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Abstract. In this paper, we propose a new high order semi-implicit scheme for the all-Mach
full Euler equations of gas dynamics. Material waves are treated explicitly, while acoustic waves are
treated implicitly, thus avoiding severe CFL restrictions for low Mach flows. High order accuracy in
time is obtained by a semi-implicit temporal integrator based on the IMEX Runge--Kutta (IMEX-RK)
framework. High order in space is achieved by finite difference WENO schemes with characteristic-
wise reconstructions adapted to the semi-implicit IMEX-RK time discretization. Type A IMEX
schemes are constructed to handle non-well-prepared initial conditions. Besides, these schemes are
proven to be asymptotic preserving and asymptotically accurate as the Mach number vanishes for
well-prepared initial conditions. The divergence-free property of the time-discrete schemes is proved.
The proposed scheme can also well capture discontinuous solutions in the compressible regime, es-
pecially for two-dimensional Riemann problems. Numerical tests in one and two space dimensions
will illustrate the effectiveness of the proposed schemes.
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1. Introduction. Computational fluid dynamics has been a very active research
field in past decades. Numerical methods developed in this area generally can be di-
vided into two categories, which are classified by the dimensionless Mach number. For
moderate to high Mach number compressible effects have to be taken into account,
while for low Mach number the flow can be considered incompressible or weakly com-
pressible. For compressible flows, most numerical solutions are obtained by Godunov
type shock capturing schemes for compressible Euler equations, which have the struc-
ture of a hyperbolic system of conservation laws [36, 47, 23, 43, 15], while for the
incompressible flows, preserving incompressibility and resolving vortex dynamics are
among the main purposes [13, 46, 24].
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There are, however, circumstances in which flows with a wide range of Mach num-
ber appear, making it desirable to develop numerical methods which can be applied
for fluid flows at any speed, as already shown in the pioneering work of Harlow and
Amdsen [28, 29]. However, due to the different physical mechanisms and mathemat-
ical characteristics for the governing equations at different speeds, the development
of efficient and effective numerical methods to capture flows with different compress-
ibility is challenging [34, 20, 41], and a lot of progress has been made only recently.
For hyperbolic systems, waves propagate at finite speeds. Numerical methods have to
resolve all the space and time scales that characterize these waves. Most shock cap-
turing schemes devoted to such systems are obtained by explicit time discretization,
and the time step has to satisfy a stability restriction, known as the CFL condition:
it is limited by the size of the spatial mesh divided by the fastest wave speed. For
compressible flows with Mach number greater than, say, 0.1, such a restriction is not a
problem: indeed, if one is interested in resolving all the waves, accuracy and stability
restrictions on space and time discretization are of a similar nature. However, for low
Mach flows, acoustic waves usually carry a negligible amount of energy. If one is not
interested in resolving them, then the system becomes stiff: stability limitations on
the time step are much stricter than the restrictions imposed by accuracy [48, 49]. In
such cases, one may resort to implicit time discretization to avoid the acoustic CFL
restriction. However, shock capturing schemes are highly nonlinear, and a naive im-
plicit version of them risks being very inefficient. Furthermore, numerical viscosities
for Godunov-type schemes are inversely proportional to the Mach number, introducing
excessive numerical dissipations on the slow waves [19]. Preconditioning techniques
are adopted to cure the large numerical diffusion as discussed in [48, 50, 37], but such
techniques are effectively applicable only if Mach numbers are not too small.

On the other hand, as the Mach number vanishes, the flow converges to the
incompressible limit. For the full Euler equations, at the incompressible limit, the
density remains constant along the fluid particle trajectories, and the pressure waves
propagate with infinite speed. The energy conservation equation reduces to the in-
compressibilty condition \nabla \cdot u = 0 on the velocity field [14], so that the pressure and
the density are decoupled. The pressure turns out to act as a Lagrange multiplier to
enforce incompressibility of the flow [34]. A rigorous proof for the compressible flow
converging to the incompressible one as the Mach number goes to zero is given in
[32]. An effective approach to deal with low Mach flows is given by pressure-based
algorithms, such as, for example, the one by Casulli and Greenspan [12], in which a
semi-implicit treatment of the pressure is incorporated in a scheme for compressible
flow. The authors use an upwind discretization on the material wave, and an implicit
equation for the pressure, which is solved by an SOR-type method. Several authors
have subsequently worked on the development of semi-implicit methods [34, 38] based
on low-Mach asymptotics [32]. However, many such schemes are specifically designed
to deal with low Mach flows. When the fluid flow is compressible at large speed, shock
discontinuities may form and propagate. In these cases, it is necessary to resort to
conservative schemes (density-based schemes) which correctly capture possible shocks.

Recently several papers have been written along these lines; see, for example,
[18, 25, 44, 22, 9, 8] for isentropic Euler and Navier--Stokes equations, or [16, 45, 21,
51, 20, 10] for full Euler and Navier--Stokes equations. However, most finite volume
and finite difference schemes for full Euler equations are second order accurate in
space and time, while existing high order schemes developed for all-Mach flows in
isentropic Euler equations are not robust enough to be directly extended to the full
Euler equations.
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The aim of the present paper is to design a new high order finite difference shock
capturing scheme for the full compressible Euler equations. Finite difference weighted
essentially non-oscillatory (WENO) schemes are used for spatial discretization, while
high order semi-implicit IMEX Runge--Kutta (SI-IMEX-RK) methods are adopted
for time discretization. New IMEX schemes are suitably designed for stability and
accuracy, with time stepping size independent of the Mach number \varepsilon . A key feature
of the scheme is the implicit treatment of acoustic waves, while material waves are
treated explicitly by WENO reconstructions of numerical fluxes. In particular, a suit-
able local Lax--Friedrich flux with characteristicwise WENO reconstruction has been
adopted for the explicit convective terms, while componentwise WENO reconstruc-
tions with zero numerical diffusion is used for implicit acoustic terms. The method
is able to capture shocks and discontinuities in an essentially non-oscillatory fashion
in the compressible regime. In order to avoid the nonlinearity from the equation
of state (EOS), a semi-implicit treatment similar to the one adopted in [9] is used,
leading to a linearized elliptic equation for the pressure, as described in section 3.2.
Another essential ingredient of the scheme design is to split the pressure into a ther-
modynamic pressure and a hydrodynamic one, using a similar idea adopted in [16]
but with a fixed splitting parameter \alpha . The thermodynamic pressure is used for the
characteristic reconstructions, while the hydrodynamic pressure is obtained by solving
an elliptic system. We show that the resulting scheme is asymptotic preserving (AP)
and asymptotically accurate [30, 31], i.e., it is a consistent and high order discretiza-
tion of the compressible Euler equations and, in the limit as \varepsilon \rightarrow 0, with \Delta x and
\Delta t fixed, it becomes a consistent and high order discretization of the incompressible
Euler equations.

The rest of the paper is organized as follows. We recall the low Mach limit for
the full compressible Euler equations in section 2. We start section 3 by introducing
a first order semi-implicit scheme in time, then we describe the extension to high
order time discretization using IMEX methods in section 3.2; in particular we design
IMEX methods called type A [1], which will be robust enough to solve the elliptic
equation for the pressure. We close the section with a description of high order spatial
discretization obtained by characteristicwise and componentwise WENO strategies.
The AP and asymptotic accuracy (AA) properties of the scheme are given in section
4. Numerical tests are performed in section 5, with the conclusion drawn in the last
section.

2. Low Mach limit for the full Euler equations. We consider the compress-
ible Euler equations for an ideal gas in the nondimensional form [39, 19, 16]

(2.1)

\left\{         
\rho t +\nabla \cdot (\rho u) = 0,

(\rho u)t +\nabla \cdot (\rho u\otimes u) + 1
\varepsilon 2\nabla p = 0,

Et +\nabla \cdot [(E + p)u] = 0,

with the EOS for a polytropic gas satisfying

(2.2) E =
p

\gamma  - 1
+

\varepsilon 2

2
\rho | u| 2,

where \gamma > 1 is the ratio of specific heats. The parameter \varepsilon represents a global Mach
number characterizing the nondimensionalization. System (2.1) is hyperbolic and the
eigenvalues along the direction n are \lambda 1 = u \cdot n - cs/\varepsilon , \lambda 2 = u \cdot n, \lambda 3 = u \cdot n+ cs/\varepsilon 

with cs =
\sqrt{} 

\gamma p/\rho .
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When the reference Mach number is of order one, namely \varepsilon = \scrO (1), modern
shock capturing methods are able to compute the formation and evolution of shocks
and other complex structures with high resolutions at a reasonable cost. On the other
hand, when the flows are slow compared to the speed of sound, i.e., \varepsilon \ll 1, we are near
the incompressible regime. In such a situation, pressure waves become very fast com-
pared to material waves. Standard explicit shock-capturing methods require a CFL
time restriction dictated by the sound speed cs/\varepsilon to integrate the system. This leads
to stiffness in time (see, e.g., [25, 18, 16]), where the time discretization is constrained
by a stability condition given by \Delta t < \Delta x/\lambda max = \scrO (\varepsilon \Delta x), where \Delta t is the time
step size, \Delta x is the mesh size, and \lambda max = max\Omega (| u| + cs/\varepsilon ) on the computational
domain \Omega . This restriction results in an increasingly large computational time for low
Mach fluid flows. Moreover, excessive numerical viscosity (scales as \varepsilon  - 1) in standard
upwind schemes leads to highly inaccurate solutions [48, 49]. Thus, it is a challenge
and of great importance to design numerical schemes, not only for shock-capturing,
but also with consideration on stability and consistency in the incompressible limit,
i.e., with the AP property. In fact, in the low Mach limit, one is not interested in re-
solving the pressure waves; instead the fluid pressure serves as a Lagrangian multiplier
in preserving the incompressibility of the velocity field. For the theoretical analysis
of convergence from compressible flow to incompressible equations, such as \varepsilon \rightarrow 0,
we refer to Klainerman and Majda [32, 33] for a rigorous study in this low Mach
limit.

