t
)
f

(l)
represents the solution

evolved from f
(l)

with time step 1
2
∆t and velocity field V

(
f

(k)
)

by the non-

splitting SL FV WENO scheme. For V
(
f

(k)
)

:=
(
v, Ẽ(x)

)
, we approximate

the electric field as follows.

1. Compute the cell averages of the charge density {ρi} := {∆v
∑

j f
(k)

i,j −
ρ0}.

2. Compute the nodal values of the charge density {ρi} at {xi} by {ρi}
with fifth-order accuracy:

ρi =
3

640
ρi−2 −

29

480
ρi−1 +

1067

960
ρi −

29

480
ρi+1 +

3

640
ρi+2 ∀i. (54)

3. Solve the Poisson090005s equation (52) and compute the nodal values
of the electric field {Ei} at {xi} by a Fast Fourier transform (FFT)
solver.

4. Reconstruct a piecewise P 4 polynomial Ẽ(x) satisfying

Ẽ(x) = Ẽi(x) ∀x ∈ Ii, ∀i, (55)

with Ẽi(x) ∈ P 4(Ii) being the interpolation polynomial interpolated
by {(xi+l, Ei+l)}2

l=−2 for all i.

In this subsection, standard tests such as Landau damping, two stream
instability, and bump-on-tail instability are tested. We use an FFT solver
for the Poisson090005s equation (52) for both non-splitting and splitting SL
FV WENO schemes. Unless otherwise specified, we set the computational
domain as [0, 4π]× [−vmax, vmax] with vmax = 2π and set Nx = 128, Nv = 256,
CFL = 10.2, ∆t = CFL/ (vmax/∆x+ max{|E|}/∆v). We adopt the PP
limiter for all the tests below.

Example 4.3. (Landau damping). Consider the VP system with the initial
condition

f(x, v, t = 0) =
1√
2π

(1 + αcos(kx)) exp

(
−v

2

2

)
, (56)

where k = 0.5, α = 0.01 for the weak Landau damping and k = 0.5, α = 0.5
for the strong Landau damping.
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In Table 4, we present the L2 errors and corresponding orders of accuracy
of the non-splitting and splitting-based SL FV WENO schemes at T = 2 with
CFL = 10.2. The errors are computed by comparing the solution to a refer-
ence solution with mesh refinement. As shown, the order of accuracy for the
non-splitting SL FV WENO scheme is 4th as expected. For the same mesh,
the non-splitting scheme is observed to be more accurate than the splitting-
based scheme. In Figure 11a, we show the log-log plot of the CPU times vs.
the L2 errors of the non-splitting and splitting-based SL FV WENO schemes
with the same settings in Table 4. As shown, the splitting-based scheme is
more efficient. In Figure 11b, the log-log plot of the CFL numbers vs. the
L2 errors of the non-splitting and splitting-based SL FV schemes with a fixed
mesh of 128 × 128 at T = 2 is shown. The fourth-order temporal orders of
both schemes are observed.

Table 4: (Strong Landau damping). L2 errors and corresponding orders of
accuracy of the non-splitting and splitting-based SL FV WENO schemes for
strong Landau damping at T = 2.

Non-splitting Splitting
mesh L2 error order L2 error order

16× 16 2.74E-03 — 2.40E-02 —
32× 32 2.15E-04 3.67 5.68E-03 2.08
64× 64 1.36E-05 3.98 4.15E-04 3.77

128× 128 5.30E-07 4.68 1.79E-05 4.53
256× 256 2.90E-08 4.19 1.43E-06 3.65

In Figure 12, we show the mesh plot and the contour plot of the numerical
solution of the non-splitting SL FV WENO scheme at T = 40. We observe
that the filamentation structure of strong Landau damping problem is well
captured and the numerical solution is non-negative.

