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Abstract: We study numerically external stimuli enforced annihilation of a pair of daughter nematic 14 
topological defect (TD) assemblies bearing a relatively strong topological charge |𝑚| = 3/2 . A 15 
Landau- de Gennes phenomenological approach in terms of tensor nematic order parameter is used 16 
in an effectively two-dimensional Cartesian coordinate system, where spatial variations along the 17 
z-axis are neglected. A pair of {𝑚 = 3/2, 𝑚 = −3/2} is enforced by an appropriate surface anchoring 18 
field, mimicking an experimental sample realization using the AFM scribing method. Furthermore, 19 
defects are confined within a rectangular boundary that imposes strong tangential anchoring. This 20 
setup enables complex and counter-intuitive annihilation processes on varying relevant parameters. 21 
We present two qualitatively different annihilation paths, where we either gradually reduce the 22 
relative surface anchoring field importance or increase an external in-plane spatially homogeneous 23 
electric field 𝑬 . The creation and depinning of additional defect pairs {

ଵ

ଶ
, −

ଵ

ଶ
}  mediates the 24 

annihilation in such a geometry. Furthermore, we illustrate the absorption of TDs by sharp edges of 25 
the confining boundary, accompanied by 𝑚 = ±1/4 ↔ ∓1/4  winding reversal of edge 26 
singularities, and also E-driven zero-dimensional to one-dimensional defect core transformation. 27 

Keywords: liquid crystals; topological defects; annihilation; order reconstruction. 28 

1. Introduction 29 

Topological defects (TDs) [1] correspond to localized regions within ordered media where the 30 
relevant order parameter field is frustrated and topologically protected. In most cases, at the defect 31 
origin, the continuum field, which describes defectless equilibrium configurations, is not uniquely 32 
defined [2]. In general, TDs appear as a consequence of the universal concept of broken symmetry 33 
and are of interest in all branches of physics [1,3]. The key topological feature of a topological defect 34 
is fingerprinted in its topological charge [1,2], which is a conserved quantity. Corresponding 35 
topological charge conservation laws regulate transformations (decomposing, merging, 36 
depinning …) of defect configurations.  37 

Owing to their topological origin, the physics of TDs exhibits several universal features. 38 
Consequently, it is of interest to find physical systems in which TDs are relatively easily 39 
experimentally formed, manipulated, and observed, which allows detailed and controlled analysis 40 
of the behavior of interest. For example, in the last decades, several studies analyzed quench driven 41 
coarsening of TDs in different condensed matter systems to gain information on structural details in 42 
the early universe [3-5]. Condensed systems allow systematic and controlled experimental analysis, 43 
while related phenomena of the universe could be only indirectly and passively observed.  44 

Nematic liquid crystals (NLC) [6] offer an ideal testbed to study TDs [7-10] due to their unique 45 
combination of liquid behavior, softness, experimentally-tractable characteristic scales of time and 46 
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spatial responses, and optical anisotropy. Furthermore, NLC structures possessing TDs could be 47 
exploited in various (in particular electro-optical) applications [11,12]. The uniaxial nematic structure 48 
is commonly described by the mesoscopic nematic director field 𝒏ෝ, which points along the local 49 
uniaxial NLC order, and the states ±𝒏ෝ  are physically equivalent (the so-called head-to-tail 50 
invariance) [7]. In bulk, nematic equilibrium 𝒏ෝ  is homogeneously aligned along a symmetry 51 
breaking direction. Several studies have been performed on thin LC films, in which relatively simple 52 
quasi-two-dimensional (2D) behavior [13-17] is observed. Despite the simplicity, such systems 53 
display rich and complex behavior, in particular with respect to topological defect transformations. 54 
In 2D NLCs only point defects exist. The role of topological charge is played by the winding number 55 
m [7] (also referred to as the Frank index). It determines the total rotation of 𝒏ෝ on encircling the defect 56 
core counterclockwise. Due to the head-to-tail invariance, m can possess half-integer and whole 57 
integer numbers. Some typical TDs are shown in Figure 1. TDs bearing positive and negative m are 58 
commonly referred to as defects and antidefects, respectively, and pairs {𝑚, −𝑚} in general tend to 59 
annihilate into a defectless configuration.  60 

 61 

Figure 1. Examples of TDs bearing (a) m=1/2; (b) m=1; (c) m=3/2; (d) m= -1/2; (e) m= -1; (f) m= -3/2. 62 

