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Abstract: We study numerically external stimuli enforced annihilation of a pair of daughter nematic
topological defect (TD) assemblies bearing a relatively strong topological charge |m| =3/2. A
Landau- de Gennes phenomenological approach in terms of tensor nematic order parameter is used
in an effectively two-dimensional Cartesian coordinate system, where spatial variations along the
z-axis are neglected. A pair of {m = 3/2,m = —3/2} is enforced by an appropriate surface anchoring
field, mimicking an experimental sample realization using the AFM scribing method. Furthermore,
defects are confined within a rectangular boundary that imposes strong tangential anchoring. This
setup enables complex and counter-intuitive annihilation processes on varying relevant parameters.
We present two qualitatively different annihilation paths, where we either gradually reduce the
relative surface anchoring field importance or increase an external in-plane spatially homogeneous
electric field E. The creation and depinning of additional defect pairs {%, - %} mediates the

annihilation in such a geometry. Furthermore, we illustrate the absorption of TDs by sharp edges of
the confining boundary, accompanied by m = +*1/4 < +1/4 winding reversal of edge
singularities, and also E-driven zero-dimensional to one-dimensional defect core transformation.

Keywords: liquid crystals; topological defects; annihilation; order reconstruction.

1. Introduction

Topological defects (TDs) [1] correspond to localized regions within ordered media where the
relevant order parameter field is frustrated and topologically protected. In most cases, at the defect
origin, the continuum field, which describes defectless equilibrium configurations, is not uniquely
defined [2]. In general, TDs appear as a consequence of the universal concept of broken symmetry
and are of interest in all branches of physics [1,3]. The key topological feature of a topological defect
is fingerprinted in its topological charge [1,2], which is a conserved quantity. Corresponding
topological charge conservation laws regulate transformations (decomposing, merging,
depinning ...) of defect configurations.

Owing to their topological origin, the physics of TDs exhibits several universal features.
Consequently, it is of interest to find physical systems in which TDs are relatively easily
experimentally formed, manipulated, and observed, which allows detailed and controlled analysis
of the behavior of interest. For example, in the last decades, several studies analyzed quench driven
coarsening of TDs in different condensed matter systems to gain information on structural details in
the early universe [3-5]. Condensed systems allow systematic and controlled experimental analysis,
while related phenomena of the universe could be only indirectly and passively observed.

Nematic liquid crystals (NLC) [6] offer an ideal testbed to study TDs [7-10] due to their unique
combination of liquid behavior, softness, experimentally-tractable characteristic scales of time and
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spatial responses, and optical anisotropy. Furthermore, NLC structures possessing TDs could be
exploited in various (in particular electro-optical) applications [11,12]. The uniaxial nematic structure
is commonly described by the mesoscopic nematic director field 7, which points along the local
uniaxial NLC order, and the states *f are physically equivalent (the so-called head-to-tail
invariance) [7]. In bulk, nematic equilibrium #i is homogeneously aligned along a symmetry
breaking direction. Several studies have been performed on thin LC films, in which relatively simple
quasi-two-dimensional (2D) behavior [13-17] is observed. Despite the simplicity, such systems
display rich and complex behavior, in particular with respect to topological defect transformations.
In 2D NLCs only point defects exist. The role of topological charge is played by the winding number
m [7] (also referred to as the Frank index). It determines the total rotation of 7 on encircling the defect
core counterclockwise. Due to the head-to-tail invariance, m can possess half-integer and whole
integer numbers. Some typical TDs are shown in Figure 1. TDs bearing positive and negative m are
commonly referred to as defects and antidefects, respectively, and pairs {m, —m} in general tend to
annihilate into a defectless configuration.
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Figure 1. Examples of TDs bearing (a) m=1/2; (b) m=1; (c) m=3/2; (d) m=-1/2; (e) m=-1; (f) m=-3/2.

