
Analysis of Individual-level Data from 2018-2020 Ebola

Outbreak in Democratic Republic of the Congo

Harley Vossler
1
, Pierre Akilimali

2
, Yuhan Pan

1
, Wasiur R. KhudaBukhsh

3
, Eben Kenah

1
, and

Grzegorz A. Rempa la
1,⇤

1College of Public Health, The Ohio State University
2College of Public Health, University of Kinshasa

3School of Mathematical Sciences, University of Nottingham

March 1, 2022

Abstract

The 2018-2020 Ebola virus disease epidemic in Democratic Republic of the Congo (DRC) resulted in 3,481 cases
(probable and confirmed) and 2,299 deaths. In this paper, we use a novel statistical method to analyze the
individual-level incidence and hospitalization data on DRC Ebola victims. Our analysis suggests that an increase
in the rate of quarantine and isolation that has shortened the infectiousness period by approximately one day
during the epidemic’s third and final wave was likely responsible for the eventual containment of the outbreak.
The analysis further reveals that the total e↵ective population size or the average number of individuals at risk
for the disease exposure in three epidemic waves over the period of 24 months was around 16,000—a much smaller
number than previously estimated and likely an evidence of at least partial protection of the population at risk
through ring vaccination and contact tracing as well as adherence to strict quarantine and isolation policies.

Significance Statement

With the world health community largely preoccupied with the current COVID-19 pandemic, the Ebola
Virus Disease (EVD) continues to lurk as a significant threat to public health, prosperity, and political
stability in large regions of Africa with undiminished potential for spread to other parts of the world.
Despite its vital importance for public health policy, knowledge about the e↵ects of the recent 2018-2020
EVD response e↵orts in the Democratic Republic of the Congo (DRC) based on ring vaccination supple-
mented with isolation and quarantine has been limited by challenges with data collection and by the lack of
simple methods for analyzing complex multi-wave patterns of disease incidence occurring across time and
space. Within this environment, competing narratives with di↵ering policy implications emerged around
the e↵ectiveness of vaccination strategy and the need for supporting DRC Ebola treatment centers. To
address this issue, University of Kinshasa researchers collected a large number of individual records of
disease histories from probable and confirmed Ebola cases during the 2018-2020 EVD outbreak in DRC.
This study describes a model-based Bayesian statistical method developed to estimate the e↵ects of ring
vaccination, quarantine, and isolation in Ebola treatment centers across northwestern provinces of the
country. The method accounts in particular for missing and censored data, heterogeneity of infection
patterns and multiple waves of infection with di↵erent intervention strategies.
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1 Introduction

We present here a quantitative analysis of the e↵ects of public health interventions against the spread of
the Ebola virus disese (EVD) during the DRC Ebola epidemic that unfolded between August 2018 and
September 2020 in the northeastern provinces of DRC [1, 2], partially sharing the timeline of the better
known and much larger West African epidemic [3]. The DRC 2018 epidemic, being more geographically
contained and smaller, was considerably better documented, with the majority of cases’ disease histories
collected through the e↵orts of the College of Public Health at the University of Kinshasa [4]. The
work of these researchers allowed in particular for tracking the time elapsed between symptom onset,
hospitalization, and recovery or death for over 3000 Ebola victims, creating a unique opportunity for
detailed analysis of the epidemic dynamics based on individual disease histories.

The authorization for emergency use of Merck experimental Ebola vaccine rVSV-ZEBOV-GP [5, 6] and
its field deployment in 2019 has provided for better protection of those involved in monitoring e↵orts, as it
was given to many frontline workers including doctors, nurses, and burial workers. An estimated 330,000
people living in the northern DRC provinces were vaccinated in 2019 and 2020, including frontline workers
as well as ring vaccinations of the contacts of suspected and confirmed cases. This was done in part by the
international nongovernmental organization Doctors Without Borders, with authorization by the Ministry
of Health, concerned with the possibility of further northward spreading of the disease [1]. However, the
more comprehensive vaccination e↵orts were complicated and significantly delayed in late 2019 and in
2020 by local distrust, political instability and the resulting lack of security both for aid workers and for
vaccine supplies [7]. For those reasons, despite the apparent e↵ectiveness of the rVSV-ZEBOV-GP Ebola
vaccine, quarantine and isolation were often still the primary and most e↵ective practical interventions
for breaking the chain of transmission, especially in rural and isolated communities across northern DRC.