Here we recall the classical formal derivation of the incompressible Euler equations
from the rescaled compressible Euler equations for an ideal gas (2.1) with the EOS
(2.2). We consider an asymptotic expansion ansatz for the two main variables,

(2.3)
p(x, t) = p0(x, t) + \varepsilon 2 p2(x, t) + \cdot \cdot \cdot ,

u(x, t) = u0(x, t) + \varepsilon u1(x, t) + \cdot \cdot \cdot ,

and insert them into the full Euler equations (2.1). First, for the leading order \scrO (\varepsilon  - 2),
we formally find \nabla p0(x, t) = 0, i.e., pressure p0 is constant in space, up to fluctuations
of \scrO (\varepsilon 2), and by (2.2), assuming E has a similar expansion as p in (2.3), we get
E0 = p0/(\gamma  - 1). Then we formally find, up to \scrO (1)

(2.4)

\left\{         
\partial t\rho 0 +\nabla \cdot (\rho 0u0) = 0,

\partial t(\rho 0u0) +\nabla \cdot (\rho 0u0 \otimes u0) +\nabla p2 = 0,

\partial tE0 +\nabla \cdot [(E0 + p0)u0] = 0.

From the energy equation in (2.4), with the EOS (2.2) and denoting d/dt = \partial /\partial t +
u0 \cdot \nabla , we have

(2.5) \nabla \cdot u0 =  - 1

p0\gamma 

dp0
dt

.

Now integrating (2.5) over a spatial domain \Omega with no-slip or periodic boundary
conditions, we get

\int 
\Omega 
\nabla \cdot u0 dx =

\int 
\partial \Omega 

u0 \cdot n ds = 0, where n is the unit outward
normal vector along \partial \Omega , and this implies p0 is constant in both space and time, i.e.,
p0 = Const. Then, back into (2.5), one finds the divergence constraint \nabla \cdot u0 = 0 in
the zero Mach number limit. In summary, we have
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(2.6)

\left\{         
p0 = Const., \nabla \cdot u0 = 0,

\partial t\rho 0 +\nabla \cdot (\rho 0u0) = 0,

\partial t(\rho 0u0) +\nabla \cdot (\rho 0u0 \otimes u0) +\nabla p2 = 0.

As a direct consequence of\nabla \cdot u0 = 0, we obtain from the mass-continuity equation
d\rho /dt = 0, namely the material derivative of the density is zero. This means that the
density is constant along the particle trajectories. In particular, if the initial density
is constant in space, the density of the fluid is constant in space and time. Note that

(2.7) p2 = lim
\varepsilon \rightarrow 0

1

\varepsilon 2
(p - p0)

is implicitly defined by the constraint \nabla \cdot u0 = 0, which satisfies the following elliptic
equation:

(2.8)  - \nabla \cdot 
\biggl( 

1

\rho 0
\nabla p2

\biggr) 
= \nabla \cdot ((u0 \cdot \nabla )u0).

Finally, we assume the initial condition is well-prepared [32, 33, 19, 34], that is,
the initial condition for (2.3) is compatible with the equations at various orders of \varepsilon :

(2.9)

\Biggl\{ 
p(t = 0,x) = p0 + \varepsilon 2 p2(0,x) + \cdot \cdot \cdot ,

u(t = 0,x) = u0(x) +\scrO (\varepsilon ),

with p0 = Const. and \nabla \cdot u0 = 0 and we impose \rho (0,x) = \rho 0(x), with \rho 0(x) being a
strictly positive function. Note that well-prepared initial conditions are required if we
want the solution to the \varepsilon -dependent problem to smoothly converge to the solution of
the limiting incompressible problem. Furthermore, a well-prepared initial condition is
an important requirement to design AP schemes. It is crucial to preserve the constant
state for leading order terms of p and E, as well as the divergence-free constraint on
the leading order term of u. For an arbitrary initial condition, an initial layer will
appear, which requires a numerical resolution at the \varepsilon -scale.

3. Numerical scheme. In this section, we aim to construct and analyze a class
of high order finite difference schemes with the AP property for unsteady compressible
flows, when the Mach number \varepsilon spans several orders of magnitude. The features of our
scheme are the following: we design a semi-implicit IMEX (SI-IMEX) time discretiza-
tion strategy, so that the scheme is stable with a time stepping constraint independent
of the Mach number \varepsilon , the AP property is preserved in the zero Mach number limit,
and the scheme can be implemented in a semi-implicit manner [4, 3, 2, 5] to enable
effective and efficient numerical implementations. Our scheme preserves the incom-
pressible velocity field in the zero Mach number limit by involving an elliptic solver
for the hydrostatic pressure. In this section, the strategy of numerical discretizations
is different from the traditional method-of-lines approach, since we first perform time
discretization to ensure the AP property, after which we apply a suitable space dis-
cretization. In particular we adopt high order WENO strategies with characteristic
reconstructions tailored to IMEX-type methods in time. The final scheme can suc-
cessfully capture shocks in the compressible regime and efficiently solve the equations
in the low Mach regime, with CFL condition depending only on fluid velocity.
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3.1. Semi-implicit treatment. We introduce our proposed strategy of implicit
and explicit time discretizations, which is similar in spirit to the first order scheme in
[16] with a slight modification. We emphasize the special treatment to avoid solving
nonlinear equations required by a fully implicit scheme. We rewrite (2.1) as

(3.1)
dU

dt
=  - \nabla \cdot \scrF E  - \nabla \cdot \scrF SI ,

where U = (\rho , \rho u, E)T and

(3.2) \scrF E
.
=

\left(      
qE\biggl( 

qE \otimes qE

\rho E

\biggr) 
+ \alpha pEI

0

\right)      , \scrF SI
.
=

\left(       
0

1 - \alpha \varepsilon 2

\varepsilon 2
pII

EE + pE
\rho I

qI

\right)       .

Subscripts E and SI of \scrF indicate the explicit and semi-implicit treatment of the first
and the second term, respectively. Several remarks are in order:

1. The parameter \alpha determines the splitting between the explicit and implicit
contribution of the pressure: the former ensures that the explicit part is still
hyperbolic, with a much smaller sound speed than the physical one, when
\varepsilon \ll 1, while the latter will ensure much milder stability restrictions. As \varepsilon 
increases, the explicit contribution becomes more and more relevant. This
form of splitting is similar to the one in [16] but differs in two main aspects:
one is the implicit treatment of \rho in the energy equation in (3.2), which gives
a better AP property, as will be elaborated in section 4; the other is the choice
of the parameter \alpha in splitting the pressure. In [16], \alpha is chosen depending
on the Mach number \varepsilon . In our proposed scheme, however, \alpha is chosen to be
equal to 1 for all \varepsilon < 1, and \alpha = 1/\varepsilon 2 for \varepsilon \geq 1.

2. We use the following EOS for (2.2) to avoid the nonlinearity in the semi-
implicit scheme:

(3.3) EE =
1

\gamma  - 1
pE + \varepsilon 2

| qE | 2

2\rho E
, EI =

1

\gamma  - 1
pI + \varepsilon 2

| qE | 2

2\rho E
.

The subscripts E and I of q, \rho , E, and p indicate the explicit and implicit
treatments of the corresponding variables, respectively.

3. For the implicit term pI in (3.2), it is convenient to introduce a pressure
perturbation pI,2 [41], corresponding to the hydrodynamic pressure in the
incompressible limit, defined as

(3.4) pI,2
.
=

pI  - \=pE
\varepsilon 2

,

where \=pE denotes the spatial average of the pressure pE computed from the
EOS (3.3). In this way the term pI,2 will remain finite even as \varepsilon \rightarrow 0. Then
we have

(3.5)
1

\varepsilon 2
\nabla pI = \nabla pI,2.

As an example, we present the scheme as well as the flow chart to update the numerical
solution Un+1 = (\rho n+1,qn+1, En+1)T for the first order semi-implicit scheme solving
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system (2.1). We focus on the time discretization while keeping the space continuous,
whose discretizations will be discussed in detail in section 3.3:

\rho n+1  - \rho n

\Delta t
+\nabla \cdot qn = 0,(3.6a)

qn+1  - qn

\Delta t
+\nabla \cdot 

\biggl( 
qn \otimes qn

\rho n
+ pn I

\biggr) 
+

1 - \varepsilon 2

\varepsilon 2
\nabla pn+1 = 0,(3.6b)

En+1  - En

\Delta t
+\nabla \cdot 

\biggl( 
En + pn

\rho n+1
qn+1

\biggr) 
= 0,(3.6c)

with
(3.7)

\scrF E(U
n)

.
=

\left(      
qn\biggl( 

qn \otimes qn

\rho n

\biggr) 
+ pn I

0

\right)      , \scrF SI(U
n, Un+1)

.
=

\left(       
0

1 - \varepsilon 2

\varepsilon 2
pn+1 I

En + pn

\rho n+1
qn+1

\right)       .