In general, high values of m are rarely realized. Namely, the free energy costs of a defect scales 63 
with m2 [16]. Consequently, if one enforces locally a defect bearing |𝑚| > 1/2, it tends to decompose 64 
[16-18] to elementary defects bearing |𝑚| = 1/2, where the charge conservation law is obeyed. Note 65 
that the core structure of single |𝑚| = 1/2 disclination is well known. In terms of the tensor nematic 66 
order parameter it was originally determined by Schopohl and Sluckin [13]. Typical structural 67 
changes by traversing the defect core are shown in Figure 2. The orientational frustration is resolved 68 
via the order reconstruction (OR) mechanism [19]. In general, this mechanism is realized in cases 69 
where a relatively large orientational mismatch in nematic order is imposed on a scale comparable 70 
[19-23] to the nematic biaxial order parameter relaxation length 𝜉௕ . The latter is relatively weakly 71 
temperature-dependent and is of order a few tens of nanometer [23]. The presence of the order 72 
reconstruction (OR) mechanism within the core was confirmed experimentally [24] in lyotropic 73 
chromonic LCs. Namely, such LCs exhibit a micron-scale nematic biaxial order parameter correlation 74 
length 𝜉௕ that provides experimental insight into the core structure, whose characteristic linear size 75 
is comparable to 𝜉௕ .  76 
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Figure 2. Core structure of a typical m=1/2 disclination. (a) The biaxial spatial variation, measured via 79 
the biaxiality parameter 𝛽ଶ (see Eq.(3)). The core structure is characterized by a rim, where 𝛽ଶ = 1. 80 
The rim is circular in the approximation of equal elastic constants. The center of the core exhibits 81 
negative uniaxiality. (b) Characteristic changes in the (𝑠, 𝜓) phase space on crossing the center of 82 
disclination. (c) Schematic variation of the nematic mesoscopic local profile within the core. Here 83 
numbers 1 to 5 mark points representing mesoscopic changes on traversing the defect core along a 84 
chosen direction.  85 

In this paper, we focus on the annihilation of surface enforced relatively highly charged {defect, 86 
antidefect} pair bearing the winding number |𝑚| = 3 2⁄  in an effectively 2D nematic cell confinement. 87 
We enforce the annihilation via different routes: i) by changing effective elastic LC properties, or ii) 88 
by increasing an external in-plane electric field strength. We demonstrate that annihilation proceeds 89 
via two qualitatively different channels, whose realization is rather counterintuitive. 90 

2. Methods 91 

We use the Landau-de Gennes mesoscopic approach in terms of the traceless and symmetric 92 
tensor nematic order parameter 𝐐 [6]. In its eigen frame, it is expressed as [20] 93 

𝐐 = ෍ 𝜆௜

ଷ

௜ୀଵ

𝒆ො ௜⨂𝒆ො ௜, (1)

where 𝜆௜  and 𝒆ො ௜  stand for 𝐐  eigenvalues and eigenvectors, respectively. Uniaxial states are 94 
commonly described by [6] 95 

𝐐 = 𝑆 ቀ𝒏ෝ⨂𝒏ෝ −
ଵ

ଷ
𝐈ቁ. (2)

The nematic uniaxial order parameter 𝑆 ∈ [−1/2,1] quantifies the extent of fluctuations about the 96 
local nematic director 𝒏ෝ , and 𝑆 > 0 (𝑆 < 0) reflects “prolate” (“oblate”) shape in the ellipsoidal 97 
presentation of the LC mesoscopic order. We henceforth refer to such configurations as positive 98 
uniaxial and negative uniaxial nematics. 99 

Biaxial states could be assessed if elastic distortions are present. The degree of biaxiality is well 100 
measured by the biaxiality parameter [25] 101 
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𝛽ଶ = 1 −
଺ ୲୰(𝐐య)మ

୲୰(𝐐మ)య ∈[0,1]. (3)

The limiting values 𝛽ଶ = 0 and 𝛽ଶ = 1 correspond to a uniaxial nematic state and a nematic order 102 
exhibiting the maximal biaxiality, respectively.  103 

The eigenvalues can be parametrized as 104 

𝜆ଵ =
2

3
 𝑠 cos(𝜓) , 𝜆ଶ = −

2

3
 𝑠 cos ቀ𝜓 +

𝜋

3
ቁ , 𝜆ଷ = −

2

3
 𝑠 cos ቀ𝜓 −

𝜋

3
ቁ, (4)

where 105 

𝑠 = ඨ
3

2
tr𝐐ଶ. (5)

Note that the eigenvalues {𝜆ଵ, 𝜆ଶ, 𝜆ଷ} can be expressed using two independent variables (i.e., {s,𝜓}) 106 
due to the constraint ∑ 𝜆௜

ଶ = 0ଷ
௜ୀଵ . The (s,𝜓) order parameter space is shown in Figure 2b. The isotropic 107 

order is reflected by 𝑠 = 0. Nematic configurations corresponding to 𝜓 = 0, 𝜓 =
ଶగ

ଷ
, and 𝜓 = −

ଶగ

ଷ
 108 

exhibit positive uniaxial states along 𝒆ොଵ, 𝒆ොଶ, and 𝒆ොଷ, respectively. States 𝜓 = 𝜋, 𝜓 = −
గ

