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Distributed safe reinforcement learning for multi-robot motion planning

Yang Lu, Yaohua Guo, Guoxiang Zhao, and Minghui Zhu

Abstract— This paper studies optimal motion planning of
multiple mobile robots with collision avoidance. We develop
a distributed reinforcement learning algorithm which ensures
suboptimal goal reaching and anytime -collision avoidance
simultaneously. Theoretical results on the convergence of neural
network weights, the uniform and ultimate boundedness of
system states of the closed-loop system, and anytime collision
avoidance are established. Numerical simulations for single
integrator and unicycle robots illustrate the effectiveness of our
theoretical results.

Index Terms— Safety, reinforcement learning, motion plan-
ning

I. INTRODUCTION

The rapid advances in embedded processors, mobile sens-
ing and high-speed communications in the last decades
stimulate the emergency of multi-robot systems. please see,
e.g., [1]. Compared with single-robot systems, multi-robot
systems exhibit greater flexibility, robustness and adapt-
ability [2]. Consequently, multi-robot systems have a wide
range of applications, e.g., traffic coordination [3] and sensor
deployment [4].

Distributed control is desired due to large scale of multi-
robot systems. Most existing distributed control algorithms
of mobile robots are myopic. In particular, the control
law of each robot is driven by the partial gradient of a
local objective function. This class of distributed control
algorithms are scalable to robot number and robust to failures
of individual robots. Their asymptotic convergence is ensured
using, e.g., Lyapunov analysis, but their optimality, e.g.,
total energy consumption, is not. Recently, differential game
theory has been adopted to synthesize distributed optimal
controllers [5]-[9]. Using Nash equilibrium strategies, each
agent is able to optimize its own performance objective. As
for linear multi-agent systems, both open-loop and feedback
Nash equilibrium strategies have been well studied [5], [7].
As for nonlinear multi-agent systems, game solutions are
characterized by coupled Hamilton-Jacobi-Bellman (HJB)
equations. Dynamic programming (DP) is a typical way
to solve the HIB equations. However, DP suffers from the
well-known curse of dimensionality. Reinforcement learning
(RL) or adaptive dynamic programming (ADP) has been
recognized as an effective technique to mitigate the curse
of dimensionality via iteratively performing policy evalu-
ation and policy improvement until a suboptimal solution
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is found [10], [11]. Several efforts have been made to
solve multi-agent coordination problems via RL/ADP. In [9],
a value iteration Heuristic DP algorithm is proposed to
solve the dynamic graphical games of discrete-time multi-
agent systems. For continuous-time differential graphical
games, [8] proposes a cooperative policy iteration algorithm
to compute the optimal control solutions, where the value
function and control policy are approximated by critic and
actor neural networks (NNs), respectively. The weight errors
of NNs are proven to be uniformly ultimately bounded
(see Definition 4 in [8]). Different from [8], paper [12]
utilizes generalized fuzzy hyperbolic models to approximate
the value functions of the coupled HJB equations associated
with optimal consensus control. Nevertheless, system safety
(collision avoidance) has not been addressed in the papers
aforementioned.

Stability of closed-loop systems under RL/ADP has been
extensively studied; please refer to the survey paper [13].
The adaptive controllers implement policy iteration by an
actor/critic NN structure and can simultaneously guarantee
optimality and closed-loop dynamical stability. Recently,
the work [14] develops a framework of robust RL/ADP
to address both parametric and dynamic uncertainties. The
synthesized controllers ensure robust stability against the sys-
tem uncertainties and become suboptimal when the system
uncertainties are absent. However, system safety is still not
taken into account in these papers.

Contributions. This paper studies cooperative optimal mo-
tion planning of a group of robots. We aim to identify
distributed algorithms to solve the problem online and mean-
while ensure robot safety all the time. The goal reaching
objective is first formulated as an optimal control problem.
Then a repulsive potential function is incorporated into the
value function to facilitate collision avoidance. A distributed
RL algorithm is developed to solve the induced HIB equa-
tions. In particular, the algorithm adopts a single critic NN
in contrast to classic actor-critic NN schemes. The simplified
NN relaxes the need of an initial admissible controller and
improves computational efficiency. Theoretical results on
the convergence of NN weights, the stability of the overall
closed-loop system, and anytime collision avoidance are
established. The efficacy of the theoretical results is verified
by simulations for single integrator and unicycle robots.