The flow chart based on the semi-implicit scheme is the following:
1. Update \rho n+1 from (3.6a).
2. We rewrite (3.6b) as

(3.8) qn+1 = q\ast  - \Delta t
1 - \varepsilon 2

\varepsilon 2
\nabla pn+1,

with q\ast = qn  - \Delta t\nabla \cdot (\bfq 
n\otimes \bfq n

\rho n + pnI). We substitute qn+1 into (3.6c) to get

(3.9) En+1 = E\ast +\Delta t2
1 - \varepsilon 2

\varepsilon 2
\nabla \cdot 
\bigl( 
Hn\nabla pn+1

\bigr) 
,

where Hn = (En + pn)/\rho n+1 and E\ast = En  - \Delta t\nabla \cdot (Hnq\ast ).
3. Now we replace En+1 by pn+1/(\gamma  - 1)+\varepsilon 2| q| 2/(2\rho n) in (3.9) using (3.3), and

with the introduction of (3.4), i.e., pn+1
2

.
= (pn+1  - \=pn)/\varepsilon 2 where pI = pn+1

and \=pn = \=pE , we rewrite (3.9) as

(3.10)
\varepsilon 2

\gamma  - 1
pn+1
2  - \Delta t2(1 - \varepsilon 2)\nabla \cdot 

\bigl( 
Hn\nabla pn+1

2

\bigr) 
= E\ast \ast ,

where E\ast \ast = E\ast  - \=pn/(\gamma  - 1)  - \varepsilon 2| q| 2/(2\rho n) is explicitly computed. We
obtain an elliptic equation (3.10) for pn+1

2 .
4. Finally, we update qn+1 from (3.8), and then En+1 from (3.6c).

Note that if \varepsilon \geq 1 the implicit pressure contribution in (3.6b) vanishes, so the mo-
mentum qn+1 is evaluated explicitly. With updated \rho n+1 and qn+1, En+1 can also
be updated in an explicit way from (3.6c).

3.2. High order semi-implicit temporal discretization using IMEX.

3.2.1. High order SI-IMEX-RK scheme for all-Mach number full Euler
system. We generalize the first order scheme (3.6) to high order in the framework
of IMEX-RK methods. In order to do so, we follow the idea introduced in [4]. We
consider an autonomous system of the form

U \prime = \scrH (U,U), U(t0) = U0,
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where \scrH : Rn \times Rn \rightarrow Rn is a sufficiently regular mapping. We assume an explicit
treatment of the first argument of \scrH (using subscript E), and an implicit treatment
to the second argument (using subscript I), i.e.,

(3.11)

\Biggl\{ 
U \prime 
E = \scrH (UE , UI),

U \prime 
I = \scrH (UE , UI),

with initial conditions

(3.12) UE(t0) = U0, UI(t0) = U0.

Then system (3.1) with (3.2) can be rewritten in the form (3.11) where U
.
= (UE , UI)

T

with UE = (\rho E ,qE , EE)
T , and UI = (\rho I ,qI , EI)

T , and\scrH (UE , UI) =  - \nabla \cdot \scrF E - \nabla \cdot \scrF SI .
System (3.11) is a particular case of the partitioned system [27]. One can apply

an IMEX-RK scheme to (3.11), using the corresponding pair of Butcher tableau [11],

(3.13)
\~c \~A

\~bT
,

c A

bT
,

where \~A = (\~aij) is an s \times s matrix for an explicit scheme, with \~aij = 0 for j \geq i
and A = (aij) is an s \times s matrix for an implicit scheme. For the implicit part of
the methods, we use a diagonally implicit scheme, i.e., aij = 0, for j > i, in order to
guarantee simplicity and efficiency in solving the algebraic equations corresponding to
the implicit part of the discretization. The vectors \~c = (\~c1, . . . , \~cs)

T , \~b = (\~b1, . . . ,\~bs)
T ,

and c = (c1, . . . , cs)
T , b = (b1, . . . , bs)

T complete the characterization of the scheme.
The coefficients \~c and c are given by the usual relation

\~ci =
i - 1\sum 
j=1

\~aij , ci =
i\sum 

j=1

aij .(3.14)

From now on, it is useful to characterize different IMEX schemes we will consider in
what follows according to the structure of the DIRK method. Following [1] we say an
IMEX-RK method is of type A if the matrix A \in Rs\times s is invertible, and we say an
IMEX-RK method is of type CK if the matrix A can be written as

A =

\biggl( 
0 0

a \^A

\biggr) 
with a = (a21, . . . , as1)

T \in R(s - 1) and the submatrix \^A \in R(s - 1)\times (s - 1) is invertible,
or equivalently aii \not = 0, i = 2, . . . , s. In the special case a = 0, b1 = 0 the scheme
is said to be of type ARS and the DIRK method is reducible to a method using
s  - 1 stages. Later, for the consideration of the AP property, we consider stiffly
accurate (SA) implicit schemes, i.e., the implicit part of the Butcher table satisfies
the condition bT = eTs A, with es = (0, . . . , 0, 1) and cs = 1. We will see that SA
guarantees that the numerical solution is identical to the last internal stage value of
the scheme.

Now an SI-IMEX-RK scheme applied to (3.11) reads

U
(i)
E = Un

E +\Delta t
i - 1\sum 
j=1

\~aij\scrH (U
(j)
E , U

(j)
I ), U

(i)
I = Un

I +\Delta t
i\sum 

j=1

aij\scrH (U
(j)
E , U

(j)
I ),(3.15a)

Un+1
E = Un

E +\Delta t
s\sum 

i=1

\~bi\scrH (U
(i)
E , U

(i)
I ), Un+1

I = Un
I +\Delta t

s\sum 
i=1

bi\scrH (U
(i)
E , U

(i)
I ).(3.15b)
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Apparently, by writing in the form (3.11), we increased the computational cost since
we double the number of variables. However, the cost is mainly due to the number of
function evaluations, which essentially depends on the semi-implicit scheme, because
in (3.15) the identical term \scrH (U j

E , U
j
I ) appears in both explicit and implicit parts.

Furthermore, if \~bi = bi for all i, then Un
E = Un

I for all n > 0 (provided U0
E = U0

I ) and
therefore the duplication of variables is not necessary. Such a property is of particular
relevance for designing time discretization schemes which are AP.

We rewrite the scheme (3.15) in the following new form for the convenience of
further discussion:

(3.16) U
(i)
E = Un +\Delta t

i - 1\sum 
j=1

\~aij\scrH (U
(j)
E , U

(j)
I ), U

(i)
I = \~U

(i)
I +\Delta t aii\scrH (U

(i)
E , U

(i)
I ),

where \~U
(i)
I = Un +\Delta t

\sum i - 1
j=1 aij\scrH (U

(j)
E , U

(j)
I ). Denoting Un = Un

E = Un
I for all n > 0

(due to \~bi = bi for all i), finally we have

(3.17) Un+1 = Un +\Delta t
s\sum 

i=1

bi\scrH (U
(i)
E , U

(i)
I ).

Similar to the first order scheme, we split the pressure into explicit (pE) and implicit
(pI) terms. In order to avoid the nonlinearity in the semi-implicit step we use the
following equations of state (3.3), i.e., for the generic stages i = 1, . . . , s:

E
(i)
E =

1

\gamma  - 1
p
(i)
E + \varepsilon 2

| q(i)
E | 2

2\rho 
(i)
E

,(3.18a)

E
(i)
I =

1

\gamma  - 1
p
(i)
I + \varepsilon 2

| q(i)
E | 2

2\rho 
(i)
E

.(3.18b)

Remark 3.1. The first order scheme (3.6) is the same as applying the following
Butcher table to (3.11):

(3.19) Type A I:
0 0

1
1 1

1
.

Formally applying the above tableau (3.19) to the partitioned system (3.11), it reads

U
(1)
E = Un,

U
(1)
I = Un +\Delta t\scrH (U

(1)
E , U

(1)
I ),

Un+1 = Un +\Delta t\scrH (U
(1)
E , U

(1)
I ),

which is the first order scheme (3.6), considering U
(1)
E = Un and U

(1)
I = Un+1.

Remark 3.2. The authors in [10] proposed a different semi-implicit discretization
of the EOS (3.18b) where the kinetic energy in the total energy definition splits into
an explicit and an implicit contribution, namely

(3.20) E
(i)
I =

1

\gamma  - 1
p
(i)
I + \varepsilon 2

| (q(i)
E )Tq

(i)
I | 

2\rho 
(i)
I

.

We performed numerical tests to compare such semi-implicit treatment of the kinetic
energy (3.20) with (3.18b). It is found numerically that such semi-implicit treatment
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(3.20) may produce slightly better error in some test cases. Overall comparable per-
formances are observed. In order to save space, we decided not to report these results
in this paper.

3.2.2. Construction of an IMEX-RK scheme. Next, we construct an IMEX-
RK Butcher tableau for semi-implicit discretization of the all-Mach full Euler system.
The construction is based on the following considerations for accuracy and for han-
dling non-well-prepared initial data.