Early in the outbreak, a large number of health care workers working for the DRC ministry of health
were brought to the villages to monitor possible EVD symptoms as the ring vaccination campaign was
introduced wherever adequate vaccine supplies were procured and safe funeral practices were mandated [8].
All these factors likely limited the size of the initial outbreak and prevented the uncontrolled EVD
spread into the crucial commercial centers of the region along the border towns of Goma in North Kivu
and Gisenyi in Rwanda [9]. The spillover of DRC cases to Rwanda and possibly Uganda would have
undoubtedly and considerably increased the geographical reach of the outbreak. Largely due to successful
public health monitoring e↵orts, EVD spread occurred mainly via symptomatic individuals in relatively
isolated villages, which contributed to better protection of neighbors and other household members of
EVD victims and the lack of transmission in the treatment centers and among health care workers. This
simplified transmission chain allowed us, in turn, to implement a relatively simple mathematical model of
infection spread based on an individual-level stochastic SIR (susceptible-infected-recovered) model [10].

The classical SIR model for epidemic dynamics was introduced in early 20th century for malaria and
cholera and led to the so-called ecological models of infections usually described by ordinary di↵erential
equations (ODEs) [11]. Such models typically represent an epidemic as a process of transferring individuals
between disease-related states (or compartments) and describe it in terms of the temporal changes in
the compartment sizes. For the purpose of our analysis, we consider a version of that classical model,
which focuses on the fate of a single individual (or agent), making our approach similar to the modern
agent-based model (ABM) approach to disease modeling [12]. Although other more complex ecological
models have been used for studying Ebola transmission (most notably including “funeral” and “exposed”
compartments, see [13]), it appears that for 2018 DRC Ebola data our stochastic SIR model is both
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su�ciently flexible to incorporate the heterogeneity of individual disease histories and simple enough to
require only a small set of population-level parameters. This allows us to estimate the key quantities
of interest in the DRC outbreak, such as the rates of disease reproduction and quarantine/isolation (or
hospitalization) and the size of the subpopulation at risk of infection though contact with EVD cases. The
model also accounts for observed seasonality and spatial variation in the number of cases (e.g., see [14])
by allowing for the three independent sets of parameters to govern the three waves of infections observed
over the course of the outbreak. For the purpose of our analysis we have determined, similarly as in [7],
the first wave to end in late February 2019 and the second one to end around late May 2020. See Table 1
below for more details. Our approach may be also viewed as an alternative to the complicated multi-phase
longitudinal analysis proposed recently for the DRC outbreak data in [15].

2 Materials and Methods

2.1 Ebola Dataset

The 2018-2020 DRC EVD outbreak lasted over 24 months and spread over 3 distinct spatial and temporal
waves. Between the emergency declaration of the EVD outbreak in northern DRC on August 1, 2018
and the outbreak’s o�cial end on June 25, 2020, the DRC Ministry of Health has reported a total of
3,481 cases (including confirmed and probable), 1,162 recoveries, and 2,299 deaths [16] in the provinces of
Northern Kivu, Southern Kivu, and Ituri. The dataset considered here is a large subset of the entire EVD
database compiled by the University of Kinshasa School of Public Health, which comprises 3,117 total
case records (confirmed and probable) recorded between May 3, 2018, and September 12, 2019. The data
included partially de-identified but still detailed patient information, such as each person’s location, date
of symptom onset and hospitalization, as well as discharge due to recovery or death. These individual
records came from the Ebola treatment centers in 24 di↵erent health zones, spread out among the three
DRC provinces of Northern Kivu, Southern Kivu, and Ituri.

Of the 24 health zones, 77.1% of all cases were from only 6: Beni, Butembo, Katwa, Kalunguta,
Mabalako, and Mandima. Only 9.7% of cases were under the age of 18. There is also a slightly larger
proportion of females contracting the disease, comprising 57.0% of the cases. Approximately 5% of the
cases were health care workers. About one-third of the EVD fatalities were not identified until patient’s
death and thus not e↵ectively isolated from the time of infection. Although over 170,000 contacts of
confirmed and probable Ebola cases had been monitored across all a↵ected health zones for 21 days after
their last known exposure by the end of the epidemic, some of the contact tracing was incomplete due
to insecurity that prevented public health response teams from entering some communities. The overall
case density map is presented in panel (A) of Figure 1 with the animated version of the map presented in
the appendix in Figure A.1. Notice that the high-density areas, particularly Butembo, Katwa, and Beni,
are all spatially small health zones corresponding to cities or towns with larger populations.