ଷ
, and 𝜓 =109 

గ

ଷ
 correspond to the negative uniaxial states along 𝒆ොଵ, 𝒆ොଶ, and 𝒆ොଷ. The remaining states are biaxial. 110 

In this parametrization it holds 𝛽ଶ = 𝑠𝑖𝑛ଶ(3𝜓) . Any continuous change in nematic order is 111 
fingerprinted in a continuous change in the order parameter space.  112 

In our study we will consider nematic structures in the Cartesian coordinate system (x,y,z), 113 
whose coordinate unit vectors are given by the triad (𝒆ො𝒙 ,  𝒆ො𝒚 ,  𝒆ො𝒚 ). Of+ interest are quasi-two-114 
dimensional structures, where the Q eigenvector along the z-axis remains fixed (i.e., 𝒆ොଷ = 𝒆ො௭). In this 115 
case, in addition to {s,𝜓}, only one additional parameter (i.e. an angle 𝜃) is needed to determine Q, 116 
describing the rotation of the Q eigenframe with respect to the Cartesian frame: 117 

𝒆ොଵ = 𝒆ො௫𝑠𝑖𝑛𝜃 + 𝒆ො௬𝑐𝑜𝑠𝜃, (6a)

𝒆ොଶ = −𝒆ො௫𝑐𝑜𝑠𝜃 + 𝒆ො௬𝑠𝑖𝑛𝜃. (6b)

Presentation of Q in terms of {s, 𝜓, 𝜃 } is useful to illustrate or guess different possible Q 118 
configuration variations along a given path in real space connecting two sites imposing different 119 
nematic order. An example is illustrated in Figure 2, where one crosses the core of |𝑚| = 1/2 defect.  120 

However, this Q representation does not provide a one to one mapping of each component (is 121 
not injective) [36]. For this reason we used in simulations parametrization given by  122 

𝐐 = (𝑞ଵ + 𝑞ଷ)𝒆ො𝒙⨂𝒆ො𝒙 + (−𝑞ଵ + 𝑞ଷ)𝒆ො𝒚⨂𝒆ො𝒚 + 𝑞ଶ൫𝒆ො𝒙⨂𝒆ො𝒚 + 𝒆ො𝒚⨂𝒆ො𝒙൯ − 2𝑞ଷ𝒆ො𝒛⨂𝒆ො𝒛, (7)

in terms of variational fields { 𝑞ଵ, 𝑞ଶ, 𝑞ଷ }. It holds 𝜆ଵ = 𝑞ଷ + ඥ𝑞ଵ
ଶ + 𝑞ଶ

ଶ , 𝜆ଶ = 𝑞ଷ − ඥ𝑞ଵ
ଶ + 𝑞ଶ

ଶ , and 123 
𝜆ଷ = −2𝑞ଷ.  Note that the exchange of eigenvalues [13] between 𝜆ଵ  and 𝜆ଶ  corresponds to the 124 
condition ඥ𝑞ଵ

ଶ + 𝑞ଶ
ଶ = 0. It was originally introduced to describe the elastic deformation within the  125 

core structure of |𝑚| = 1/2 wedge defects [13]. The basic mechanism enabling this transformation is 126 
commonly referred to as order reconstruction [12,19]. 127 

2.1. Free energy 128 

We express the free energy F of a confined LC as a sum of nematic condensation (𝑓௖), elastic (𝑓௘), 129 
external electric field (𝑓௙), and surface (𝑓௦

(௜)
) free energy density contributions: 130 

𝐹 = ∫൫𝑓௖ + 𝑓௘ + 𝑓௙൯𝑑ଷ𝒓 + ∑ ∫ 𝑓௦
(௜)

𝑑ଶ𝒓௜ . (8)

Here 𝑑ଷ𝒓 and 𝑑ଶ𝒓 stand for the volume and area measures, and the superscript (i) refers to the i-th 131 
confining substrate. The free energy densities are expressed using the standard Landau-de Gennes 132 
expansion [6] in 𝐐. We take into account only the most essential symmetry allowed contributions to 133 
illustrate phenomena of interest [6,20,26]: 134 
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𝑓௖ = 𝑎଴(𝑇 − 𝑇∗)𝑡𝑟𝐐ଶ − 𝑏 𝑡𝑟𝐐ଷ + 𝑐(𝑡𝑟𝐐ଶ)ଶ, (9a)

𝑓௘ =
𝐿

2
|∇𝐐|ଶ, (9b)

𝑓௙ =
𝜀଴Δ𝜀

2
𝑬. 𝐐𝑬, (9c)

𝑓௦
(௜)

=
𝑤(௜)

2
tr(𝐐 − 𝐐𝒔)ଶ. (9d)