In general, high values of m are rarely realized. Namely, the free energy costs of a defect scales
with m?2 [16]. Consequently, if one enforces locally a defect bearing |m| > 1/2, it tends to decompose
[16-18] to elementary defects bearing |m| = 1/2, where the charge conservation law is obeyed. Note
that the core structure of single |m| = 1/2 disclination is well known. In terms of the tensor nematic
order parameter it was originally determined by Schopohl and Sluckin [13]. Typical structural
changes by traversing the defect core are shown in Figure 2. The orientational frustration is resolved
via the order reconstruction (OR) mechanism [19]. In general, this mechanism is realized in cases
where a relatively large orientational mismatch in nematic order is imposed on a scale comparable
[19-23] to the nematic biaxial order parameter relaxation length ¢,. The latter is relatively weakly
temperature-dependent and is of order a few tens of nanometer [23]. The presence of the order
reconstruction (OR) mechanism within the core was confirmed experimentally [24] in lyotropic
chromonic LCs. Namely, such LCs exhibit a micron-scale nematic biaxial order parameter correlation
length ¢, that provides experimental insight into the core structure, whose characteristic linear size
is comparable to &,,.
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Figure 2. Core structure of a typical m=1/2 disclination. (a) The biaxial spatial variation, measured via
the biaxiality parameter 2 (see Eq.(3)). The core structure is characterized by a rim, where g2 = 1.
The rim is circular in the approximation of equal elastic constants. The center of the core exhibits
negative uniaxiality. (b) Characteristic changes in the (s, ) phase space on crossing the center of
disclination. (c¢) Schematic variation of the nematic mesoscopic local profile within the core. Here
numbers 1 to 5 mark points representing mesoscopic changes on traversing the defect core along a
chosen direction.

In this paper, we focus on the annihilation of surface enforced relatively highly charged {defect,
antidefect} pair bearing the winding number |m| = 3/2 in an effectively 2D nematic cell confinement.
We enforce the annihilation via different routes: i) by changing effective elastic LC properties, or ii)
by increasing an external in-plane electric field strength. We demonstrate that annihilation proceeds
via two qualitatively different channels, whose realization is rather counterintuitive.

2. Methods

We use the Landau-de Gennes mesoscopic approach in terms of the traceless and symmetric
tensor nematic order parameter Q [6]. In its eigen frame, it is expressed as [20]

3
Q= Zli e;®e;, 1)
=1

where 4; and &; stand for Q eigenvalues and eigenvectors, respectively. Uniaxial states are
commonly described by [6]

Q =5 (r@n -11). @)

The nematic uniaxial order parameter S € [-1/2,1] quantifies the extent of fluctuations about the
local nematic director #1, and S >0 (S < 0) reflects “prolate” (“oblate”) shape in the ellipsoidal
presentation of the LC mesoscopic order. We henceforth refer to such configurations as positive
uniaxial and negative uniaxial nematics.

Biaxial states could be assessed if elastic distortions are present. The degree of biaxiality is well

measured by the biaxiality parameter [25]
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2_4_6 tr(Q3)?
p*=1-" i El01]. ©)

The limiting values f? =0 and B? = 1 correspond to a uniaxial nematic state and a nematic order
exhibiting the maximal biaxiality, respectively.
The eigenvalues can be parametrized as

2 2 T 2 T
Al=§ scos(lp),/12=—§ scos(lp+§),/13=—§ scos(lp—g), 4)

5= /;ter. 5)

Note that the eigenvalues {44, 1,, A3} can be expressed using two independent variables (i.e., {s,3})

due to the constraint Y.}_; 27 = 0. The (s,3) order parameter space is shown in Figure 2b. The isotropic
2?”, and P = — 2?”

exhibit positive uniaxial states along &;, &,, and &3, respectively. States Y =m, P = —g, and Y =

where

order is reflected by s = 0. Nematic configurations correspondingto ¥ =0, ¥ =

s . . . ~ ~ ~ L) . .
5 correspond to the negative uniaxial states along &, &;, and &;. The remaining states are biaxial.

In this parametrization it holds B% = sin*(3y). Any continuous change in nematic order is
fingerprinted in a continuous change in the order parameter space.