For 1D1V VP system, there are several conservative quantities including
mass, Lp norms, energy and entropy [5]. In Figure 13, we present the rela-
tive deviation of mass and the L1 norm for the non-splitting SL FV WENO
scheme for weak and strong Landau damping which are observed to be around
O(10−13). Hence, the proposed non-splitting SL FV WENO scheme enjoys
the mass conservation and PP property. For other conservative quantities,
the proposed scheme is not designed to exactly preserve them. The perfor-
mance of preserving those quantities is similar to the results in [5, 24]. We
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(a) (b)

Figure 11: (Strong Landau damping). Left: log-log plot of the CPU times
vs. the L2 errors with the same settings in Table 4. Right: log-log plot of
the CFL numbers vs. the L2 errors with a fixed mesh of 128× 128 for strong
Landau damping at T = 2.

Figure 12: (Strong Landau damping). The mesh plot (left) and the contour
plot (right) of the numerical solution of the non-splitting SL FV WENO
scheme at T = 40.

28



skip them for saving space. For the same reason, we skip presenting the time
history of the electric field to save space.

Figure 13: (Landau damping). Performance of mass conservation and PP
properties of the non-splitting SL FV WENO scheme for the weak (left) and
strong (right) Landau damping with vmax = 10.

Example 4.4. (Two stream instability [37]). Consider the symmetric warm
two stream instability, i.e. the VP system with the initial condition

f(x, v, t = 0)

=
2

7
√

2π
(1 + 5v2) (1 + α ((cos(2kx) + cos(3kx)) /1.2 + cos(kx))) exp

(
−v

2

2

)
,

(57)

where α = 0.01 and k = 0.5. On the left of Figure 14, we show the contour
plot of the numerical solution of the non-splitting SL FV WENO scheme at
T = 53. The result is comparable to the results in [13, 21].

Example 4.5. (Bump-on-tail instability [38, 24].) Consider the bump-on-
tail instability with the initial condition

f(x, v, t = 0) =

(
npexp

(
−v

2

2

)
+ nbexp

(
−(v − u)2

2v2
t

))
(1 + 0.04cos(kx)) ,

(58)
where np = 9

10
√

2π
, nb = 2

10
√

2π
, u = 4.5, vt = 0.5 and k = 0.3. The

computational domain for this test is [0, 20
3
π] × [−13, 13]. On the right of

Figure 14, we show the contour plot of the numerical solution of the non-
splitting SL FV WENO scheme at T = 40. As shown, the numerical result
is consistent with the ones in [24, 35].
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Figure 14: Numerical solution of the non-splitting SL FV WENO scheme
for the two stream instability at T = 53 (left) and bump-on-tail instability
(right) at T = 40.

4.3. Guiding center Vlasov model

The guiding center Vlasov model describes a highly magnetized plasma
in the transverse of a tokamak [39, 4]. It can be written as

ρt +∇ ·
(
E⊥ρ

)
= 0, (59)

−∆Φ = ρ, E⊥ = (−Φy,Φx), (60)

where ρ(x, y, t) represents the charge density and E is the electric field.
For the 2-D guiding center Vlasov model (59)-(60), we apply the same

procedure introduced in (53). The only difference is the simulation of the ve-
locity field. Similar to (53), we denote a numerical velocity field obtained by

a FV solution ρ(k) by V
(
ρ(k)
)

:=
(
Ẽ1(x, y), Ẽ2(x, y)

)
. We briefly summarize

the procedure to construct V
(
ρ(k)
)

as follows.

1. Compute the nodal values of the charge density {ρi,j} at (xi, yj) by

{ρ(k)
i,j } with fourth-order accuracy:

ρi,j = P (xi, yj), (61)

where P ∈ P 3(Ii,j) is obtained with the same stencil as q0(x, y) intro-
duced in Section 2.2.

2. Solve the Poisson090005s equation (60) and compute the nodal values
of the velocity field {(E1, E2)} at {(xi, yj)} by a FFT solver.

3. Reconstruct two piecewise P 3 polynomial
(
Ẽ1(x, y), Ẽ2(x, y)

)
with the

same stencil of q0(x, y) introduced in Section 2.2 except that we use the
nodal values here.
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For this problem, we set Nx = 256, Ny = 256, and

∆t = CFL/ (max{|E1|}/∆x+ max{|E2|}/∆y) .