Here 𝑎଴, 𝑏, 𝑐  are positive material-dependent constants, 𝑇∗  stands for the isotropic supercooling 135 
temperature, 𝐿 is a positive representative nematic elastic constant (i.e., we use the single elastic 136 
constant approximation), 𝑬 stands for an external electric field, Δ𝜀 is the dielectric anisotropy (we 137 
limit to materials with Δ𝜀 > 0), 𝑤(௜) >0 is the anchoring strength coefficient at the i-th confining 138 
surface, which enforces nematic order described by 𝐐𝒔 [26]. 139 

2.2 Geometry of the problem 140 

We study nematic configurations inside a three-dimensional well with square cross section of 141 
length R and thickness h<<R. The geometry of the problem is depicted in Figure 3, where we use 142 
Cartesian coordinate system (x,y,z). At the lateral walls (Figure 3a) we enforce strong uniaxial 143 
tangential anchoring conditions: 144 

𝐐𝒔(𝑥 = −𝑅/2, 𝑦, 𝑧) = 𝐐𝒔(𝑥 = 𝑅/2, 𝑦, 𝑧) = 𝑆௘௤ ቀ𝒆ො𝒚⨂𝒆ො𝒚 −
ଵ

ଷ
𝐈ቁ, (10a)

𝐐𝒔(𝑥, 𝑦 = −𝑅/2, 𝑧) = 𝐐𝒔(𝑥, 𝑦 = 𝑅/2, 𝑧) = 𝑆௘௤ ൬𝒆ො𝒙⨂𝒆ො𝒙 −
1

3
𝐈൰ . (10b)

At the bottom (command) plate we enforce the nematic pattern consisting of a pair {defect, antidefect} 145 
of strength {𝑚 = 𝑚ଵ = −3/2, 𝑚 = 𝑚ଶ = 3/2} placed at (𝑥ଵ, 𝑦ଵ) and (𝑥ଶ, 𝑦ଶ): 146 

𝐐𝒔(𝑥, 𝑦, 𝑧 = 0) = 𝑆௘௤ ቀ𝒆ො⨂𝒆ො −
ଵ

ଷ
𝐈ቁ, (11a)

𝒆ො = 𝒆ො𝒙𝑐𝑜𝑠𝜃 + 𝒆ො𝒚𝑠𝑖𝑛𝜃, 𝜃 = ∑ 𝑚௜
ଶ
௜ୀଵ 𝑡𝑎𝑛ିଵ ቀ

௬ି௬೔

௫ି௫೔
ቁ. (11b)

Typically we set  (𝑥ଵ = 0, 𝑦ଵ = −0.25 𝑅) and (𝑥ଶ = 0, 𝑦ଶ = 0.25 𝑅).  The opposite plate enforces 147 
degenerate tangential anchoring. 148 
 149 

 150 
Figure 3. The geometry of the problem. (a) NLC cell of length R and thickness h<<R. At the lateral 151 
walls we enforce strong tangential anchoring (along 𝒆ො𝒙 or 𝒆ො𝒚). At the bottom command plate a pair 152 
{𝑚 = 3 2⁄ , 𝑚 = − 3 2⁄ } of surface defects is enforced. The top plate imposes degenerate tangential 153 
anchoring. (b) The command plate imposed nematic pattern in the (x,y) plane. 154 
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This setup mimics samples which could be realized experimentally using, for instance, the 155 
atomic force microscope (AFM) scribing method [27]. In a typical experimental setup a nematic LC is 156 
confined within a thin plane-parallel cell, where at least one (command) surface imposes anchoring 157 
conditions inscribed via an AFM stylus [27], while the opposing surface imposes a degenerate 158 
tangential anchoring. Furthermore, in some simulations we switch on a spatially homogeneous 159 
electric field 𝑬 = 𝐸𝒆ො𝒚 along the y-axis. 160 

In simulations, we assume that the cell is thin enough so that the nematic structure is effectively 161 
two dimensional, exhibiting only variations in the (x,y) plane. Consequently, we use in numerical 162 
simulation the parametrization for the nematic tensor order parameter [22] given by Eq.(7), where 163 
𝑞ଵ = 𝑞ଵ(𝑥, 𝑦), 𝑞ଶ = 𝑞ଶ(𝑥, 𝑦), and 𝑞ଷ = 𝑞ଷ(𝑥, 𝑦) are the variational parameters. In this parametrisation 164 
𝒆ො𝒛 is always an eigenvector of 𝑸. 165 

For presentational purposes, we introduce the dimensionless temperature 𝑡 = (𝑇 − 𝑇∗)/(𝑇∗∗ −166 
𝑇∗) and material characteristic lengths [20]:  167 

𝜉௙ = ට
௅ௌ∗∗

ఌబ|୼ఌ|ாమ , (12a)

𝜉௕ =
4

3
ඨ

𝐿𝑐

𝐵ଶ(1 + √1 − 𝑡)
 , (12b)

𝑑௘ =
𝐿

𝑤
 . (12c)