In our study we will consider nematic structures in the Cartesian coordinate system (x,y,z),
whose coordinate unit vectors are given by the triad (&,, &,, &,). Of+ interest are quasi-two-
dimensional structures, where the Q eigenvector along the z-axis remains fixed (i.e., €; = &,). In this
case, in addition to {s,3}, only one additional parameter (i.e. an angle #) is needed to determine Q,
describing the rotation of the Q eigenframe with respect to the Cartesian frame:

e, = é,sinf + e,cos0, (6a)

e, = —é,cosf + &,sind. (6b)

Presentation of Q in terms of {s,3,0} is useful to illustrate or guess different possible Q
configuration variations along a given path in real space connecting two sites imposing different
nematic order. An example is illustrated in Figure 2, where one crosses the core of |m| = 1/2 defect.

However, this Q representation does not provide a one to one mapping of each component (is
not injective) [36]. For this reason we used in simulations parametrization given by

Q = (ql + qS)éx®éx + (_ql + qS)éy®éy +q; (éx®éy + éy®éx) - 2q3éz®ézr (7)
in terms of variational fields {qy,q,,q3}. It holds A, = g5 ++/q? +q2, A, =q5 —+/q? + q%, and
A3 = —2q3. Note that the exchange of eigenvalues [13] between A, and A, corresponds to the

condition /q? + q = 0. It was originally introduced to describe the elastic deformation within the
core structure of [m| = 1/2 wedge defects [13]. The basic mechanism enabling this transformation is
commonly referred to as order reconstruction [12,19].

2.1. Free energy

We express the free energy F of a confined LC as a sum of nematic condensation (f;), elastic (f,),
external electric field (ff), and surface ( fs(l)) free energy density contributions:

F=[(fotfot f)dr+ 5. fOdr. (®)

Here d3r and d?r stand for the volume and area measures, and the superscript O refers to the i-th
confining substrate. The free energy densities are expressed using the standard Landau-de Gennes
expansion [6] in Q. We take into account only the most essential symmetry allowed contributions to
illustrate phenomena of interest [6,20,26]:
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fo = ag(T—=THtrQ?> — b trQ3 + c(trQ?)?, (9a)
L
fe= EIVQIZ, (9b)
fr= sozA “E.QF, (9¢)
O
= =@ - QY (9d)

Here ay, b, c are positive material-dependent constants, T* stands for the isotropic supercooling
temperature, L is a positive representative nematic elastic constant (i.e., we use the single elastic
constant approximation), E stands for an external electric field, Ae is the dielectric anisotropy (we
limit to materials with Ae > 0), w(®>0 is the anchoring strength coefficient at the i-th confining
surface, which enforces nematic order described by Qg [26].

2.2 Geometry of the problem

We study nematic configurations inside a three-dimensional well with square cross section of
length R and thickness h<<R. The geometry of the problem is depicted in Figure 3, where we use
Cartesian coordinate system (x,y,z). At the lateral walls (Figure 3a) we enforce strong uniaxial
tangential anchoring conditions:

Qs(x = —R/2,,7) = Qu(x = R/2,7,2) = 5., (8,88, — 1), (10a)

1
QY = —R/2,2) = Qux,y = R/2,7) = S,q (.82, —51). (10b)

At the bottom (command) plate we enforce the nematic pattern consisting of a pair {defect, antidefect}
of strength {m = m; = —3/2,m = m, = 3/2} placed at (x1,y;) and (x, y,):

Qs(x,y,z = 0) = S, (e®2 1), (11a)
é =e,cost +&,sinf, 6 =Y m;tan”" (%) (11b)

Typically we set (x; =0,y; = —=0.25 R) and (x, =0,y, = 0.25 R). The opposite plate enforces
degenerate tangential anchoring.