1. We require that the implicit part of the IMEX-RK scheme is SA. With such
an assumption, one can derive the AP and AA properties of the scheme as
discussed in section 4. Note that if the implicit part of the scheme is A-stable,
SA is a sufficient condition to make it L-stable; see [27].

2. The invertibility of the implicit matrix A of the SI-IMEX-RK scheme is im-
portant to handle non-well-prepared initial conditions and for proper initial-
ization of the hydrodynamic pressure. In particular, a11 \not = 0 for IMEX-RK
schemes of type A. This is critical to solve the pressure wave equation (3.10).
If a11 = 0 (e.g., in an IMEX scheme of type ARS), then we can not have the
pressure wave equation, hence no proper value of pI,2 (e.g., see (3.29)) at the
first IMEX stage. For further related discussions and analysis, we refer the
reader to the papers [40, 7, 6]. Thus, we construct IMEX-RK of type A for
the time discretization.

3. To synchronize UE and UI , the weights for the final stage of the double
tableaus should be the same, i.e., \~bi = bi, i = 1, . . . , s. That is, we keep only
one set of numerical solution in the process of updating [4]. Alternatively, we
can select a different vector of weights for the UE(t), say, \~bi \not = bi, which will
provide a lower/higher order approximation of the solution for UE(t); this
can be used to implement a procedure of automatic time step control [26].

4. In order to simplify order conditions, given the equations of state used in the
semi-implicit step (3.18), we impose that ci = \~ci, i = 2, . . . , s. Note that if
matrix A is invertible we have c1 \not = \~c1 = 0 [40].

Based on the above considerations, we design a high-order IMEX scheme with matrix
A invertible, which is SA and satisfies ci = \~ci for i = 2, . . . , s. We impose the
conditions required for a third order scheme [40] and obtain the following double
Butcher tableau:

Explicit :

0 0 0 0 0
\gamma \gamma 0 0 0

0.717933260754 0.435866521508 0.282066739245 0 0
1  - 0.733534082748750 2.150527381100  - 0.416993298352 0
0 0 1.208496649176  - 0.644363170684 \gamma 

,

Implicit :
(3.21)

\gamma \gamma 0 0 0
\gamma 0 \gamma 0 0

0.717933260754 0 0.282066739245 \gamma 0
1 0 1.208496649176  - 0.644363170684 \gamma 

0 1.208496649176  - 0.644363170684 \gamma 
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with \gamma = 0.435866521508. We call it SI-IMEX(4,4,3), the triplet (s, \sigma , p) characteriz-
ing the number of stages of the implicit scheme (s = 4), the number of stages of the
explicit scheme (\sigma = 4 ) and the order of the scheme (p = 3). A corresponding second
order scheme, which we call SI-IMEX(3,3,2), is given as

Explicit : Implicit :

0 0 0 0
\gamma \gamma 0 0
1 \delta 1 - \delta 0
0 0 1 - \gamma \gamma 

,

\gamma \gamma 0 0
\gamma 0 \gamma 0
1 0 1 - \gamma \gamma 
0 0 1 - \gamma \gamma 

,(3.22)

where \gamma = 1 - 
\surd 
2/2 and \delta =  - 2

\surd 
2/3.

3.3. High order spatial discretization for all-Mach fluid flows. Below we
describe our spatial discretization strategies that incorporate a WENO mechanism to
capture shocks in the compressible regime and produce a high order incompressible
solver for the flow in the zero Mach limit. One major difficulty, hence the new ingre-
dient in the scheme design, in extending the high order AP scheme for the isentropic
Euler system [8] to the full Euler system is about the pressure. In the isentropic case,
the pressure is an explicit function of \rho , whereas in the full Euler case the pressure
comes from the EOS involving all conserved variables. As such, we split the pressure
into the part involving pE obtained from the EOS (3.18a) and the part pI,2 obtained
by formulating an elliptic equation from a semi-implicit solver of the system. In this
process, the spatial discretization in the scheme formulation becomes critical for its
robustness. There are several ingredients in our spatial discretization that differenti-
ate our approach from the existing ones in the literature. First, we carefully apply the
WENO procedure for spatial reconstructions of fluxes for the full Euler system which
is a nontrivial generalization from the isentropic one [8]. In particular, we propose to
apply the fifth order characteristicwise WENO procedure to \scrF E (in (3.2)) of the full
Euler system so that in the compressible regime oscillations could be best controlled,
and to apply a componentwise WENO procedure for the flux functions of \scrF SI (in
(3.2)). We found that such a choice is optimal in compromising the need from both
compressible and incompressible fluid solvers. The characteristicwise WENO turns
out to be important for the compressible Euler system, as shown in the numerical
section. Second, following the strategy in our previous work [8], we apply a compact
high order spatial discretization to second order derivatives terms in (3.28). This is
discussed in section 3.3.2.

3.3.1. WENO spatial discretization. Without loss of generality, we describe
our algorithms in a two-dimensional (2D) setting. Let

U = (\rho , \rho u, \rho v, E)T ,

\nabla \cdot \scrF E = \partial x\scrF x
E + \partial y\scrF y

E , \nabla \cdot \scrF SI = \partial x\scrF x
SI + \partial y\scrF y

SI

with flux functions in x and y directions

\scrF x
E = (\rho u, \rho u2 + p, \rho uv, 0)T , \scrF y

E = (\rho v, \rho uv, \rho v2 + p, 0)T ,

\scrF x
SI =

\biggl( 
0,

1 - \varepsilon 2

\varepsilon 2
p, 0,

E + p

\rho 
(\rho u)

\biggr) T

, \scrF y
SI =

\biggl( 
0, 0,

1 - \varepsilon 2

\varepsilon 2
p,

E + p

\rho 
(\rho v)

\biggr) T

.

We consider a rectangular domain discretized by a uniform Cartesian grid, with mesh
size \Delta x = \Delta y, and grid points (xi, yj), i = 1, . . . , Nx, j = 1, . . . , Ny, located at cell
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centers. We use the subscript \cdot i,j to denote the solution point values at (xi, yj) and
use \cdot i\pm 1/2,j and \cdot i,j\pm 1/2 for the reconstructed numerical fluxes in approximating x-
and y- derivatives, respectively.

Below we first present two types of WENO spatial discretizations, i.e., a character-
isticwise WENO and a componentwise WENO, for explicit and semi-implicit parts as
specified in (3.2), respectively.

1. Characteristicwise WENO \nabla CW with Lax--Friedrichs splitting for discretizing
\nabla \cdot \scrF E. For compressible hyperbolic systems with shocks, WENO reconstruc-
tions in the componentwise fashion may still lead to oscillations and a local
characteristic decomposition will be needed [42]. We let \scrF x

E,i,j be the flux
function at each grid point (xi, yj). To approximate the \partial x\scrF x

E | xi,yj , we fix
a j-index and perform a global Lax--Friedrichs splitting for the flux terms,
i.e.,

\scrF x
E,i,j = \scrF x,+

E,i,j + \scrF x, - 
E,i,j \forall i

with

(3.23)

\scrF x,\pm 
E,i,j =

1

2
(\scrF x

E,i,j \pm \Lambda UE,i,j), \Lambda = max
u,v

\biggl\{ 
| u| + | v| +min

\biggl\{ 
1,

1

\varepsilon 

\biggr\} 
cs

\biggr\} 

with cs =
\sqrt{} 
\gamma p/\rho being the sound speed multipled by \varepsilon , and the max is taken

over appropriate range of u, v. Notice that such a choice of \Lambda is the same as
in our previous work [8]. We then project \{ \scrF x,\pm 

E,i,j\} 
Nx
i=1 to local characteristics

directions for the full Euler system in the compressible regime (corresponding
to \varepsilon = 1), perform WENO reconstruction of fluxes there, and then project
the reconstructed fluxes back, to obtain the flux terms as

\^\scrF x
E,i+ 1

2 ,j
= \^\scrF x,+

E,i+ 1
2 ,j

+ \^\scrF x, - 
E,i+ 1

2 ,j
.

Then

\partial x\scrF x
E | xi,yj \approx 1

\Delta x

\Bigl( 
\^\scrF x
E,i+ 1

2 ,j
 - \^\scrF x

E,i - 1
2 ,j

\Bigr) 
.

A similar procedure could be performed to approximate spatial derivatives in
the y-direction. We introduce the notation of \nabla CW for the characteristicwise
WENO spatial discretization of \scrF E .

2. A componentwise WENO \nabla W with Lax--Friedrichs flux splitting for discretiz-
ing \nabla \cdot \scrF SI . We apply a componentwise WENO reconstruction of fluxes for
discretizing \nabla \cdot \scrF SI denoted as \nabla W \cdot \scrF SI . In particular, a Lax--Friedrichs flux
splitting, followed by a componentwise WENO reconstruction, is performed
to obtain the numerical fluxes.