The quantity 𝜉௙ stands for the external field nematic extrapolation length, which we express at the 168 
superheating temperature 𝑇 = 𝑇∗∗ , 𝜉௕  is the biaxial correlation length, 𝑑௘  is the surface 169 
extrapolation length, w stands for the anchoring strength imposed by the command surface, and 170 
𝑆∗∗ = 3𝑏/16𝑐  stands for the superheating bulk value of S. We henceforth utilize the relative 171 
anchoring strength of the command surface plate and of the external field 𝑬=E𝒆ො𝒚 in terms of 172 
dimensionless ratios 173 

𝜇௪ =
𝜉௕

𝑑௘

 ,  𝜇௙ = ቆ
𝜉௕

𝜉௙

ቇ

ଶ

,  (13)

respectively.  174 
We minimize the free energy of the system with respect to the variational parameters 𝑞ଵ, 𝑞ଶ, 175 

and 𝑞ଷ. The resulting Euler-Lagrange equations are solved numerically using the standard over-176 
relaxation method. Technical and numerical details are given in [28].  177 

3. Results 178 

Of interest are different paths in which annihilation of a master surface anchoring enforced pair 179 
{ 𝑚 = 3 2⁄ , 𝑚 = − 3 2⁄ } annihilates in the geometry and boundary conditions described in the 180 
Methods section. The initial nematic configuration is shown in Figure 4a (biaxiality pattern) and 181 
Figure 5a (director field pattern). Each of the the command surface imposed |𝑚| = 3 2⁄  defects at 182 
(𝑥ଵ = 0, 𝑦ଵ = −0.25 𝑅) and (𝑥ଶ = 0, 𝑦ଶ = 0.25 𝑅) decay in three elementary |𝑚| = 1 2⁄  daughter 183 
defects. Due to boundary conditions, two additional defects 𝑚 = 1/2 and 𝑚 = −1/2 at the top and 184 
the bottom boundaries of Figure 4a, respectively, are introduced. In addition, at the lateral 185 
boundaries, relatively (non-singular) strongly elastically deformed regions exist, which are 186 
fingerprinted by relatively strong local biaxiality. Furthermore, sharp corners of their structure 187 
enforce |𝑚| = 1 4⁄  type surface distortions [29]. 188 
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 189 

Figure 4. Annihilation by decreasing the surface anchoring field strength. The degree of biaxiality 𝛽ଶ 190 
in (𝑥, 𝑦) plane is shown. We impose via the command surface a pair of point defects with charges 191 
𝑚 ∈ {3 2⁄ , − 3 2⁄ }, which decomposes to elementary |𝑚| = 1/2 defects. With decreasing anchoring 192 
strength, the defects annihilate. (𝐚) 𝜇௪ = 1.0, (𝐛) 𝜇௪ = 0.6, (𝐜) 𝜇௪ = 0.4, (𝐝) 𝜇௪ = 0.3, (𝐞) 𝜇௪ =193 
0.1, (𝐟) 𝜇௪ = 0.0. 𝑅/𝜉௕ = 25, 𝑡 = −8. Selected corresponding qualitatively different director profiles 194 
are shown in Figure 5. 195 
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 196 

Figure 5. Annihilation by decreasing the surface anchoring field strength. Selected qualitatively 197 
different director profiles are shown. (𝐚) 𝜇௪ = 1.0, (𝐛) 𝜇௪ = 0.3, (𝐜) 𝜇௪ = 0.1, (𝐝) 𝜇௪ = 0.0. 𝑅/𝜉௕ =198 
25, 𝑡 = −8. TDs bearing m=1/2 and m=-1/2 are indicated by red and blue circles, respectively. 199 

For latter convenience, we label the three positively charged daughter defects (emerging from 200 
𝑚 = 3/2) by P1, P2, P3, and the corresponding negatively charged daughter defects (emerging from 201 
𝑚 = −3/2) by N1, N2, N3 as shown in Figure 4a. Boundary condition generated defects are labeled 202 
by P4 (upper boundary) and N4 (bottom boundary). Furthermore, at some stages at lateral 203 
boundaries, elastic distortions are strong enough to trigger nucleation of creations of pairs {defect, 204 
antidefect}, see Figure 4c. We label these defect pairs by (N5,P5) and (N6,P6). 205 