2.1.1 Case Alerts and Definitions

Since early August, 2018, the DRC Ministry of Health has been collaborating with several international
partners to support and enhance EVD response activities through its emergency operations center in
Goma. To the extent possible given regional security considerations [19], the response teams were deployed
to interview patients and their suspected contacts using a standardized case investigation form classifying
cases as suspected, probable, or confirmed. A suspected case (whether surviving or not) was defined
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(A) (B)

Figure 1: DRC Ebola Dataset. (A) The spatial distribution of 3,481 EVD cases across the northern
DRC health zones during Ebola 2018-2020 outbreak. (B) The flowchart of personal records available up
to September 12, 2019 available for the current analysis. The total number of available individual disease
records was 3,080. Map created using open software R [17] with geospatial data obtained from [18].

as one with the acute onset of fever (over 100�F) and at least three Ebola-compatible clinical signs
or symptoms (headache, vomiting, anorexia, diarrhea, lethargy, stomach pain, muscle or joint aches,
di�culty swallowing or breathing, hiccups, unexplained bleeding, or any sudden, unexplained death) in
a North Kivu, South Kivu, or Ituri resident or any person who had traveled to these provinces during
this period and reported the signs or symptoms defined above. A patient who met the suspected case
definition and died but from whom no specimens were available was considered a probable case. A
confirmed Ebola case was defined as a suspected case with at least one positive test for Ebola virus using
reverse transcription polymerase chain reaction (RT-PCR) [20] testing. Patients with suspected Ebola
were isolated and transported to an Ebola treatment center for confirmatory testing and treatment [2].

2.1.2 Onset and Removal

In our analysis of the DRC dataset, we focused on dates of symptom onset and removal, with removal
defined as either a death/recovery at home or transfer to an Ebola treatment center (ETC). It was assumed
that, once in the treatment center, the probability of further infection spread by an isolated individual
was very small due to the strict safety protocols—and later due also to vaccination of healthcare personnel
and family members who were in contact with the suspected Ebola case. As summarized in panel (B) of
Figure 1, we were able to access 3,117 out of 3,481 individual records of confirmed and probable Ebola
cases. Of these 3,117 records, 37 were missing both the onset and recovery dates and were removed from
further analysis. In about 30% of the remaining records, either their dates of onset or removal were
missing. A detailed flow diagram summarizing the amount of missing data and data processing leading to
the final dataset is presented in panel (B) of Figure 1. The distribution of the original and the partially
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Figure 2: Daily Incidence and Removal Rates. Daily incidence (grey bars) and removal counts (red
dots) during DRC Ebola 2018-2020 outbreak between August 15, 2018 and September 12, 2020 along
with their respective trendlines (loess smoothers). The blue trendline above the plot represents daily
e↵ective reproduction number Rt defined as the ratio of daily number of new infections to new removals.
The vertical lines indicate cut-o↵ dates for data collection in each wave as listed in Table 1.

imputed records across the three waves of infection is provided for further reference in Table 1.

2.1.3 Spatial and Temporal Patterns

Throughout the pandemic, the incidence rates exhibited strong spatial and temporal patterns that can
be summarized as three distinct waves of infections with approximate boundaries marked by vertical lines
in Figure 1. The distribution of weekly reported cases across the most a↵ected health zones listed in
Table 1 is provided in the bar plot and in the corresponding animation in the appendix (see Figure A.1).
As seen from the bar chart and the animated plot, the epidemic was initially driven largely by infections
in the health zones of Beni, Mandima and Mabalako. After several months, the incidence of new cases in
these zones subsided, but the epidemic moved south to the health zones of Katwa and Butembo, where
the majority of new infections was registered between weeks 22 to 45 of the epidemic (see Panel (A)
in Figure A.1 in the Appendix). In the final spatial shift, around week 49, the epidemic returned to
the health zones of Beni, Mandima, and Mabalako, where it was mostly extinguished around week 60
(September 2019). Isolated Ebola incidences occurred sporadically across northern DRC until end of the
outbreak was o�cially declared in June 2020.

The empirical patterns of incidence and removal for EVD cases are summarized in Figure 2 with the
bar and the dot plots representing the daily numbers of new infections and removals, respectively. As
seen from the plot, these daily counts closely follow a three-wave temporal pattern in Table 1. This is
further evident from the black and red trendlines representing the loess smoothers (see [21]). The daily
ratio of new cases and removals may be interpreted as a crude estimate of the e↵ective reproduction
number Rt defined more formally in (2) in Section 2.2 below. In particular, the blue trendline for Rt
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Table 1: Observed Cases by EVD Wave. The observed cases aggregated by 3 infection waves and
the corresponding cuto↵ date for data collection. The number of cases observed in wave 3 by September
12 was 1,113 with a combined total of 3,117 cases across all three waves (see Figures 1).