3.3.2. Flowchart and compact discretization of second order deriva-
tives. With the introduction of characteristicwise and componentwise WENO \nabla CW

and \nabla W , we summarize the flow chart of the SI-IMEX-RK time discretization (3.16)--
(3.17), coupled with WENO spatial discretization, for solving the all-Mach full Euler
system. In this process, a compact high order discretization for second order spatial
derivatives in (3.28) is applied.
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1. Starting from Un at time tn, we first compute U
(i)
E from (3.16),

\rho 
(i)
E = \rho n  - \Delta t

i - 1\sum 
j=1

\~aij\nabla CW \cdot q(j)
E ,(3.24a)

q
(i)
E = qn  - \Delta t

i - 1\sum 
j=1

\~aij

\Biggl( 
\nabla CW \cdot 

\Biggl( 
q
(j)
E \otimes q

(j)
E

\rho 
(j)
E

+ p
(j)
E I

\Biggr) 
+ (1 - \varepsilon 2)

\nabla W p
(j)
I

\varepsilon 2

\Biggr) 
,

(3.24b)

E
(i)
E = En  - \Delta t

i - 1\sum 
j=1

\~aij\nabla W \cdot 
\Bigl( 
\=H(j)q

(j)
I

\Bigr) 
.(3.24c)

2. We compute \~U (i) in (3.16).

\~\rho (i) = \rho n  - \Delta t
i - 1\sum 
j=1

aij\nabla CW \cdot q(j)
E ,(3.25a)

\~q(i) = qn  - \Delta t
i - 1\sum 
j=1

aij

\Biggl( 
\nabla CW \cdot 

\Biggl( 
q
(j)
E \otimes q

(j)
E

\rho 
(j)
E

+ p
(j)
E I

\Biggr) 
+ (1 - \varepsilon 2)

\nabla W p
(j)
I

\varepsilon 2

\Biggr) 
,

(3.25b)

\~E(i) = En  - \Delta t
i - 1\sum 
j=1

aij\nabla W \cdot 
\Bigl( 
\=H(j)q

(j)
I

\Bigr) 
(3.25c)

with \=H(j) = (E
(j)
E + p

(j)
E )/\rho 

(j)
I .

3. Solve U
(i)
I from (3.16).

(a) In components, U
(i)
I satisfies

\rho 
(i)
I = \~\rho (i)  - \Delta t aii\nabla CW \cdot q(i)

E ,(3.26a)

q
(i)
I = \~\~q(i)  - \Delta t aii

\biggl( 
1 - \varepsilon 2

\varepsilon 2
\nabla p

(i)
I

\biggr) 
,(3.26b)

E
(i)
I = \~E(i)  - \Delta taii\nabla \cdot ( \=Hiq

(i)
I ),(3.26c)

where

(3.27) \~\~q(i) = \~q(i)  - \Delta t aii

\Biggl( 
\nabla CW \cdot 

\Biggl( 
q
(i)
E \otimes q

(i)
E

\rho 
(i)
E

+ p
(i)
E I

\Biggr) \Biggr) 
.

(b) To solve the system (3.26), we substitute q
(i)
I of (3.26b) into (3.26c) and

obtain

(3.28) E
(i)
I = E\ast \ast 

I + (1 - \varepsilon 2)\Delta t2 a2ii\nabla 

\Biggl( 
\=H(i)

\Biggl( 
\nabla p

(i)
I

\varepsilon 2

\Biggr) \Biggr) 

with E
(i)
I following the EOS (3.18b) and E\ast \ast 

I = \~E(i)  - \Delta t aii\nabla W \cdot 
( \=H(i)\~\~q(i)). (3.28) is an implicit equation about p

(i)
I . By the introduction

of pressure perturbation p
(i)
I,2 in (3.4), we solve p

(i)
I,2 from

(3.29)
\varepsilon 2

\gamma  - 1
p
(i)
I,2 = E\ast \ast \ast 

I + (1 - \varepsilon 2)\Delta t2 a2ii\nabla 
\Bigl( 
\=H(i)

\Bigl( 
\nabla p

(i)
I,2

\Bigr) \Bigr) 
,
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where E\ast \ast \ast 
I = E\ast \ast 

I  - \=pE/(\gamma  - 1)  - \varepsilon 2| q(i)
E | 2/(2\rho (i)E ). Notice that in the

process of substitution to obtain (3.28) or (3.29), the gradient and the
divergence operators are kept continuous, obtaining the second order

operator \nabla ( \=H(i)\nabla p
(i)
I,2). The second order spatial derivative is then dis-

cretized by a compact discretization as proposed in [8].

(c) With p
(i)
I,2 solved from (3.29), we update q

(i)
I from

(3.30) q
(i)
I = \~\~q(i)  - \Delta t aii

\bigl( 
1 - \varepsilon 2

\bigr) 
\nabla W p

(i)
I,2

and successively update E
(i)
I from

(3.31) E
(i)
I = \~E(i)  - \Delta taii\nabla W \cdot ( \=Hiq

(i)
I ).

4. Finally, update the numerical solution Un+1 = U
(s)
I with the assumption on

the SA property of IMEX-RK schemes.
This completes the description of the high order SI-IMEX-RK time discretization to
the all-Mach full Euler equations.

4. Asymptotic preserving and asymptotically accurate properties.

4.1. AP property. In this section we prove the AP property of scheme (3.6).
In particular, we prove that its limiting scheme is consistent with the continuous
limit model (2.6) at \varepsilon = 0. We focus on the AP analysis on time discretizations,
while keeping the space continuous. We assume that the data at time tn are well-
prepared in the sense of (2.3), i.e., pn(x) := p(tn,x) and un(x) := u(tn,x) admit the
decomposition:

(4.1) pn(x) = pn0 + \varepsilon 2 pn2 (x), un(x) = un
0 (x) +\scrO (\varepsilon ),

where pn0 = (\gamma  - 1)En
0 is a constant and \nabla \cdot un

0 (x) = 0.
Then we consider an expansion in powers of \varepsilon of the form (2.3) and we plug it

into the semidiscrete scheme (3.6). Equating to zero the \scrO (\varepsilon  - 2) term we have

(4.2) \nabla pn+1
0 = 0.

Equating to zero the \scrO (\varepsilon 0) terms, we have

\rho n+1
0  - \rho n0

\Delta t
+\nabla \cdot (\rho n0un

0 ) = 0,(4.3a)

\rho n+1
0 un+1

0  - \rho n0u
n
0

\Delta t
+\nabla \cdot (\rho n0un

0 \otimes un
0 ) +\nabla pn+1

2 = 0,(4.3b)

En+1
0 = pn+1

0 /(\gamma  - 1),(4.3c)

En+1
0  - En

0

\Delta t
+\nabla \cdot 

\bigl( 
\=Hn
0 (\rho 

n+1
0 un+1

0 )
\bigr) 
= 0(4.3d)

with

(4.4) \=Hn
0 =

pn0 + En
0

\rho n+1
0

=
\gamma 

\gamma  - 1

pn0
\rho n+1
0

.

By (4.3c) and (4.4), (4.3d) is equivalent to

(4.5)
pn+1
0  - pn0

\Delta t
+ \gamma pn0 \nabla \cdot un+1

0 = 0.
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B382 S. BOSCARINO, J. QIU, G. RUSSO, AND T. XIONG

Note that (4.5) is the time discretization of the limiting equation for the pressure
(2.5).

From (4.2), it follows that pn+1
0 is independent of space. Now, as in the contin-

uous case, integrating (4.5) over a spatial domain \Omega and assuming some boundary
conditions (for example, no-slip or periodic), we get pn+1

0 = pn0 , i.e., p
n+1
0 is also inde-

pendent of time. Using this in (4.5), we obtain the divergence-free condition for the
velocity \nabla \cdot un+1

0 = 0.
This yields the following theorem.

Theorem 4.1. The time-discrete scheme (4.3) is AP in the sense that at the
leading order asymptotic expansion, (4.3a), (4.3b) with pn+1

0 constant and \nabla \cdot un+1
0 = 0

are a consistent approximation of the incompressible Euler equations (2.6).

Another noticeable feature of the time-discrete scheme (4.3) is that we can obtain
a time-discrete version for the elliptic equation (2.8). We get it by applying the diver-
gence operator to the momentum equation (4.3b), after some algebraic manipulations,
and making use of the density equation (4.3a). The resulting relation is

\nabla \cdot 
\biggl( 

\rho n0
\rho n+1
0

(un
0 \cdot \nabla )un

0

\biggr) 
=  - \nabla \cdot 

\biggl( 
1

\rho n+1
0

\nabla pn+1
2

\biggr) 
,

which is a consistent discretization of (2.8) because \rho n0/\rho 
n+1
0 = 1 +\scrO (\Delta t).

Note that once it is established that \nabla \cdot un+1
0 = 0, from the first equation of (2.4)

it follows that if the initial density \rho 00 is constant, then it remains constant for any
later time.

Remark 4.2. Note that in [16] the authors proposed a scheme similar to (3.6), but
with a slight difference in the explicit treatment of the density in the energy equation,
i.e.,

En+1  - En

\Delta t
+\nabla \cdot 

\biggl( 
En + pn

\rho n
qn+1

\biggr) 
= 0.

Their scheme is AP, i.e., it is consistent with the limiting equations (2.4) in the incom-
pressible regime. However, as \varepsilon \rightarrow 0, they prove that the divergence-free condition on
the velocity is explicitly satisfied up to the order of the approximation with the CFL
condition independent of the Mach number \varepsilon , i.e., \nabla \cdot un+1

0 = \scrO (\Delta t) (see the proposi-
tion in section 4.2 in [16]). In our case, instead, scheme (3.6) has the correct discrete
divergence-free condition for the leading order velocity un+1

0 , i.e., \nabla \cdot un+1
0 = 0.