First, we enforce the annihilation by gradually decreasing the relative importance of the surface 206 
anchoring field. In practice, this could be achieved by decreasing temperature towards the second-207 
order nematic-SmA phase transition temperature 𝑇ே஺, which is accompanied by divergence [6] in the 208 
nematic twist and bend elastic constants. The relative importance of elastic and surface penalties of a 209 
confined NLC is measured by the ratio 𝑅𝑊 𝐾⁄ , where R stands for the characteristic confinement 210 
length, and 𝐾~𝐿𝑆ଶ  is the representative Frank nematic elastic constant, and W measures the 211 
dimensional anchoring strength. In our simulations this ratio is measured by 𝜇௪ . Therefore, on 212 
approaching 𝑇ே஺ the ratio 𝜇௪  would decrease. The limit  𝜇௪ ≫ 1  corresponds to the strong 213 
anchoring regime, while 𝜇௪ < 1 corresponds to weak anchoring. The initial configuration, shown 214 
in Figure 4a, is evaluated for 𝜇௪ = 1, which is strong enough to prevent the annihilation of {3/2,-3/2} 215 
pair, however weak enough to allow decomposition of |𝑚| = 3 2⁄  singularities. Such conditions are 216 
realized in typical samples prepared using AFM scribing method [17]. 217 

On decreasing 𝜇௪, in the first stage, the closest oppositely charged daughter defects (N1,P1) 218 
begin to approach (see Supplementary movie Annihilation1) until they mutually annihilate (See 219 
Figure 4b). Then the defect pairs (N2,P4), (P2,N4), and afterward (P3,N3) annihilate. During these 220 
processes rearrangement of defects imposes sufficiently strong elastic distortions at the lateral 221 
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boundaries to trigger the formation and depinning of two pairs of defects (P5,N5) and (P6,N6), as 222 
shown in Figure 4c. Finally, these defects are adsorbed by sharp edges of the confining boundary. 223 
Consequently, the winding number, characterizing strong distortions in corners, revert their winding 224 
number. This is evidently shown in Figures 5c-5d, where one observes ±1/4 ↔ ∓1/4  winding 225 
number transformations of the director field profiles within the edges. 226 

Next, we trigger annihilation by applying and gradually increasing a spatially homogeneous 227 
external electric field 𝑬 = 𝐸𝒆ො𝒚. The initial configuration for E=0 is shown in Figure 6a, where we set 228 
(𝑥ଵ = 0, 𝑦ଵ = −0.3 𝑅) and (𝑥ଶ = 0, 𝑦ଶ = 0.3 𝑅).  On increasing 𝑬  (see Supplementary movie 229 
Annihilation 2), in the first stage, the inner (N1,P1) defect approach and finally annihilate (Figure 6c). 230 
The remaining defects annihilate in a qualitatively different way compared to the process shown in 231 
Figure 4, where lateral defect pairs (N5,P5) and (N6,P6) are strongly involved. Namely, the oppositely 232 
charged daughter and lateral defects approach each other and finally annihilate (Figure 6d). 233 
Furthermore, initially localized |𝑚| = 1 2⁄  structures of P4 and P5, clearly visible in Figures 6a-e, 234 
transform to nonlocalized order reconstruction planes. This defect core “explosion” was studied in 235 
detail in [30]. Here we summarize the key stages of the process. In this E-driven transformation, the 236 
initially spherically shaped biaxial core of a defect begins to grow as it is pushed towards a limiting 237 
wall (in our setting y=R/2 boundary for P4, and y=-R/2 boundary for M4) on increasing E. For E>0, 238 
the ellipsoidal core-shape becomes progressively elongated along the x-axis. At some critical value 239 
of E, the core diverges (i.e., its longest linear size equals R), and a planar order reconstruction plane 240 
is formed. In this case order reconstruction takes form near the bottom and top confining plate. The 241 
corresponding nematic director profile, reflecting the Q eigen frame orientation, is shown Figure 7b. 242 
Note that on crossing the OR plane the LC molecules experience a mesoscopic shape transformation, 243 
similar to the one shown in Figure 2c along the direction 1-5. The OR plane is formed at  𝜇௙~3.5, 244 
which for typical LCs [6] corresponds to 𝐸~10଼ V/m. 245 

 246 
Figure 6. Annihilation by increasing an external in-plane electric field. 2D biaxiality profiles 𝛽ଶ(𝑥, 𝑦) 247 
are shown. We gradually increase the external electric field in the y-direction. (𝐚) 𝜇௙ = 0, (𝐛)  𝜇௙ =248 
0.4, (𝐜)  𝜇௙ = 0.7, (𝐝)  𝜇௙ = 0.85, (𝐞)  𝜇௙ = 1, (𝐟)  𝜇௙ = 3.5. 𝑅/𝜉௕ = 25 , 𝑡 = −8. . Selected 249 
corresponding qualitatively different director profiles are shown in Figure 7. 250 

 251 
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253 
Figure 7. Annihilation by increasing an external in-plane electric field. Selected qualitatively 254 

different director profiles are shown. (𝐚)  𝜇௙ = 0.7, (𝐛)  𝜇௙ = 3.5.  𝑅/𝜉௕ = 25, 𝑡 = −8. TDs 255 
bearing m=1/2 and m=-1/2 are indicated by red and blue circles, respectively. 256 