Wave 1 Wave 2 Wave 3 Total

Cut-o↵ Dates February 27, 2019 May 27, 2019 September 12, 2019

No. Cases 907 1104 1477 3481

Most A↵ected Beni, Katwa Butembo, Katwa, Beni, Kalunguta
Health Zones Mabalako, Mandima Mandima

indicates that towards the end of the observed time period, the number of removals outpaced the number
of new infections (Rt < 1). The ability to sustain this pattern for a su�ciently long time period, mostly by
increasing the rate of quarantine and ETC transfers along with ring vaccination of case contacts was largely
credited with the end of EVD epidemic in mid-2020. The quantification of this public health intervention
e↵ect in 2018-2020 DRC outbreak is one of the main motivations for our model-based analysis. Although
the precise cut-o↵ dates for the three waves of 2018-2020 Ebola infections are di�cult to establish, the
incidence data along with simple statistical analysis (see Section 2.3) indicate that the first wave lasted
approximately until the end of February 2019, whereas the second wave ended around the end of May
2019. For the purpose of the data analysis below, the specific break dates used were February 27, 2019
and May 27, 2019 as marked by vertical lines in Figure 2. September 12, 2019 was the cuto↵ date for the
individual records data available from the University of Kinshasa (see Table 1).

2.2 Model for Data Analysis

The analysis of the individual-level epidemic data is based on the standard ecological model known as the
SIR (susceptible-infected-removed) model and developed for the purpose of analyzing average behavior of
a large population with a homogenous pattern of interactions [22, 11]. Although there are many variants
of SIR models in the literature [23], our current analysis considers the classical Kermack-McKendrick SIR
model that assumes the proportions of population categorized as susceptibles (s), infected (◆), or removed
(r) to evolve according to the di↵erential equations

ṡt = ��st◆t,

◆̇t = �st◆t � �◆t,

ṙt = �◆t,

(1)

with s0 = 1, ◆0 = ⇢ > 0 and rt = 0 where � > 0 is the rate of infection, � > 0 is the rate of recovery
and ⇢ > 0 is the initial amount of infection. In particular, the model implies the existence of the basic
reproduction number R0 (R-naught), which determines the average speed of disease spread [11] and is
given by the formula

R0 = �/�.
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If R0 > 1, the proportion of infected initially rises and then subsides, with the final proposition of
surviving susceptibles given by s1 = 1 � ⌧ > 0 where ⌧ is know as the epidemic’s final size. In typical
statistical analysis, an estimate of R0 is obtained by separately estimating the parameters � and �.
Another important quantity related to (1) is the e↵ective reproduction number, which is typically defined
as

Rt = R0st. (2)

Although equation (1) is typically considered in the context of an average behavior of a large pop-
ulation, for our purposes we interpret it as defining the individual histories of infection and recovery,
according to the idea of the dynamic survival analysis (DSA) discussed recently in [10] and [24] and also
briefly summarized in the Appendix. With the DSA approach, we interpret equation (1) as the so-called
stochastic master equation [25] describing the change in probability of a randomly selected individual
being at time t either susceptible, infected, or removed. These respective probabilities are represented
by the scaled proportions st/(1 + ⇢), ◆t/(1 + ⇢), and rt/(1 + ⇢) and evolve according to (1). As outlined
in [10], the DSA-based interpretation of the classical SIR equations has a number of advantages that
make it particularly convenient for analyzing epidemic data consisting of individual histories of infection
onsets and removals, which is exactly the type of data available in the DRC Ebola dataset. The fact that
the model is individual-based implies also that we can vary the parameters ✓ = (�, �, ⇢) to account for
individual covariates and changes in the parameter values over time, as di↵erent waves of infection sweep
through the population. Finally, for the purpose of our analysis, it is also important to note that the DSA
model does not require any knowledge of the size of the susceptible population subjected to the epidemic
pressure. For the DRC dataset, that assumption would be di�cult to justify due to spatial and temporal
heterogeneity of the epidemic and the frequent movements of local populations driven by political conflicts
and insecurity. Another element complicating the determination of the size of susceptible population was
the ring vaccination campaign that has been conducted since 2019 wherever possible in the northern DRC
during periods of relative stability, despite local mistrust and supply issues. This campaign ultimately
resulted in over 250,000 vaccinations.

Note that, because s0 = 1, the values ofR0 andRt coincide for t = 0. Moreover, st = exp
⇣
�R0

R t
0 rudu

⌘

is a decreasing function of time and therefore, so is Rt. However, in practice, this implication is problem-
atic. Rewriting Rt = �ṡt/ṙt suggests that a crude but sensible way to estimate Rt empirically is to take
the ratio of daily number of new infections to new removals. The empirical Rt thus estimated will not
be necessarily monotonically decreasing. In the light of possibly changing parameters and the e↵ective
population size, we have adopted this approach to estimating the daily e↵ective reproduction number Rt

in Figure 2.