4.2. AA property. The AP property guarantees only the consistency of the
scheme, but in general the AP property does not guarantee the high order accuracy
of IMEX schemes in the limit for \varepsilon \ll 1, i.e., as \varepsilon \rightarrow 0 the order of accuracy may
degrade. In what follows, we first formally state the definition of the AA property,
and then we recognize that the SA condition is crucial to guarantee the AA property
of our SI-IMEX-RK scheme. Similarly as the AP property, here we focus on the AA
analysis on time discretizations, while keeping space continuous.

Definition 4.3. A semi-implicit temporal discretization for the Euler system
(2.1) is said to be AA, if it maintains its order of temporal accuracy for the limiting
system (2.4) when \varepsilon \rightarrow 0.

Proposition 4.4. Consider an SI-IMEX-RK scheme (3.16)--(3.17) of order r
applied to system (2.1) in a bounded domain \Omega \subset R with zero Neumann condition.
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HIGH ORDER SI WENO SCHEMES FOR ALL-MACH FLOWS B383

Assume that the implicit part of the IMEX-RK scheme is SA and that the initial con-
ditions (\rho 0(x), \rho 0(x)u0(x), p0)T are well-prepared in the form of (2.9). Let us denote
by (\rho 1(x; \varepsilon ), \rho 1(x; \varepsilon )u1(x; \varepsilon ), p1(x; \varepsilon ))T the numerical solution after one time step.
Then we have

(4.6) lim
\varepsilon \rightarrow 0

p1(x; \varepsilon ) = p\ast , lim
\varepsilon \rightarrow 0

\nabla \cdot u1(x; \varepsilon ) = 0

with p\ast a constant.
Furthermore, let Vinc(x, t) = (\rho inc(x, t), \rho inc(x, t)uinc(x, t), pinc(x, t))

T be the ex-
act solution of the incompressible Euler equations (2.6) with the same initial data.
Then one has the one-step error estimate

(4.7) lim
\varepsilon \rightarrow 0

V1(x; \varepsilon ) = Vinc(x,\Delta t) +\scrO (\Delta tr+1),

i.e., the scheme is AA.

Proof. We consider the first step from t0 = 0 to t1 = \Delta t for the SI-IMEX-RK
scheme (3.16)--(3.17) of order r applied to system (2.1) with well-prepared initial data
(4.1),

\rho 0(x) = \rho 0inc + \varepsilon 2 \rho 02(x), p0(x) = p\ast + \varepsilon 2 p02(x), u0(x) = u0
inc +\scrO (\varepsilon ),

where \rho 0inc := \rho inc(x, 0), u
0
inc := uinc(x, 0), and by the well-prepared assumption we

have pinc(x, 0) := p\ast constant independent of time and space, and \nabla \cdot u0
inc = 0.

Now we consider a formal \varepsilon -expansion of the quantities U
(i)
I = (\rho 

(i)
I ,q

(i)
I , E

(i)
I )T ,

and U
(i)
E = (\rho 

(i)
E ,q

(i)
E , E

(i)
E )T with q

(i)
I = \rho 

(i)
I u

(i)
I and q

(i)
E = \rho 

(i)
E u

(i)
E , as an example for

the density and pressure:

(4.8)
\rho 
(i)
I = \rho 

(i)
0,I + \varepsilon 2 \rho 

(i)
2,I + . . . , \rho 

(i)
E = \rho 

(i)
0,E + \varepsilon 2 \rho 

(i)
2,E + . . . ,

p
(i)
I = p

(i)
0,I + \varepsilon 2 p

(i)
2,I + . . . , p

(i)
E = p

(i)
0,E + \varepsilon 2 p

(i)
2,E + . . . .

In order to prove the theorem, we use the mathematical induction.
\bullet Asymptotic accuracy for the internal stages i = 1, . . . , s.
Case i = 1 leads to the same AP analysis for the scheme (3.6) with \Delta t
replaced by a11\Delta t. To prove the result for i > 1 onward, we make use of the
induction hypothesis, assuming the property holds for j \leq i  - 1, and prove
that it holds for j = i. Then for j = 1, . . . , i - 1 we have

(4.9) p
(j)
0,E = p\ast , E

(j)
0,E =

p\ast 
\gamma  - 1

, \nabla \cdot u(j)
0,I = 0.

Now we insert the expansions (4.8) into the explicit step in (3.16), and we
get for the energy equation

(4.10) E
(i)
0,E = E0

inc  - \Delta t
i - 1\sum 
j=1

\~aij\nabla \cdot 
\Bigl( 
\=H
(j)
0 q

(j)
0,I

\Bigr) 
with E0

inc = p\ast /(\gamma  - 1) and for j = 1, . . . , i - 1,

(4.11) \=H
(j)
0 =

E
(j)
0,E + p

(j)
0,E

\rho 
(j)
0,I

=
\gamma 

\gamma  - 1

p\ast 

\rho 
(j)
0,I

.
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B384 S. BOSCARINO, J. QIU, G. RUSSO, AND T. XIONG

Now by (4.9), (4.11), and E
(i)
0,E = p

(i)
0,E/(\gamma  - 1), from (4.10) we obtain

(4.12) p
(i)
0,E = p\ast  - \Delta t \gamma p\ast 

i - 1\sum 
j=1

\~aij\nabla \cdot u(j)
0,I = p\ast ,

that is, p
(i)
0,E = p\ast is constant. Then E

(i)
0,E = p\ast /(\gamma  - 1) is also constant for

the stage i.
From (3.16), to \scrO (1) we obtain for the density and momentum equations

(4.13) \rho 
(i)
0,E = \rho 0inc  - \Delta t

i - 1\sum 
j=1

\~aij\nabla \cdot q(j)
0,E

and

(4.14) q
(i)
0,E = q0

inc  - \Delta t

i - 1\sum 
j=1

\~aij

\Bigl( 
\nabla \cdot 
\Bigl( 
\rho 
(j)
0,E u

(j)
0,E \otimes u

(j)
0,E

\Bigr) 
+\nabla p

(j)
2,I

\Bigr) 
with q0

inc = (\rho u)0inc and \nabla p
(j)
0,E = 0 for j = 1, . . . , i - 1.

Similarly, inserting expansions (4.8) into (3.25b), up to \scrO (1) we get for the

intermediate explicit step \~U
(i)
0 in (3.16)

(4.15) \~q
(i)
0 = q0

inc  - \Delta t
i - 1\sum 
j=1

aij

\Bigl( 
\nabla \cdot 
\Bigl( 
\rho 
(j)
0,Eu

(j)
0,E \otimes u

(j)
0,E

\Bigr) 
+\nabla p

(j)
2,I

\Bigr) 
,

where from (3.4) and (4.9), it follows \nabla \=p
(j)
E = 0 for j = 1, . . . , i - 1. Further-

more, from (3.25a) we have

(4.16) \~\rho 
(i)
0 = \rho 0inc  - \Delta t

i - 1\sum 
j=1

aij\nabla \cdot q(j)
0,E ,

and using (4.11), we get
(4.17)

\~E
(i)
0 = E0

inc  - \Delta t
i - 1\sum 
j=1

aij\nabla \cdot ( \=H(j)
0 q

(j)
0,I) =

p\ast 
\gamma  - 1

 - \gamma p\ast 
\gamma  - 1

\Delta t
i - 1\sum 
j=1

aij\nabla \cdot u(j)
0,I .

Thus, by (4.9) we get from (4.17)

(4.18) \~E
(i)
0 =

p\ast 
\gamma  - 1

.

Now from (3.15b) and (4.18), it follows for the energy equation

E
(i)
0,I = \~E

(i)
0  - \Delta t aii\nabla \cdot ( \=H(i)

0 q
(i)
0,I) =

p\ast 
\gamma  - 1

 - \Delta t aii
\gamma p\ast 
\gamma  - 1

\nabla \cdot u(i)
0,I .

Considering the EOS (3.18b) to zeroth order in \varepsilon , we get E
(i)
0,I = p

(i)
0,I/(\gamma  - 1),

and we obtain for the pressure

p
(i)
0,I = p\ast +\Delta t \gamma p\ast aii\nabla \cdot u(i)

0,I .
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Integrating it over spatial bounded domain \Omega , and assuming some boundary

conditions (for example, no-slip or periodic,) we first obtain p
(i)
0,I = p\ast and by

this we get \nabla \cdot u(i)
0,I = 0 at the stage i.

Finally, from (3.15b), considering (4.15) and (4.16), we get for the density
and momentum,

\rho 
(i)
0,I = \rho 0inc  - \Delta t

i\sum 
j=1

aij\nabla \cdot q(j)
0,E ,(4.19a)

q
(i)
0,I = q0

inc  - \Delta t
i\sum 

j=1

aij

\Bigl( 
\nabla \cdot 
\Bigl( 
\rho 
(j)
0,E u

(j)
0,E \otimes u

(j)
0,E

\Bigr) 
+\nabla p

(j)
2,I

\Bigr) 
,(4.19b)

where from (3.4) and p
(i)
0,E = p\ast it follows in the equation of the momentum

\nabla \=p
(i)
E = 0 for i.

Then (4.13), (4.14), 4.19a), (4.19b), with constant limiting pressure, i.e.,

p
(i)
0,E = p

(i)
0,I = p\ast , and the divergence-free leading order velocity, i.e., \nabla \cdot 

u
(i)
0,I = 0, provide the discretization of system (2.6) for the internal stage i of

the SI-IMEX-RK scheme. This shows that in the limit \varepsilon \rightarrow 0, the scheme
becomes the same SI-IMEX-RK time-discrete scheme for the incompressible
Euler equations (2.6).