4. Discussion 257 

We studied numerically annihilation of master surface enforced highly charged pair {defect, 258 
antidefect}, bearing topological charges {3/2, −3/2}. A Landau-de Gennes mesoscopic approach in 259 
terms of the tensor nematic order parameter was used. We assumed quasi-two-dimensional order, 260 
which in practice is sensible for relatively thin nematic cells. We chose geometrical setups and 261 
boundary conditions that could be realized experimentally in future work. For example, highly 262 
charged defect structures could be enforced using, e.g., the Atomic Force Measurement scribing 263 
method [29], or plasmonic photoalignment technique [31]. In simulations we enforce a pair of |𝑚| =264 
3/2 defects via the command surface scribed pattern. We used anchoring strength coefficients that 265 
are strong enough to prevent annihilation of the pair, however weak enough to allow decomposition 266 
[32] of each surface pattern favored |𝑚| = 3/2 defect into three daughter elementary defects bearing 267 
|𝑚| = 1/2. Furthermore, we confined the pair in a rectangular confinement region. One would expect 268 
mutual annihilation of the two daughter assemblies on varying relevant control parameters. 269 
However, the chosen setup enabled a nontrivial annihilation scenario of TDs, also involving creation 270 
of additional defects, absorption of TDs within edges of the confining substrate, and one dimensional 271 
“explosion” of defect cores. We illustrate two qualitatively different annihilation channels, either by 272 
progressively weakening the relative importance of the surface anchoring field or increasing external 273 
in-plane electric field. Both processes could be realized experimentally by using relatively simple 274 
experimental setups. In our setting the reference structures exhibit eight elementary TDs, where two 275 
additional defects are introduced by the rectangular confinement. In the anchoring weakening-driven 276 
annihilation, only four daughter defects were mutually annihilated, and the remaining two were 277 
annihilated with confinement enabled TDs. On the contrary, in E-driven annihilation only one pair 278 
of daughter defects was mutually annihilated and the remaining four defects were annihilated via 279 
TDs, which were created via creation and depinning of additional pairs {defect, antidefect}. 280 

Note that in realistic LC samples the characteristic nematic elastic constants are different from 281 
each other. Nematic elasticity is commonly expressed in terms of splay (𝐾ଵଵ), twist (𝐾ଶଶ), bend (𝐾ଷଷ), 282 
and saddle-splay (𝐾ଶସ) elastic constants, introduced in the Frank-Oseen uniaxial description [33]. In 283 
our geometry the elastic distortions involving twist and saddle-splay deformations are absent. 284 
Therefore, only 𝐾ଵଵ and 𝐾ଷଷ are expected to make an impact on defect structures. In conventional 285 
LCs it holds 𝐾ଷଷ > 𝐾ଵଵ. In this case the defect rearrangement would be carried out via LC structural 286 
variations that prefer the splay nematic deformation. Furthermore, this elastic anisotropy would 287 
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break the mirror symmetry along the y-axis observed in Figure 4a. Namely, the core structures of 288 
𝑚 = 1/2 and |𝑚| = −1/2 defects would be different, because the relative contributions of bend and 289 
splay deformations are different in these defects.  290 

On approaching a second order N-SmA phase transition 𝐾ଷଷ diverges, whereas 𝐾ଵଵ  remains 291 
finite. Because any arrangement of TDs in our study involves bend elastic distortions, TDs would 292 
annihilate on increasing 𝐾ଷଷ. This elastic anisotropy would, for sure, at least quantitatively influence 293 
the annihilation scenario. The defect rearrangement would be realized via LC rearrangements 294 
preferring the splay deformation. However, for our scenario we do not expect a qualitatively different 295 
rearrangement of TDs from those presented in Figures 4 and Figures 6.  296 

Nevertheless, it is a demanding task to obtain a numerically “realistic” result of elastic 297 
anisotropy on rearrangement of TDs. In this paper we work in the approximation of equal elastic 298 
constants, represented by a temperature independent constant L. In reality several different elastic 299 
constants would appear, which determine the relative importance of different symmetry-allowed 300 
elastic contributions expressed in terms of Q and its spatial derivatives. For example, in Cartesian 301 
coordinates (x,y,z)=(𝑥ଵ, 𝑥ଶ, 𝑥ଷ), the expansion up to the 2nd order in Q is commonly expressed as [34,35] 302 
𝑓௘ = 𝑓௘

(ଶ)
= 𝐿ଵ𝑄௜௝,௞𝑄௜௝,௞ + 𝐿ଶ𝑄௜௝,௝𝑄௜௞,௞ + 𝐿ଷ𝑄௜௝,௞𝑄௜௞,௝ + 𝐿ସ𝑄௜௝𝑄௜௝,௞௞ + 𝐿ହ𝑄௝௞𝑄௜௞,௝௞.  303 

Here we use the summation convention over repeated indices, commas indicate spatial derivatives 304 
(e.g., 𝑄௜௝,௞ =