Notations. The following notations are adopted throughout
the paper. Let R™ be the set of real numbers of size n and
R™ "™ be the set of n X m real matrices. Denote by I,, the
n X n identity matrix. Let opin(A) denote the minimum
singular value of a matrix A. Denote by ||A|| the 2-norm of
a vector or matrix A.

1209

Authorized licensed use limited to: Penn State University. Downloaded on July 08,2022 at 17:39:13 UTC from IEEE Xplore. Restrictions apply.



II. PROBLEM FORMULATION

This section presents the system model and formulates the
motion planning problem.

A. System model

Consider a group of N mobile robots, denoted by V £
{1,---, N}. Each robot i has state z; € R™ and control input
u; € R™. The dynamics of z; is governed by the following
control-affine system:

4i(t) = ) + 9i(zi(8))ui(t)- (1)

fi(z(t)
In system (1), z(t) = [pZT( ), g ( )]T is robot i’s state,
where p;(t) = [z;(t),v:(1)]T € R2 is its position in the
Cartesian coordinate frame and ¢;(t) € R"~2 is the sub-
state of robot 7 other than its position. System (1) includes,
e.g., single integrator, double integrator and unicycle, as
special cases. Each robot has a detection region with radius

R. Denote z £ [2f,--- 2817 and p & [pf,--- ,p&]7T.
Define the detection set as D = {p € R?N : Ji j €

V, s.t. |[pi — pjl| < R}. Define the safety set as © = {p €
R2N ¢ ||p; — pjl| > r, Vi,j € V}, where 0 < r < R is the
safety distance between two robots.

B. Motion planning

d

Each robot ¢ € V has a desired destination

P ") € R Let 5 2 -2 b 2 op — pl
Qz—Qz_qz’ d:[ilTa"' %T]T72£[Z?a"'a2%]T7
pt = [pf", - piF]T, and p= £ [pf,-- ,pX]T. The safety

set in terms ofp is then © 2 {p ¢ R®N : p+p? € ©}. The
dynamics of Z; is

5(t) = 2(t) = fi(Zi(t) + §i(Z:(8)ua(t) 2)

where fi(Z) 2 fi(Zi + 2%) and §;(%) £ gi(% + 2%). The
control objective of this paper is formulated as follows.

Problem 1: Design distributed optimal feedback control
strategies such that the robots can eventually reach the
desired points while avoiding collisions. Mathematically, the
objectives are formulated as:

Goal reaching : tlgrolo IZ2(t)]| = 0. 3)

Safety : p(t) € ©, Vi > 0. 4)

The following assumption on the robots’ initial and desired
states is necessary to ensure the feasibility of the collision
avoidance objective.

Assumption 2.1: It holds that p(0) € © and p? € ©.

A centralized solution to solve Problem 1 is to formulate it
as a constrained optimal control problem, where the objective
function deals with the goal reaching objective and the hard
constraint deals with the safety objective [15]. However, the
centralized solution is offline and not scalable with respect
to the robot number. This paper adopts a novel approach to
address the challenge. The roadmap of the overall approach is
summarized here. First, we only consider the individual goal
reaching problem and formulate it as an optimal control prob-
lem. After that, we further adopt repulsive potential function
(RPF) to facilitate the safety objective and incorporate it

as a soft constraint of the optimal control problem. Finally,
we use neural networks (NNs) to approximate optimal value
functions and the associated controllers.