\bullet Asymtotic accuracy for the numerical solution.
Assuming that the SI-IMEX-RK scheme (3.13) is SA, then the numerical
solution coincides with the last internal stage s, and then by setting i = s,
we get

(4.20) p10 = p
(s)
0,I = p\ast , \nabla \cdot u1

0 = \nabla \cdot u(s)
0,I = 0,

i.e., we have (4.6).
Now if we denote by Vinc(x, t) = (\rho inc(x, t), \rho inc(x, t)uinc(x, t), pinc(x, t))

T

the exact solutions of (2.6), with initial data Vinc(x, 0) = (\rho 0(x), \rho 0(x)u0(x),
p0)T , from (4.13), (4.14), (4.19b), and (4.19a) with (4.20), one gets in the
limit case \varepsilon = 0 a SI-IMEX-RK scheme of order r for the numerical solutions
of (2.6), that is, the SI-IMEX-RK scheme (3.16)--(3.17) of order r is AA, and
the conclusion (4.7) is obtained.

5. Numerical tests. Through an extensive set of 1D and 2D numerical tests, we
will show that our scheme is uniformly stable and effective and can capture the correct
asymptotic limit. We use the third order SI-IMEX(4,4,3) scheme in time (3.21), fourth
order compact central difference discretization for second order derivatives in the
elliptic equation (3.28), and fifth order finite difference WENO reconstruction in space
for both \nabla W and \nabla CW in section 3.3. Overall the scheme is fourth order in space and
third order in time, denoted as ``S4T3."" On the other hand, an ``S2T2"" scheme refers to
using a second order total variation bounded reconstruction with the parameter M = 1
instead of a fifth order WENO reconstruction in the S4T3 scheme, and a second order
SI-IMEX(3,3,2) scheme in time (3.22). Reference solutions are computed by a fifth
order finite difference WENO scheme with third order explicit RK time discretization
[42], denoted as ``WENO5RK3."" For simplicity, we all take \gamma = 1.4 with an ideal
EOS. The time step is \Delta t = CFL\Delta x/\Lambda , where \Lambda = maxx (| u| +min(1/\varepsilon , 1) cs) in one
dimension and \Lambda = maxx,y (| u| + | v| +min(1/\varepsilon , 1) cs) in two dimensions, respectively.

cs =
\sqrt{} 
\gamma p/\rho is the scaled sound speed. We take CFL = 0.25 for all tests.
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Example 5.1 (two colliding acoustic pulses [34, 39]). This problem is defined on
the domain  - L \leq x \leq L = 2/\varepsilon with periodic boundary condition and initial data

(5.1)

\left\{     
\rho (x, 0) = \rho 0 +

1
2\varepsilon \rho 1 (1 - cos (2\pi x/L)) , \rho 0 = 0.955, \rho 1 = 2.0;

u(x, 0) = 1
2u0 sign(x) (1 - cos (2\pi x/L)) , u0 = 2

\surd 
\gamma ;

p(x, 0) = p0 +
1
2\varepsilon p1 (1 - cos (2\pi x/L)) , p0 = 1.0, p1 = 2\gamma .

We first test the order of accuracy for our scheme. Due to u(x, 0) in (5.1) is not
smooth enough, in order to observe more than second order accuracy, we modify it as

(5.2) u(x, 0) = u0 sin (2\pi x/L) (1 - cos (2\pi x/L)) /2.

Others are the same as in (5.1). We take \varepsilon = 10/11 to avoid order reduction from the
high order IMEX time discretization. We take mesh sizes with Nk = 2k \cdot N0, where
k = 0, 1, 2, 3 and N0 = 40. Reference solutions are computed with N = 2560. The
errors are computed by comparing the numerical solutions for the pressure pE to its
reference solution. In Table 1, we show the errors and orders at time t = 0.1. The
order of convergence is between 4 and 5, due to the dominance of spatial errors.

Then we take \varepsilon = 1/11 with initial condition (5.1) and compute the solution up
to T = 1.63 by both ``S2T2"" and ``S4T3"" schemes. A reference solution is computed
with N = 2200. In Figure 1, we compare the reference solution with the numerical
ones obtained with N = 22 grid points at time t = 1.63. We can see that the results
of the ``S4T3"" scheme on the very coarse mesh match the reference solutions better
than the ``S2T2"" scheme.

Example 5.2 (1D shock tube problem). In this example, we consider two 1D shock
tube problems in the compressible regime when the Mach number is of \scrO (1). We take
the initial data: one is the Sod problem, where

(5.3) (\rho , u, p) = (1, 0, 1) if x < 0.5; (\rho , u, p) = (0.125, 0, 0.1) otherwise,

and the other is the Lax problem, where
(5.4)

(\rho , u, p) = (0.445, 0.698, 3.528) if x < 0.5; (\rho , u, p) = (0.5, 0, 0.571) otherwise,

Table 1
Example 5.1. Convergence test for the two colliding acoustic pulses problem with initial condi-

tion (5.1), and the velocity is replaced by (5.2). t = 0.1. \varepsilon = 10/11.

N 40 80 160 320

L1 error 1.62E-02 9.97E-04 3.54E-05 1.34E-06
Order -- 4.02 4.82 4.72

Fig. 1. Example 5.1. Two colliding acoustic pulses with initial condition (5.1). t = 1.63.
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both with \varepsilon = 1 on the domain x \in [0, 1]. Reflective boundary conditions are con-
sidered and we take N = 50. We compute the numerical solution by both ``S2T2""
and ``S4T3"" schemes. The results are shown in Figure 2 and compared to the exact
solutions. For both the Sod and Lax shock tube problems, the results match the
exact solutions very well, which shows that our scheme in the moderate Mach regime
(\varepsilon of order 1) can capture strong discontinuities without any observable numerical
oscillations.

Example 5.3 (2D convergence test). We take the initial data

(5.5)

\left\{     
\rho (x, y, 0) = 1 + \varepsilon 2 sin2(2\pi (x+ y)),

\rho (x, y, 0)u(x, y, 0) = sin(2\pi (x - y)) + \varepsilon 2 sin(2\pi (x+ y)),

\rho (x, y, 0) v(x, y, 0) = sin(2\pi (x - y)) + \varepsilon 2 cos(2\pi (x+ y))

on the domain \Omega = [0, 1]2 with periodic boundary conditions. Initially we take p = \rho \gamma .
We choose N = Nx = Ny and refine the mesh size by Nk = 2k \cdot N0, for k = 0, 1, 2, with
N0 = 32. The numerical errors are computed by comparing the numerical solutions of
momentum q2 to the reference solution, which is computed by the ``S4T3"" scheme on
the mesh Nx = Ny = 512. In Table 2, we show the errors and orders at time t = 0.02.
Around fourth order for \varepsilon = 1 and fifth order for \varepsilon = 10 - 6 are observed. For the

Fig. 2. Example 5.2. 1D shock tube problem for \varepsilon = 1. Top: the Sod problem at t = 0.2.
Bottom: the Lax problem at t = 0.16. Mesh grid: N = 50. The solid lines are the exact solutions.

Table 2
Example 5.3. Convergence test for 2D full Euler equations with initial condition (5.5) at t =

0.02. Errors are computed by comparison with a reference solution.

\varepsilon = 1 \varepsilon = 10 - 2 \varepsilon = 10 - 6

N L1 error Order L1 error Order L1 error Order
32 4.64e-03 -- 2.45e-03 -- 7.26e-05 --
64 2.82e-05 4.05 2.68e-03 -- 1.79e-06 5.34
128 1.34e-06 4.39 1.43e-03 0.91 4.81e-08 5.22

D
ow

nl
oa

de
d 

07
/0

8/
22

 to
 1

08
.3

6.
96

.1
43

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B388 S. BOSCARINO, J. QIU, G. RUSSO, AND T. XIONG

Fig. 3. Example 5.3, 2D convergence test for the ``S4T3"" scheme. Convergence orders versus
\varepsilon 's for \varepsilon \in [10 - 6, 1]. As the spatial error dominates, the scheme is observed to have fifth order
convergence for small and around fourth order for large values of \varepsilon . Order degradation is observed
for intermediate values of the Mach number.

intermediate value of \varepsilon = 10 - 2, order reduction is observed. In Figure 3, we display
the orders versus \varepsilon for \varepsilon \in [10 - 6, 1], where the order is computed by comparing the
errors on the mesh 64 \times 64 and 128 \times 128. Order reduction for intermediate \varepsilon 's is
observed.

Example 5.4 (2D Riemann problem). This is a 2D Riemann problem in the high
Mach regime. We take \varepsilon = 1 and \Omega = [ - 1, 1]2. The initial data are defined in four
quadrants, which are modified from Configuration 3 in [35] with four shocks,

(5.6) (\rho , u, v, p) =

\left\{         
(1.5, 0, 0, 1.5), x \geq 0.8, y \geq 0.8;

(0.5323, 1.206, 0, 0.3)), x < 0.8, y \geq 0.8;

(0.138, 1.206, 1.206, 0.029), x < 0.8, y < 0.8;

(0.5323, 0, 1.206, 0.3), x \geq 0.8, y < 0.8.