(a) (b)
A
e, R/2 ~—————>7
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Figure 3. The geometry of the problem. (a) NLC cell of length R and thickness h<<R. At the lateral
walls we enforce strong tangential anchoring (along &, or &,). At the bottom command plate a pair

{m =3/2,m = —3/2} of surface defects is enforced. The top plate imposes degenerate tangential
anchoring. (b) The command plate imposed nematic pattern in the (x,y) plane.
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This setup mimics samples which could be realized experimentally using, for instance, the
atomic force microscope (AFM) scribing method [27]. In a typical experimental setup a nematic LC is
confined within a thin plane-parallel cell, where at least one (command) surface imposes anchoring
conditions inscribed via an AFM stylus [27], while the opposing surface imposes a degenerate
tangential anchoring. Furthermore, in some simulations we switch on a spatially homogeneous
electric field E = Ee,, along the y-axis.

In simulations, we assume that the cell is thin enough so that the nematic structure is effectively
two dimensional, exhibiting only variations in the (x,y) plane. Consequently, we use in numerical
simulation the parametrization for the nematic tensor order parameter [22] given by Eq.(7), where
g1 = q:(x,¥), 92 = ¢2(x,¥), and g3 = q3(x,y) are the variational parameters. In this parametrisation
e, is always an eigenvector of Q.

For presentational purposes, we introduce the dimensionless temperature t = (T —T") /(T —
T*) and material characteristic lengths [20]:

_ LS
Ef - w’solAlez ’ (12a)

£ = o Le 12b
P73 Bra+vi-o) (126)
L
4, =L (12¢)
w

The quantity ¢, stands for the external field nematic extrapolation length, which we express at the
superheating temperature T =T, ¢, is the biaxial correlation length, d, is the surface
extrapolation length, w stands for the anchoring strength imposed by the command surface, and
§™ =3b/16c stands for the superheating bulk value of S. We henceforth utilize the relative
anchoring strength of the command surface plate and of the external field E=E@, in terms of
dimensionless ratios

2
L =2 =(22) 13
U 4 Ur (ff) (13)

respectively.

We minimize the free energy of the system with respect to the variational parameters gy, g5,
and q3. The resulting Euler-Lagrange equations are solved numerically using the standard over-
relaxation method. Technical and numerical details are given in [28].

3. Results

Of interest are different paths in which annihilation of a master surface anchoring enforced pair
{m=3/2,m=—3/2} annihilates in the geometry and boundary conditions described in the
Methods section. The initial nematic configuration is shown in Figure 4a (biaxiality pattern) and
Figure 5a (director field pattern). Each of the the command surface imposed |m| = 3/2 defects at
(xy =0,y; = =025 R) and (x; =0,y, = 0.25 R) decay in three elementary |m| = 1/2 daughter
defects. Due to boundary conditions, two additional defects m = 1/2 and m = —1/2 at the top and
the bottom boundaries of Figure 4a, respectively, are introduced. In addition, at the lateral
boundaries, relatively (non-singular) strongly elastically deformed regions exist, which are
fingerprinted by relatively strong local biaxiality. Furthermore, sharp corners of their structure
enforce |m| = 1/4 type surface distortions [29].
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~N

Figure 4. Annihilation by decreasing the surface anchoring field strength. The degree of biaxiality p?
in (x,y) plane is shown. We impose via the command surface a pair of point defects with charges
m € {3/2,—3/2}, which decomposes to elementary |m| =1/2 defects. With decreasing anchoring
strength, the defects annihilate. (a) u, = 1.0,(b) u, =0.6,(c) u, =04,(d) u, =03,(e) pu, =
0.1,(f) u, =0.0. R/&, =25, t = —8. Selected corresponding qualitatively different director profiles
are shown in Figure 5.
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Figure 5. Annihilation by decreasing the surface anchoring field strength. Selected qualitatively
different director profiles are shown. (a) u, =1.0,(b) u, =0.3,(c) u, =0.1,(d) u, =0.0.R/&, =
25, t = —8. TDs bearing m=1/2 and m=-1/2 are indicated by red and blue circles, respectively.

For latter convenience, we label the three positively charged daughter defects (emerging from
m = 3/2) by P1, P2, P3, and the corresponding negatively charged daughter defects (emerging from
m = —3/2) by N1, N2, N3 as shown in Figure 4a. Boundary condition generated defects are labeled
by P4 (upper boundary) and N4 (bottom boundary). Furthermore, at some stages at lateral
boundaries, elastic distortions are strong enough to trigger nucleation of creations of pairs {defect,
antidefect}, see Figure 4c. We label these defect pairs by (N5,P5) and (N6,P6).