డொ೔ೕ

డ௫ೖ
 ), and the superscript (2) in 𝑓௘

(ଶ) indicates the 2nd order expansion contributions in 305 

the elastic free energy density. Far from defect cores, the constants 𝐿ଵ-𝐿ହ could be mapped to the 306 
more familiar Frank elastic constants. However, for the expansion up to the 2nd order in Q it holds 307 
that 𝐾ଵଵ = 𝐾ଷଷ [34,35], while in most LCs these constants can be significantly different. Higher order 308 
terms need to be added [34,35] to lift this degeneracy, for example 𝑓௘ = 𝑓௘

(ଶ)
+ 𝐿଺𝑄௞௟𝑄௜௝,௟𝑄௜௝,௞. 309 

However, according to recent studies in lyotropic chromonic LCs [24], even taking into account the 310 
above mentioned elastic anisotropy, one could not exactly reproduce experimentally the observed 311 
core structures of |𝑚| = 1/2 TDs. Therefore, current theoretical modeling does not correctly describe 312 
cores of single |𝑚| = 1/2 TDs, and the core structure details might influence annihilation scenarios. 313 
For this reason we performed our study at the proof-of-principle level. 314 

In our selected geometry pairs of defects {-1/2,1/2} are typically created as an intermediate step 315 
and they actively mediate external stimulus driven annihilation processes. To estimate the free 316 
energy costs of a pair {-1/2,1/2} creation we use the Lyuksyutov constraint [36,37] in which the cubic 317 
term in 𝑓௖ is neglected. This is sensible approximation for LCs exhibiting weakly first order I-N phase 318 
transition. With this in mind it follows 𝑓௖~𝑎଴(𝑇 − 𝑇∗)𝑡𝑟𝐐ଶ + 𝑐(𝑡𝑟𝐐ଶ)ଶ, where 𝑓௖ is minimized in the 319 

nematic phase for 𝑡𝑟𝐐ଶ =
௔బ(்∗ି்)

ଶ௖
, corresponding to 𝑓௖~ −

௔బ
మ(்ି்∗)మ

ସ௖
. The main penalty of 320 

introducing a defect is “melting” of LC order within the core of TDs. Note that for a pair {-1/2,1/2}, 321 
the nematic director in the far field is spatially homogeneous because the total charge of the pair 322 
equals to zero. The free energy cost of introducing a single |𝑚| = 1 2⁄  defect of length h is roughly 323 

∆𝐹~|𝑓௖|∆𝑉
௔బ

మ(்ି்∗)మ

ସ௖
𝜋𝜉௕

ଶℎ, where ∆𝑉~𝜋𝜉௕
ଶℎ estimates the defect core volume. For a typical nematic 324 

LC it holds that 𝑎଴~0.05 10଺ ௃

௄௠య, 𝑐~ 10଺ ௃

௠య , 𝜉௕~30 nm [23]. Therefore, deep in the nematic phase 325 
it costs roughly 2∆𝐹/(𝑘௕𝑇∗) ~10ଷ to create a pair of defects, where we take |𝑇 − 𝑇∗| = 10 K, ℎ~𝜉௕, 326 
𝑇∗~330 K, and 𝑘௕ is the Boltzmann constant. 327 

5. Conclusions 328 

In summary, we studied the external stimulus-enforced annihilation of highly charged assembly 329 
of command surface enforced TDs. In bulk these TDs would simply mutually annihilate on varying 330 
an appropriate control parameter. However, we showed that in appropriate confinement these 331 
processes could be extremely complex and display qualitatively different realizations. In particular, 332 
we showed that when the characteristic confinement size and separation of highly charged defects 333 
are comparable, additional defect pairs are created and involved in the annihilation processes. In 334 
these events the total topological charge of the system is conserved in accordance with topological 335 



Crystals 2020, 10, x FOR PEER REVIEW 12 of 13 

 

charge conservation laws. Our simulations exhibit a rich diversity of defect configurations for which 336 
only a relatively small set of control parameters was varied. 337 

 338 
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Supplementary files: Surface anchoring and an external electric field enforced annihilations pf TDs 342 

“Annihilation1” movie shows the 𝛽ଶ(𝑥, 𝑦) texture evolution of the annihilation process of command surface 343 
enforced assemblies {3/2,-3/2} TDs on decreasing the dimensionless surface anchoring field strength from 𝜇௪ =344 
1 to 𝜇௪ = 0. Some representative stages are shown in Figure 4. 345 

“Annihilation2” movie shows the 𝛽ଶ(𝑥, 𝑦) texture evolution of the annihilation process of command surface 346 
enforced assemblies {3/2,-3/2} TDs on increasing the dimensionless external electric field strength from 𝜇௙ = 0 347 
to 𝜇௙ = 3.5. Some representative stages are shown in Figure 6.  348 
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