2.3 Parameter Estimation

We assume that, for each of the three waves of the epidemic, we have a separate and independent set of
parameters ✓ and that, in each wave, we observe nT histories (records) of infection. The i-th individual
history may be represented either by the times of disease onset and removal (ti, Ti) or by ti or Ti times
alone (ti, �) or (�, Ti) (� denoting missing value). We assume that among the available nT histories we have
n complete records (ti, Ti), n1 incomplete ones (ti, �) and n2 incomplete ones (�, Ti). The wave-specific
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DSA likelihood function for n complete data records is (see Appendix)

LC(✓|t1 . . . , tn, T1, . . . , Tn, T ) = (sT � 1)�n
nY

i=1

ṡti�
wie��(Ti^T�ti) (3)

where T is the available time horizon and wi is the binary variable indicating whether Ti is right-censored
(that is, Ti ^ T = T ) in which case wi = 0 and otherwise wi = 1. For the remaining n1 + n2 records that
are partially incomplete, the wave-specific DSA likelihood function is

LI(✓|t1 . . . , tn1 , T1, . . . , Tn2 , T ) = (sT � 1)�(n1+n2)�n2

n1Y

i=1

ṡti

n2Y

i=1

(⇢e��Ti � ◆Ti) (4)

where we assume that Ti < T . The overall likelihood for all nT individual histories is obtained by
multiplying (3) and (4). Note that the likelihood formulas depends on the parameter � only implicitly,
through the values of the function st defined by (1). Note also that we assume T to be unique and
exactly known although in practice this may not be true as subsequent waves of infection may be too
close in time (perhaps even overlapping) to allow for a precise specification of T . In our analysis below,
we solve this practical problem by considering several candidates for the values of T in each wave and
then identifying ones that jointly maximize the combined posterior distribution corresponding to the
wave-specific likelihoods in equation (3).

The fitting of the model parameters ✓ = (�, �, ⇢) by maximizing the likelihood function (3) can
be conveniently integrated into the Bayesian estimation framework, which allows for a more complete
propagation of uncertainty and the use of external information in the statistical model. This, in turn,
allows us to produce estimates that reflect all available information and uncertainty. In our DRC data
analysis, the approximate posterior densities of ✓ were obtained using the Hamiltonian Monte-Carlo
sampler [26] implemented in the open source statistical software STAN [27] and integrated with the
popular statistical analysis language R via the library Rstan [28]. For the Rstan analysis, we have
assumed uniform (sometimes improper) prior distributions on the ✓ components as follows

� 2 (0.15,1),

� 2 (0,�),

⇢ 2 (0, 1).

(5)

The lower bound was placed on � based on empirical information, and the upper bound was placed on
� to enforce the constraint R0 > 1. Given the wave-specific time horizons (T ’s), the set of parameters
for each epidemic wave was estimated independently using 2 independent chains of 3000 iterations, with
a burn-in period of 1000 iterations. The chains’ convergence assessed using Rubin’s R statistic [28]. The
analysis resulted in approximate samples from the posterior distribution of ✓ for each of the three waves
of the epidemic (see e.g., Figure 4).

2.3.1 Ethics Statement on Human Subjects and Methods

The research was conducted in accordance with the relevant guidelines and regulations of the US law
and OSU Institutional Review Board. The research activities involving human subjects discussed in the
paper meet the US federal exemption criteria under 45 CFR 46 and 21 CFR 56.
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Figure 3: Model Fit. Comparison of the statistical model fit (red curve) with the observed daily
incidence (onset) and removal relative counts for all 3 waves of the epidemic combined. The shaded
region indicates the 95% credibility bounds based on the posterior distributions of the model parameters
estimated separately for each wave with values summarized in Table 2.

3 Results

The overall comparison of the parametric DSA model predictions with the empirical data in DRC dataset
until September 12, 2019 is given in Figure 3, where the scaled theoretical densities of the epidemic are
plotted alongside the observed relative daily counts of infection (onset) and removal shown earlier in
Figure 2. As seen from the plots, the multi-wave model appears to capture well the empirically observed
patterns of daily counts represented by the histogram bars. The 95% credibility bounds around the model
fit (marked in blue) are calculated based on the model parameter posterior distributions estimated via
the MCMC algorithm with priors described in Section 2.3. We note that, although the DSA fit curve
appears quite similar to the non-parametric loess smoother presented in Figure 2, the parametric fit has
an advantage of providing an explicitly interpretable set of parameters describing the outbreak dynamics.
This allows, for instance, for a purely quantitative comparison of the 3 di↵erent epidemic waves.