First, we enforce the annihilation by gradually decreasing the relative importance of the surface
anchoring field. In practice, this could be achieved by decreasing temperature towards the second-
order nematic-SmA phase transition temperature Ty,, which is accompanied by divergence [6] in the
nematic twist and bend elastic constants. The relative importance of elastic and surface penalties of a
confined NLC is measured by the ratio RW /K, where R stands for the characteristic confinement
length, and K~LS? is the representative Frank nematic elastic constant, and W measures the
dimensional anchoring strength. In our simulations this ratio is measured by p,,. Therefore, on
approaching Ty, the ratio u, would decrease. The limit p, » 1 corresponds to the strong
anchoring regime, while u, <1 corresponds to weak anchoring. The initial configuration, shown
in Figure 4a, is evaluated for p,, = 1, which is strong enough to prevent the annihilation of {3/2,-3/2}
pair, however weak enough to allow decomposition of |m| = 3/2 singularities. Such conditions are
realized in typical samples prepared using AFM scribing method [17].

On decreasing u,, in the first stage, the closest oppositely charged daughter defects (N1,P1)
begin to approach (see Supplementary movie Annihilationl) until they mutually annihilate (See
Figure 4b). Then the defect pairs (N2,P4), (P2,N4), and afterward (P3,N3) annihilate. During these
processes rearrangement of defects imposes sufficiently strong elastic distortions at the lateral



222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

246

247
248
249
250

251

Crystals 2020, 10, x FOR PEER REVIEW 90f13

boundaries to trigger the formation and depinning of two pairs of defects (P5,N5) and (P6,N6), as
shown in Figure 4c. Finally, these defects are adsorbed by sharp edges of the confining boundary.
Consequently, the winding number, characterizing strong distortions in corners, revert their winding
number. This is evidently shown in Figures 5c-5d, where one observes +1/4 < ¥1/4 winding
number transformations of the director field profiles within the edges.

Next, we trigger annihilation by applying and gradually increasing a spatially homogeneous
external electric field E = E@,,. The initial configuration for E=0 is shown in Figure 6a, where we set
(xy =0,y ==03 R) and (x, =0,y, =03 R). On increasing E (see Supplementary movie
Annihilation 2), in the first stage, the inner (N1,P1) defect approach and finally annihilate (Figure 6c).
The remaining defects annihilate in a qualitatively different way compared to the process shown in
Figure 4, where lateral defect pairs (N5,P5) and (N6,P6) are strongly involved. Namely, the oppositely
charged daughter and lateral defects approach each other and finally annihilate (Figure 6d).
Furthermore, initially localized |m| = 1/2 structures of P4 and P5, clearly visible in Figures 6a-e,
transform to nonlocalized order reconstruction planes. This defect core “explosion” was studied in
detail in [30]. Here we summarize the key stages of the process. In this E-driven transformation, the
initially spherically shaped biaxial core of a defect begins to grow as it is pushed towards a limiting
wall (in our setting y=R/2 boundary for P4, and y=-R/2 boundary for M4) on increasing E. For E>0,
the ellipsoidal core-shape becomes progressively elongated along the x-axis. At some critical value
of E, the core diverges (i.e., its longest linear size equals R), and a planar order reconstruction plane
is formed. In this case order reconstruction takes form near the bottom and top confining plate. The
corresponding nematic director profile, reflecting the Q eigen frame orientation, is shown Figure 7b.
Note that on crossing the OR plane the LC molecules experience a mesoscopic shape transformation,
similar to the one shown in Figure 2c along the direction 1-5. The OR plane is formed at u;~3.5,
which for typical LCs [6] corresponds to E~10% V/m.