The second one is Configuration 5 in [35] with four contact discontinuities, where the
initial data are

(5.7) (\rho , u, v, p) =

\left\{         
(1, - 0.75, - 0.5, 1), x \geq 0.5, y \geq 0.5;

(2, - 0.75, 0.5, 1), x < 0.5, y \geq 0.5;

(1, 0.75, 0.5, 1), x < 0.5, y < 0.5;

(3, 0.75, - 0.5, 1), x \geq 0.5, y < 0.5.

We take mesh size Nx \times Ny = 400\times 400. For this example, four different approaches
are compared to the reference solution. The first one is our splitting approach, where
we take \alpha = 1 in (3.2), using both spatial discretizations \nabla CW and \nabla W described in
section 3.3 (``A1""); another one uses the same splitting, but replaces \nabla CW all by \nabla W

(``A2""); the third one has no splitting, namely, we take \alpha = 0 in (3.2) and only \nabla W

is used (``A3""); the last one is the ``S2T2"" scheme using the same approach as ``A1.""
In Figure 4, we show the surface plots of the density at T = 0.8 for the initial data
(5.6). We can see that the solution of A1 is the closest to the reference solution and
no obvious oscillations are observed. For the other two approaches, A2 and A3, the
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Fig. 4. Example 5.4. Surface and cut plots of the density for 2D Riemann problem (5.6)
at T = 0.8. Mesh grid: 400 \times 400. Top left: reference solution; top right: the approach A1,
splitting with characteristicwise reconstruction \nabla CW ; middle left: the approach A2, splitting with
only componentwise reconstruction \nabla W ; middle middle: the approach A3, no splitting; middle right:
S2T2. Bottom are 1D cuts of these solutions.

solutions do not perform well; numerical oscillations can be clearly seen in the middle
region. The result of the second order ``S2T2"" scheme is close to ``A1,"" but it has
poorer resolutions. We also show the cutting plots along two different lines. The A1
approach is observed to perform better than the A2 and A3 approaches, and ``S2T2""
is in between but a little closer to A1, which show the importance of characteristic
reconstructions. In Figure 5, we present same results for the 2D Riemann initial data
(5.7) at T = 0.23. Similar observations can be made.

Example 5.5 (Gresho vortex [39, 9, 8]). This is the time-dependent rotational
Gresho vortex problem for the full Euler system. Initially a vortex is centered at
(x0, y0) = (0.5, 0.5) with radius R = 0.4 in the domain [0, 1]2. The initial back-
ground state is set as \rho \infty = 1, u\infty = (u\infty , 0), p\infty = 1, c\infty =

\sqrt{} 
\gamma p\infty /\rho \infty =

\surd 
\gamma . The

transverse velocity for the vortex is given by

u\theta (r) =

\left\{     
2r/R if 0 \leq r < R/2,

2(1 - r/R) if R/2 \leq r < R,

0 if r \geq R,

(5.8)

and the corresponding velocity components are

u(x, y, 0) = u\infty  - y  - y0
r

u\theta (r), v(x, y, 0) =
x - x0

r
u\theta (r).
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Fig. 5. Example 5.4. Surface plots of the density for 2D Riemann problem (5.7) at T = 0.23.
Mesh grid: 400\times 400. Top left: reference solution; top right: the approach A1, splitting with char-
acteristicwise reconstruction \nabla CW ; middle left: the approach A2, splitting with only componentwise
reconstruction \nabla W ; middle middle: the approach A3, no splitting; middle right: S2T2. Bottom are
1D cuts of these solutions.

The centrifugal force is balanced by the pressure gradient, so the (scaled) pressure is
given by

p(r) = p\infty + \varepsilon 2

\left\{     
2(r/R)2 + 2 - log 16 if 0 \leq r < R/2,

2(r/R)2  - 4(2r/R+ log(r/R)) + 6 if R/2 \leq r < R,

0 if r \geq R,

(5.9)

where r =
\sqrt{} 

(x - 0.5)2 + (y  - 0.5)2. Periodic boundary conditions on both directions
are used and the mesh is Nx \times Ny = 100\times 100. The background velocity is u\infty = 0.1
moving in the x-direction, and we take \varepsilon = 10 - 1, 10 - 2, 10 - 6. The rotation period is
2\pi /\omega = R\pi if r \leq R/2. We take T = R\pi as one rotating period [8].

We define the ratio between the local and the maximum Mach number as

(5.10) Mratio =
\sqrt{} 
[(u - u\infty )2 + v2]/(\gamma p/\rho ).

In Figure 6 (top left), we show the surface plot of Mratio for the initial condition with
\varepsilon = 10 - 2, which is very similar for other \varepsilon 's. As time evolves, the solution will rotate
while moving in the x-direction, but its shape will be kept. However, numerically
the shape will be damped due to numerical viscosity. This is a standard example to
check whether the numerical viscosity greatly depends on the parameter \varepsilon or not. For
better illustration, we show the cutting plots along x = 0.5 at two different times: one
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Fig. 6. Example 5.5, Gresho vortex problem. Top left: Mratio in (5.10) at T = R\pi on the mesh
grid 100 \times 100. Top middle: time evolution of the kinetic energy (5.11) relative to its initial value
on the mesh grid 100 \times 100. Top right: time evolution of the kinetic energy (5.11) relative to its
initial value on the mesh grid 200 \times 200. Middle and bottom: cuts along x = 0.5 at three different
times, initial (t = 0), one period (t = 1p), two periods (t = 2p). The results are shifted to the center
by  - u\infty t periodically. From left to right: \varepsilon = 10 - 1, \varepsilon = 10 - 2, \varepsilon = 10 - 6. Middle: mesh 100\times 100;
bottom: mesh 200\times 200.

period and two periods, for both schemes ``S4T3"" and ``S2T2,"" and compare them
to the corresponding initial shapes, for \varepsilon = 10 - 1, 10 - 2, 10 - 6, respectively. In these
plots, the vortex is shifted to the center by  - u\infty t periodically. Two meshes are used:
100\times 100 and 200\times 200. We can see that the shapes are preserved relatively well for
both ""S4T3"" and ``S2T2"" schemes, and the results of ``S4T3"" are a little better than
those of ``S2T2."" In Figure 6, we also show the time evolution of the averaged kinetic
energy, which is defined as

(5.11) kinetic energy =
\sum 
i,j

\bigl[ 
(u(xi, yj , t) - u\infty )2 + v(xi, yj , t)

2
\bigr] 
/NxNy.

We can see the conservation of kinetic energy is well maintained. For a coarse mesh
100 \times 100, the high order scheme ``S4T3"" preserves the kinetic energy clearly better
than ``S2T2."" Refining the mesh can greatly improve the conservation of the kinetic
energy, and the differences between these two methods are reduced, especially for
small \varepsilon 's.
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Fig. 7. Example 5.6, the vorticity \omega = vx - uy and time history of L\infty norm for the divergence
ux + vy. Left: the shear flow problem (5.12) at T = 6 with mesh grid 256\times 256. Right: the Kelvin--
Helmholtz instability problem (5.13) at T = 40 with mesh grid 256\times 128.

Example 5.6 (incompressible flow). Finally we consider two problems in the
incompressible flow regime by taking \varepsilon = 10 - 6. One is the shear flow problem on
[0, 2\pi ]2 with

(5.12) v(x, y, 0) = \delta cos(x), u(x, y, 0) =

\Biggl\{ 
tanh((y  - \pi 

2 )/\rho ) if y \leq \pi ,

tanh(( 3\pi 2  - y)/\rho ) if y > \pi .

The other is the Kelvin--Helmholtz instability problem [17] on [0, 4\pi ]\times [0, 2\pi ] with

(5.13) u(x, y, 0) = cos(y), v(x, y, 0) = 0.03 sin(0.5x).

The initial density and pressure for both cases are taken to be 1. For the shear flow
problem, we run the solution up to T = 6 on a mesh grid 256\times 256, while T = 40 for
the Kelvin--Helmholtz instability problem on the mesh grid, Nx \times Ny = 256 \times 128.
The vorticity \omega = vx  - uy for both cases is shown in Figure 7, where vx and uy are
discretized by the fourth order central difference. We observe that it is comparable
to the results for the isentropic case as in [8].

We also show the time evolution of the divergence error ux + vy for the velocity
in Figure 7. The divergence is computed by a fifth order finite difference WENO
reconstruction with zero viscosity, which mimics what we have done in the numerical
scheme. We also compare it with the linear fourth order central difference discretiza-
tion. For both cases, the divergence error is increasing with time. When very fine
structures are no longer supported by the mesh, the divergence error suffers from a
sudden increase. We would remark that when the flow is incompressible or weakly
incompressible, without discontinuities in the initial condition, high order linear re-
constructions would perform better than WENO reconstructions in preserving the
divergence and in resolving solution structures.

6. Conclusion. In this paper we present a high order semi-implicit IMEX-RK
WENO scheme for the full compressible Euler equations in the case of all-Mach flows.
We combine the semi-implicit IMEX-RK discretization in time with high order finite
difference WENO space discretizations. The EOS is treated in a semi-implicit man-
ner, therefore requiring the solution of linearized elliptic systems at each time step.
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Characteristic reconstructions are proposed in the semi-implicit framework with a
fixed splitting for the pressure. The scheme is proven to be asymptotic preserv-
ing and asymptotically accurate in the incompressible limit. Numerical tests have
demonstrated the efficiency and effectiveness of our proposed approach.
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