The wave-specific results of the MCMC analysis are summarized in Table 2 with some of the posterior
plots presented in Figure 4. In Table 2, the posterior mean and corresponding credibility interval for
each component of ✓ = (�, �, ⇢) are listed for each epidemic wave along with the estimated reproduction
numbers. Additionally, in the last two rows, the posterior estimates of the e↵ective population size
(N) and the outbreak size (K1) are reported (see appendix Section B for formal descriptions of these
quantities). The MCMC estimation scheme that produced the numerical values listed in the table was
based on the wave-specific likelihood functions in equation (3) conditioned on the observation periods
(T ) according to the cut-o↵ dates in Table 1. As seen from the entries of Table 2 and from the posterior
density plots in Figure 4, the parameter values for the infection rate (�), recovery rate (�) and the initial
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Table 2: Parameter Estimates. Wave-specific posterior estimates (means and 95% credibility bounds)
from the parametric model in equation (3).

Parameter Wave 1 Wave 2 Wave 3

T 300 days 89 days 108 days
� 0.190 (0.178, 0.204) 0.217 (0.201, 0.232) 0.235 (0.218, 0.253)
� 0.169 (0.157, 0.183) 0.179 (0.165, 0.192) 0.214 (0.199, 0.230)
⇢ 0.00021 (0.00016, 0.00027) 0.0054 (0.0044, 0.0065) 0.0067 (0.0055, 0.0081)
R0 1.124 (1.108, 1.142) 1.214 (1.168, 1.262) 1.098 (1.061,1.135 )

All Waves

K̂1 3481.41 (2877.416, 4155.878)
N̂ 16385.61 (14416.33, 18703.71)

prevalence of infection ⇢ all di↵er considerably across waves. The most notable appears to be an average
increase of 14% in the posterior � values between waves 1 and 2. This change is seen to correspond to
an 8% increase in the value of the posterior mean of R0 and the subsequent increase in the number of
infections in wave 2 of the EVD outbreak. Another interesting observation in Table 2 is that, while the
average value of � increased moderately (about 8%) between epidemic waves 2 and 3, the corresponding
average value of � increased over twice as much (almost 20%). Recalling the plot of the empirical e↵ective
reproduction number in the top part of Figure 2, it appears that this increase was crucial in ultimately
controlling epidemic growth and ending the outbreak within the next several months. We note that the
increase in the removal rate � corresponds to the decrease in the duration of the infectious period 1/�
(measured in days). Thus, the increase in the respective � values corresponds in this case to a decrease in
the average infectious period from 5.6 days to 4.7 days. This could be further compared with the average
infectious period in the initial wave 1 of the epidemic, which was estimated by the model at almost 6
days (corresponding to the posterior mean � = 0.169). These di↵erences in the wave-specific estimates
of � and 1/� are also clearly seen in their posterior density plots in the top panels of Figure 4, and they
appear to be consistent with the empirical onset and removal rates shown in Figure 2.

As already indicated, one of the advantages of the parametric DSA approach is that it does not
require knowledge of the underlying susceptible population size but may instead infer that value from the
incidence data and the estimated epidemic parameters (see appendix Section B). The posterior means
and 95% credibility bounds for the outbreak size (K1) and the e↵ective population size (N) are listed
in the last two rows of Table 2, and their posterior densities are presented in the bottom panels of
Figure 4. In the bottom-left panel (C), we compare the model-predicted size of an outbreak (represented
by posterior density contour with the mean of 3,481.4) to the number of cases o�cially reported by DRC
health o�cials at the end of the epidemic in June 2020 (represented by the red vertical line at 3,481).
The e↵ective population size corresponding to that value is marked by the vertical line in the posterior
density plot in the bottom-right panel (D). Both vertical lines appear close to the modes of the posterior
distributions indicating good agreement of the model-based estimates with empirical data. Note that
the model predicted e↵ective population size corresponding to the observed outbreak size is only around
16,000 with the posterior CI between 14,416.33 and 18,703.71, which is a much smaller number than one
might expect based on demographic estimates (see also Conclusions).
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Figure 4: Top Panels: Parameters in Di↵erent Waves. The posterior distributions of � and 1/�
parameters for each of the three epidemic waves. The large increase in the rate of infection between
waves 1 and 2 is clearly visible in panel (A). In panel (B), the density of 1/� represents the distribution
of time from symptom onset to removal. Between wave 1 and wave 3 of the epidemic, the average time
shortened from 6 to 4.6 days. Bottom Panels: Outbreak Size and E↵ective Population Size.
(C) The posterior density of the outbreak size based on the statistical model and the actual number of
observed EVD cases (vertical red line). (D) The posterior density of the e↵ective population size for the
epidemic. The vertical line corresponds to the empirical outbreak size (red line in panel (C)).