Individual goal reaching. Only considering the goal reach-
ing objective (3), the following is the infinite-horizon cost of
robot ¢ when system (2) starts from state Z;(¢) at time ¢ and
is driven by a feedback control policy u;:

KD = [ UE@F + G @) 6

We note that (5) is decoupled since it only considers
the individual goal reaching problem without taking into
account the safety issue. The optimal value function (without
considering the safety issue) V;*(Z;(t)) is defined as

(o)
V) = min [ RO + @) ©
where I/ is the set of feedback controllers from R™N —
R™. Notice that u;(-) in general depends on the overall state
7 € R™W to accommodate the later analysis that will take
into account collision avoidance of the robots. The following
continuous differentiability assumption on V;* is standard in
the RL literature [16] [18]. Under this assumption, the image
sets of V;* and 8~ are both compact on a compact set of
Z;. Moreover, the continuous differentiability property is also
needed to rationalize using NNs to approximate V;*’s; please
see the next section.

Assumption 2.2: For all i € V, V;*(Z;) is continuously
differentiable over R".

Under Assumption 2.2, given a feedback control policy
u;(+) and a value function V;(-), the robots’ Hamiltonian
functions are defined as:

ov;

Hi(z, ot w) 2 [51° + )l
T
+ 2B () + o). ™

The robots’ optimal controllers are obtained by minimiz-
ing the Hamiltonian functions associated with the optimal
value functions, as follows:
oV oV (z
- Ui) = —5; (Zz)#
0%; 2 0%

u(Z;) = argmin H;(Z;,
u; EU
®)
The optimal value function V;* and the optimal controller
u; satisfy the following HIB equation

*
)
azi

Integration of individual goal reaching and collision
avoidance. Next, we further introduce repulsive potential
functions to facilitate the safety objective (4). In particular, to
avoid inter-robot collisions, for each pair of robots ¢,5 € V,
we construct the repulsive potential function as

H; (%, =0. 9

1B +pf — by — pfII> — B*\\2
Vii(Pi, D) = (min {07 - J })
g \Piyr Vg ||pi+p‘ii— —p;iHQ—TQ )

Vi,j eV, i#j. (10)
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When ||p;—p;|| is beyond the detection range R, the repulsive
potential function is not activated and outputs zero. When
two robots detect each other, the value of V;; monotonically
increases as the robots are getting closer, and it grows to
infinity when they collide, i.e., ||p; — p;|| = .

Let Vii(5) £ v iy Vij (P Bj)- To achieve both the
goal reaching objective (3) and the safety objective (4), for
each ¢ € V, we consider the following value function:

Vir(2) £ V7 (Z) + Vie(P). (1)
The Hamiltonian associated with (11) is defined as:
_ oV
Hi(Z, 52 ) = 1307 + ()|
av*T i
+ B G s ame), viev. a2

The robots’ optimal controllers are obtained by minimiz-
ing (12) as follows:

oy e OV g OVE(R)
ui(Z)—aflgrerlllmHz(zu a5, i) = —59; (Zi) 0%
1 OVF(Z)  OVulp), .
= —5a7 (2)( 82(2) aN( )\ viev. (13)

The following assumptions are needed to ensure the goal
reaching objective.

Assumption 2.3: It holds that )", ey H;(%;, %‘Z ,ul) <
SievlIZil* + ll@; (2)]|?) for any Z € 0 x RN,
Assumption 2.4: It holds that p? ¢ D.

Remark 2.1: By (12), we have Zzev
Siev(lElP + a7 (7)) = ey Vi Assumption 2.3
implies that . ., V* < 0 and hence Y ey V*is a
Lyapunov function. Under Assumption 2.4, for any 7,5 € V,
Vij(Pi,Dj) = 0 when p; = p; = 0. Notice that V;*(Z;) > 0
and V;*(Z;) = 0 if and only if Z; = 0. Assumption 2.4 then
implies that ), ,, V;*(Z) = 0 if and only if Z = 0 and hence
z = 0 is the only 11m1t point.

Theorem 2.1: Suppose that Assumptions 2.1-2.4 hold.
Then objectives (3) and (4) are achieved simultaneously by
the controllers (13).