Example 4.6. (Kelvin-Helmholtz instability problem). Consider the guiding
center Vlasov model with initial condition

u(x, y, 0) = sin(y) + 0.015cos(kx), x ∈ [0, 4π], y ∈ [0, 2π], (62)

where k = 0.5, and with the periodic boundary condition. In Table 5, we
present the L2 errors and corresponding orders of accuracy of the non-splitting
and splitting-based SL FV WENO schemes at T = 5 with CFL = 10.2. For
this problem, the reference solutions are obtained in the same way as in strong
Landau damping. We observe that the order of accuracy for the non-splitting
SL FV WENO scheme is fourth as expected. However, the convergence rate
of the splitting-based SL FV scheme is reduced to first order. In Figure 15a,
we show the log-log plot of the CPU times vs. the L2 errors of the non-
splitting and splitting-based SL FV WENO schemes with the same settings
in Table 5. For this problem, the non-splitting scheme is observed to be much
more efficient than the splitting-based scheme. Figure 15b shows the log-log
plot of the CFL numbers vs. the L2 errors of both schemes with a fixed mesh
of 128× 128 at T = 5. As shown, the temporal order of the non-splitting SL
FV WENO scheme is fourth and that of the splitting scheme is first.

Table 5: (Kelvin-Helmholtz instability problem). L2 errors and correspond-
ing orders of accuracy of the non-splitting and splitting-based SL FV WENO
schemes for Kelvin-Helmholtz instability problem at T = 5 with CFL = 1.

Non-splitting Splitting
mesh L2 error order L2 error order

16× 16 3.49E-03 — 2.35E-02 —
32× 32 2.64E-04 3.73 1.28E-02 0.88
64× 64 1.04E-05 4.66 6.80E-03 0.91

128× 128 4.65E-07 4.49 3.51E-03 0.95
256× 256 3.12E-09 7.22 1.79E-03 0.97
512× 512 8.89E-11 5.14 9.03E-04 0.99

In Figure 16, we provide the contour plots of the numerical solution of
the non-splitting SL FV WENO scheme with CFL = 1 and CFL = 10.2 at
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(a) (b)

Figure 15: (Kelvin-Helmholtz instability problem). Left: log-log plot of the
CPU times vs. the L2 errors of the two schemes with the same settings in
Table 5. Right: log-log plot of the CFL numbers vs. the L2 errors of the
two schemes with a fixed mesh of 128× 128 for Kelvin-Helmholtz instability
problem at T = 5.

T = 40. The shapes of the two results are consistent with the existing results
in the literature [36, 21]. In Figure 17, we present the contour plots of the
numerical solution of the splitting-based SL FV WENO scheme with CFL
= 0.1 and CFL = 1 at T = 40. We observe that the numerical solution
is similar to the ones in Figure 16 when CFL = 0.1. When CFL = 1,
the solution from the splitting-based scheme is observed to have significant
deviation from the reference solution.

Figure 16: (Kelvin-Helmholtz instability problem). Contour plots of the
numerical solution of the non-splitting SL FV WENO scheme with CFL =
1 (left) and with CFL = 10.2 (right) at T = 40.

It is well known that the 2-D guiding center Vlasov model has three con-
servative physical quantities over time, i.e. mass, energy, and enstrophy
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Figure 17: (Kelvin-Helmholtz instability problem). Contour plots of the
numerical solution of the splitting-based SL FV WENO scheme with CFL =
0.1 (left) and CFL = 1 (right) at T = 40.

[21, 36]. For mass conservation, both the non-splitting and splitting-based
SL FV WENO schemes are mass conservative by O(10−13) magnitude de-
viation. We skip this for saving space. We show the relative deviation of
energy and enstrophy for the two schemes in Figure 18 with CFL = 10.2.
We observe that the performance of the non-splitting SL FV WENO scheme
is better than the splitting-based SL FV WENO scheme.

Figure 18: (Kelvin-Helmholtz instability problem). Relative Deviation of
energy (left) and enstrophy (right) for the non-splitting and splitting-based
SL FV WENO schemes with CFL = 10.2.