11



4 Conclusions

Outbreaks of Ebola in Africa are a persistent threat not only to global public health but also to economic
and political stability in some of the world’s poorest and most vulnerable regions. Despite early evidence
of e↵ectiveness of the ring vaccination e↵ort, the prolonged political and armed conflict in northern DRC,
where the latest public health intervention took place, has seeded mistrust towards local authorities and
international partners. This has impeded e↵ective community collaboration, complicating the vaccination
campaign and the overall response strategy [19]. To evaluate the e↵ects of public health response to
EVD outbreak in DRC during 2018-2020, we used the individual-level data based on case ascertainment,
vaccination records, and contact enumeration collected by researchers at the University of Kinshasa School
of Public Health in collaboration with local health authorities in northern DRC from August, 2018 to
September, 2019. The analysis of this dataset is crucial for informing current and future EVD intervention
policies and strategies regarding vaccination, quarantine, and isolation. However, the analysis is also quite
challenging due to incomplete or missing patient information as some families have resisted putting their
loved ones in isolation and some individuals have absconded from Ebola treatment centers. Another
challenge is the complexity of the data itself, with individual patient histories spanning multiple waves
of infections across multiple seasons and spatial environments result in very heterogenous and sometimes
incompatible health records.

To overcome these challenges and analyze the University of Kinshasa dataset, we employed the dy-
namic survival analysis (DSA) method [10], which combines an individual-level Bayesian survival model
with a classical SIR epidemic modeling framework. The fusion of the two allowed us to coherently inte-
grate multiple analyses of individual disease histories into a single analysis based on a simple parametric
model. Using that model, we were able to estimate the reproduction numbers and the e↵ective population
sizes in each of the three major waves of the EVD epidemic while appropriately accounting for uncertainty
due to heterogeneity, missingness, or censoring in the records of EVD patients. This Bayesian framework
also allowed us to incorporate external information through informative prior distributions and to provide
exact inferences for incidence and intervention e↵ects — the information most relevant to policy makers
and public health o�cials.

Through our study, we estimated the epidemic e↵ective population size (the overall number of in-
dividuals at immediate risk of infection) to be around 16,000. This number is much smaller than the
demography-based estimate of the susceptible population that one would usually consider in a standard
epidemic model. Indeed, the combined population of North Kivu, South Kivu, and Ituri provinces exceeds
16 million and accounts for approximately 15% of the DRC population, with many large population cen-
ters (e.g., Goma) exceeding half a million inhabitants. This discrepancy between demographic estimates
and the estimated e↵ective size of the susceptible population emphasizes the individual-based nature of
our analysis and reflects the e↵ects of public health intervention e↵orts (in particular, ring vaccination
and contact tracing) that largely prevented the wide and uncontrolled community spread of the EVD.

Our analysis also indicated that, in di↵erent epidemic waves, the average removal time was statistically
di↵erent with the shortening of the removal time from wave 1 to wave 3 by an average of 1.4 days (from
6 days in wave 1 to 4.6 days in wave 3). This finding is consistent with the general view that increased
isolation and vaccination e↵orts in late 2019 largely contributed to breaking local chains of transmission
and ultimately ending the epidemic by mid-2020. Assuming similar infectivity in future outbreaks, our
results suggest that, in order to limit the spread of EVD in future outbreaks, a rate of removal similar to
that achieved in wave 3 will likely be required.
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Although the DRC has successfully contained Ebola outbreaks in the past [6, 29] and an e↵ective
vaccine is now available, the security and political challenges in the northern DRC — especially North
Kivu and Ituru provinces — continued to create problems for e↵ective public health interventions during
the 2018-2020 outbreak. As political challenges in the DRC are likely to persist in the near future, there is
great need for a flexible approach in responding to future outbreaks that combines multiple pharmaceutical
and non-pharmaceutical strategies. The individual-level EVD data from the 2018-2020 outbreak presented
here is, to our knowledge, the first opportunity to comprehensively look at the multi-wave outbreak data
and quantitatively assess the strength of non-pharmaceutical interventions while also accounting for the
the e↵ects of ring vaccination in decreasing the size of the population at risk of infection. The methodology
developed and used here is also of possible relevance for analyzing other outbreaks exhibiting complicated
dynamics and multiple incidence waves, including the current COVID-19 pandemic.
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Figure A.1: Weekly Case Count in DRC. Left: Proportion of cases, aggregated by week, for each of the
six most outbreak-affected health zones: Beni, Butembo, Kalunguta, Katwa, Mabalako, Mandima (top
to bottom in legend). Right: temporal and spatial distribution of the DRC cases. For full animation, see
https://github.com/wasiur/DSAofEbola/blob/main/drc_animate_final5.gif. The animated map
was created using open software R [17] with geospatial data obtained from [18].
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Figure A.2: Daily Incidence and Removal Rates The model fit versus actual daily data on cases
incidence (onset) and removal. As described in Section 2.3, the analysis was conducted for each wave
separately, leading to different sets of parameter values. To facilitate the comparison with Figure 3, the
results are plotted as relative counts (density functions).