Remark 2.2: Another possible RPF-based approach is
to include the RPF V;;(p) into the integrand of the
overall value function V(%) as, e.g, Vi*(3(t)) =
mity, e [ (12 ()2 + i (Z: (7)) |2 + Via(3(r)))dr. This
approach may only guarantee collision avoidance in the
almost everywhere sense. Specifically, we can derive that
V*(3(t)) is decreasing. Hence, if V*(2(0)) < oo, we have
V*(2(t)) < oo for any ¢t > 0. However, since Vi;(p(t)) is
inside the integrand, even if V*(2(t)) < oo for any t > 0,
Vi:(p(t)) could be infinite at isolated time instants with zero
measure. In contrast, in our approach, since V;;(p(t)) is
outside the integrand, V*(Z(t)) < oo for any ¢ > 0 ensures
that V;;(p(t)) < oo for any ¢ > 0, which implies anytime
collision avoidance.

oV, ~* ~
H(Z’La az aU*)_

7

III. CONTROLLER DESIGN AND ANALYSIS

With Theorem 2.1, the problem becomes to solve the HIB
equations (9). However, it is in general difficult or even
impossible to get the closed-form expression of V;*. In the
field of RL, the solutions of HIB equations are often obtained
through the Policy Iteration (PI) algorithm. Nevertheless, the
PI algorithm needs an initial admissible controller, which
can stabilize the system and introduce a finite function value
and often runs off-line (See [12] for example). To relax this
requirement, we will develop a novel RL algorithm by using
a single critic NN to approximate the optimal value function,
and also adding an additional term to ensure stability and
collision avoidance of the multi-robot system. Most existing
RL schemes have two NNs, one for actor and the other for
critic. Our scheme only has a single critic NN and hence has
a lower computational complexity.

A. Approximator of local optimal value function

This subsection presents a distributed single NN-based
RL technique to identify an optimal solution of the optimal
control problem. According to the universal approximation
property of NNs [19], the continuously differentiable optimal
value function V,;* can be approximated by

Vi(z) = Wi i(Z) + ei(Z)

where ¢; : R®™ — R" is the continuously differentiable
activation function with 7 the number of neurons in the
hidden layer, ¢; : R™ — R is the continuously differentiable
approximation error function, and W; € R" is the least-
square weight vector, i.e., W; = argminy, cpq ||V (Z:) —
wr (;51(21)\\ It is well known that as n — oo, €;(%;) — 0
and E (ZY) — 0 [20]. The derivative of V;*(Z;) is

IV (Z) _ 9¢) (%) 9ei(%)

o - 0m Vit e

Substituting (15) into (8) and (13), respectively, renders
the following

(14)

(15)

1 A9/ (Zi 0ei(Zi
i W) = —gaf G 2o B 1 255 g
e 1_p, 00T (Z Oei(% 3Vu
a7

By substituting (16) into (9), the HIB equation can be
rewritten as

0= H;(z, W)
N 0¢i(Zi) - o\ ~1 -\ 98] (%)
— 15112 — —w7T NCAY N ( :
= ||z Wz 9z, 9i(%:)9; (%) 0% Wi
WZT%’(Z”fZ( ) — di(zi, W) (18)
where all the terms of ;(2;) are included in d;(Z;, W;):
- : 185 ( ) S\ AT 851( )
dv(Zqu) 1 3, gz(zz)gv‘, ( 7) 0z
1oor06i(Z) o\, \0ei(Z)  0el (%) 7
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Since the least-square weight vector W, and the approx-
imation error function ¢;(-) are unknown, estimated weight
vector W; is used to build the NN, i.e.,

2 l
Based on (19) and (20), the HIB equation (18) is approx-
imated by

Vir(Z) = W (%) (19)
Substituting (19) into (8) and (13), respectively, renders
R 907 (21) -
UZ(Z“VVZ) - 291 ( 7/) 821 VV?J (20)
987 () - . OVulp)
w; (2, W5) = —=aF (%)( a5, W; + a3, ). (21

A A ~ WTa i ~,‘ ~ N~ ~ 0 ;T ~i T
i W) = 5?00 g, 5 g ) 20 LBy,
P2 f) 2 a0, 22)