@

-

Figure 6. Annihilation by increasing an external in-plane electric field. 2D biaxiality profiles 82 (x,y)
are shown. We gradually increase the external electric field in the y-direction. (a) ur =0,(b) py =
04,(c) wur=07(d wu=085 (e) wur=1(() pr=35R/§ =25, t=-8 . Selected
corresponding qualitatively different director profiles are shown in Figure 7.
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Figure 7. Annihilation by increasing an external in-plane electric field. Selected qualitatively
different director profiles are shown. (a) uy=0.7,(b) pur=3.5. R/§ =25, t=-8.TDs
bearing m=1/2 and m=-1/2 are indicated by red and blue circles, respectively.

4. Discussion

We studied numerically annihilation of master surface enforced highly charged pair {defect,
antidefect}, bearing topological charges {3/2,—3/2}. A Landau-de Gennes mesoscopic approach in
terms of the tensor nematic order parameter was used. We assumed quasi-two-dimensional order,
which in practice is sensible for relatively thin nematic cells. We chose geometrical setups and
boundary conditions that could be realized experimentally in future work. For example, highly
charged defect structures could be enforced using, e.g., the Atomic Force Measurement scribing
method [29], or plasmonic photoalignment technique [31]. In simulations we enforce a pair of |m| =
3/2 defects via the command surface scribed pattern. We used anchoring strength coefficients that
are strong enough to prevent annihilation of the pair, however weak enough to allow decomposition
[32] of each surface pattern favored |m| = 3/2 defect into three daughter elementary defects bearing
|m| = 1/2. Furthermore, we confined the pair in a rectangular confinement region. One would expect
mutual annihilation of the two daughter assemblies on varying relevant control parameters.
However, the chosen setup enabled a nontrivial annihilation scenario of TDs, also involving creation
of additional defects, absorption of TDs within edges of the confining substrate, and one dimensional
“explosion” of defect cores. We illustrate two qualitatively different annihilation channels, either by
progressively weakening the relative importance of the surface anchoring field or increasing external
in-plane electric field. Both processes could be realized experimentally by using relatively simple
experimental setups. In our setting the reference structures exhibit eight elementary TDs, where two
additional defects are introduced by the rectangular confinement. In the anchoring weakening-driven
annihilation, only four daughter defects were mutually annihilated, and the remaining two were
annihilated with confinement enabled TDs. On the contrary, in E-driven annihilation only one pair
of daughter defects was mutually annihilated and the remaining four defects were annihilated via
TDs, which were created via creation and depinning of additional pairs {defect, antidefect}.

Note that in realistic LC samples the characteristic nematic elastic constants are different from
each other. Nematic elasticity is commonly expressed in terms of splay (Ki,), twist (K5,), bend (K33),
and saddle-splay (K,,) elastic constants, introduced in the Frank-Oseen uniaxial description [33]. In
our geometry the elastic distortions involving twist and saddle-splay deformations are absent.
Therefore, only K;; and K;; are expected to make an impact on defect structures. In conventional
LCs it holds K33 > Ky4. In this case the defect rearrangement would be carried out via LC structural
variations that prefer the splay nematic deformation. Furthermore, this elastic anisotropy would
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break the mirror symmetry along the y-axis observed in Figure 4a. Namely, the core structures of
m=1/2 and |m| = —1/2 defects would be different, because the relative contributions of bend and
splay deformations are different in these defects.

On approaching a second order N-SmA phase transition K;; diverges, whereas K;; remains
finite. Because any arrangement of TDs in our study involves bend elastic distortions, TDs would
annihilate on increasing K33. This elastic anisotropy would, for sure, at least quantitatively influence
the annihilation scenario. The defect rearrangement would be realized via LC rearrangements
preferring the splay deformation. However, for our scenario we do not expect a qualitatively different
rearrangement of TDs from those presented in Figures 4 and Figures 6.