B Derivations for DSA Model

The idea of dynamic survival analysis (DSA) is to derive individual-level independent Markov processes
such that their aggregation leads to the desired ecological models, see [10] and also more recently [31, 32].
In case of the SIR model, equation (1) describes for each individual member of the population their
probabilities of being in the susceptible (S), infected (I), or recovered (R) state. This can be done by
interpreting the rescaled proportions st, ιt, and rt as the respective state probabilities whose evolution is
described by the stochastic master equation [25] given by equation (1) with a random initial condition.

As pointed out in [10], an alternative way of deriving the DSA-based individual infection model
from (1) follows from the so-called Sellke construction (see, e.g., [33] chapter 2.2) that can be viewed
as an agent-based description of the classical, Markovian SIR model of an epidemic. According to the
construction, in the population of m initially susceptible individuals, with additional I0 initially infected,
the probability that a randomly selected initially susceptible individual remains susceptible at time t > 0
is given by the expression

St = e−
β
m

∫ t
0 Iu du (B.1)

where Iu is the total number of infected at time u. For the Markovian model, i.e., when infectious period
is exponentially distributed with rate parameter γ, the quantity Iu/m converges in probability to the
deterministic function ιu which satisfies (1) (see, e.g., [33] chapter 5.3). Therefore, as the approximation
of (B.1) we may take

st = e−β
∫ t
0 ιudu = e−R0rt (B.2)

where (st, ιt, rt) is the solution of (1). As shown in [10] it follows from the law of large numbers for Poisson
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processes that st converges to St as m → ∞ uniformly in probability over any finite interval [0, T ]. The
DSA interpretation of the SIR model leads to the derivation of the individual-level likelihood function as
follows.

Likelihood. We assume that observations of new infections and recoveries are available up to some
time horizon T such that T ∈ [0,∞]. Denote

τT = 1− sT . (B.3)

Note that τT is non-decreasing in T and that τ∞ = τ < 1, the final epidemic size. In view of (B.2) the
quantity (st + τT − 1)/τT may be readily interpreted as the statistical survival function [30] on [0, T ]. It
follows that −ṡt/τT may be interpreted as a density function of infection times on [0, T ] for any T ≤ ∞.
Recalling that under the DSA Markov assumption the infectious period is exponentially distributed with
rate parameter γ we obtain the following individual-level likelihood function for an initially susceptible
individual i observed until time T with infection and recovery times ti and Ti, respectively:

L(θ|ti, Ti, T ) = (−τT )−1ṡtiγ
wie−γ(Ti∧T−ti). (B.4)

Here, wi is the event indicator satisfying wi = 0 if Ti∧T = T and wi = 1 otherwise. The likelihood for
the set of n individuals in the population with complete records (3) is simply the product of the individual
likelihoods, reflecting the assumption that the infection events are approximately independent in a large
population.

Likelihood with missing data. As discussed in the main body of the paper, in about 30% of the
DRC Ebola cases the individual disease records were incomplete, missing either infection (ti) or recovery
(Ti) times. Fortunately, such missingness may be handled by the DSA likelihood without any need for
data imputation. In case when only ti is observed, (Ti is missing), the likelihood (B.4) reduces simply to

L(θ|ti, ◦, T ) = (−τT )−1ṡti . (B.5)

On the other hand, if only Ti is observed (ti is missing), the likelihood is obtained from the convolution
formula and (1)

L(θ|◦, Ti, T ) = (−τT )−1
∫ Ti

0
ṡuγe

−γ(Ti−u)du =
γ

τT
(ιTi − ρe−γTi). (B.6)

Similarly as above, the likelihood for incomplete data (4) is obtained by taking product of (B.5) and (B.6)
over all individual incomplete histories.

Effective population size and outbreak size. Since only infections and recoveries are recorded
are recorded during a typical epidemic, it is often difficult to determine the size (N) of the susceptible
population at risk of infection. This is known in the literature as the problem of estimating N the effective
population size [10]. Under the DSA interpretation of the SIR model, this estimate may be obtained as

N̂ =
kT
τT
, (B.7)
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where kT is the count of observed infected over the time horizon T and τT is given by (B.3). Similarly,
one may also estimate the final epidemic count K∞ of all already observed and future infections by

K̂∞ = N̂τ, (B.8)

where τ = limT→∞ τT is the final epidemic size.
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