The term ei(éi,Wi) is the Bellman residual error and
given by ei(éi,Wi) = ﬁi(éi,Wi) — H;(2;,W;). This error
is caused by ¢;(-) and the difference between W; and Wi
We are to select IW; for i € V such that the squared residual
error B(Z, W) £ Siev s€i(Z, W) is minimized. For each
1 € V, design the learning law of W; as follows

LI GILO)
where a;(Z, W) 2 oi(z, W, )/ml(zl,W), with
oi(5, W) & 25ED((2) — £5,(2)37 (5) 25 20W,) and
mi(zi, W;) & ||c71(zl, D2 +1, a; > 0is the learnmg rate,
and F; € R is a design parameter. The first term of (23) is
based on the normalized gradient descent algorithm, which
minimizes the squared residual error %e?(Z;, W;). The
second term of (23) stems from Lyapunov stability analysis
and is needed to establish stability of the closed-loop
system. In particular, it introduces a parameter F; which
is to be chosen such that the second-order term associated
with the weight estimation error W — W in the time
derivative of a Lyapunov function is negative definite. This
property will establish stability of the closed-loop system.
The implementation of the distributed RL algorithm is given
by Algorithm 1.

ei(zi, Wi) — i F;W; (23)

Algorithm 1: Distributed safe RL algorithm

1 while t > 0 do

2 Each robot ¢ € V measures z;(t) and z;(¢) for all
J such that ||z (¢) — z;(¢)|| < R;

3 Each robot ¢ € V updates Wi by (23);

4 Each robot 7 € V executes (21) to system (1).

We need the following assumptions to guarantee the
closed-loop stability and collision avoidance.

Assumption 3.1: For each i € V, f;(z;) and g;(z;) are
continuous in z;.

Assumption 3.2: For each i € V, rank(g;(%)) = n for
any z; € R™.

Remark 3.1: Assumption 3.1 is very mild and is satisfied
by many standard physical systems, including single integra-
tor, double integrator and unicycle. Under this assumption,
the image sets of f; and g; are compact on a compact set of
z;. Assumption 3.2 states that g;(z;) has full row rank for any
z; € R™. This is a sufficient assumption to ensure collision
avoidance for Algorithm 1. Assumption 3.2 is satisfied by
single integrator, but not satisfied by double integrator or
unicycle. However, as will be shown in the next section,
collision avoidance is indeed achieved for unicycle under
Algorithm 1. This illustrates that our algorithm could be
successfully applied to a wider range of problems in practice.

The next theorem establishes the convergence, stability
and collision avoidance of the closed-loop multi-robot system
under Algorithm 1.

Theorem 3.1: Suppose Assumptions 2.1, 2.2, 3.1, and 3.2
are satisfied. Consider the multi-robot system (1). Let the
control inputs be provided by (21) and the NN weight tuning
laws be given by (23). Then, there exists a positive integer
1o such that for any 1 > ng, p(t) € O for all ¢ > 0, and
moreover, the tracking error ||z — z¢||, the weight estimation
error ||W — W || and control policy estimation error ||& — @* ||
are all uniformly ultimately bounded.

IV. SIMULATION

This section verifies the efficacy of Algorithm 1 by simu-
lations for single integrator and unicycle robots.

A. Single integrator robots

Consider a group of 10 robots, where each robot i’s
state z;(t) is governed by the single integrator dynamics
2:(t) = u;(t). Here,n = m = 2, z; = p;, ¢; is null, and u; =
[Viz, viy]T is Tobot i’s linear velocities along the z-axis and
y-axis in the Cartesian coordinate frame. We choose R = 1
and r = 0.1. The goal states are equally distributed around
a circle while the initial state of the robots are random.
Following the successful practice in [8], the basis functions
choose the second order polynomials of the state variables.
The learning law (23) ensures UUB of the tracking error
Z and weight estimation error W. However, it says nothing
about the optimality of the learning result. In this example,
W =0 is a trivial equilibrium. If starting from 1 (0) = 0,
the trajectory of W( ) will remain unchanged and there is
actually no learning at all. To avoid converging to such trivial
equilibrium points, we add an additional term to (23) so that