Nevertheless, it is a demanding task to obtain a numerically “realistic” result of elastic
anisotropy on rearrangement of TDs. In this paper we work in the approximation of equal elastic
constants, represented by a temperature independent constant L. In reality several different elastic
constants would appear, which determine the relative importance of different symmetry-allowed
elastic contributions expressed in terms of Q and its spatial derivatives. For example, in Cartesian
coordinates (x,,z)=(x1, X,, x3), the expansion up to the 2nd order in Q is commonly expressed as [34,35]
fo = £ = L1QyjxQujse + L2Qij j Qe + L3Qiji Qurcj + LaQijQujere + Ls Qi Qi
Here we use the summation convention over repeated indices, commas indicate spatial derivatives
(e.g., Qijx = %Z ), and the superscript (2) in fe(z) indicates the 2nd order expansion contributions in

the elastic free energy density. Far from defect cores, the constants L;-Ls could be mapped to the
more familiar Frank elastic constants. However, for the expansion up to the 2 order in Q it holds
that K;; = K33 [34,35], while in most LCs these constants can be significantly different. Higher order
terms need to be added [34,35] to lift this degeneracy, for example f, = fe(z) + LQy1Qij,1Qij k-
However, according to recent studies in lyotropic chromonic LCs [24], even taking into account the
above mentioned elastic anisotropy, one could not exactly reproduce experimentally the observed
core structures of |m| = 1/2 TDs. Therefore, current theoretical modeling does not correctly describe
cores of single |m| = 1/2 TDs, and the core structure details might influence annihilation scenarios.
For this reason we performed our study at the proof-of-principle level.

In our selected geometry pairs of defects {-1/2,1/2} are typically created as an intermediate step
and they actively mediate external stimulus driven annihilation processes. To estimate the free
energy costs of a pair {-1/2,1/2} creation we use the Lyuksyutov constraint [36,37] in which the cubic
termin f, isneglected. This is sensible approximation for LCs exhibiting weakly first order I-N phase
transition. With this in mind it follows f,~ay(T — T*)trQ? + c(trQ?)?, where f, is minimized in the

. T*-T . 5(r-1%)?
nematic phase for trQ? =%, corresponding to ﬁw—%.

introducing a defect is “melting” of LC order within the core of TDs. Note that for a pair {-1/2,1/2},
the nematic director in the far field is spatially homogeneous because the total charge of the pair
equals to zero. The free energy cost of introducing a single |m| = 1/2 defect of length  is roughly

- a3(T-T*)?
AF~|f.|av TS

LC it holds that a,~0.05 10° ﬁ, c~ 10° #, &,~30 nm [23]. Therefore, deep in the nematic phase

it costs roughly 2AF/(k,T*) ~103 to create a pair of defects, where we take |T —T*| = 10 K, h~§,,
T*~330 K, and k;, is the Boltzmann constant.

The main penalty of

néZh, where AV~méZh estimates the defect core volume. For a typical nematic

5. Conclusions

In summary, we studied the external stimulus-enforced annihilation of highly charged assembly
of command surface enforced TDs. In bulk these TDs would simply mutually annihilate on varying
an appropriate control parameter. However, we showed that in appropriate confinement these
processes could be extremely complex and display qualitatively different realizations. In particular,
we showed that when the characteristic confinement size and separation of highly charged defects
are comparable, additional defect pairs are created and involved in the annihilation processes. In
these events the total topological charge of the system is conserved in accordance with topological
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charge conservation laws. Our simulations exhibit a rich diversity of defect configurations for which
only a relatively small set of control parameters was varied.

Author Contributions: S.K. and P.K. proposed the research. S.K. and C. R. guided the research. E.K., P.K., and
M.A. did numerical simulations, E.K. and P.K. prepared figures. All authors were involved in writing the paper.

Supplementary files: Surface anchoring and an external electric field enforced annihilations pf TDs

“Annihilation1” movie shows the $2(x,y) texture evolution of the annihilation process of command surface
enforced assemblies {3/2,-3/2} TDs on decreasing the dimensionless surface anchoring field strength from u,, =
1 to u, = 0. Some representative stages are shown in Figure 4.

“Annihilation2” movie shows the $2(x,y) texture evolution of the annihilation process of command surface
enforced assemblies {3/2,-3/2} TDs on increasing the dimensionless external electric field strength from u; = 0
to uy = 3.5. Some representative stages are shown in Figure 6.
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