4.4. Incompressible Euler equation

The 2-D incompressible Euler equation in vorticity-stream function for-
mulation reads

ωt +∇ · (uω) = 0, (63)
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∆ψ = ω, u = (−ψy, ψx), (64)

where ω(x, y, t) is the vorticity of the fluid, ψ is the stream-function deter-
mined by Poisson090005s equation, and u := (u1, u2) is the velocity field.
The form of (63)-(64) is almost the same with (59)-(60) except the sign of
the Poisson090005s equation. Hence, the procedure for solving (63)-(64) is
similar to the one of solving the guiding center Vlasov model. We skip the
description of this procedure for brevity. Similar to the guiding center Vlasov
model, the mass, energy, and enstrophy are conserved for the 2-D incompress-
ible Euler equation in vorticity-stream function formulation [21, 36]. For this
problem, we set Nx = 256, Ny = 256, CFL = 10.2, and set the time step as
∆t = CFL/ (max{u1}/∆x+ max{u2}/∆y).

Example 4.7. (Vortex patch problem). Consider the incompressible Euler
equations on the domain [0, 2π]× [0, 2π] with the initial condition

u(x, y, 0) =


−1, if (x, y) ∈ [π

2
, 3π

2
]× [π

4
, 3π

4
],

1, if (x, y) ∈ [π
2
, 3π

2
]× [5π

4
, 7π

4
],

0, otherwise,

(65)

and the periodic boundary condition.
In Figure 19a, we show the contour plot of the numerical solution of the

non-splitting SL FV WENO scheme at T = 10. The numerical solution is
non-oscillatory thanks to the essentially non-oscillatory nature of the WENO
reconstruction procedure in space. This result is comparable to the existing
ones in the literature [17, 36, 21].

In Figure 20, We present the performance of preserving energy and en-
strophy for the non-splitting and splitting-based SL FV WENO schemes. We
observe that the non-splitting scheme performs better.

Example 4.8. (Shear flow problem). Consider the incompressible Euler
equations in the domain [0, 2π]× [0, 2π] with the initial condition

u(x, y, 0) =

δcos(x)− 1
ρ
sech2

(
y−π/2
ρ

)
, if y ≤ π,

δcos(x) + 1
ρ
sech2

(
3π/2−y

ρ

)
, if y > π,

(66)

where δ = 0.05 and ρ = π/15, and the periodic boundary condition.
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(a) (b)

Figure 19: Contour plots of the numerical solution of the non-splitting SL
FV WENO scheme with CFL = 10.2 for vortex patch problem at T = 10
(left) and shear flow problem at T = 8 (right).

Figure 20: (Vortex patch problem). Relative Deviation of energy (left) and
enstrophy (right) for the non-splitting and splitting-based SL FV WENO
schemes with CFL = 10.2.
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In Figure 19b, we provide the contour plot of the numerical solution of the
non-splitting SL FV WENO scheme at T = 8. The performance is similar to
the results in [17, 36, 21]. In Figure 21, the time history of the relative devi-
ation of the energy and enstrophy for the non-splitting and splitting-based SL
FV WENO schemes is provided. The non-splitting SL FV WENO scheme has
better performance compared with the splitting-based SL FV WENO scheme.

Figure 21: (Shear flow problem). Relative Deviation of energy (left) and
enstrophy (right) for the non-splitting and splitting-based SL FV WENO
schemes with CFL = 10.2.

5. Conclusion

In this paper, we introduce a fourth-order SL FV WENO scheme without
operator splitting for 2-D linear transport equations, the nonlinear Vlasov-
Poisson (VP) system, the guiding center Vlasov model and the incompressible
Euler equation in the vorticity-stream function formulation. The proposed
SL FV WENO scheme is mass conservative, PP, unconditionally stable under
linearized settings, and fourth-order accurate in space and time. Numerical
performances are observed through an extensive set of test problems.
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Appendices
A. Constructing a cubic curve

Assume that the coordinate of {v?k} in x − y space is {(xk, yk)}. Denote
the cubic curve (6) by C. Then, we do the following steps to construct (6)
(see Figure A.22).

v?1 v?2
v?3

v?4

ξ

η

Figure A.22: The dashed line represents C; the blue arrows represent the new
coordinate ξ − η; the black dots are the four characteristic feet {v?k}.