(23) is modified as W; = %e (i, Wi)— o, F, Wi+

G (zl,ul) ¢( )gz(zz)gl (%) K (ZI) , where K;(Z%;) is ra-
dially unbounded non-negative functlon such that K,(Z;) =
0 if and only if % = 0, and Y;(%;,u;) is defined as
Ti(zd) = 0 if 25 (Fiz) + qiz)a) < 0 and
Yi(Z,1;) = 1 if otherwise. Roughly speaking, the newly
added term is active in the learning update law if and
only if system (2) is unstable under the controller ;.
This guarantees that the learning takes effect as long as
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system (2) is not yet stable and effectively avoids the
situation of converging to trivial equilibrium points. Under
the assu;nption that there exists a positive constant c; such
that 22O (Fi(z) + gi2)a7) < —ai| 2522 for any
z; € R"™, all the claims of Theorem 3.1 still hold [21].
In the simulation, for each 7 € V), function K; is chosen
as K;(%) = ZlT Z;. Other learning parameters are set as
a = 0.001 and F' = 0. Figure 1 shows the 10 single
integrators can exponentially converge to their goal states
and no collision occurs during the convergence as indicated
in Figure 2. The associated trajectories are shown in Figure 3.
The evolution of each robot’s neural network weights are
illustrated in Figure 4, where within 4 seconds all neural
networks converge to non-zero stationary points.

t(s)

Fig. 1. Maximum formation errors of 10 single integrators over time.
10 T
o — — —Safety distance
— 8l Minimum inter-robot distance | |
-~
N
iyl
ISH
I 6f ]
—
Nt
= 4+ i
&
g 2r A
oF———————— —————————————— = 4
0 2 4 6 8 10

Fig. 2. Minimum inter-robot distances of 10 single integrators over time.

B. Unicycle robots

We examine Algorithm 1 on unicycle robots. All settings
are consistent with those on the single integrator robots
except F' = 0.1. The goal region for each robot is a ball
of radius 1 centered at their goal states. Robots arriving at
their goal regions are immediately removed from the scene.

The commonly-used unicycle dynamic [m, Ui 9'1]T =
sinf; 0 U; 1

cos b; . . .

! *| includes the orientation 6; as
0 0 1 Uj,2

a periodic state variable while the positions z; and y; are

not. To address such a difference, we introduce 6% = cos6;

and 6Y = sinf; to remove the periodic property and an

O Goal Position
14 - O  Initial Position
A Terminal Position

Fig. 3. Trajectories of 10 single integrators

W(t)

Fig. 4. Neural network weights of 10 single integrators over time.

alternative form of the unicycle dynamic is as follows:
[Ii Yi i i] 0 0 _9%/ ezc |:Ui,2:|' e
neural network weights are initialized following a zero-mean
Gaussian distribution with standard deviation 0.1. Figure 5
shows that all unicycle robots converge to their respective
goal positions within finite time. Around 2100s and 2300s,
the last robot was close to its goal region but deviates
from it because its neural network is not optimal yet and
requires more information for training. Figure 6 indicates
that no collision occurs in the movement and the resulting
trajectories are shown in Figure 7. Figure 8 shows the
evolution of each robot’s neural network over time, where
curves of same colors are the weights of the same robots and
the vertical dash lines indicate the arrival time. Figure 8 show
that all weights remain finite until the robots arrive at their
goal regions. The oscillatory curves in Figure 8 are caused by
insufficient exploration, where the robots are exploring new
environment and the neural networks have not converged yet.

V. CONCLUSIONS

This paper has studied optimal motion planning for multi-
robot systems. A distributed safe reinforcement learning
algorithm is presented to ensure both goal reaching and
collision avoidance. Simulation results for single integrator
and unicycle robots illustrate the feasibility and effectiveness
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Fig. 5. Maximum formation errors of 10 unicycle robots over time.
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6. Minimum inter-robot distances of 10 unicycle robots over time.

of the developed algorithm.
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