(a) Based on v?1 and v?4, we construct an affine coordinate transformation
from x− y to ξ− η such that (x1, y1) and (x4, y4) are (−1, 0) and (1, 0)
in ξ − η space, respectively:{

ξ(x, y) = ax+ by + c,

η(x, y) = −bx+ ay + d,
(A.1)

where

a =
2(x4 − x1)

(x1 − x4)2 + (y1 − y4)2
,
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b =
2(y4 − y1)

(x1 − x4)2 + (y1 − y4)2
,

c =
x2

1 − x2
4 + y2

1 − y2
4

(x1 − x4)2 + (y1 − y4)2
,

d =
2(x1y4 − x4y1)

(x1 − x4)2 + (y1 − y4)2
.

The reverse transformation of (A.1) can be constructed accordingly:{
x = x4−x1

2
ξ − y4−y1

2
η + x4+x1

2
,

y = y4−y1

2
ξ + x4−x1

2
η + y4+y1

2
.

(A.2)

(b) Get the ξ − η coordinates of v?2 and v?3 by (A.1) as (ξ2, η2) and (ξ3, η3).
Based on (−1, 0), (ξ2, η2), (ξ3, η3) and (1, 0), we construct a cubic in-
terpolation

η(ξ) = η2
(ξ2 − 1)(ξ − ξ3)

(ξ2
2 − 1)(ξ2 − ξ3)

+ η3
(ξ2 − 1)(ξ − ξ2)

(ξ2
3 − 1)(ξ3 − ξ2)

. (A.3)

(c) Substituting (A.3) into (A.2), we obtain the parametric equation (6) of
C.

B. The Clipping procedure

In Appendix B.1, we first introduce the procedure to determine the in-
tersection points between a cubic curve and the Eulerian mesh. Then, in
Appendix B.2 and Appendix B.3, we introduce methods to determine the
outer and inner integral segments based on the intersection points.

B.1. Determining intersection points

Take C as an example, we do the following steps to determine all the
intersection points between C and the Eulerian mesh (see Figure B.23 (a)).

(a) By solving x′(ξ) = 0 and y′(ξ) = 0, we find the minimum and maxi-
mum values of C in x and y directions and determine the mesh lines
intersecting C (see Figure B.23 (a)).
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(b) If x = xi− 1
2

intersect C, we solve

x(ξ)− xi− 1
2

= 0, (B.1)

and choose the real single roots in [−1, 1] to determine the points in
x = xi− 1

2
. We do the same operation for all the lengthways mesh lines

determined in step (a). We define such intersection points as type-1
intersection points.

(c) If y = yj− 1
2

intersect C, we solve

y(ξ)− yj− 1
2

= 0, (B.2)

and choose the real single roots in [−1, 1] to the intersection points in
y = yj− 1

2
. Similarly, we do the same thing for all the widthways mesh

lines determined in step (a). We define such intersections as type-2
intersection points.

(d) Order all the intersection points by ξ from small to large.

B.2. Determining outer integral segments

For a single cubic curved edge, taking C as an example, the procedure to
obtain the outer integral segments are shown as follows.

(a) We connect v?1, the intersections between v?1 and v?4, and v?4 in turn based
on their ξ values from small to large along the cubic curve C. Then,
we define these segments as the outer segments in C, denoted as {Ck}
(see Figure B.23 (b)). Finally, we determine the location or index of
a outer segment by the information of the start and end point of this
segment.

(b) In a given cubic-curved quadrilateral upstream cell, we redefine the di-

rection of these outer segments as counterclockwise with respect to Ĩ?i,j
and accomplish the determination of {Lki,j;p,q}.

B.3. Determining inner integral segments

We determine the inner integral segments, {Ski,j;p,q}, of Ĩ?i,j by the following
steps.
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(a) Determine the mesh lines intersecting Ĩ?i,j by the the maximum and min-

imum values of Ĩ?i,j.

(b) If x = xi− 1
2

intersects Ĩ?i,j, we first collect all the intersection points in

x = xi− 1
2

of the four edges of Ĩ?i,j.

(c) After all the intersection points in x = xi− 1
2

are collected, we order the
collected intersections and vertexes by their y coordinates from small
to large, denoted as {pk}. Then, we define p1p2 and p3p4, if they exist,

as the super inner segments of Ĩ?i,j in x = xi− 1
2

(see Figure B.24).

(d) For a given lengthways super inner segment, say p1p2, we determine
the inner integral segments to be the subsegments of p1p2 belong to
specific Eulerian cells. The location or index and the direction of a
given inner integral segments can be easily determined by the Eulerian
cell it belongs to (see Figure B.24 (a)).

(e) We do step (b)-(d) for all lengthways mesh lines determined in step

(a) and determine all the lengthways inner integral segments of Ĩ?i,j.

(f) Then, we perform similar procedures to determine all the widthways

inner segments of Ĩ?i,j.

In practical programming, two implementation issues arise due to the
truncation error of the floating point system. Firstly, an intersection point
near one end of a cubic curve can be incorrectly determined when this end
is very close to an Eulerian mesh line. Secondly, when a cubic curve and a
mesh line almost overlap, the locations or indices of outer segments can be
incorrectly determined. Both the two kinds of mistakes cause chaos in latter
integral procedure. Here, we just remind readers the two phenomena and do
not state a standard way to treat them, since they are not the key points of
this paper.

C. Proof of Proposition 3.9

Proof. Consider (2) with constant coefficients, a(x, y, t) ≡ a, b(x, y, t) ≡ b,
and periodic boundary condition. We define that κ1 = a∆t

∆x
and κ2 = b∆t

∆x
.

Without loss of generality, we define that a > 0, b > 0, 0 ≤ κ1 ≤ 1, and
0 ≤ κ2 ≤ 1. When κ1 or κ2 is greater than 1, the linear scheme could reduce
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to solution shifting on a uniform mesh together with the scheme having
0 ≤ κ1 ≤ 1 and 0 ≤ κ2 ≤ 1.

Then (17) with linear reconstruction is summarized as

un+1
i,j =

1

∆x∆y

[∫ x
i− 1

2

x
i− 1

2
−κ1∆x

∫ y
j− 1

2

y
j− 1

2
−κ2∆y

ũ(i−1,j−1)(x, y)dxdy

+

∫ x
i− 1

2
+(1−κ1)∆x

x
i− 1

2

∫ y
j− 1

2

y
j− 1

2
−κ2∆y

ũ(i,j−1)(x, y)dxdy

+

∫ x
i− 1

2

x
i− 1

2
−κ1∆x

∫ y
j− 1

2
+(1−κ2)∆y

y
j− 1

2

ũ(i−1,j)(x, y)dxdy

+

∫ x
i− 1

2
+(1−κ1)∆x

x
i− 1

2

∫ y
j− 1

2
+(1−κ2)∆y

y
j− 1

2

ũ(i,j)(x, y)dxdy

]
.

(C.1)

We prove the proposition via von Neumann stability analysis by assuming

unp,q =uneIξ1p∆xeIξ2q∆y for p = i− 3, i− 2, . . . , i+ 2; q = j − 3, j − 2, . . . , j + 2

(C.2)

and

un+1
i,j =un+1eIξ1i∆xeIξ2j∆y, (C.3)

where I =
√
−1. Substituting (C.2) and (C.3) into (C.1), we have

un+1 = A(κ1, κ2, ζ1, ζ2)un, (C.4)

where ζ1 = ξ1∆x, ζ2 = ξ2∆y, and A(κ1, κ2, ζ1, ζ2) is the amplification fac-
tor. The explicit expression of A(κ1, κ2, ζ1, ζ2) is extremely complicated.
Hence, we skip this expression for brevity. Now, it is sufficient to verify
that |A(κ1, κ2, ζ1, ζ2)| ≤ 1 for any κ1, κ2 ∈ [0, 1], and ζ1, ζ2 ∈ [0, 2π]. Since
we can not determine the maximum and minimum values of |A(·, ·, ·, ·)| theo-
retically, we numerically verify this relation by sampling 1000 uniform points
in κ1, κ2, ζ1, and ζ2 domains, respectively. We find that all the modulus of
A computed by the sampled points are not greater than 1, which validates
Proposition 3.9.
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Figure B.23: Left: the red straight lines represent the mesh lines intersect-
ing C; the red circle represents a type-1 intersection point; the red triangle
represents a type-2 intersection point. Right: the black arrows represent the
directions of the outer segments.
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Figure B.24: Schematic illustration for determining inner integral segments.
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